7,706 research outputs found

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    Abstract verification and debugging of constraint logic programs

    Get PDF
    The technique of Abstract Interpretation [13] has allowed the development of sophisticated program analyses which are provably correct and practical. The semantic approximations produced by such analyses have been traditionally applied to optimization during program compilation. However, recently, novel and promising applications of semantic approximations have been proposed in the more general context of program verification and debugging [3],[10],[7]

    Hybrid Rules with Well-Founded Semantics

    Get PDF
    A general framework is proposed for integration of rules and external first order theories. It is based on the well-founded semantics of normal logic programs and inspired by ideas of Constraint Logic Programming (CLP) and constructive negation for logic programs. Hybrid rules are normal clauses extended with constraints in the bodies; constraints are certain formulae in the language of the external theory. A hybrid program is a pair of a set of hybrid rules and an external theory. Instances of the framework are obtained by specifying the class of external theories, and the class of constraints. An example instance is integration of (non-disjunctive) Datalog with ontologies formalized as description logics. The paper defines a declarative semantics of hybrid programs and a goal-driven formal operational semantics. The latter can be seen as a generalization of SLS-resolution. It provides a basis for hybrid implementations combining Prolog with constraint solvers. Soundness of the operational semantics is proven. Sufficient conditions for decidability of the declarative semantics, and for completeness of the operational semantics are given

    SWI-Prolog and the Web

    Get PDF
    Where Prolog is commonly seen as a component in a Web application that is either embedded or communicates using a proprietary protocol, we propose an architecture where Prolog communicates to other components in a Web application using the standard HTTP protocol. By avoiding embedding in external Web servers development and deployment become much easier. To support this architecture, in addition to the transfer protocol, we must also support parsing, representing and generating the key Web document types such as HTML, XML and RDF. This paper motivates the design decisions in the libraries and extensions to Prolog for handling Web documents and protocols. The design has been guided by the requirement to handle large documents efficiently. The described libraries support a wide range of Web applications ranging from HTML and XML documents to Semantic Web RDF processing. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 31 pages, 24 figures and 2 tables. To appear in Theory and Practice of Logic Programming (TPLP

    Converting Instance Checking to Subsumption: A Rethink for Object Queries over Practical Ontologies

    Full text link
    Efficiently querying Description Logic (DL) ontologies is becoming a vital task in various data-intensive DL applications. Considered as a basic service for answering object queries over DL ontologies, instance checking can be realized by using the most specific concept (MSC) method, which converts instance checking into subsumption problems. This method, however, loses its simplicity and efficiency when applied to large and complex ontologies, as it tends to generate very large MSC's that could lead to intractable reasoning. In this paper, we propose a revision to this MSC method for DL SHI, allowing it to generate much simpler and smaller concepts that are specific-enough to answer a given query. With independence between computed MSC's, scalability for query answering can also be achieved by distributing and parallelizing the computations. An empirical evaluation shows the efficacy of our revised MSC method and the significant efficiency achieved when using it for answering object queries
    corecore