31,105 research outputs found

    A framework for automatic semantic video annotation

    Get PDF
    The rapidly increasing quantity of publicly available videos has driven research into developing automatic tools for indexing, rating, searching and retrieval. Textual semantic representations, such as tagging, labelling and annotation, are often important factors in the process of indexing any video, because of their user-friendly way of representing the semantics appropriate for search and retrieval. Ideally, this annotation should be inspired by the human cognitive way of perceiving and of describing videos. The difference between the low-level visual contents and the corresponding human perception is referred to as the ‘semantic gap’. Tackling this gap is even harder in the case of unconstrained videos, mainly due to the lack of any previous information about the analyzed video on the one hand, and the huge amount of generic knowledge required on the other. This paper introduces a framework for the Automatic Semantic Annotation of unconstrained videos. The proposed framework utilizes two non-domain-specific layers: low-level visual similarity matching, and an annotation analysis that employs commonsense knowledgebases. Commonsense ontology is created by incorporating multiple-structured semantic relationships. Experiments and black-box tests are carried out on standard video databases for action recognition and video information retrieval. White-box tests examine the performance of the individual intermediate layers of the framework, and the evaluation of the results and the statistical analysis show that integrating visual similarity matching with commonsense semantic relationships provides an effective approach to automated video annotation

    A Robust Linguistic Platform for Efficient and Domain specific Web Content Analysis

    Full text link
    Web semantic access in specific domains calls for specialized search engines with enhanced semantic querying and indexing capacities, which pertain both to information retrieval (IR) and to information extraction (IE). A rich linguistic analysis is required either to identify the relevant semantic units to index and weight them according to linguistic specific statistical distribution, or as the basis of an information extraction process. Recent developments make Natural Language Processing (NLP) techniques reliable enough to process large collections of documents and to enrich them with semantic annotations. This paper focuses on the design and the development of a text processing platform, Ogmios, which has been developed in the ALVIS project. The Ogmios platform exploits existing NLP modules and resources, which may be tuned to specific domains and produces linguistically annotated documents. We show how the three constraints of genericity, domain semantic awareness and performance can be handled all together

    Linked Data Indexing of Distributed Ledgers

    Get PDF
    Searching for information in distributed ledgers is currently not an easy task, as information relating to an entity may be scattered throughout the ledger with no index. As distributed ledger technologies become more established, they will increasingly be used to represent real world transactions involving many parties and the search requirements will grow. An index providing the ability to search using domain specific terms across multiple ledgers will greatly enhance to power, usability and scope of these systems. We have implemented a semantic index to the Ethereum blockchain platform, to expose distributed ledger data as Linked Data. As well as indexing block- and transaction-level data according to the BLONDiE ontology, we have mapped smart contracts to the Minimal Service Model ontology, to take the first steps towards connecting smart contracts with Semantic Web Services

    Semantic-driven matchmaking of web services using case-based reasoning

    Get PDF
    With the rapid proliferation of Web services as the medium of choice to securely publish application services beyond the firewall, the importance of accurate, yet flexible matchmaking of similar services gains importance both for the human user and for dynamic composition engines. In this paper, we present a novel approach that utilizes the case based reasoning methodology for modelling dynamic Web service discovery and matchmaking. Our framework considers Web services execution experiences in the decision making process and is highly adaptable to the service requester constraints. The framework also utilises OWL semantic descriptions extensively for implementing both the components of the CBR engine and the matchmaking profile of the Web services

    An information-driven framework for image mining

    Get PDF
    [Abstract]: Image mining systems that can automatically extract semantically meaningful information (knowledge) from image data are increasingly in demand. The fundamental challenge in image mining is to determine how low-level, pixel representation contained in a raw image or image sequence can be processed to identify high-level spatial objects and relationships. To meet this challenge, we propose an efficient information-driven framework for image mining. We distinguish four levels of information: the Pixel Level, the Object Level, the Semantic Concept Level, and the Pattern and Knowledge Level. High-dimensional indexing schemes and retrieval techniques are also included in the framework to support the flow of information among the levels. We believe this framework represents the first step towards capturing the different levels of information present in image data and addressing the issues and challenges of discovering useful patterns/knowledge from each level

    Using semantic indexing to improve searching performance in web archives

    Get PDF
    The sheer volume of electronic documents being published on the Web can be overwhelming for users if the searching aspect is not properly addressed. This problem is particularly acute inside archives and repositories containing large collections of web resources or, more precisely, web pages and other web objects. Using the existing search capabilities in web archives, results can be compromised because of the size of data, content heterogeneity and changes in scientific terminologies and meanings. During the course of this research, we will explore whether semantic web technologies, particularly ontology-based annotation and retrieval, could improve precision in search results in multi-disciplinary web archives
    corecore