64 research outputs found

    A Semantic Collaboration Method Based on Uniform Knowledge Graph

    Get PDF
    The Semantic Internet of Things is the extension of the Internet of Things and the Semantic Web, which aims to build an interoperable collaborative system to solve the heterogeneous problems in the Internet of Things. However, the Semantic Internet of Things has the characteristics of both the Internet of Things and the Semantic Web environment, and the corresponding semantic data presents many new data features. In this study, we analyze the characteristics of semantic data and propose the concept of a uniform knowledge graph, allowing us to be applied to the environment of the Semantic Internet of Things better. Here, we design a semantic collaboration method based on a uniform knowledge graph. It can take the uniform knowledge graph as the form of knowledge organization and representation, and provide a useful data basis for semantic collaboration by constructing semantic links to complete semantic relation between different data sets, to achieve the semantic collaboration in the Semantic Internet of Things. Our experiments show that the proposed method can analyze and understand the semantics of user requirements better and provide more satisfactory outcomes

    Towards Ubiquitous Semantic Metaverse: Challenges, Approaches, and Opportunities

    Full text link
    In recent years, ubiquitous semantic Metaverse has been studied to revolutionize immersive cyber-virtual experiences for augmented reality (AR) and virtual reality (VR) users, which leverages advanced semantic understanding and representation to enable seamless, context-aware interactions within mixed-reality environments. This survey focuses on the intelligence and spatio-temporal characteristics of four fundamental system components in ubiquitous semantic Metaverse, i.e., artificial intelligence (AI), spatio-temporal data representation (STDR), semantic Internet of Things (SIoT), and semantic-enhanced digital twin (SDT). We thoroughly survey the representative techniques of the four fundamental system components that enable intelligent, personalized, and context-aware interactions with typical use cases of the ubiquitous semantic Metaverse, such as remote education, work and collaboration, entertainment and socialization, healthcare, and e-commerce marketing. Furthermore, we outline the opportunities for constructing the future ubiquitous semantic Metaverse, including scalability and interoperability, privacy and security, performance measurement and standardization, as well as ethical considerations and responsible AI. Addressing those challenges is important for creating a robust, secure, and ethically sound system environment that offers engaging immersive experiences for the users and AR/VR applications.Comment: 18 pages, 7 figures, 3 table

    MONICA in Hamburg: Towards Large-Scale IoT Deployments in a Smart City

    Full text link
    Modern cities and metropolitan areas all over the world face new management challenges in the 21st century primarily due to increasing demands on living standards by the urban population. These challenges range from climate change, pollution, transportation, and citizen engagement, to urban planning, and security threats. The primary goal of a Smart City is to counteract these problems and mitigate their effects by means of modern ICT to improve urban administration and infrastructure. Key ideas are to utilise network communication to inter-connect public authorities; but also to deploy and integrate numerous sensors and actuators throughout the city infrastructure - which is also widely known as the Internet of Things (IoT). Thus, IoT technologies will be an integral part and key enabler to achieve many objectives of the Smart City vision. The contributions of this paper are as follows. We first examine a number of IoT platforms, technologies and network standards that can help to foster a Smart City environment. Second, we introduce the EU project MONICA which aims for demonstration of large-scale IoT deployments at public, inner-city events and give an overview on its IoT platform architecture. And third, we provide a case-study report on SmartCity activities by the City of Hamburg and provide insights on recent (on-going) field tests of a vertically integrated, end-to-end IoT sensor application.Comment: 6 page

    Towards an Automated Semantic Data-driven Decision Making Employing Human Brain

    Full text link
    [EN] Decision making is time-consuming and costly, as it requires direct intensive involvement of the human brain. The variety of expertise of highly qualified experts is very high, and the available experts are mostly not available on a short notice: they might be physically remotely located, and/or not being able to address all the problems they could address time-wise. Further, people tend to base more of their intellectual labour on rapidly increasing volumes of online data, content and computing resources, and the lack of corresponding scaling in availability of the human brain resources poses a bottleneck in the intellectual labour. We discuss enabling direct interoperability between the Internet and the human brain, developing "Internet of Brains", similar to "Internet of Things", where one can semantically model, interoperate and control real life objects. The Web, "Internet of Things" and "Internet of Brains" will be connected employing the same kind of semantic structures, and work in interoperation. Applying Brain Computer Interfaces (BCIs), psychology and behavioural science, we discuss the feasibility of a possible decion making infrastructure for semantic transfer of human thoughts, thinking processes, communication directly to the InternetThis work has been partially funded by project DALICC, supported by the Austrian Research Promotion Agency (FFG) within the program “Future ICT”.Fensel, A. (2018). Towards an Automated Semantic Data-driven Decision Making Employing Human Brain. En 2nd International Conference on Advanced Reserach Methods and Analytics (CARMA 2018). Editorial Universitat Politècnica de València. 167-175. https://doi.org/10.4995/CARMA2018.2018.8338OCS16717

    Performance Evaluation and Validation of Intelligent Security Mechanism in Software Defined Network

    Get PDF
    Network attacks are discovered using intrusion detection systems (IDS), one of the most crucial security solutions. Machine learning techniques-based intrusion detection approaches have been rapidly created as a result of the widespread use of standard machine learning algorithms in the security field. Unfortunately, as technology has advanced and there have been faults in the machine learning-based intrusion detection system, the system has consistently failed to fulfill the standards for cyber security. Generative adversarial networks (GANs) have drawn a lot of interest recently and have been utilized widely in anomaly detection due to their enormous capacity for learning difficult high-dimensional real time data distribution. Traditional machine learning algorithms for intrusion detection have a number of drawbacks that deep learning techniques can significantly mitigate. With the help of a real time dataset, this work suggests employing GANs and its variants to detect network intrusions in SDN. The feasibility and comparison results are also presented. For different kinds of datasets, the BiGAN outcomes outperform the GAN

    Does Internet of Things Affect on Sustainable Development? Investigation through Intermediate Applications

    Get PDF
    Since, the technology of Internet of Things (IoT) is utilized to facilitate new and improve existing applications in a large variety of domains, such as manufacturing, healthcare and energy, the main aim of this research work is to evaluate the role of IoT applications on Sustainable Development (SD). To conduct this research work, a conceptual model has been proposed by considering intermediate applications to connect internet of things attributes to the main aspects of sustainable development. Sustainability is divided into three main components of environment, economy and society as well as IoT has been also divided into information dissemination, communication and information technology and information transmission. The proposed conceptual model has been validated using a purpose designed questionnaire to gather experts’ opinions in Likert scale where each application connects IoT attributes to SD components. Analysing filled out questionnaires using the well-known statistical method of T-Test revealed that there are significant relations between IoT attributes and sustainable development component. It can be also concluded that the applications of IoT would improve sustainablity over development process. Therefore, IoT applications would be improved and renewed over the next years because sustainability is getting to be a serious concern all over the world

    How to connect design thinking and cyber-physical systems: the s*IoT conceptual modelling approach

    Get PDF
    The alignment of enterprise models and information systems is a factor that influences the efficiency of enterprise practices. Considering the changing landscape in the age of the fourth industrial revolution, it is imperative that alignment methodologies are evolved with the progression of enterprise models and the transformation from information systems to cyber-physical systems (CPSs). This issue was dissected in three layers - scenario layer, modelling layer, and run-time environment. In this structure, design thinking and CPSs were extended from the scenario layer and the run-time environment to the modelling layer. Focusing on the modelling layer, progress was made towards composing smart models that innovate enterprise models according to novel influences from design thinking while abstracting from run-time environments that CPS provide. The hypothesis was to consider the automated transformation of knowledge as an axle around which artifacts on the modelling layer revolve. Based on this hypothesis, the modelling layer was structured in a modelling hierarchy, in which a metamodel was defined using a metamodelling platform. The metamodel is the direct model of modelling methods which were used to build smart models that connect design thinking and CPSs

    A unified ontology-based data integration approach for the internet of things

    Get PDF
    Data integration enables combining data from various data sources in a standard format. Internet of things (IoT) applications use ontology approaches to provide a machine-understandable conceptualization of a domain. We propose a unified ontology schema approach to solve all IoT integration problems at once. The data unification layer maps data from different formats to data patterns based on the unified ontology model. This paper proposes a middleware consisting of an ontology-based approach that collects data from different devices. IoT middleware requires an additional semantic layer for cloud-based IoT platforms to build a schema for data generated from diverse sources. We tested the proposed model on real data consisting of approximately 160,000 readings from various sources in different formats like CSV, JSON, raw data, and XML. The data were collected through the file transfer protocol (FTP) and generated 960,000 resource description framework (RDF) triples. We evaluated the proposed approach by running different queries on different machines on SPARQL protocol and RDF query language (SPARQL) endpoints to check query processing time, validation of integration, and performance of the unified ontology model. The average response time for query execution on generated RDF triples on the three servers were approximately 0.144 seconds, 0.070 seconds, 0.062 seconds, respectively
    • …
    corecore