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ABSTRACT

The Internet of Things (IoT) is a paradigm where physical objects are connected
with each other with identifying, sensing, networking and processing capabilities
over the Internet. Millions of new devices will be added into IoT network thus
generating huge amount of data. How to represent, store, interconnect, search,
and organize information generated by IoT devices become a challenge. Seman-
tic technologies could play an important role by encoding meaning into data to
enable a computer system to possess knowledge and reasoning. The vast amount
of devices and data are also challenges. Edge Computing reduces both network
latency and resource consumptions by deploying services and distributing com-
puting tasks from the core network to the edge.

We recognize four challenges from IoT systems. First the centralized server
may generate long latency because of physical distances. Second concern is that
the resource-constrained IoT devices have limited computing ability in processing
heavy tasks. Third, the data generated by heterogeneous devices can hardly be
understood and utilized by other devices or systems. Our research focuses on
these challenges and provide a solution based on Edge computing and semantic
technologies.

We utilize Edge computing and semantic reasoning into IoT. Edge computing
distributes tasks to the reasoning devices, which we call the Edge nodes. They
are close to the terminal devices and provide services. The newly added resources
could balance the workload of the systems and improve the computing capabil-
ity. We annotate meaning into the data with Resource Description Framework
thus providing an approach for heterogeneous machines to understand and utilize
the data. We use semantic reasoning as a general purpose intelligent processing
method.

The thesis work focuses on studying semantic reasoning performance in IoT
system with Edge computing paradigm. We develop an Edge based IoT system
with semantic technologies. The system deploys semantic reasoning services on
Edge nodes. Based on IoT system, we design five experiments to evaluate the
performance of the integrated IoT system. We demonstrate how could the Edge
computing paradigm facilitate IoT in terms of data transforming, semantic rea-
soning and service experience. We analyze how to improve the performance by
properly distributing the task for Cloud and Edge nodes. The thesis work result
shows that the Edge computing could improve the performance of the semantic
reasoning in IoT.

Keywords: Edge Computing, Cloud Computing, Internet of Things, Semantic,
Reasoning, Performance
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1. INTRODUCTION

1.1. Background

Internet of Things (IoT) is the internetworking of physical objects that are provided
with unique identifiers and the ability to transfer data over a network without requiring
human-to-human interaction. The worldwide IoT market spending will grow from
$591.7 billion in 2014 to $1.3 trillion in 2019 with a compound annual growth rate of
17%. The installed base of IoT units will grow from 9.7 billion in 2014 to more than
25.6 billion in 2019, finally reaching 30 billion in 2020 [1]. IoT can help organizations
utilize their business infrastructures and assets in innovative ways to offer new services
and deliver additional revenue. Individuals and societies could also gain benefits from
IoT technologies.

Semantic technologies include a fairly diverse family of technologies aiming to help
derive meaning from information. Semantic technologies encode meaning into data to
enable computer systems to possess knowledge and reasoning. IoT connects the de-
vices and the semantic technologies enable linking knowledge together. The semantic
technologies have been developed for more than 40 years. There are many technolo-
gies and systems, for example, Formal logic [2], Knowledge Representation System
[3] in AI, Semantic Network and ATN [4], DARPA and European Commission Pro-
gram in information integration, Tractable Logic [5], Relational Algebra and Schema
in database system [6].

Applying semantic technologies to IoT promotes interoperability among IoT objects
and facilitates data access, data integration, resource discovery, semantic reasoning
and knowledge extraction [7]. The communication and data exchange between IoT
devices are essential activities in IoT. Semantic technologies provide a method for
different machines to understand the data thus improving the interoperability and data
integration. Semantic annotation of IoT objects and services is beneficial to the search
and discovery for them.

Edge computing is “the enabling technologies allowing computation to be performed
at the edge of the network, on downstream data on behalf of Cloud services and up-
stream data on behalf of IoT services [8]”. The Edge computing could also be recog-
nized as Mobile Edge Computing (MEC). The Edge computing is a general concept
and the MEC is a more specific concept from architecture’s prospectives and specify
the Edge node as Mobile devices. The definition of MEC, which is “An open cloud
platform that uses some end-user clients and located at the mobile edge to carry out a
substantial amount of storage (rather than stored primarily in cloud data centers) and
computation (including edge analytics, rather than relying on cloud data centers) in
real time, communication (rather than routed over backbone networks), and control,
policy and management (rather than controlled primarily by network gateways such
as those in the LTE core) [9].” MEC aims at reducing both network latency and re-
sources consumptions by shifting computing and storage capacities from the Internet
cloud to the mobile edge [10]. Mobile Edge Computing enables innovative service sce-
narios that can ensure enhanced users experiences and optimized network operations
[11]. The MEC will provide convergence of computer and connectivity, flexibility for
application developers, new revenue stream for service providers and benefits of the
network equipment vendors [9].
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1.2. Challenges

Although IoT creates new possibilities and provides a great vision for the future tech-
nologies and industry, IoT still presents multiple challenges.

Research [12] shows that there are current five key challenges in IoT. First, the cur-
rent architecture of the data centre cannot fully support the incredible increment of the
data in personal and enterprise area. Juniper Research [13] estimates that the sales
volume of smart devices in the world will reach 15 million units by 2013. The sales
of these smart devices will amount to 70 million units by 2017. Second, the new data
management systems need to be developed. Third, Data Mining is an essential tech-
nology for data process in big amount. IoT requires processing steaming data produced
by various equipments. Early data mining tools are not entirely supporting structured
data. Fourth, IoT data carries sensitive personal information such as health situation,
location, movement, and purchasing preference. Protecting privacy is a major concern
for both enterprise and the users. Fifth, the personal specific data could also cause se-
curity problem. The evolution of IoT technologies is in a hyper accelerated innovation
cycle which means the scale of an IoT system could be extremely huge. A small error
may not bring down a system but in the hyper-connected world [14], it could cause
disorder throughput of the network.

Beside these, we also recognize some issues in the current IoT systems:

• The centralized server or Cloud server may be located far away from users and
the physical distance generate a long latency.

• The IoT devices such as the sensors have usually limited computing and stor-
age resources and they are unable to execute complex task or perform heavy
computing activities.

• The heterogeneous devices will generate data in their own format which can
hardly be understood or utilized by other devices or systems.

1.3. Research Objectives and Contribution

The increasing amount of data and devices in IoT requires new technologies. The data
should be represented in a way that heterogeneous devices in the network could under-
stand and utilize easily. Data processing requires intelligent method in order to provide
more accurate and comprehensive results. New architectures are required for handle
the vast amount of devices and provide high performance computing and high quality
services. Hence, the semantic technologies and Edge computing paradigm has draw
attention from researchers in IoT. We establish the three technologies together and
study the influence of the integration. The thesis intents on investigating the benefits
and issues in utilizing Semantic technologies, Cloud computing and Edge comput-
ing paradigm in IoT systems. It aims to discover the advantages of Edge computing
paradigm and semantic technologies in IoT, the related problems caused by integration
and technical barriers thus helping developing high performance future IoT systems.

More specifically, we focus on the following research questions:
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1. How is the reliability of IoT systems integrated with Edge computing paradigm
and semantic technologies? How is the performance and scalability of the new
systems?

2. What benefits and shortcomings the Edge computing and semantic technologies
have when introduce them in IoT systems?

Our contributions are discussed as follows. First , we develop an IoT system with
semantic reasoner and Edge computing paradigm to study the benefits of integrating
Edge computing paradigm into this IoT system. The system could do rule-based rea-
soning and help us study the performance of each process. Second, we carry out ex-
periments to research the performance of the data transferring and semantic processing
base on our system. Our experiments analyze the performance of semantic reasoning
on the Edge of IoT. The results give constructive suggestions to the future IoT systems
design and implementation.

1.4. Thesis Structure

The rest of the Thesis consists of the following structure: Chapter 2 describes the
background knowledge about Knowledge Representation, semantics and IoT with the
state-of-the-art technologies, framework, standards in this area. Chapter 3 presents
an Edge semantic reasoning system for taxi traffic scenario data processing. Chapter
4 describes the experiments based on Taxi scenario and analyze the results. Chapter
5 discuss the findings and future works and chapter 6 summaries the research results
draw a conclusion about this study.
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2. LITERATURE REVIEW

This research focuses on three key technologies: IoT, the semantic technologies and
the Edge computing paradigm. In this chapter, we will introduce the related concepts
and technologies for these three fields. In semantic technologies, we will introduce the
Resource Definition Framework and Semantic tools. For Edge computing paradigm,
we will also introduce the Cloud computing and Fog computing.

2.1. Internet of Things

IoT means “a world-wide network of interconnected objects uniquely addressable,
based on standard communication protocols” [15]. IoT systems will connect phys-
ical world objects via wireless and wired ways. Moreover, it will connect both the
inanimate and living things, for example, the Cow Tracking Project monitors cows
for illness and track behavior in the herd [16]. Researchers predicate that in the next
decade, IoT will get a distinct development and at that time, the seamless fabric of
classic networks and objects will provide ubiquitous service for us [17].

Research about IoT starts from early 2000’s [18]. The new vision, which is presented
in Figure 1, equips objects in daily life with identifiers, wireless connectivity and other
digital modules, then the objects can communicate and coordinate with each other in
order to form a network of physical things and be managed by machines automatically
without the help from human beings. Figure 1 shows the main concepts, technologies
and standards from three prospectives. “Things” oriented perspective focuses on phys-
ical objects. “Internet” oriented perspective focuses on networking between objects.
“Semantic” oriented perspective focuses on cooperative processing.

Figure 2 shows the evolution from pure IoT to IoT with semantic technologies.
There are two steps[20] to make IoT as a semantic IoT powered by Web technolo-
gies. The first step has been to offer interconnectivity to everything. The second step
is to connect things to the Web. The current IoT platforms, systems and products are
focusing on connection and integration among heterogeneous IoT resources. For these
purpose, new standards, lightweight communication protocols such as CoAP [21] are
designed and utilized. After coping with the connection issue, the market pays more
attention to data and services. How to describe knowledge in a common way to make
heterogeneous systems and applications understand and utilize universally becomes a
new challenge.

Research [7] shows that IoT systems includes the vast amount of raw data produced
by IoT devices and structured machine-readable information from the raw data for
interoperability. What the human and service required is not the raw data but high-
level abstractions and perceptions. The semantic technologies could transform the raw
data into universally actionable and understandable knowledge.

IoT contains multiple technologies which cover the domain of software and hard-
ware. These technologies enable the objects to have three major capabilities: identifi-
able ability, communication ability and interactive ability. Bandyopadhyay divided the
technologies into 13 categories [19] including:
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Figure 1. Vision of Internet of Things. [19]

• Identification: The function of identification is to map a unique identifier or UID
to make an object an identifiable and retrievable entity without ambiguity.

• IoT Middleware Technology: This technology covers the middleware architec-
tures for IoT following a particular approach such as the service oriented archi-
tecture approach.

• Communication Technology: Communication between IoT devices and systems.

• Networking technology: IoT deployment requires developments of suitable net-
work technologies for implementing the vision of IoT to seek objects in the
physical world and to bring them into the Internet.

• Network Discovery Mechanisms: In IoT paradigm, the networks will dynami-
cally change and continuously evolve.

• Software and Algorithms: Software and algorithms used for data processing.

• Hardware: Research on nano-electronics devices is focusing on miniaturization,
low cost and increased functionality in design of wireless identifiable systems.
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Figure 2. From the Internet of Things to the semantic Web of Things. [20]

• Data and Signal Processing Technology: Developing a standardized way to ex-
press the data contract, trust, process, work flow, message, and other data se-
mantics for the nodes.

• Discovery and Search Engine Technologies: IoT requires the development of
lookup or referral services to link objects to information and services and to
support secure access to information and services.

• Power and Energy Storage Technologies: The autonomous things operating in
IoT applications and performing either sensing or monitoring of the events need
power and energy to perform the required job.

• Security and Privacy Technologies: Privacy of the humans and confidentiality of
the business processes.

• Standardization: Standards should be designed to support a wide range of appli-
cations and address common requirements from a wide range of industry sectors.

Based on the above mentioned classification and our research background, we sum-
marize the technologies into a simplified categories which contains 5 domains in Table
1. The first domain is Identification technology which is the same as Bandyopad-
hyay’s Identification. The second one is Communication Technology and it includes
“Networking Technology” and “Network Discovery Mechanisms”. This technology
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mainly focuses how to build a communication network and how could the items com-
municate with each other inside the network. The third one is “Hardware”, and it
includes both “Hardware” and “Power and Energy Storage Technologies”. The fourth
is Data and Signal Processing Technology. The fifth is Organization and Management,
it includes “Discovery and Search Engine Technologies", “Security and privacy tech-
nologies” and “Relationship Network Management Technologies”. The rest items on
Bandyopadhyay’s category such as “Software and Algorithms” and “Standardization”
are included in other categories we summarized above.

In the following sub-chapter, we will introduce Identification Technology and Com-
munication Technology. We do not focus on special hardware, so we skip “Hardware”
technology. We use semantic technologies for data processing and it will be introduced
in semantic technologies chapter. We use semantic technologies and Edge computing
paradigm for organization and management, so we will introduce related technologies
in semantic technologies chapter and computing technology chapter.

Table 1. Key Technologies in IoT
Key Technologies

1 Identification
2 Communication Technology
3 Hardware
4 Data and Signal Processing Technology
5 Organization and Management

2.1.1. Identification Technology

Identification technology in IoT domain aims to solve the problem that how to name
objects so that other objects can find them without confusion. Identifiers could be a
random unstructured bit string. Otherwise it could be a structured name which con-
sists of different meaningful name spaces, for example, the Uniform Resource Locator
(URL) [22].

Uniform Resource Locator (URL) [22] is used for locating a web resource in Web-
based systems. It consists of DNS name of the server and the path of the document.
URL is a subset of URI because locators could also be used as identifier. Interna-
tionalized Resource Identifier (IRI) [23] is a complement to the Uniform Resource
Identifier (URI), and it is a sequence of characters from the Universal Character Set
(Unicode/ISO 10646) while URI supports only ASCII encoding. A mapping from
IRIs to URIs is defined, which means that IRIs can be used instead of URIs, where ap-
propriate, to identify resources. A Universal Unique Identifier (UUID) [24] is a 128-bit
number used to uniquely identify objects or entities. UUID has different version. For
example, the first version UUID combines a MAC address and a timestamp to produce
sufficient uniqueness.

Another problem is how to locate the particular object according to the unique name
in a network. Solutions includes broadcasting, multi-casting, forwarding pointers,
home-based tracking approaches, distributed hash tables, hierarchical approaches, Do-
main Name System (DNS), etc.



13

2.1.2. Communication Technologies

One biggest challenge in IoT is that large number of nodes which will exist in IoT
network and it is important to keep stable communication. As the device quantity
increased, the available IPv4 address has almost been consumed, IPv6 has been popu-
larized these years. But for IoT environment, IoT devices need to address the challenge
to efficiently use the low power and limited bandwidth. There are various types of lo-
cal area connections such as RFID, NFC, Wi-Fi, Bluetooth, and Zigbee. There are also
many wide area connectivity such as GSM, GPRS, 3G, and LTE. An RFID system
has readers and tags that communicate with each other by radio. RFID provides inex-
pensive communication with tags and readers for tracking devices, human beings and
animals. The RFID tags are made of tiny chip, which is usually called the integrated
circuit (IC), with antenna connected to it. The chips have memory component which
stores information about the object such as the product’s electronic product code (EPC)
[25].

Sensor networks will also play a crucial role in IoT. Wireless Sensor Network (WSN)
[26] is composed of small cheap sensors with limited processing and computing re-
sources. Sensor could perceive the ambient situation and gain information from the
environment, for example, the temperature. There are mainly five types of WSNs: ter-
restrial WSN, underground WSN, underwater WSN, multi-media WSN, and mobile
WSN.

The communication protocol consists of five standard protocol layers for packet
switching: application layer, transport layer, network layer, data-link layer, and phys-
ical layer. IoT has special requirement to address large scale of devices with limited
computing resources. Internet Engineering Task Force (IETF) developed a number of
standards and protocols for IoT. Figure 3 shows the landscape of IoT protocols. The
landscape shows part of the widely used protocols according to layers. We will in-
troduce some of the protocols based on the layer classification in Figure 3 and other
important ones which are not showed in the figure.

For data-link layer and physical layer, IEEE 802.15.4 is for Near Field Communica-
tion (NFC) for resource limited devices, developed by IEEE 802.15 personal area net-
work (PAN) working group. WirelessHART [28] and ZigBee [29] protocols are based
on IEEE 802.15.4. 6LoWPAN protocol which is an acronym of IPv6 over Low power
Wireless Personal Area Networks. IPv6 addresses are expressed by means of 128 bits
in order to define 1038 addresses for low-power wireless communication nodes.

ZigBee [29] is an IEEE 802.15.4-based specification for a suite of high-level com-
munication protocols with low-power digital radios. The low power consumption also
restricts the communication distance.

WirelessHART [28] is a WSN protocol based on the Highway Addressable Re-
mote Transducer Protocol (HART) with a time synchronized, self-organizing, and self-
healing mesh architecture.

Home Automation (RFC5826), Industrial Control (RFC5673), Urban Environment
(RFC5548) and Building Automation (RFC 5867) standards [30] are developed for
Network layer by Lossy and Low-power Networks (RoLL) working group. Routing
protocol for LLN (RPL) support point-to-point point-to-multipoint and multipoint-to-
point communication.
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Figure 3. Protocol Landscape for IoT. [27]

In application layer, there are many protocols, for example CoAP [21] and MQTT,
in next part, we will discuss the functionality, features , pros and cons of the most
widely used protocols.

The constrained Application Protocol (CoAP) [21] is a web transfer protocol with
REST [31] style. It is designed for easy stateless mapping with HTTP. It provides
machine-to-machine interaction. CoAP employs UDP protocols as TCP protocol is
more complex for the resource-constrained devices under IoT environment. CoAP
enable to process millions of devices. CoAP has similar features with HTTP, but
HTTP employs TCP which increases the computation complexity. CoAP provides
URI, REST method and IP multicast. Comparing with TCP, UDP is relatively unsta-
ble. To overcome this shortcoming, CoAP implements a retransmission mechanism
and resource discovery mechanism. CoAP employs a two layer structure, the lower
layer is for asynchronously processing UDP messages and the upper layer is for REST
request and response. For security consideration, CoAP utilizes Datagram Transport
Layer Security (DTLS) [32] protocol for integrity, authentication and confidentiality
[33].

Embedded binary HTTP (EBHTTP) [34] is a binary-formatted, space-efficient,
stateless encoding of the standard HTTP/1.1 protocol. EBHTTP is primarily designed
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the transportation of small scale data between resource-constrained nodes, which is
similar with CoAP.

Message Queue Telemetry Transport (MQTT) [35] is a publish/subscribe messag-
ing transport protocol. It employs a topic-based publish-subscribe architecture. The
clients could perform as publishers, subscribers or both. Publishers publish message
to a specific channel with a unique topic name. All the subscribers who subscribe this
topic can receive the message. MQTT utilize TCP protocol to provide stable commu-
nication. MQTT has three level of Quality of Service (QoS). The lowest level will only
deliver the message for one time, the middle level delivers the message at least once
for confirmation, and the highest level employs a four-way handshake mechanism.

Comparing with MQTT, CoAP is more lightweight as it utilizes UDP. CoAP use
URI to locate resources while MQTT uses topic for message. Research shows MQTT
will generate longer delay when data packet lost [36].

MQTT-SN is a pub/sub protocol, which optimized for implementation on low-cost,
battery-operated devices with limited processing and storage resources. MQTT-SN
will delivery short message by dividing the original message into 3 sub-messages. For
compressing the message length, it also uses “Pre-defined” topic IDs and “short” topic
names [35].

The Advanced Message Queuing Protocol (AMQP) is an open standard and message-
oriented binary protocol for message-oriented middleware. Comparing with the text-
base protocol and binary protocol, package the data into binary will save more space.
AMQP is a wire-level protocol, which means the format of the data that is sent across
the network as a stream of octets. AMQP has an exchange which routes the message
to the particular queue based on rules and criteria. Then the message will be stored in
a message queue and wait for consumers [37].

The Extensible Messaging and Presence Protocol (XMPP) [38] is a message-
oriented protocol for streaming XML elements with a real time behavior. XMPP was
called “Jabber” and provides instant messaging (IM) to connect people to other peo-
ple via text messages. XMPP is an open standard available for everyone. Secure
authentication (SASL) and encryption (TLS) have been built into the core of XMPP
specifications. The XMPP does not support QoS and text-based communication made
XML data heavy.

Lightweight M2M provides an underlying layer agnostic protocol. OMA Lightweight
M2M [39] is a protocol from the Open Mobile Alliance for M2M or IoT device man-
agement. The OMA Lightweight M2M enabler includes device management and ser-
vice enablement for LWM2M Devices.

2.2. Semantic Technologies

Semantic technology is a concept in computer science that aims to bring semantics,
which includes the meaning and context behind words and sentences. A number of
approaches to implement the concept have been developed, ranging from artificial in-
telligence to formal, machine-readable descriptions of content. The Web is a key focal
point for semantic technologies, though it may benefit business and academic fields as
well.
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The World Wide Web is one of the focal points for semantic technologies, and the
Semantic Web attempts to address some of the semantic shortcomings of the current
web, by introducing a much more versatile and dynamic markup to the documents that
comprise the network. We will introduce this concept first.

The semantic technologies mainly address meanings for data. Making the data se-
mantic is to represent the data as a knowledge that all the other devices and systems
could understand it. We will introduce this in Knowledge Representation and Logic
section. After understanding the data, the system could generate new knowledge based
on the existing ones. This is introduced in Reason section. Then we will introduce
technologies about encoding the knowledge in semantic way in Resource Description
Framework, Web Ontology Language, RDF serialization format sections, technolo-
gies about semantic processing in Semantic Reasoner and Editor section, and RDF
Database section.

2.2.1. Semantic Web

Berners Lee gave a formal definition [40] for Semantic Web: “The Semantic Web is
an extension of the current web in which information is given well-defined meaning,
better enabling computers and people to work in cooperation.” Semantic Web technolo-
gies contains a family of technology standards from the World Wide Web Consortium
(W3C) that are designed to describe and relate data on the Web and inside enterprises.
For example, Resource Description Framework is a flexible data model, RDFS and
OWL are schema and ontology languages for describing concepts and relationships,
SPARQL [41] is a query language, RIF [42] is a rules exchange language.

The Concept of Semantic Web has been utilized in real application. Here are some
examples of the successful running applications: The British Broadcasting Corpora-
tion (BBC) begin to use semantic web technologies in 2010 for the World Cup [43].
Every player on every team in every group had their own web page, and you could
navigate from one piece of content to the next with ease. Later BBC utilize the seman-
tic web technologies in BBC Sport, BBC Education, BBC Music, News projects and
more. BBC developed Ontolgies [44] for Business News, content management sys-
tems, curricula, food, journalism, politics, provenance, sports, storyline and wildlife.
There are also many Semantic Web applications [45]. The Open Graph Protocol is
Facebook’s version of the Semantic Web since 2010. When users press the LIKE but-
ton, Facebook will get not just a link, but a specific object of the specific type. The
Biogen Idec utilizes Semantic Web technologies for Supply Chain Management [45],
Chevron has been experimenting with Semantic Web technologies in Data Integration
in Oil and Gas [45].

2.2.2. Knowledge Representation and Logic

Knowledge Representation [46] was developed in the 1970’s. It concerned with how to
represent the knowledge symbolically so that the computer systems could understand
and utilize them for reasoning. It is divided roughly into two categories: logic-based
representations, which evolved out of the intuition that predicate calculus could be used
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unambiguously to capture facts about the world; and non-logic-based representations,
which are developed by building on more cognitive notions.

First-order Logic [47] is a collection of formal systems for mathematics, philosophy,
linguistics and computer sciences. First-order Logic uses quantified variables over ob-
jects. The First-order Logic is developed from propositional logic. Comparing with
propositional logic, First-order Logic adds assertion, predicate and quantifier. Propo-
sition could be true or false while assertion is always thought to be true. First-order
logic is the standard for the formalization of mathematics into axioms and is studies
on the foundations of mathematics.

The Description Logic (DL) [48] is a subset of the first-order-predication logic and a
family of logic-based knowledge representation languages that can be used to represent
the terminological knowledge of an application domain in a structured way. The key
characteristic features of Description Logics reside in the constructs for establishing
relationships between concepts. DL could use a network-base representation structure,
where nodes represent concepts and links represent relationships.

Concept descriptions can be used to build statements in a DL knowledge base, which
typically comes in two parts: a terminological and an assertional one. In the termino-
logical part, there is the TBox, which describes the relevant notions of an application
domain by stating properties of concepts and roles, and relationships between them—it
corresponds to the schema in a database setting. The assertional part of the knowledge
base, called ABox, is used to describe a concrete situation by stating properties of
individuals—it corresponds to the data in a database setting [49].

2.2.3. Reasoning

Reasoning is a process of thought that yields a conclusion from percepts, thoughts,
or assertions. The basic inference on concept expressions in Description Logics is
subsumption, typically written as C Ď D . Determining subsumption is the problem
of checking whether the concept denoted by D (the subsumer) is considered more
general than the one denoted by C (the subsumee). In other words, subsumption checks
whether the first concept always denotes a subset of the set denoted by the second one.

The definite clause logic is monotonic in the sense that anything that could be con-
cluded before a clause is added can still be concluded after it is added; adding knowl-
edge does not reduce the set of propositions that can be derived. A logic is non-
monotonic if some conclusions can be invalidated by adding more knowledge. The
logic of definite clauses with negation as failure is non-monotonic. Non-monotonic
reasoning is useful for representing defaults. A default is a rule that can be used unless
it overridden by an exception [50].

Intermittently, non-monotonic reasoning is related to inductive reasoning and mono-
tonic to deductive reasoning. Non-monotonic reasoning is more close to human learn-
ing process, where old knowledge can be negated after new knowledge has been dis-
covered [51].

There are two ways to study and build the intelligence systems: from the top down
and from the bottom up [52]. The top-down study focuses on intelligent behaviour such
as thought and reason. To simulate the same behaviour on computers, people need to
figure out what an agent needs to know in order to trigger that behavior and what com-
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putational mechanisms could allow them gain new knowledge based on the existing
ones. Semantic reasoning is one of the intelligent behaviours focusing on reasoning
based on linguistic meaning of the data. It is a top down method. For doing semantic
reasoning, there are also two important concepts: knowledge and inference. Semantic
reasoning is a process to inferring new knowledge base on the existing knowledge. The
same knowledge could have several different ways to be represented.

Inference on the Semantic Web can be characterized by discovering new relation-
ships. On the Semantic Web, data is modeled as a set of named relationships between
resources. “Inference” means that automatic procedures can generate new relation-
ships based on the data and based on some additional information in the form of a
vocabulary, e.g., a set of rules [40].

To make the reasoning process simple enough for people without professional back-
ground to use, one solution is to set conditions [53]. Embedded rules are one means
for implementing setting condition. Embedded rules have the form of “if s, then if a,
then c” where “s” is a setting condition, “a” is an antecedent, and “c” is a consequent.
A rule-based system may be viewed as consisting of three basic components: a set
of rules (rule base), a data base (fact base) and an interpreter for the rules. The rule-
based reasoning is to store the rule and fact as knowledge inside the system to interpret
information in a useful way.

2.2.4. Resource Description Framework

Resource Description Framework (RDF) [54] has been a widespread data format for
the Semantic Web. RDF provides an approach for knowledge representation of the
resources for computers. RDF is a framework for modeling data with general-purpose
language to represent information in the Web.

RDF is a graph-based data model. The core structure of RDF is a set of triples
and each triple consists of a subject, a predicate and an object. The subject is an
internationalized resource identifier (IRI) [23] or a blank node. The predicate is an IRI
and the object is an IRI, a literal or a blank node. Anything in real world is a resource.

The IRI [23] was defined in 2005 as a new Internet standard to extend upon the
existing uniform resource identifier (URI) scheme, which supports Universal Character
Set (Unicode/ISO 10646). For example, the IRI could be:
http://www.w3.org/1999/02/22-rdf-syntax-ns\#XMLLiteral

Resources could have IRIs as its referent or literal as literal value. The predicate itself
is an IRI and denotes a property. An RDF vocabulary is a collection of IRIs intended
for use in RDF graphs. RDF graphs define RDF vocabularies. An RDF vocabulary is a
collection of IRIs. RDF vocabularies include built-in classes and properties, which are
used to describe the resources and relationships. Properties are for describing relation-
ships between the subject and the object of the statement and are used as a predicate
in a statement. An RDF data set is a collection of RDF graphs. In an RDF data set,
all statements are assumed to be true only in the named graph they belong to. RDF
semantics enable making complex deductions and infers from the RDF graphs.

The RDF statement is an expression following a specific grammar that names a spe-
cific resource, a specific property (attribute), and gives the value of that property for
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that resource. A RDF graph contains a set of RDF triples. Each triple contains a sub-
ject, a predicate and an object expressed by RDF statement. A RDF graph is also called
a RDF data model. The RDF graph is a directed labeled graph. The statement itself is
also a resource and one statement is the simplest form of RDF graph. The represen-
tation of the statement “The name of the user LiPingjiang in GitHub is Li Pingjiang”
in RDF statement is “< https://github.com/LiPingjiang><foaf:name>“Li Pingjiang” “.
The Subject is “< https://github.com/LiPingjiang>” and the Predicate “<foaf:name>”
is IRIs and the Object"Li Pingjiang” is a literal value. The abbreviations “foaf” refers
to name space of friend-of-friend vocabulary.

The data manipulated in the Semantic Web is usually described using triples or state-
ments. A triple is a unit data element with the form: “<s,p,o>”. “s” represents the sub-
ject, “p” represents the predicate and the “o” represents the object. So a triple could
be interpreted as a statement: “object o stands in relationship p with subject s”. A set
of triples could be described as a graph in RDF graph model called “triple store” or
“RDF database”. The graph RDF applies a field of logic called description logic. RDF
Semantics specification [55] and RDF Schema (RDFS) define a base semantic on top
of RDF and allow developers to define standardized vocabularies. The power of RDF
relies on the flexibility in representing arbitrary structure without a priori schemas.

The data manipulated in the Semantic Web is usually described using triples or state-
ments. The RDF statement is an expression following a specific grammar that names
a specific resource, a specific property (attribute), and gives the value of that prop-
erty for that resource. A triple is a unit data element with the form: “<s,p,o>”. "s”
represents the subject, “p” represents the predicate and the “o” represents the object.
So a triple could be interpreted as a statement: “object o stands in relationship p with
subject s”. A set of triples could be described as a graph in RDF graph model called
“triple store” or “RDF database”. A RDF graph is also called a RDF data model. The
RDF graph is a directed labeled graph. The statement itself is also a resource and
one statement is the simplest form of RDF graph. The representation of the statement
“The name of the user LiPingjiang in GitHub is Li Pingjiang” in RDF statement is
“< https://github.com/LiPingjiang><foaf:name>"Li Pingjiang” “. The Subject is “<
https://github.com/LiPingjiang>” and the Predicate “<foaf:name>” is IRIs and the Ob-
ject"Li Pingjiang” is a literal value. The abbreviations “foaf” refers to name space
of friend-of-friend vocabulary. RDF Semantics specification [55] and RDF Schema
(RDFS) define a base semantic on top of RDF and allow developers to define standard-
ized vocabularies. The power of RDF relies on the flexibility in representing arbitrary
structure without a priori schemas.

Table 2. Triple Example
Subject Predicate Object
<https://github.com/LiPingjiang> <foaf:name > Li Pingjiang

RDF Schema (RDFS) [55] provides a data-modelling vocabulary for RDF data ex-
tended from the basic RDF vocabulary. It provides mechanisms for describing groups
of related resources and the relationships between these resources. For example, one
relationship in RDFS is “subclass” and if one class is subclass of another class, it must
be inherented all the properties the other class has. To present RDF graph data in com-
puter science, there are various formats for publishing and exchanging the RDF data.
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RDF/XML, Notation 3 (N3) [56], Turtle, and N-Triples are the most popular formats.
Most of these formats are based on triple structure, which are subject, predicate and
object.

RDFS enables to express the relationships between objects by standardizing in a
flexible, triple-based format and then providing a vocabulary which can be used to
describe objects.

2.2.5. Web Ontology Language

The word “ontology” is a philosophy term at the beginning. According to Thomas
Gruber [57], an ontology is “an explicit specification of a conceptualization”. He
states that, the term ‘ontology’ signifies a systematic account of existence in philos-
ophy. Then the concept of “ontology” is transformed from philosophy to Information
Systems [58]. Nicola Guarino [59] explains, an IS ontology is “an engineering arti-
fact, constituted by a specific vocabulary used to describe a certain reality, plus a set of
explicit assumptions regarding the intended meaning of the vocabulary words”.

Ontology is based on Open World Assumption (OWA) or Closed World Assump-
tion (CWA). In OWA, the assumption is that “everything is not known and anything
that is not stated at the moment can be true or false”. In contrast, CWA is based on
the assumption that “anything that is not stated is false and everything is known” [50].
When we want to represent knowledge with Ontology and discover new information,
we need to apply Open World Assumption as OWA applies when a system has incom-
plete information.

Web Ontology Language (OWL) [60] is an ontology language descended from De-
scription Logics. It is produced by the W3C Web Ontology Working Group in 2004.
OWL is recommended to be a major formalism for Semantic Web. The official ex-
change syntax for OWL is RDF/XML [61].

An ontology language is a language which describes information about different
kinds of objects in the domain of discourse. An ontology is an explicit specification
of a conceptualization. The term is borrowed from philosophy, where an Ontology
is a systematic account of Existence [57]. Different kinds of Ontologies has been
developed for describing various concept in difference scales.

The latest version of OWL is OWL 2. Comparing with OWL 1, OWL 2 have more
useful structure for modeling [62]: Qualified Cardinality Restrictions, relational ex-
pressivity, datatype expressivity and keys [62]. Beside the this, OWL 2 also have
advantages on syntax, meta modeling, imports, versioning, annotation, species valida-
tion, etc.

2.2.6. RDF Serialization Format

RDF data can be saved in a storage with various serialization formats. JSON-LD [61],
TriG, N-Triples [61], N-Quads [63], Turtle [61], RDF/XML [61] and RDFa are rec-
ommended standard formats by W3C Recommendations. Beside these, there are other
formats such as Notation 3 (N3) [56], Embedded RDF (eRDF), RXR [64], TriX and
Entity Notation (EN). The eRDF and RDFa are good choices for augmenting HTML
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documents with small amounts of additional metadata. Turtle [61] or RDF/XML [61]
can easily be transformed to RDF model. RXR, TriX, and N-TRIPLES are easy to
parse to triples but they have poor human-readability.

RDF/XML [61] is the most widely used RDF format and the only format speci-
fied by the RDF Recommendations. It is very human-readable format with concise
syntax. But RDF/XML is not easy to implement as XML structure thus making it
hard for parser. Another shortcoming is that some RDF graphs cannot be serialised to
RDF/XML, and other reasonable constructs cannot use the shorthand forms for lists
and collections. RDF/XML encodes the RDF graph in XML format. RDF/XML uses
XML QNames as defined in name spaces in XML (XML-NAMES) to represent IRIs.
QNames stands for “qualified names” and defines a valid identifier for elements and
attributes. QNames requires both the name of the name space and local part. In addi-
tion, QNames can either have a short prefix or be declared with the default name space
declaration.

EN [65] is a lightweight data representation designed for ambient intelligent sys-
tems. EN produces compact packets for efficient processing and communication. EN
packets could be transform into RDF or ontology models in an unambiguous fashion.

N-Triples is extremely simple to implement serializers and parsers and efficient for
streaming. As N-Triples does not use abbreviation, it looks very verbosely and is lack
of human-readability.

The Manchester OWL syntax [61] is a compact syntax for OWL 2 ontologies. The
original Manchester syntax, developed by the CO-ODE project at The University of
Manchester, is created for OWL 1. The Manchester syntax for OWL 2 ontologies
is defined using a standard Backus–Naur Form notation. It is designed to produce a
concise syntax, which did not use DL symbols, and is quick and easy for human to read
and write. Comparing with DL syntax, the Manchester syntax replace mathematical
symbols such as

D, @, 

with keywords “some”, “only”, and “not”.
Turtle [56] is the Terse RDF Triple Language. It is an extension of N-Triples used

in RDF model recommended by W3C. Turtle is compatible with N3 and could be used
inside the SPARQL query language. It describes RDF graph using triples consist of a
subject, a predicate and a object. Turtle has compact expression about object list and
collections comparing with RDF/XML. Prefix is separated from the triples data. Turtle
is intended to be compatible with, and a subset of N3 [56]. N3 is a machine-readable
syntax defined by the context-free grammar.

The OWL functional-style syntax [66] is a concrete syntax. A functional-style syn-
tax ontology document is a sequence of Unicode characters. The OWL functional-style
Syntax is the product of the W3C OWL Working Group. It is used for defining OWL
2 in the W3C Specs.

TriX [67] is an XML syntax, that adopts a flat triples style syntax like N-Triples, but
it also allows XSLT to be used to provide syntactic extensions that render down to the
un-extended TriX format. TriX supports an extensible syntax via XSLT. The format is
not readable for human and inefficient for transforming.

RXR [64] is a triple-based XML serialization of RDF. It removes syntactic exten-
sibility and named-graphs and adds a concise syntax for collections. It is a simpler
version of TriX, so it has similar pros and cons with it.
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RDFa [68] is an extension of XHTML that allows RDF triples to be embedded in an
HTML document.

Embedded RDF (eRDF) is a syntax for writing HTML in such a way that the infor-
mation in the HTML document can be extracted (with an eRDF parser or XSLT style
sheet) into RDF.

Header Dictionary Triples (HDT) [69] is a compact data structure and binary se-
rialization format for RDF that keeps big datasets compressed to save space while
maintaining search and browse operations without prior decompression.

2.2.7. RDF Database

RDF is a logical data model consisting of triples. The traditional approaches for index-
ing, querying and storing data is not adapted to the dynamic graph-structured character
of Semantic Web. There is a realistic requirement of efficient tools and technologies
for storing and querying knowledge using the ontologies and the related resources. For
example, the relational database management systems (RDBMS) can hardly handle
the non-static static Semantic Web data.

For querying RDF data, there are several alternative query languages: RDF Query
Language (RQL) , RDF Data Query Language (RDQL) and finally the W3C Recom-
mendation SPARQL Protocol and RDF Query Language (SPARQL) [41]. SPARQL is
a semantic query language for databases, able to retrieve and manipulate data stored
in RDF format. SPARQL queries RDF graphs. SPARQL gives the users access to
create, combine, and consume structured data by accessing a web of Linked Data
while SQL does this by accessing tables in relational databases. SPARQL is based
on graph pattern matching. There are many graph patterns such as Basic Graph
Patterns, Group Graph Pattern and Optional Graph patterns. Basic Graph Pattern
(BGP) [70] are designed for efficient indexing RDF data. It is essentially conjunc-
tive queries. A basic graph pattern is a conjunction of series of triple. For exam-
ple, a BGP consists of m triples, triple “i” is represented by psi, pi, oiq. The BGP is
ps1, p1, o1q ^ ,,,^ psm, pm, omq.

Figure 4 shows the classification of IoT storage technologies. There are two types
of RDF data management systems: the native storage and the non-native storage. The
native storage means the system is designed based on RDF structure, for example, Vir-
tuoso, Mulgara, AllegroGraph, Garlik JXT. The non-native storage means the system
is set up with a third party general purpose database, which is not originally design
for RDF data, for example, relational databases MySQL. The native storage will have
better performance [71]. As the non-native storage cannot directly process the RDF
data, there are DBMS based approaches to cope with this issue. There are three main
physical organization techniques [72]: triple table, property table and the vertical par-
titioning approaches. Triple table stores triple in three column in Relational Database,
one column for subjects, one for predicates and one for objects. As all the triples
are stored in one table, query operation may be slow. The triple table approach has
been used for Oracle, 3store, Redland, RDFStore and rdfDB. Property table stores one
subject and several fixed properties in each named table to avoid self-joins on subject
column. But it will generating many NULL values. This approach has been used by
tools such as Sesame, Jena2, RDFSuite and 4store. Vertical partitioning [73] rewrites
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triples table into n two column tables where n is the number of unique properties in
the data. In each of these tables, the first column contains the subjects that define that
property and the second column contains the object values for those subjects. The
swStore first use this approach.

There are five criteria to evaluate the quality of RDF database [72]. First criterion is
what data storage mechanism the storage system used. Second criterion is what level
of inference it supports. There are two strategies for inference, the system could do
the inference when the data comes, so the results are already stored before querying.
Another approach is to execute the inference on demand. Third criterion is about data
update. Fourth, the storage should support efficient updating and modification. Fifth,
distribution network issues should be considered.

Figure 4. Classification of RDF Data Storage Approaches. [72]

Researchers have compared the RDF storage approaches based on the previous cri-
teria [72].The paper was written in 2012, so some of the software have improved. We
update the data according to W3C “LargeTripleStores” page [74]. The result shows in
Table 3.
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Table 3. Storage and Database

Store
Storage
Scheme

Storage Support Query
Language

US
IS Scalability

(Million)
DS

DBMS File
In

RAM C R

Sesame PT 3 3 3 RQL 3 3 70
Virtuoso MI 3 SPARQL 3 3 14500 3

RDFSuite PT 3 RQL 3 3 3 -

3store TT 3
RDQL

/SPARQL 3 3 100

rdfDB TT 3 3
SquishQL

-like 3 3 3 -

RDFStore TT 3 3 3
RDQL

/SPARQL 3 3 -

Redland TT 3
RDQL

/SPARQL 3 -

Allegro
Graph - 3 SPARQL 1000000 3

sw-Store VP 3 SPARQL 55
roStore HPP 3 SPARQL 3 1,3
4store PT 3 SPARQL 3 3 15000 3

YARS MI 3 3
N3

extensions 3 7000

Kowari MI 3
iTQL

/RDQL 160

Hexastore MI 3 3 SPARQL -
RDFJoin MI 3 SPARQL 44
RDFKB MI 3 - 3 3 44

BitMat MI 3
SPARQL

-like 47

TripleT MI 3 - 6
RDF-3X MI 3 SPARQL 3 51

iStore MI 3 - 6
Parliament MI 3 - 3 3 3 4,5

Brahms MI 3 - 6
RDFCube MI - 0,1 3

2.2.8. Semantic Reasoners and Editors

A semantic reasoner is a program which could infer logical consequences from a set
of explicitly asserted facts or axioms. It could also be called as “reasoning engine” or
“rules engine”. The inference is based on rules which are specified by ontology. First-
order logic is often used to perform reasoning with forward chaining or backward
chaining. Table 4 shows the semantic reasoners or framework which support reasoner.
Cys and KAON2 are close source software. Gandalf, Cwm, Drools, Flora-2, Jena,
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Prova, dot15926 Editor, Apache Marmotta, CB, CEL, ELK reasoner, ELLY, FaCT++,
HermiT, leancor, Pellet and RDFFox are open sources software. All of them are free
software.

Jena Framework [75] is a Java framework for building Semantic Web applications.
It provides an extensive Java libraries that handle RDF, RDFS, RDFa, OWL and
SPARQL in line with published W3C recommendations. Jena includes a rule-based
inference engine to perform reasoning based on OWL and RDFS ontologies, and a
variety of storage strategies for storing RDF triples in memory or on disk. In Jena
Framework, there are basically three types of reasoner: the RDFS reasoner, the rule-
based OWL reasoner, the transitive reasoner. The rule-based reasoners have three rule
engines: the forward reasoning, the backward reasoning and the hybrid reasoning.
There are two internal rule engines: the forward chaining RETE engine and the tabled
datalog engine.

Many reasoners are designed for OWL. For example, HermiT [76], Owlgres [77]
and Pellet [78].

Semantic editors are able to edit the RDF file and Ontology. There are many different
types of editors [79], for example, Protégé is a free, open-source ontology editor and
framework for building intelligent systems; WebProtégé is an online version of Pro-
tégé; Fluent Editor, is a tool for editing, manipulating and querying complex ontologies
written in OWL, RDF or SWRL; Vitro is a general-purpose web-based ontology and
instance editor with customizable public browsing; gFact is a Graph-based Faceted
Exploration of RDF Data; PoolParty is a world-class semantic technologies suite; RD-
FaCE is a RDFa Content Editor based on TinyMCE; TopBraid Composer Standard
Edition (TBC-SE) is a powerful semantic web modeling tool for building and testing
configurations of ontologies and RDF graphs; OWLGrEd is a free UML style graph-
ical editor for OWL ontologies; VocBench is a web-based, multilingual, editing and
workflow tool that manages thesauri, authority lists and glossaries using SKOS-XL.

2.3. Computing, Edge and Fog Technology

2.3.1. Cloud Computing

The market of Cloud computing grew significantly during these years. It becomes
popular both in industry and academy. There is no consensus definition about “Cloud
Computing” [80] yet. The first definition of the term “Cloud Computing” was given by
Prof. Chellappa in 1997 [81]. He thought Cloud computing as a “computing paradigm
where the boundaries of computing will be determined by economic rationale rather
than technical limits alone.” Ian Foster [82] defined from technical point of view: “A
large-scale distributed computing paradigm that is driven by economies of scale, in
which a pool of abstracted, virtualized, dynamically-scalable, managed computing
power, storage, platforms, and services are delivered on demand to external customers
over the Internet."

Cloud has three essential features [83]: first, it provides infinite computing resources
available on demand; second, the elimination of an up-front commitment; last but not
least, the ability to pay for use of computing resources on a short-term basis. Consider
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Table 4. Semantic Reasoners

Free
Open
Source Charactor

Cyc 3 7 A forward and backward chaining inference engine.

KAON2 3 7
Managing OWL-DL, SWRL,
and F-Logic ontologies.

Gandalf 3 3 Decision rules engine on PHP.
Cwm 3 3 A forward-chaining reasoner.
Drools 3 3 A forward-chaining inference-based rules engine.

Flora-2 3 3
An object-oriented, rule-based
knowledge-representation and reasoning system.

Jena 3 3 An open-source semantic-web framework.
Prova 3 3 A semantic-web rule engine.
dot15926
Editor 3 3 Ontology management framework.

Apache
Marmotta 3 3 A rule-based reasoner.

CB 3 3
A resolution based reasoner for OWL EL.
Superseded in 2011 by ELK.

CEL 3 3
CEL is an open-source polynomial-time
Classifier for the OWL 2 EL profile.

ELK
Reasoner 3 3

ELK is an ontology reasoner that aims to
support the OWL 2 EL profile.

ELLY 3 3
ELK is a Java-based, open source
reasoning for OWL EL.

FaCT++ 3 3
FaCT++ is a DL reasoner. It supports
OWL DL and (partially) OWL 2 DL.

HermiT 3 3 HermiT is reasoner for ontologies written using the OWL.
leancor 3 3 A fork of leanCoR that aims description logics reasoning.
Pellet 3 3 Pellet is an open-source Java based OWL 2 reasoner.

RDFox 3 3
RDFox is a highly scalable in-memory RDF triple store
that supports shared memory parallel datalog reasoning.
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about one task which needs one server to run 1000 hours, by using Cloud technology,
users could finish the task in one hour on 1000 servers with the same price.

The Cloud computing has several advantages to business [84]. Figure 5 shows the
benefits from Cloud Computing from a more comprehensive view. The benefits cover
from the business aspects to computing aspects. For example, there is no up-front in-
vestment as the pay-as-you-go pricing model allow customer to start developing after
purchasing. Cloud reduces operating cost by scale benefits. The system is highly and
easily scalable. The Cloud servers and services are easily accessed as the provider will
develop customized interface for users. It will also reduce business risks and mainte-
nance expenses. Traditional business model is a one-time payment for unlimited use.
But this will cause over-provisioning or under-provisioning problem. For example,
one company bought a high performance server for web site host. The hardware could
fully meet the requirement and still have extra capability for unexpected volume and
traffic. At beginning, the CPU is always idle and storage is partly used. Several years
later, new software requires better CPU and data need larger storage, the server need
update because of the inadequate performance.

Figure 5. Benefits of Cloud Computing. [85]

The current challenges [84] are about automated service provisioning, virtual ma-
chine migration, server consolidation, energy management, data security, storage tech-
nologies, data management, software frameworks and traffic management&analysis.

Platform as a service (PaaS) is a category of cloud computing services that provides
a platform allowing customers to develop, run, and manage applications without the
complexity of building and maintaining the infrastructure typically associated with de-
veloping and launching an app. There are many PaaS providers: Windows Azure,
Google App Engine, VMware Cloud Foundry, Salesforce, Heroku, Amazon Elastic
Beanstalk, Engine Yard Cloud, Engine Yard Orchestra, CumuLogic, etc. Table 5 com-
pares 3 most popular Cloud platforms based on 13 features. Amazon EC2 provides the
largest temporary storage and more Operation System choices. Microsoft Azure VM



28

provides largest memory among these three platforms. Google CE does not provide
outstanding feature but the ecosystem of Google could benefit the developers.

Table 5. Azure VM vs Amazon EC2 vs Google CE: Cloud Computing Comparison
[86]

Amazon EC2 Google CE Microsoft Azure VM
Numberof instance
templates available 39 18 40

GPU acceleration Yes No No
Custom instance
creation feature No Yes No

CPU Limits 1 – 40
1 Shared – 32

dedicated CPU 1 – 32 CPU

Memory Limits 0,5 – 244 GB 0,6 — 208 GB 0,75 — 448 GB
Temporary Storage

Limits
Up to 48 TB

(Multiple Disks) 3 TB 2 TB

Network feature
ssupported

CDN, Direct connection, DNS, Load Balancing,
Virtual private cloud network, VPN Gateway

Number of OS
supported 11 9 9

Number of
Databases
supported

5+ 3 3

Autoscaling Yes, clone building Yes, clone building Yes, presettable group
Size change Available Available Available
Cloudberry

Support Yes In progress Yes

Free trial
Yes, time-limited on

one instance

Yes,
time and resource

limited on
any instance

Yes,
time and resource

limited on
any instance

2.3.2. Edge Computing and Fog Computing

The de facto computing architectures can hardly meet the requirements of IoT. CISCO
[87] noticed that the traditional computing architectures or even the Cloud computing
cannot meet IoT timeliness requirement because data analysis needs to be very fast
as IoT devices generate data constantly. For more detail, IoT computing architectures
needs to meet five requirements showing in Table 6. First, IoT computing needs to
minimize processing latency. Second, it needs to minimize the bandwidth consump-
tion. Offshore oil rigs generate 500 GB of data weekly. Commercial jets generate 10
TB for every 30 minutes of flight. But network condition on these devices are rela-
tively limited. The third requirement is about security, as IoT data is generated from
the environment or the person, it carries private information about the users. These
sensitive data needs to be protected properly. The reliability is also in need. Last but
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not least, IoT devices usually work in an harsh environment. For example, speed sen-
sor and surveillance camera on the railway. So geographical requirement is also taken
into consideration.

Table 6. CISCO: IoT Requirements [87]
1 Minimize latency
2 Conserve network bandwidth
3 Address security concerns
4 Operate reliably
5 Collect and secure data across a wide geographic area

Mobile computing is design to meet the new requirements of IoT. There are mainly
two kinds of mobile computing solution: the Edge computing and Fog computing.

Mobile Edge Computing (MEC) [10], as a form of Edge computing, has recently
been proposed to address the increasing demand of network resources. MEC reduces
the network workload by shifting computational efforts from the core network to the
mobile edge. Traditional base stations just forward traffic deployed, but do not ac-
tively process the request of the network resources form the users. MEC deploys new
elements which have computing and storage capabilities. The edge means a device de-
ployed at the edge of the network. It could be a base station as it is the last communica-
tion infrastructure and it will forward the network to the users. After the end users send
requests of a service, the traffic first comes to the base station and then is forwarded
to the Internet infrastructure providers through the router. The Internet infrastructure
providers will forward the requests to application service providers (ASPs), which host
applications within data centers and content delivery networks. MEC equips a Mobile
Edge Computing Server near the base station. The Internet infrastructure providers
and the application service providers will deploy rule sets, filters and other services on
MEC server, so the MEC server is capable of participating both in user traffic and con-
trol traffic. Special users requests will be processed at the edge of the network and do
not need to be forwarded to centric server through core network infrastructure. Figure
6 shows the relationship between Edge servers and IoT infrastructures.

Although Cloud computing provides an efficient way for data processing as re-
sources in the cloud are closely centralized and the server can gain access to enormous
bandwidth through the core network. It cannot cope with the congestion and band-
width limitation in user network. MEC could address this problem. Another trend is
the incredible increment of the raw data produced from the users. Not all the raw data
is useful, redundant raw data wastes bandwidth and increases the latency. MEC servers
will consume most of the raw data at the edge instead of forwarding them to remote
servers. As the MEC servers are close to users, the response time will be reduced if
the data is processed from MEC server.

Nokia Siemens Networks introduced a real-world MEC platform: Radio Applica-
tions Cloud Servers (RACS) [89] in 2014. The server could run applications directly
within a mobile base station. The server reduces the delivery latency by providing
media-rich services from the base station.

The Fog computing pushes the processing capability down to the data resources.
So that the data could be instantly processed after produced. The fog computing uti-
lizes different strategy [87] according to the data type and processing type. Transient
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Figure 6. Illustration of Edge Computing paradigm. [88]

Figure 7. Mobile Edge Computing Applications and Use Cases. [10]

stored data, which need instant response, can be processed on Fog nodes closest to IoT
devices, for example, M2M communication Haptics [90]. The data, which needs to
be stored for short period (hours or days) and does not need to be responded directly,
could be processed in Fog aggregation nodes. Data need long time store without instant
response could be forwarded to Cloud server.

CISCO Fog Computing Solutions [91] provide connectivity for wide range of IoT
devices, data security, time-sensitive based data processing priority strategy and au-
tomatic provision. It contains five main components: Network connectivity, Physical
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and cyber security, Fog application development and hosting, Data analytics and Man-
agement&automation component. It handles an unprecedented volume, variety, and
velocity of data by direct the data to right place for analysis based on time-sensitive
via Fog data services.

The major difference between the Edge and Fog architectures is exactly where that
intelligence and computing power is placed. Fog computing pushes intelligence down
to the local area network level of network architecture, processing data on a fog node
or IoT gateway. Edge computing paradigm pushes the intelligence, processing power
and communication capabilities of an Edge gateway or appliance directly into MEC
server devices such as programmable automation controllers (PACs).



32

3. SYSTEM DESIGN AND IMPLEMENTATION

This chapter describes the Edge based IoT Semantic reasoning system. It contains
different layers of Cloud server, Edge and IoT devices. The ontologies and rules en-
able the systems to do general purpose rule-based reasoning for different tasks. For
research purpose, we will separate reasoning processing into measurable independent
steps. By doing this, we could study performance of Semantic IoT systems. In the fol-
lowing sections, we will introduce the system requirements, the scenario, the system
architectures design and implementation.

3.1. System Requirements

The system aims to fully support semantic reasoning under simulated IoT environ-
ments. There are six requirements for our system:

• Scalability: A stunning amount of smart devices will be connected in the near
future. CISCO researchers predicted that in 2020, 50 billions connected devices
will be exited in the world and each person will own more than 6 devices [92].
The first challenge from the next evolution of the Internet is the scalability prob-
lem. To meet this requirement, our system should be able to process big amount
of dynamically generated RDF data from a considerable number of devices.

• Computing Ability: In real IoT environment, the data is always generated by the
end devices such as sensors aperiodically. The quantity and speed of data gener-
ating are dynamic and unpredictable. In other words, the workload of the whole
system is changing all the time. So the system should have enough computing
ability to cope with the instantaneous peak of heavy workload.

• Heterogeneous Processing Ability: As the heterogeneous IoT devices may de-
ploy with different Operation System and utilize different semantic annotation
methods, the system should be able to provide a cross-platform communication
mechanism for cooperation between different modules and process the RDF data
which has different formats.

• Semantic Processing Ability: The system should at least support popular RDF
format such as RDF/XML, JSON-LD, N3, EN format, etc. In real situations, the
reasoning devices such as mobile phones have relatively low memory and slow
processing speed, it is impossible to store all the rules and ontologies inside these
mobile devices. The ontologies and rules fetching mechanism should be utilized
to enable these devices to preform various reasoning tasks.

• Measurement Accuracy: We measure the latency and the data processing time
for comparing the performance, so an accurate time measurement method for in-
dependent processes is required. Keeping the running server in a stable situation
with an independent monopolized system also guarantees the stable measure-
ment.
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3.2. Scenario

The continuous reduction of the smart product price makes it possible to be equipped
everywhere. For efficient management, taxi companies and bus companies install the
smart devices which include sensors and communication components to track their
routes and deal with the customer’s’ queries. The taxi cabs around the City of Oulu
have been installed the smart system which include GPS and related software. The
system can be used to analyze the annotated locations and driving information from
the taxi cabs. The taxis will upload the information to either Cloud Reasoning Server
or Edge nodes to do semantic reasoning.

We collect the raw data from real taxi trajectories. The raw data is in XML format
and stored in SQLite database. When the GPS sensors of the taxi generate a new value,
we package the data into an XML file and call it an individual record or individual data.
One individual data consists of 9 properties: an ID of this observation record; a date
when the data is generated; an ID of the area where the taxi located; a coordination
includes longitude and latitude; a velocity of the taxi; a direction degree; the manual
information and a sender ID. To satisfy the requirement of scalability, we extent the
raw data into 200 taxis and each taxi has 800 individual data. The raw data is converted
to four RDF format: RDF/XML, JSON-LD, N3 and EN.

In Appendix A, we list the same RDF data in four formats: the XML raw data, the
RDF/XML data, the JSON-LD data and the EN short package format data.

No. Attributes Raw Data RDF/XML&JSON-LD Entity Notation
1 ID 3 3 3

2 Time 3 3 3

3 Area 3 3 3

4 Latitude 3 3 3

5 Longitude 3 3 3

6 Velocity 3 3 3

7 Direction 3 3 3

8 ManualInfo 3 7 7

9 Sender 3 3 3

10 TimeStamp 7 3 3

11 Acceleration 7 3 3

12 Distance 7 3 3

Table 7. The Comparison of Different RDF data

The original data set has 9 attributes. For privacy issue, the original raw data uses
inaccurate date time. The RDF data generates more accurate timestamps and calculates
the acceleration and distance information for simulation and reasoning purpose. The
ManualInfo is not necessary for the reasoning and removed from RDF data. So there
are 11 attributes in RDF/XML, JSON-LD, N3 and EN data. The difference between
RDF formats display in Table 7.

For the EN short packet [93] formatted data, the short formatted data need extra in-
formation to be converted to RDF data. The RDF data could be separated as two parts:
the A-BOX for individual data and the T-BOX for general knowledge, namely the on-
tology. The EN short package is mainly designed for individual RDF data. The main
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purpose behind the design is to compress the data size by replacing constant informa-
tion with templates and prefixes. The order in the sequence determine what property
it belongs to. For example, as the example in Appendix 1.4 shows, the individual data
has 12 attributes. The first one is the UUID of the short package, the rest in this case
are properties values of the individual. The corresponding position shows in the Table
8.

Position In EN Attribute URI Datatype
1 ID obs:hasID Int
2 Area obs:hasArea Int
3 Latitude obs:hasLatitude Double
4 Longitude obs:hasLongitude Double
5 Velocity obs:hasVelocity Double
6 Direction obs:hasDirection Int
7 Sender obs:hasSender Int
8 Distance obs:hasDistance Double
9 Acceleration obs:hasAcceleration Double
10 Date obs:hasDate Int
11 Time obs:hasDataTime Date

Table 8. Properties in EN Short Packet Data

The ontology used in these system is based on Maarala’s experiment [94]. There are
12 facts which could be deducted form the rules. 29 rules are used for inference. Table
9 shows the rules.
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Table 9. Rules for Oulu Taxi Scenario
Facts Description

JamSpeed1 If Observation has velocity between 1.0 and 25.0, then it is JamSpeed1.
JamSpeed2 If JamSpeed1 continusly to be JamSpeed1, it becomes JamSpeed2.
JamSpeed3 If JamSpeed2 continusly to be JamSpeed2, it becomes JamSpeed3.
JamSpeed4 If JamSpeed3 continusly to be JamSpeed3, it becomes JamSpeed4.
LowSpeed If Observation has velocity less than 30.0, then it is with lowSpeed.

Jam
If LowSpeed has durition for longer than 90s, and the average speed

of two Observations is less than 40, then the last Obersavation is Jam.

Jam
If LowSpeed has durition for longer than 90s, and the average speed

of three Observations is less than 60, then the last Obersavation is Jam.

Jam
If LowSpeed has durition for longer than 90s, and the average speed

of four Observations is less than 80, then the last Obersavation is Jam.
Stop1 If Observation has velocity less than 3.0, then it is with Stop1.
Stop2 If Stop1 contiues, it will become Stop2.
Stop3 If Stop2 contiues, it will become Stop3.
Stop4 If Stop3 contiues, it will become Stop4.

LongStop
If Stop has durtion longer than 60s from

Stop1 to Stop2, then it is LongStop.

LongStop
If Stop has durtion longer than 60s from Stop1 to Stop4,

then it is LongStop.

LongStop
If Stop has durtion longer than 60s from

Stop1 to Stop2 to Stop3, then it is LongStop.

VeryLongStop
If LongStop has durtion longer than

180s then it is VeryLongStop.

HighAvgSpeed1
If Observation has velocity greater than 75,

then it is HighAvgSpeed1.

HighAvgSpeed2
If HighAvgSpeed1 continusly to be

HighAvgSpeed1, it becomes HighAvgSpeed2.

HighAvgSpeed3
If HighAvgSpeed2 continusly to be

HighAvgSpeed2, it becomes HighAvgSpeed3.

HighAvgSpeed4
If HighAvgSpeed3 continusly to be

HighAvgSpeed3, it becomes HighAvgSpeed4.

HighAvgSpeed
If Observations experience HighAvgSpeed1,

HighAvgSpeed2, HighAvgSpeed3 and HighAvgSpeed4
for longer than 120s, it becomes HighAvgSpeed.

RightTurn
If LowSpeed Obeservation moves and the direction turn

right (by plusing degree), It becomes RightTurn.

RightTurn
If LowSpeed Obeservation moves and the direction turn

right (by minusing degree), It becomes RightTurn.

LeftTurn
If LowSpeed Obeservation moves and the direction turn

left (by plusing degree), It becomes LeftTurn.

LeftTurn
If LowSpeed Obeservation moves and the direction turn

left (by minusing degree), It becomes LeftTurn.

U Turn
If LowSpeed Obeservation moves

back (by plusing degree), It becomes U turn.

U Turn
If LowSpeed Obeservation moves

back (by minusing degree), It becomes U turn.
High

Deacceleration
If Observation has Acceleration

less than -1.5, then it becomes HighDeacceleration.
High

Acceleration
If Observation has Acceleration

more than 1.4, then it becomes HighAcceleration.
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3.3. System Architecture

The system is designed for heterogeneous IoT devices to communicate, transfer data
and execute semantic reasoning tasks. IoT devices at lower level collect sensor data
and encode the raw data into RDF format. Then IoT devices deliver the RDF data to
capable devices, which could execute semantic reasoning.

Inspired by multi-layer architecture for semantic reasoning [95], we provide two
solutions for performing semantic reasoning in IoT. the One solution is to deploy
semantic reasoner on Cloud server. Cloud computing provides cost-efficient stable
high-performance computing and storage services [96]. But considering about the real
situation, the lower level IoT devices are physically far away from the Cloud Server,
which need to spend more time for communication. So we consider using near-by de-
vices for computing. Smart devices have relatively high computing capability, which
could be used as Edge nodes between IoT low level devices and Cloud Server.

Based on the requirements, two architectures are designed for the comparison of
semantic reasoning performance. The first architecture directly connects the terminal
IoT devices and powerful semantic reasoning resources on the Cloud server. We called
the first architecture “Cloud Reasoning Architecture”. This is a most typical archi-
tecture in IoT environments. Considering the heterogeneous types of devices in real
world, some of them have less capability of semantic reasoning, and some has rela-
tively powerful processing ability. Hence it is reasonable to share some workload to
the terminal devices for faster processing. The second architecture is designed for this
purpose. Relatively powerful computing resources inside or near IoT terminal devices
network area are chosen to be “Edge Nodes”, which could be used as reasoners beside
the Cloud and located close to the terminal devices. The rest of the powerless IoT
terminal devices are called “IoT Node”. We called this architecture “Edge Reasoning
Architecture”.

The Cloud Reasoning Architecture, which is presented in Figure 8, separates the
system into two parts: a central reasoning computer (Cloud server) and several IoT
nodes. IoT nodes could be all kinds of devices include sensor, single-chip, mobile
phone, etc. IoT nodes could generate raw data and encode them into RDF format.
IoT node could convert the raw data into four RDF formats: the RDF/XML, JSON-
LD, N3, and EN. Then IoT node send the RDF data to Cloud server through TCP/IP
protocol. In the Cloud server, there are two main components: a semantic reasoner
and a RDF database. The semantic reasoner could receive the RDF data and perform
rule-based reasoning. Rules and Ontologies should also be stored in the Cloud server.
After reasoning, the results, which include the individual RDF data with new tags, will
be stored in the RDF database. MQTT, as a lightweight messaging protocol for small
sensors and mobile devices in IoT environment, is used to provide publish-subscribe
communication.

The Edge Reasoning Architecture, showed in Figure 9, adds Edge layer between
IoT nodes and Cloud server. The Edge nodes are sets of devices physically near IoT
nodes and they have reasoning capability. The purposes of the Edge nodes are to
provide faster reasoning and to reduce the workload of the central reasoning computer.
In terms of the network situation and bandwidth limitation of the terminal devices,
latency will affect the overall performance. Considering the limitation of the Edge
node, the Edge nodes will only take part of the reasoning tasks. The special rules and
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Figure 8. Cloud Reasoning Architecture.

ontologies will be designed for each case and the data files are stored in the Edge nodes’
storage. The reasoners will be implemented in the Edge nodes as well. The reasoners in
Edge nodes and Cloud server provide the same function including processing different
RDF format, etc. The Edge nodes communicate with the Cloud server uses TCP/IP
protocol. The Edge nodes and IoT nodes use socket for communication. All the four
RDF formats should be supported in Edge nodes.
An upgraded version of the second architecture aims to make the Edge reasoning

more flexible. We called it “Ontology Enabled Edge Reasoning Architecture”, which
uses EN Schema to transform Ontology. The architecture is showed in Figure 10. The
transformed ontologies could be part of the original ontologies as the fact that some of
the ontologies are quite heavy while the rule-based reasoning only use part of it. There
is one component called Semantic Server which is responsible for providing ontology
and rules to the reasoning devices. The Semantic Server is a flexible component which
could be deployed on Cloud, Edge or other servers in real implementation. For bet-
ter communication performance, the RDF data is transformed into EN short package
format [65].
The software components on taxi cabs receive GPS signal from hardware and anno-

tate them into RDF format. Due to the limitation of the computing resources on the
taxi, IoT nodes will deliver the data to the more powerful devices. It has two choices,
first, it could deliver data to a specialized server which could do semantic reasoning
on it; second, it could seek for Edge nodes, for example, the smart phones or pads of
the drivers and passengers. The IoT nodes could send all the RDF data to the server,
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Figure 9. Edge Reasoning Architecture.

but they would be limited by the unstable bandwidth from the fast moving cars and
the server may receive much useless data if we consider the situation that the car are
in traffic jam and stay for hours, the GPS information will be the same while they
will still send similar data to server. Another solution is to use nearby computers to
do pre-processing or share some reasoning task of the Cloud Server. Android mobile
phones could be used as an Edge node in the middle of car computer. We called the
car computer the IoT node. The Edge nodes will share part of the reasoning tasks and
then send the results to Cloud Server if necessary.
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Figure 10. Ontology Enabled Edge Reasoning Architecture.

3.4. Implementation

3.4.1. Hardware

IoT nodes are simulated by a desktop computer. The module is HP Desktop PC Elite
Desk, which has Intel Core i5 4590 (3.30 GHz) CPU and 8GB memory. The Edge
nodes used LG Nexus 5X phones with Android OS version 6.0.1. The Nexus 5X
has 6 CPU cores in total, which consists of four Quad-core 1.44 GHz Cortex-A53
processors and two dual-core 1.82 GHz Cortex-A57 processors, running on Qualcomm
MSM8992 Snapdragon 808 chip-set. It has 2GB RAM and 32GB storage. The Cloud
Server uses Amazon M4 Deca Extra Large Cloud. It has 160 GB memory with 124.5
EC2 Compute Units. One EC2 Compute Unit provides the equivalent CPU capability
to 1.0 1.2 GHz 2007 Xeon processor. This 64-bit system has max bandwidth of 4000
Mbps. The server is located in Frankfurt, Germany.
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3.4.2. Software

IoT Node

IoT nodes simulate the software components in the end-point IoT devices. These de-
vices could collect data from the environments but have limited computing capability.
IoT nodes have three main functions: the data collection, the data encoding and com-
munication. The data encoding means to encode the raw data into RDF format.

For simulation purpose, IoT nodes have 8 communication modes: sending RD-
F/XML data to Cloud; sending JSON-LD data to Cloud; sending N3 data to Cloud;
sending EN data to Cloud;sending RDF/XML data to Edge; sending JSON-LD data to
Edge; sending N3 data to Edge; sending EN data to Edge. IoT nodes maintain an IP
address lists locally. For both destinations of the Cloud server and Edge nodes, they
could encode the data into four formats. They use MQTT [97] protocol to commu-
nicate with Cloud server and use Socket for Edges. All IoT nodes could be executed
simultaneously in one experimental computer using threads. As the sensors generate
data in really a high frequency, IoT nodes will catch a certain amount of data (50 indi-
vidual RDF data for one package) and then send them together. We measure the time
from generating the RDF data to receiving response from the Cloud or Edge nodes
as a conformation of the sending message. So IoT nodes mainly works with 4 steps:
reading the data, packaging the data, sending the data and waiting for response.

Edge Node

We deploy the Edge component on Android devices which include Android phones
and Android pads. IoT Edge nodes have three functions: receiving data from IoT
node, semantic reasoning and sending data to Cloud server. It implements Socket and
MQTT client for communication and Jena framework for semantic reasoning. It has
two working modes: in the first mode, the Edge nodes store the Ontology locally; in the
second mode, Edge nodes use HTTP request to fetch Ontology from remote Ontology
Repository Server, which could transfer part of the whole Ontology. The work flow
of Edge nodes are showed in Figure11. First, the Edge nodes are waiting for RDF
data coming from IoT nodes. Then they could seek for local repository for Ontology
or request from Semantic server via HTTP. Then they execute reasoning and send the
data to Cloud server simultaneously.

Figure 11. Work Flow of The Edge Node.

Figure 12 shows the software structure of the Edge node. Socket client is used for
receiving RDF data and MQTT client is used for forwarding RDF data to the Cloud
server. All the RDF data will be stored into Jena Model. A rule-based reasoner is
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build with Jena Generic Rule Reasoner. More specifically, we used Hybrid rule engine
in Jena Framework. The reasoner imports the Ontology and Rules from either local
storage or remote Semantic server.

Figure 12. Edge Node Structure.

Cloud Server

The Cloud server implements MQTT [97] server for communication and Jena Frame-
work for semantic reasoning. It also has web services form providing Ontology for
Edge nodes. For experimental purpose, the Ontology Repository management func-
tion is deployed in Cloud server while it could be deployed on other platform for
performance and flexibility.

3.4.3. EN Schema Parser

The Entity Notation Schema (EN Schema) [93] parser is design and implemented for
convert common OWL 2 ontology into EN Schema format. Most popular OWL 2
formats are: Functional Syntax [98], Turtle [56], Manchester Syntax [61], RDF/XML
[99], JSON-LD [56], N-TRIPLE [56] and OWL/XML [56]. These syntax of ontolo-
gies could be converted between each other. We choose Turtle as the OWL 2 syntax
for EN Schema Parser. RDF/XML and OWL/XML are based on XML format, the
XML syntax makes it clumsy for Ontology representation. JSON-LD also has this
shortcoming as it is based on JSON format.

Turtle is based on triples and provides levels of compatibility with the N-Triples.
A Turtle document is a textual representation of an RDF graph. It is a Unicode [100]
character string encoded in UTF-8 [101]. Unicode characters only in the range U+0000
to U+10FFFF inclusive are allowed. To parse the Turtle to EN Schema, first we need
to analyze the Turtle grammar elements.



42

There are three main parts in Turtle: the comments, the name space information and
the triples. White space is widely used to separate two tokens, namely any kind of ele-
ment. Turtle use “#” to comment the rest of the whole line. For the name space, you can
define the base name space and the name space for special prefix. The triple statement
consists of 3 elements: subject, predicate, object. Each element is separated by whites-
pace and the whole statement is terminated by “.’. To identify a subject, predicate or
object, Turtle uses IRIs. IRIs is a generalization of URIs that permits a wider range of
Unicode characters. Every absolute URI and URL is an IRI, but not every IRI is an
URI. Relative or absolute IRIs or prefixed names could be used as IRIs. Relative and
absolute IRIs are enclosed in “<” and “>” and may contain numeric escape sequences.
Relative IRIs are resolved relative to the current base IRI. The token “a” in the pred-
icate position of a Turtle triple represents the IRI http://www.w3.org/1999/02/22-rdf-
syntax-ns#type . The name with prefix is an alternative way to representation resources
and objects. This name consists of a prefix label and a local part separating by char-
acter “:”. We could first define a prefix “@prefix example: <http://example.org/#>.”
and use “example:phones” to represent the same IRIs. Unlabeled blank node could be
used for representing fresh RDF blank node, used in both subject and object position
represented by “[]”. In side the Square brackets, there could be a predicate lists. The
examples are presented in Appendix 1.5.1 Example 1 and 2. The predicate list contains
predicates and corresponding objects. Different predicates are separated by “;”. See
Appendix 1.5.1 Example 3. Object could be an object list, each object is separated by
“,”. The examples are presented in Appendix 1.5.1 Example 3 and 4. Literals, namely
the plain texts, may be used as an object and may have a language tag, a datatype IRI,
or neither. the language tag is preceded by a “@” (U+0040). For example “@en”
indicates the text is in English.The datatype IRIs is fellow the literal and separated by
“^^” and it could be an absolute IRI [22], relative IRI [22] or prefixed name. The
literals need to be quoted by one of the delimiters: “’” and “"”, which mean a single
line literal; “”’” and “"""”, which mean multi-line literal.

Table 10. Elements for The Parser
No. Element Syntax
1 Name Space Defination @prefix
2 Name Space Defination @base
3 Separator White Space ” ”
4 IRIs “<” and “>”
5 Prefixed Name Prefix + “:” + Loacal Part
6 End of Triple “.”
7 Separator of Predicate “;”
8 Separator of Object List “,”
9 Collection “(” and “)”
10 Fresh RDF Node “[” and “]”
11 Literal Quote “’” or “"” or “”’” or “"""”
12 Datatype separator “^^”
13 Language Tag Separator “@”
14 Comment “#”
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There are four kinds of situations for the start of the Turtle file. First, useless white
space and tab will be the first character. Second, “” will be the first letter. It means the
rest part is either “prifix” or “base”. Third case is that the “#” is the first letter and the
rest of the whole lines is comment. The last case contains all the rest situation, which
means the annotation part of the Turtle file has ended and triples description begins.

For the last case, it could be decided into sub-cases. First there may be an IRIs
starting by “<” and ending by “>”. Second, it could be a name with or without prefix.
Third it could be an blank RDF node represented by “[]”.

Collection in Turtle will be converted into EN Collection, which is a special entity
with items inside.

By doing this, RDF elements such as Subject, Predicate and Object could be recog-
nized and Separated out of the string to build the entity. Anonymous class or individual
will become named entity, in the current parser, it will be named as “Anonymous_”
plus with special ID. For example, “Anonymous_102”. The prefix of the anonymous
class is used for reconverting EN Schema to Turtle and emit the anonymous class and
individual definition. Another case is the anonymous class which should be existed
when converting to Turtle. We named this object like “SystemAnony_12”.
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Figure 13. Parser Working Flow.
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4. EXPERIMENT & ANALYSIS

This chapter describes the experiments setup, result and analysis. Five experiments are
designed to study the performance and related issue of the Edge based IoT systems.
The experiments show the influence of the RDF syntax, computing architectures and
the task distribution to the performance of the system.

4.1. Setup

The experiments consist of three parts: IoT nodes, the Edge nodes and the cloud server.
There are 20-100 IoT nodes simulated by a desktop computer as low-level sensors.
There are totally 10 Edge nodes and each of them is deployed on an Android mobile
device. The mobile devices have at least 1.5GHz CPU and 1GB memory. The cloud
server is deployed on Amazon EC2 Cloud platform. The model of the Amazon cloud
server is m4.10xlarge, which contains 40 vCPU, 160GB memory and 4000 Dedicated
EBS Bandwidth, located in Germany.

The data is collected from GPS devices of driving taxi cabs around downtown
of Oulu. The original data set is from 65,000 separate taxi trajectories including
5,543,348 observations producing 72,063,524 RDF triples. We extent the data to 200
cars and each car with 800 individual observation data. GPS data has highly dynamic
spatial and temporal characteristics, thus it is appropriate for testing reasoning and data
delivery on IoT environment. Each individual observation data contains 11 elements:
the longitude, the latitude, the timestamps, the date, the direction, the velocity, the ac-
celeration, the area, the sender name, the ID and the distance. The data are transformed
into RDF/XML, JSON-LD, N3 and EN from XML. The rule-based reasoning is sup-
ported by Jena Framework. There are 29 rules in total stored in rule file with Jena rule
format and there is an Observation ontology file.

4.2. Experiment

We design five experiments. The first experiment, introduced in Section 4.2.1, analyzes
the size of the ontologies with different syntax. The second experiment, introduced in
Section 4.2.2, analyzes the processing time based on different RDF syntax. The third
experiment, introduced in Section 4.2.3, tests the reasoning by Cloud computing. In
the fourth experiment, we test reasoning by Edge computing system. We will introduce
it in Section 4.2.4. In the last experiment, we distribute different tasks on Edge nodes
and test the performance difference. This will be introduced in Section 4.2.5.

We present the results in eight sections. First section presents the comparison of dif-
ferent ontologies size with different formats. Semantic technologies annotate raw data
with structure information. Different RDF formats will result in different data sizes.
The data size is an essential factor which affects the bandwidth usage and data trans-
ferring of the Edge based IoT system. The second section presents the comparison of
ontology Model loading processing time among different formatted data. We choose
Jena as the inference engine. In a real semantic IoT system, the server will receive RDF
data with a specific format and directly process with this format. Then we will present
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four groups of scalability comparison for four selected RDF formats. After combining
semantic technologies with IoT, whether the semantic process will affect scalability
should be taken into consideration. In the next section, we presents a comparison
between two distributed computing architectures: one architecture with Cloud Com-
puting and the other one with Edge computing paradigm. This comparison measures
two architectures within the complete data delivery and reasoning processes. The next
sub-section presents the performance comparison of Edge computing paradigm and
figure out what factors will affect the overall performance and whether the Edge struc-
ture will improve the overall performance comparing with Cloud computing. In the
last sub-section, we aim to research what kind of tasks distributing strategies between
the Cloud and Edge nodes could lead the best overall performance.

4.2.1. Ontology Size Comparison

The first experiment analyzes the different ontology formats by measuring the ontology
size. As we added EN Schema, which is a new OWL 2 representation, we also design
experiments to compare the Complete EN Schema packet with other knowledge repre-
sentation method with a set of eight ontologies. The tested ontologies are well known
and widely utilized in pervasive computing, IoT, and other domains. Each ontology
will be converted into 8 OWL syntax include: Functional Syntax, EN Schema, Turtle,
Manchester syntax, RDF/XML, JSON-LD, N-Triple and OWL/XML.

These ontologies include COBRA-ONT [102], IoT-Lite ontology [103], Socially In-
terconnected Online Communities (SIOC) ontology [104], Semantic Sensor Network
(SSN) [105] and the Organization Ontology [106]. COBRA-ONT includes a collec-
tion of ontologies for describing vocabularies in an intelligent meeting room use case.
COBRA-ONT ontologies (Version 0.6) contains Ebiquity-geo, Ebiquity-meetings and
Ebiquity-actions ontologies. IoT-Lite ontology is a lightweight ontology to represent
IoT resources, entities and services. It is also a meta ontology that can be extended in
different domains. The SSN ontology describes the sensors, observations and related
concepts in pervasive environment. SIOC ontology is designed for describing online
communities such as forums, blogs, mailing list and wikis. The Organization Ontol-
ogy is designed to enable publication of information on organizations and organiza-
tional structure including governmental organizations, etc. It is designed as a generic,
reusable core ontology that can be extended or specialized in particular situations.

In Figure 14, the result shows the ontology data size of eight ontologies with eight
formats. The X-axis represents the format and the Y-axis represents the data size in
bytes. Functional Syntax, EN Schema, Turtle and Manchester syntax shows better
performance of the data size than average syntax of the other four. JSON-LD, N-
Triple and OWL/XML appear to be the highest format. The RDF/XML is always with
the middle size. OWL/XML is the biggest ontology in four out of eight ontologies.

In IoT-Lite Ontology, The JSON-LD formatted data is 5.2 times than the Manchester
syntax formatted ones. In Ebiquity-meeting Ontology, the ratio is 2.3 which is the
smallest among all the sets. The average ratio between the biggest format and the
smallest one is 3.3 times.
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Figure 14. Length Comparison of Eight Widely Used Ontologies.

4.2.2. Ontology Model Loading Performance Comparison

We evaluate the loading performance of different ontology based on Jena Framework.
We also use the previous eight ontologies with eight formats. In Jena Framework, a
RDF graph is called a model and is represented by the “Model” interface. Jena has
“Object” class to represent graphs, resources, properties and literals. The interfaces
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representing resources, properties and literals are called Resource, Property and Lit-
eral respectively. Jena loads ontologies in the instance of “OntModel” class, which is
an extension to the “InfModel” interface. This class does not by itself compute the de-
ductive extension of the graph under the semantic rules of the language. Instead, Jena
wraps an underlying model with this ontology interface, that presents a convenience
syntax for accessing the language elements. Depending on the inference capability of
the underlying model, OntModel will appear to contain triples at the same level.We
compare the performance of different RDF syntax by measuring OntModel instance
building time.

Figure 15. Ontology Model Loading Time on Cloud.

Figure 15 presents the Jena OntModel loading time among different ontologies with
five formats. The yellow bar “EN Schema-Turtle” means this is originally formatted
with EN Schema but as the Jena Framework cannot directly support EN Schema, we
convert the EN Schema to Turtle. The converting time is around 20 milliseconds. We
could find out that all different syntax makes minimum efforts to the ontology loading
time except the JSON-LD: JSON-LD use longer time than the rest four formats and
the rest four formats almost consume the same amount of time. RDF/XML, Turtle, EN
Schema and N-Triple appear to be the shortest format. In Ebiquity-meeting Ontology,
the JSON-LD format loading time is 27% longer than the shortest RDF/XML one.
JSON-LD loading time is 23% longer than the smallest one for all the test cases in
average.

4.2.3. Scalability Comparison

This set of experiments tests the scalability of semantic reasoning in the Edge based
IoT system. In this experiment, there are IoT nodes and the Cloud server. IoT nodes
send data to the Cloud server. As IoT node will generate real time ambient data, we
ignore the data generating time. We only measure the total data transforming time.
The transforming time starts from building the MQTT client to set up the connection
and end with receiving the response. The response is not necessary for the system
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but useful for experimental measurement. It is used to confirm that the information
is delivered successfully. At the Cloud server part, we measure the time of seman-
tic reasoning and RDF database storage. The measurement starts form building Jena
Model, which is used for RDF and ontology, and ends with finishing the storage the
inferred facts in RDF format. The Cloud server will reason the RDF data with all the
29 rules. New facts generated after reasoning will be stored into RDF database, the
facts are: “RightTurn", “LeftTurn", “UTurn", “Jam", “HighAvgSpeed", “LongStop",
“HighAcceleration", “HighDeacceleration", “VeryLongStop” and “LowSpeed”.

Table 11. Semantic Reasoning Experiments Setup for Edge Nodes

Group No.
Edge node
Number

nodes per
Edge node

RDF
per node Total RDF data

A

1 2 10 400 8000
2 4 10 400 16000
3 6 10 400 24000
4 8 10 400 32000
5 10 10 400 40000

B

6 4 10 800 32000
7 6 10 533 32000
8 8 10 400 32000
9 10 10 320 32000

C

10 6 10 533 32000
11 6 15 355 32000
12 6 20 266 32000
13 6 25 213 32000

D

14 6 10 200 12000
15 6 10 400 24000
16 6 10 600 36000
17 6 10 800 48000

We design 17 semantic reasoning test cases on Cloud Reasoning Architecture and
Edge Reasoning Architecture. The experiment for Cloud is in Figure 12 and the exper-
iment for Egde nodes is in Figure 11. The test cases have three variables: “IoT node
Number” is the total number of the IoT nodes ; “Edge node Number” is the number
of the Edge nodes; “nodes per Edge node” means how many IoT nodes connect to an
Edge node; “RDF per nodes” means how many RDF observation statements are sent
from one IoT node. For example, Task No.1 on Edge Reasoning Architecture means
there are two Edge nodes and 20 IoT nodes. 10 IoT nodes connect to the first Edge
node and the rest 10 nodes connect to the second Edge node. Each IoT node sends
400 observation RDF statements hence there are 8000 observation RDF statements in
total. The corresponding test case for Cloud Reasoning still has 20 IoT nodes. The 20
IoT nodes will send 8000 RDF statements directly to Cloud server. In Edge Reasoning
Architecture experiment, Group A changes the “Edge node Number” and keeps other
parameters constant. The “Edge node Number” increases from 2 to 10. Group B keeps
the total RDF statements with a constant value and changes the “Edge node Number”
and “RDF per nodes”. Group C keeps the total RDF statements and the “Edge node
Number” in constant and changes the rest variables. Group D keeps both “Edge node
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Table 12. Semantic Reasoning Experiments Setup for Cloud

Group No.
IoT nodes
Number

RDF
per node Total RDF data

A

1 20 400 8000
2 40 400 16000
3 60 400 24000
4 80 400 32000
5 100 400 40000

B

6 40 800 32000
7 60 533 32000
8 80 400 32000
9 100 320 32000

C

10 60 533 32000
11 90 355 32000
12 120 266 32000
13 150 213 32000

D

14 60 200 12000
15 60 400 24000
16 60 600 36000
17 60 800 48000

number” and “nodes per Edge node”. The “RDF per nodes” changes from 200 RDF
statements to 800. The minimum RDF data is 8000 RDF statements and the maximum
is 48000 in total. In Cloud Reasoning Architecture experiment, as the test cases is
corresponding to the Cloud Reasoning Architecture experiment by test case number,
there are few redundant cases.

We perform all the test cases on Cloud Reasoning Architecture in this section. For
each group, we present 2 figures, one for data transferring time and one for reasoning
time. The data transferring time is from IoT nodes to Cloud server. The reasoning time
is calculated from the Cloud server. For the same experiment, the results of different
format are grouped by RDF data quantity.

Figure 16. Scalability Results for Group A (Left:Transferring, Right:Reasoning).

In Figure 16, the left figure shows the result of Group A data transferring time com-
parison and the right one shows the Group A reasoning time comparison. The X-axis
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represents the total data size. For example, “8000” means 8000 RDF statements in
total. The Y-axis represents the time consumption in millisecond. The data transfer-
ring time increases with the rise of the total RDF data size. Comparing with four data
formats, data with EN syntax consumes the shortest time, The JSON-LD is the second
shortest, the RDF/XML is the third one and the Turtle format is the longest one. In test
case “24000 RDF data" (No.3), the transferring time of Turtle data is 22 times longer
than EN format. The transferring time of JSON-LD format is 4.7 times longer than
EN in average, the transferring time of RDF/XML format is 10.7 times longer than
EN in average and the transferring time of Turtle format is 21.2 times longer than EN
in average. In the reasoning time comparison, the total reasoning time growth almost
linearly when the data size increase. For the same amount of data, different formatted
data shows equal performance.

Figure 17. Scalability Results for Group B (Left:Transferring, Right:Reasoning).

In Figure 17, the left figure shows the result of Group B transferring time compar-
ison and the right one shows the Group B reasoning time comparison. The X-axis
represents the combination of amount of Edge nodes and “RDF per node”. The abbre-
viation “ENS” means “Edge Nodes Number”. The abbreviation “RN” means “RDF
Statements per IoT Node”. The experiment binds 10 IoT nodes to each Edge node.

Total IoT nodes Number “ Edge Server Number ˚ IoT node per Edge Server

For example, “ENS:4 RN:800” means there are four Edge nodes in total and 800 RDF
statements will be sent from each IoT node. So for this case, there are 40 IoT nodes
in total. The Y-axis represents the time consumption in milliseconds. The transferring
time increases of four data formats differs with each other in the test case and for
the different cases, the time consumptions for the same format are in the same level.
EN formatted data consumes shortest time, The JSON-LD is the second shortest, the
RDF/XML is the third one and the Turtle format is the longest one. In test case “ENS:6
RN:533" (No.7), the transferring time of Turtle data is 22.4 times longer than EN
format. The transferring time of JSON-LD format is 4.6 times longer than average EN
time , the transferring time of RDF/XML format is 10.4 times longer than average EN
time and the transferring time of Turtle format is 20.9 times longer than average EN
time. In the reasoning time comparison, the total reasoning time of different cases and
different formats is similar.

In Figure 18, the left figure shows the result of Group C data transferring time com-
parison and the right one shows the Group C reasoning time comparison. In corre-
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Figure 18. Scalability Results for Group C (Left:Transferring, Right:Reasoning).

sponding Edge Reasoning Architecture, the test cases use six Edge nodes with the
total 32000 RDF observation statements. The X-axis represents the combination of
“nodes per Edge node” and “RDF per node”. The total RDF individual data size to
32000. For example, “NE:10 RN:533” means one Edge node will be responsible for
10 IoT nodes and each IoT node will send 533 individual RDF data. For this case,
there are 60 IoT nodes in total. The Y-axis represents the time consumption in mil-
liseconds. The transferring time increases of four data formats differ with each other
in the test cases and for the different cases, the time consumptions for the same format
are in the same level. EN formatted data consumes the shortest time, The JSON-LD is
the second shortest, the RDF/XML is the third one and the Turtle format is the longest
one. In experiment of “NE:20 RN:266" (No.12), the data transferring time of Turtle
data is 21.9 times longer than EN format. The transferring time of JSON-LD format
is 4.7 times longer than EN in average, the transferring time of RDF/XML format
is 10.3 times longer than EN in average and the transferring time of Turtle format is
21.2 times longer than EN in average. In the reasoning time comparison, The total
reasoning times of the different cases and different format keep in the same level.

Figure 19. Scalability Results for Group D (Left:Transferring, Right:Reasoning).

In Figure 19, the left figure shows the result of Group D data transferring time com-
parison and the left one shows the Group D reasoning time comparison. The test cases
use six Edge nodes and connect 10 IoT nodes to each Edge node. The X-axis rep-
resents the amount of “nodes per Edge node” and the corresponding total RDF data
size. For example, “RN:200 TRD:12000” means each IoT node will send 200 RDF
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individual data and there are 12000 individual data in total. The Y-axis represents the
time consumption in milliseconds. The transferring time increases with the rise of the
total RDF data size. Comparing with four data formats, EN formatted data consumes
shortest time, The JSON-LD is the second shortest, the RDF/XML is the third one and
the Turtle format is the longest one. In experiment of “RN:400 TRD:24000" (No.15),
the transferring time of Turtle data is 21.3 times longer than EN format. The transfer-
ring time of JSON-LD format is 4.4 times longer than EN in average, the transferring
time of RDF/XML format is 10.3 times longer than EN in average and the transferring
time of Turtle format is 20.5 times longer than EN in average. In the reasoning time
comparison, The total reasoning time increase when the data size increase. For the
same amount of data, different formatted data shows equal performance.

4.2.4. Comparison with Cloud Reasoning and Edge Reasoning

In this section, we will compare the performance of Cloud Reasoning Architecture
and Cloud Reasoning Architecture. Similar with Cloud Reasoning Architecture, we
measure the data transforming time from IoT nodes and reasoning time from Cloud
server. Moreover, we also measure the reasoning time form the Edge nodes and the
data transforming time from Edge nodes to Cloud server.

The Edge component will reason all the 17 tasks with 2 rules: High Acceleration
and High De-acceleration. The rest rules will be reasoned on the Cloud server. We
have four RDF syntax. The RDF/XML, JSON-LD and Turtle syntax are used in Edge
architecture in Figure 9 while EN data is used in Ontology Enabled Edge Architecture
showed in Figure 10. The Cloud reasoning is based on architecture in Figure 8.

As the Edge nodes consume “High Acceleration” and “High De-acceleration” tasks,
the Cloud server will not use “obs:hasAcceleration” property, hence we could only
send the rest ten properties to Cloud server instead.

Figure 20. Reasoning Performance Comparison between Two Architecture with RD-
F/XML.



54

Figure 21. Reasoning Performance Comparison between Two Architecture with
JSON-LD.

Figure 22. Reasoning Performance Comparison between Two Architecture with Tur-
tle.

Figure 23. Reasoning Performance Comparison between Two Architecture with EN.

Figure 20, Figure 21, Figure 22 and Figure 23 present the performance comparison
between Cloud Reasoning Architecture and Edge Reasoning Architecture. There are
three columns in each test case. As the Edge nodes will take part of the tasks, both
Cloud server and Edge nodes will get the reasoning results. In our experiments, the
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results from Edge nodes come earlier than the Cloud. We call the result from the Edge
nodes the “first result”. The first result processing time includes the time IoT node
transferring data to Edge node and the reasoning time of Edge node. The left column
represents the total processing time of the Cloud Computing architecture; the middle
column represents the total processing time of the Edge Computing architecture; the
right column represents the result processing time of the Edge Computing architecture.
We choose 8 out of 17 experiments based on the total RDF data size. The Y-axis of
the figure represents the total RDF data size. For example, the first test case “8000”
means there are 8000 RDF statements to process. The total time of Cloud and Edge
are with the same level. The first result will came much faster than the Cloud server’s
result. In EN experiments, the third test case with 16000 RDF statements shows the
Cloud reasoning time is 10 times longer than the first result come from Edge node. The
average ratio between Cloud reasoning time and first result time from Edge Computing
for RDF/XML is 5.1 times, for Turtle is 4 times, for JSON-LD is 6.6 times and for EN
is 8.9 times. For all the cases, the reasoning on Cloud consumes most of the whole
time. After utilizing Edge nodes, the average Cloud reasoning time reduces 12.4% for
RDF/XML format, 12.3% for Turtle format, 6.2% for JSON-LD format and 12.1% for
EN format. The total transferring time on Edge of Turtle is 1.2 times of reasoning time
in average and the time of EN is 6% of the average reasoning time.

Figure 24. Cloud Side Computing Reasoning Time Comparison.

Figure 24 shows the comparison between reasoning the whole data and reasoning
the part of the data on Cloud side. The Edge node will do part of the reasoning using
“High Acceleration” property in RDF data. Then the Edge nodes remove the property
and send the rest of the data to Cloud, the Cloud server does the rest of the reasoning.
We chose all the five experiments from Group A in Table 11. In the five experiment,
the Cloud server reduces 14% processing time after Edge nodes reasoning.
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4.2.5. Edge Reasoning Performance Comparison with Different Rule Set

Last experiment aims to test the performance improvement of Edge Computing. We
deploy different rules on Edge nodes and measure the overall processing time. The
more rules processed on Edge nodes, the less rules processed on Cloud server. We
choose RDF/XML as the RDF data format. In the experiment, there are 8 Edge nodes
and each Edge node will process 10 IoT nodes. Each IoT node will send 400 individual
RDF data to either Edge node or Cloud server. So for Cloud architecture, 80 IoT nodes
will send 32000 RDF data in total. This is the No.4 experiment in Table12.

We design four groups of task distributions: Group A implements all the reasoning
tasks on the Cloud server, so there is only the “Cloud” column; Group B implements
rules which related with “High Average Speed” (Rule 17,18,19,20,21 in Figure 9) on
the Edge nodes and the rest on Cloud; Group C implements rules related with High
Acceleration and High De-acceleration (Rule 28,29 in Figure 9) on Edge nodes and
the rest on Cloud; Group D implements rules related with both “High Average Speed”,
“High Acceleration” and “High De-acceleration” (Rule 17,18,19,20,21,28,29 in Figure
9) on the Edges node and the rest on the Cloud.

Figure 25. Performance Comparison with Different Rule Set.

This experiment shows the performance comparison between different task distribu-
tion on Edge nodes. Figure 25 presents the result.

In each group, the overall time consumption is:

TIMEOverall “ max pTIMECloud, T IMEEdgeq

In Figure 25, the left chart shows the overall processing time include data trans-
ferring time and reasoning time and the right chart shows only the reasoning time.
The “Cloud” column represents the total processing time from IoT node to Edge
nodes and from Edge nodes to Cloud server. The “Edge” column only counts the
processing from IoT nodes to Edge nodes including data receiving time and rea-
soning time. For example, in Group B, IoT nodes first send the data to Edge, and
then the Edge nodes simultaneously reason the data and send data to Cloud. So
both columns have the same orange part, which is data sending time from IoT nodes
to Edge nodes. Then the yellow part in “Edge” column, which represents the rea-
soning time on Edge. The green part represents the data sending time from Edge
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to Cloud. And the red part represents the data reasoning time on Cloud and the
brown part represents the data storage time on Cloud. As the Cloud and Edge doing
task simultaneously, we could calculate the overall reasoning time with the formula:
TIMEOverall “ max pTIMECloudColumn, T IMEEdgeColumnq. From the right chart
we could see that the more rules implemented on the Edge node, the less reasoning
time needed from Cloud server. Comparing with Cloud reasoning in Group A, Group
B reduces 4% reasoning time, Group C reduces 15.6% reasoning time and Group D
reduces 20.7% reasoning time. From the left chart, Comparing with Cloud reason-
ing time in Group A, Group B increases 8% reasoning time, Group C reduces 1.4%
reasoning time and Group D reduces 5% reasoning time.

4.3. Analysis

From the Ontology Size Comparison section, we could find out the format affects
the size of the OWL 2 Ontologies. The largest OWL 2 ontology is more than three
times than the smallest one in average. It means selecting a proper format will save
storage and bandwidth for storing and transferring the ontology data. But we could
also notice that the size of the ontology is not only affected by the format because the
same format will perform differently in different ontology. The reason is that different
syntax expresses the same syntax structure in different ways. For example, RDF/XML
syntax encode Instance definition with shorter text comparing with OWL/XML:

RDF/XML Syntax

<Person rdf:about="Mary"/>

OWL/XML Syntax

<ClassAssertion>
<Class IRI="Person"/>
<NamedIndividual IRI="Mary"/>

</ClassAssertion>

While OWL/XML performs better in expressing Class Disjointness:
RDF/XML Syntax

<owl:AllDisjointClasses>
<owl:members rdf:parseType="Collection">

<owl:Class rdf:about="Woman"/>
<owl:Class rdf:about="Man"/>

</owl:members>
</owl:AllDisjointClasses>

OWL/XML Syntax

<DisjointClasses>
<Class IRI="Woman"/>
<Class IRI="Man"/>

</DisjointClasses>

From the result of Jena Model loading time comparison, we could find that JSON-
LD format will consume more time in Model building step. In Jena Framework, all the
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different formatted ontology data will be converted to Jena Model. So after the Jena
Model is built, the format will not affect.

TIMEComplete Reasoning “ TIMEJena Model Building ` TIMEJena Model Inference

All the formats consume the same time in inference process as they have been loaded
in Jena Model. The complete reasoning time is only different according to Jena Model
Building part. The longer Model loading time it needs, the loner complete time it con-
sumes. From this point of view, the more time consumed in Model building process,
the more time needed for reasoning.

From the result of RDF data transferring and reasoning time comparison, we could
find that the transferring time is related to data formats. For this scenario, the structure
of each individual RDF data is fixed. Even with different amount of data, the encoding
ratios between different format keep in the same level. In another words, the length of
four formatted data keeps a similar ratio for all the test cases. The transferring time is
based on the total data size and network status. We package 50 individual data together
and send to Cloud server, we measure the total size of the 50 individual data and find
the size has the same sequence order:

SIZETurtle ą SIZERDF {XML ą SIZEJSON´LD ą SIZEEN

The reasoning time result shows that the overall reasoning time is related to the
size of RDF data. The reasoning time grows linearly as RDF statements added. RDF
formats make no difference to the reasoning performance. The reason is that the main
time consumption is Jena reasoning. Jena performs reasoning using Jena Model and
RDF data with different formats will be loaded to the same Jena Model for inference.

The Cloud Computing and Edge Computing paradigm comparison shows that
adding Edge nodes into IoT environments could accelerates the result processing time
and reduces the bandwidth of the core network. The Cloud Reasoning architecture
will generate the first result 10 times slower than the Edge architecture. After remov-
ing property “obs:hasAcceleration", the average size of 50 RDF/XML individual data
is 59 739 bytes, which is 90.7% of the original size.

We also find out the transferring time heavily depends on the network situation. As
our IoT Edge nodes are located in Finland and the Cloud Server is in Germany, the
long distance and unstable network could affect the latency.

Table 13. panOULU wireless router
Comply with Transfer Speeds

Cisco Aironet 1200 802.11b,802.11a 54 Mbps
Linksys WRT54GL 802.11g 54 Mbps
Cisco Aironet 1240 802.11g,802.11a 54Mbps
Cisco Aironet 1140 802.11n 72Mbps
Strix OWS 2400 802.11a,802.11g 54Mbps

The Network equipments could affect the general performance as well. We are
using panOULU [107] for Edge nodes reasoning experiments. panOULU has 5 types
of Wireless Router, which is displayed in Table 13. Most of their maximum transfer
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speed is 54 Mbps, which equals to 6.75 MB/S. For example, one individual RDF/XML
format data is 1.4 KB on average, so the Experiment No.1 transfers 10.93 MB RDF
data in 2281 milliseconds. which means the average transfer speed is 4.8 MB/S . It is
close to the maximum capacity of the network as a 54 Mbps public router cannot fully
used in practise.

Figure 26. Time Consumption Analysis.

Figure 26 shows the analysis of the time consumption between Cloud Reasoning
Architecture and Edge Reasoning Architecture. The total processing time of Cloud
Reasoning Architecture consists of data transferring Time from IoT nodes to Cloud
(Part A), Cloud reasoning Time (Part B) and Cloud database processing time (Part G).
The total processing time of Edge Reasoning Architecture consists of data transferring
time from IoT nodes to Edge (Part F), Edge reasoning time (Part E), data transferring
time from IoT nodes to Cloud (Part D) and Cloud reasoning time (Part C). As the Edge
nodes will transfer the data and do the reasoning in parallel, so the Part C and Part D
is parallel with Part E from the same starting point.

We calculate the computation time consumption based on the formulas:

TIMECloud “ TIMEpAq ` TIMEpBq

TIMEEdge “ TIMEpF q `min pTIMEpCq ` TIMEpDq, T IMEpEqq

There are two strategies for designing the Edge based IoT system based on different
requirements. First, from the prospective of fast response, we could minimize the Part
F and Part E on Edge. “Edge 1” in Figure 26 shows the pattern. As the Edge nodes
aim for services, it will not do much extra reasoning tasks for the Cloud. Second, from
the prospective of the overall computation performance, we could gain the minimum
processing time by balancing the reasoning on Edge (Part E) and the processing on
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Cloud (Part C, Part D and Part G). In another words, the more reasoning tasks deployed
on Edge nodes, the less workload will be undertook on the Cloud. “Edge 2” in Figure
26 shows the diagram of the balance of processing time consumption between Cloud
and Edge nodes.

Performance comparison between different rule sets shows the same result in Figure
25. The more workload distributed on the Edge, the less processing time the Cloud
server needs. When they reach a balance and the Cloud processing time is similar with
Edge processing time, the overall processing time will be optimized.

Then we analyze the performance about distribution of reasoning task. First we need
to analyze the reasoning mechanism. We use Jena Framework rule based reasoner.
Jena rule based reasoner has three reasoning engines: the forward engine, the backward
engine and the hybrid engine. We use the default one: hybrid engine. All the engine
works in similar way: matching the facts according to the rules. All the elements in
both RDF data and rules will be scanned. The amount of facts and the amount of rules
are two factors which affect the whole reasoning processing time. The facts are stored
in RDF data. We can also conclude that the more input RDF elements the system
receives, the longer reasoning processing time it needs; the more rules,whether or not
they will be triggered, the longer reasoning processing time the system consumes. If
we do further analyze, the complexity of the rules and how many rules are triggered
also affect the performance. For the rules, the more elements and judgements they
have, the more processing time the system needs. Some rules will only be triggered
when another rules satisfied and new facts added. We list the factors in Table 14. If
we could split the rules and RDF statement into several parts without overlapping and
distribute tasks properly on Edge nodes, the overall processing time will be reduced.
But if there is overlapping, the analysis will become complicated. If we separate the
rules and RDF properties into two parts, one part is implemented on the Edge nodes
and the second part is on the Cloud server. And we do reasoning in sequential execution
manner, for example, the Edge node will reason first and then the Cloud server reason
the second part, the overall processing time will be longer as the Edge components are
much slower than the Cloud server. In our Edge reasoning architecture, we organize
the Edge nodes and Cloud server in a parallel way. In this manner, we could execute
both Edge nodes and Cloud server together. For Cloud processing time and Edge nodes
reasoning time , the slower one will not affect the overall processing time. If we keep
IoT nodes as fixed amount and increase the Edge node amount, each Edge node will
reason less RDF data and we could reduce the processing time. The more Edge nodes
we have, the less overall processing time the system needs.

Table 14. Factors of the Reasoning Processing Time Comsumption
No. Factors
1 Amount of RDF Data
2 Amount of Rules
3 Complexity of Rules
4 Rules Trigger Situation
5 Amount of Edge nodes

How much time will be saved is based on the system structure and the speed of the
each component. For example, in our example shows in Figure 25, the Edge nodes
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could definitely reduce the reasoning processing time but may not reduce the over-
all time. The reason is that we reduce the reasoning time but we also increase the
transferring time. If the reduced reasoning processing time is larger than the increased
transferring time, we could save overall time. Comparing with Cloud server, the Edge
nodes are resources-limited devices. Moving the tasks to resources-limited devices
will increase the processing time but if we execute Edge reasoning in parallel manner,
we could save time. If the Edge nodes have higher processing ability, they will improve
more performance for the whole system. For the area with poor network connection,
for example the moving vehicles, the data transferring time via Internet will be slow
thus the Edge nodes will have more spare time to undertake more tasks and improve
the performance. Increasing the quantity of Edge nodes will provide more processing
resources but the structure of the network becomes complected.
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5. DISCUSSION

The growth of IoT requires new technologies for data representation, data storage, data
interconnection, search, information organization, high performance computing, etc.
This thesis work utilizes semantic technologies and Edge computing paradigm in IoT
systems to improve the data management and semantic processing performance. We
focus on analyzing the performance of semantic reasoning in IoT systems using Edge
computing paradigm. An Edge based IoT system with semantic technologies is build
for the research. In the system, we implement semantic reasoners for general purpose
rules based reasoning in real IoT environments. Computing and storage resources are
both deployed on the Cloud servers and Edge nodes. The Edge computing paradigm
have three function based on different deployments. First it could accelerate the ser-
vices response time. Second, it could improve the semantic reasoning performance.
Third, it could improve the core network performance by reducing the bandwidth us-
age. The Edge nodes, which are located close to IoT nodes, communicate with IoT
nodes and Cloud server. By undertaking part of the whole tasks, the Edge nodes re-
duce the computing burden of the Cloud server and reduce the bandwidth usage in core
network by filtering useless data.

Five experiments are carried out to study the research questions. To figure out the
reliability of the system integrated with three different technologies, we test the scala-
bility with a large data set. To research the influence of semantic technologies on per-
formance, we design experiments to compare the size and loading time of ontologies
with different RDF syntax. For studying the influence of Edge computing paradigm,
we compare the semantic reasoning performance on the system with only Cloud server
and the system with both Cloud server and Edge nodes. We also distribute different
amount of task on Edge server and evaluate the performance influence.

This study shows that different RDF formats could encode the same ontology into
different size. The size of the RDF data is an essential factor for data transferring and
storage. So choosing a proper format for an ontology could facilitate the performance
of semantic processing. However, we also found out the same format may perform
differently on different cases. That is because that different format use different ex-
pression for the same syntax. We recommend the developers to use Functional Syntax,
EN, TURTLE and Manchester Syntax as they show better encoding efficiency mean-
while they need to consider the syntax usage in that specific ontology from statistic
point of view. The different formats show similar performance when building the Jena
Model will the JSON-LD consumes more time.

This study also finds out that the semantic data transferring time is closely related to
the total RDF data size while the overall semantic processing time include reasoning
and storing for different syntax is in the same level. Changing the amount of IoT nodes
and Edge nodes can not significantly affect the overall performance.

The study shows that adding Edge nodes into IoT systems could generate result
faster, reduce the bandwidth usage on core network and share the workload of the
centre server. The physical proximity between Edge nodes and IoT nodes facilitates
the transferring efficiency. The added Edge nodes will definitely reduce the reasoning
processing time of the Cloud server and if the developers properly distribute the tasks
under a stable network, the Edge server could reduce the overall processing time.
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Our current work focuses on analyzing the performance of a Edge based IoT sys-
tems. We deploy the system on the Amazon EC2 cloud platform and carry out the
experiment with Android devices. The result shows the benefits of Edge computing
paradigm for semantic reasoning in IoT. We test and evaluate the performance based
on time consumption. But the processing time depends on the hardware and software
systems. For example, our system runs on a CentOS [108] Linux system. The CentOS
Linux Operation System already runs a lot of services in background, which consume
the computing resources. Our experiment does not count how many background ser-
vices are running during our test. So the result from anther Cloud server with the
same hardware and Operation systems may slightly differ. In another words, we could
choose more objective measurement standards for computing consumption in the fu-
ture. For example, how many CPU instructions are executed for the specific software
or process. Similarly, the measurement of transferring time of the RDF data is also
affected by network situation. It depends on the hardware and the network situation.
In real IoT systems, IoT devices may join different network with different routers, for
example, the mobile phone of a driver. Crowd network, bad signal and low speed
router will affect to the high latency. New methods of measuring the latency are also
required.

We measure the storage efficiency of RDF data with different formats based on the
data size. We found the same format have different efficiency if the RDF data has
different structure. So more comprehensive measurement could be carried out based
on the RDF data structure.

Our scalability experiments test large scale data set while we need to consider the
fact that the amount of IoT devices will increase incredibly in the future. Everything
around us will become IoT smart devices, for example, the refrigerator, the oven, the
bed, the table or even the pencil. Very huge scale experiment could be designed in the
future for further evaluation.

The comparison between Cloud computing and Edge computing paradigm is based
on our Oulu Taxi scenario. The rules and ontologies are pre-defined. More experi-
ments could be carried out to study whether the result will differ if the data, rules and
ontology changed. We perform part of the reasoning tasks to Edge nodes and the rest
tasks on Cloud server. How to assign the tasks and what criteria would optimize the
performance could be future researches. The researches also need to figure out how to
divide the RDF data, rules and ontology for optimization purpose.

Executing the reasoning tasks on Edge computing paradigm in parallel manner will
reduce the processing time and thus improving the performance. The degree of im-
provement is based on the relationship between the transferring speed, reasoning speed
and storage speed. But if the relationship between these speeds is fixed, the perfor-
mance improvement could finally reach a maximum at a balance status. Increasing
the quantity of Edge nodes will also improve the overall performance. In the future,
it is necessary to research on how to split the rules and RDF data in a more optimized
manner.
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6. CONCLUSION

To study the semantic reasoning on the Edge of Internet of Things, we design and
implement an Edge based IoT system with semantic technologies. This system could
perform rule-based semantic reasoning for general purpose. With the system, we do
five experiments to research the performance of semantic reasoning in real IoT envi-
ronments. The experiments are designed to figure out how RDF syntax, computing
architectures and task distribution in Edge computing could affect the reasoning per-
formance.

Revisit the research questions, we could conclude that the Edge computing paradigm
could facilitate IoT with semantic processing. By utilizing Edge nodes, we could re-
duce the reasoning and data transferring time, response the request in a short period,
save the bandwith usage of the core network. The system and experiments also shows
that the semantic technology could provide a new way to represent and understand
knowledge in IoT.

The first research question is about reliability, scalability and performance of IoT
systems integrated with Edge computing paradigm and semantic technologies. Our
system successfully address these requirements. After integrating the three technolo-
gies, the system shows good performance and scalability.

The second research question studies the benefits and shortcomings of the Edge
computing and semantic technologies for IoT systems. For the second question, we
could conclude that the Edge computing technology could facilitate the semantic rea-
soning in IoT systems. The Cloud server is involved in both Cloud Computing and
Edge Computing. In another words, the Edge computing is extended to Cloud com-
puting. As the physical proximity from Edge nodes to the users’ devices, the Edge
nodes could provide faster services thus improving the user experience. The Edge is
more flexible than the Cloud and could be deployed anywhere. The Edge nodes could
also facilitate the Cloud Computing by reducing the results delivery time and save the
bandwidth for the core network. Different options of semantic technologies could also
influence the reasoning performance. The RDF format is an essential factor which
could affect the transferring and storage efficiency for semantic processing. The total
RDF data size will affect the semantic reasoning time. For better performance, we
need to choose proper RDF format for RDF data and Ontology. For gaining faster
result, we need to reduce the scale of the data and increase the number of Edge nodes.

Our research focuses on the integration of IoT, semantic technologies and Edge com-
puting paradigm. Although all these three technologies are hot topics, the integration
research has rarely been done before. Our work demonstrates that the Edge computing
paradigm technology could facilitate IoT with semantic technologies. We also recog-
nize how the semantic technologies and computing architectures could influence IoT.
The results shed the light on the design and implementation of the future IoT systems.
The semantic technologies have been utilized in Web for years and our research shows
the potential of semantic technologies for IoT. Our work for semantic reasoning on the
Edge of IoT promotes the utilization of semantic technologies and Edge computing
paradigm in IoT.
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A. DATA SAMPLE

1.1. XML Raw Data

<Observation ID="4">
<Time>2013-04-05T13:00:17+00:00</Time>
<Area>92413</Area>
<Coordinates Y="6500.877" X="2546.591"/>
<Velocity>33</Velocity>
<Direction>212</Direction>
<ManualInfo>0</ManualInfo>
<Sender>51709293<Sender/>

</Observation>

1.2. RDF/XML Data

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#

"
xmlns:obs="http://localhost/SensorSchema/ontology#" >

<rdf:Description rdf:about="http://localhost/
SensorSchema/ontology#Observation_51709293_4_ca18b2fc
-edd6-455a-bfb1-d1fa47592617">

<obs:hasDateTime>2013-04-05T13:00:17</obs:hasDateTime>
<obs:hasID rdf:datatype="http://www.w3.org/2001/

XMLSchema#int">4</obs:hasID>
<obs:hasDirection rdf:datatype="http://www.w3.org

/2001/XMLSchema#int">212</obs:hasDirection>
<obs:hasAcceleration rdf:datatype="http://www.w3.org

/2001/XMLSchema#double">-0.10051043494427193</obs:
hasAcceleration>

<obs:hasArea rdf:datatype="http://www.w3.org/2001/
XMLSchema#int">92413</obs:hasArea>

<rdf:type rdf:resource="http://localhost/SensorSchema/
ontology#Observation"/>

<obs:hasVelocity rdf:datatype="http://www.w3.org/2001/
XMLSchema#double">33.0</obs:hasVelocity>

<obs:hasDate rdf:datatype="http://www.w3.org/2001/
XMLSchema#long">1365156017606</obs:hasDate>

<obs:hasDistance rdf:datatype="http://www.w3.org/2001/
XMLSchema#double">52.20267510687888</obs:
hasDistance>

<obs:hasSender rdf:datatype="http://www.w3.org/2001/
XMLSchema#int">51709293</obs:hasSender>

<obs:hasLongitude rdf:datatype="http://www.w3.org
/2001/XMLSchema#double">25.46591</obs:hasLongitude>
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<obs:hasLatitude rdf:datatype="http://www.w3.org/2001/
XMLSchema#double">65.00877166666668</obs:
hasLatitude>

</rdf:Description>
</rdf:RDF>

1.3. JSON-LD data

{
"@graph" : [ {
"@id" : "obs:Observation_51709293_4_ca18b2fc-edd6-455a

-bfb1-d1fa47592617",
"obs:hasAcceleration" : -0.10051043494427193,
"obs:hasArea" : {
"@type" : "http://www.w3.org/2001/XMLSchema#int",
"@value" : "92413"

},
"obs:hasDate" : {
"@type" : "http://www.w3.org/2001/XMLSchema#long",
"@value" : "1365156017606"

},
"hasDate:Time" : "2013-04-05T13:00:17",
"obs:hasDirection" : {
"@type" : "http://www.w3.org/2001/XMLSchema#int",
"@value" : "212"

},
"obs:hasDistance" : 73.72751275943494,
"obs:hasID" : {
"@type" : "http://www.w3.org/2001/XMLSchema#int",
"@value" : "4"

},
"obs:hasLatitude" : 65.02544166666667,
"obs:hasLongitude" : 25.50801166666667,
"obs:hasSender" : {
"@type" : "http://www.w3.org/2001/XMLSchema#int",
"@value" : "51709293"

},
"obs:hasVelocity" : 33.0,
"http://www.w3.org/1999/02/22-rdf-syntax-ns#type" : {
"@id" : "obs:Observation"

}
}],
"@context" : {
"hasDateTime" : {
"@id" : "http://localhost/SensorSchema/ontology#

hasDateTime",
"@type" : "@id"
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},
"hasArea" : {
"@id" : "http://localhost/SensorSchema/ontology#

hasArea",
"@type" : "@id"

},
"hasDate" : {
"@id" : "http://localhost/SensorSchema/ontology#

hasDate",
"@type" : "@id"

},
"hasLatitude" : {
"@id" : "http://localhost/SensorSchema/ontology#

hasLatitude",
"@type" : "@id"

},
"hasDistance" : {
"@id" : "http://localhost/SensorSchema/ontology#

hasDistance",
"@type" : "@id"

},
"hasVelocity" : {
"@id" : "http://localhost/SensorSchema/ontology#

hasVelocity",
"@type" : "@id"

},
"hasLongitude" : {
"@id" : "http://localhost/SensorSchema/ontology#

hasLongitude",
"@type" : "@id"

},
"hasSender" : {
"@id" : "http://localhost/SensorSchema/ontology#

hasSender",
"@type" : "@id"

},
"hasDirection" : {
"@id" : "http://localhost/SensorSchema/ontology#

hasDirection",
"@type" : "@id"

},
"hasAcceleration" : {
"@id" : "http://localhost/SensorSchema/ontology#

hasAcceleration",
"@type" : "@id"

},
"hasID" : {
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"@id" : "http://localhost/SensorSchema/ontology#
hasID",

"@type" : "@id"
},
"obs" : "http://localhost/SensorSchema/ontology#"

}
}

1.4. Entity Notation Data

[urn:uuid:7bcf39 4 92413 65.02544166666667
25.50801166666667 33.0 212 51709293 52.20267510687888
-0.10051043494427193 1365156017606 2013-04-05T13
:00:17+00:00]

1.5. Examples

1.5.1. Example 1

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

# Someone knows someone else, who has the name "Bob".
[] foaf:knows [ foaf:name "Bob" ]

1.5.2. Example 2

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

[ foaf:name "Alice" ] foaf:knows [
foaf:name "Bob" ;
foaf:knows [

foaf:name "Eve" ] ;
foaf:mbox <bob@example.com> ] .

1.5.3. Example 3

<http://example.org/#spiderman> <http://www.perceive.net/
schemas/relationship/enemyOf> <http://example.org/#
green-goblin> ;

<http://xmlns.com/foaf/0.1/name>
"Spiderman" .

1.5.4. Example 4

<http://example.org/#The Greatest> <http://xmlns.com/foaf
/0.1/name> "Muhammad Ali", "Cassius Marcellus Clay Jr
."@en .
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1.5.5. Example 5

<http://example.org/#The_Greatest> <http://xmlns.com/foaf
/0.1/name> "Muhammad Ali", "Cassius Marcellus Clay Jr
."@en .

which is equal to:

<http://example.org/#The_Greatest> <http://xmlns.com/foaf
/0.1/name> "Muhammad Ali" .

<http://example.org/#The_Greatest> <http://xmlns.com/foaf
/0.1/name> "Cassius Marcellus Clay Jr."@en .

but not equal to :

<http://example.org/#The_Greatest> <http://xmlns.com/foaf
/0.1/name> ("Muhammad Ali" "Cassius Marcellus Clay Jr
."@en) .

As the name is not a collection but one of the items in
the collection.

1.5.6. Example 6

:weddingCouple <http://xmlns.com/foaf/0.1/name> (:Lily :
Sam) .

which can not be separated, so it is not equal to:
:weddingCouple <http://xmlns.com/foaf/0.1/name> :Lily .
:weddingCouple <http://xmlns.com/foaf/0.1/name> :Sam .

As Lily is a person not a couple. So does Sam.


