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Abstract A general framework is proposed for integration of rules and external first-order
theories. It is based on the well-founded semantics of normal logic programs and inspired
by ideas of Constraint Logic Programming (CLP) and constructive negation for logic pro-
grams. Hybrid rules are normal clauses extended with constraints in the bodies; constraints
are certain formulae in the language of the external theory. A hybrid program consists of
a set of hybrid rules and an external theory. Instances of the framework are obtained by
specifying the class of external theories and the class of constraints. An example instance
is integration of (non-disjunctive) Datalog with ontologies formalized in description logics.
The paper defines a declarative semantics of hybrid programs and a goal-driven formal oper-
ational semantics. The latter can be seen as a generalization of SLS-resolution. It provides a
basis for hybrid implementations combining Prolog with constraint solvers (such as ontol-
ogy reasoners). Soundness of the operational semantics is proven. Sufficient conditions for
decidability of the declarative semantics and for completeness of the operational semantics
are given.
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138 W. Drabent, J. Małuszyński

1 Introduction

This paper presents an approach to integration of normal logic programs under the
well-founded semantics with external first-order theories. The problem is motivated by the
discussion about the rule level of the Semantic Web.

It is often claimed that rule-based applications need non-monotonic reasoning for han-
dling negative information. As the issue of non-monotonic reasoning and negation was thor-
oughly investigated in the context of logic programming (see e.g. [3] for a survey of classical
work on this topic), it would be desirable to build-up on this expertise. Well-established
formal semantics: the answer set semantics [5], the well-founded semantics [40], and the
3-valued completion semantics of Kunen [25] provide theoretical foundations for existing
logic programming systems. On the other hand, applications refer usually to domain-specific
knowledge, that is often supported by specific reasoning or computational mechanisms.

Domain-specific variants of logic programs are handled within the constraint logic pro-
gramming framework CLP [30]. In CLP, the concept of constraint domain makes it possible
to extend the semantics of pure logic programs and to use domain-specific constraint solvers
for sound reasoning. Classical CLP does not support non-monotonic reasoning, but integra-
tion of both paradigms is discussed by some researchers (see e.g. [9,20,39]). Special kinds of
domain-specific knowledge are domain-specific terminologies, specified in a formal ontol-
ogy description language, such as OWL [33]. This raises the issue of integration of rules
and ontologies, which has achieved a considerable attention (see e.g. [7,17,31,32,35] and
references therein; an overview can be found in Refs. [1,13,28]). It is commonly assumed
that an ontology is specified as a set of axioms in (a subset of) First-Order Logic (FOL),
usually in a Description Logic. A rule language, typically a variant of Datalog, is then
extended by allowing a restricted use of ontology predicates. The extensions considered in
the literature are mostly based on disjunctive Datalog with negation under the answer set
semantics.

In contrast to that, our focus is on normal logic programs under the well-founded semantics.
Our objective is to extend them in such a way that domain-specific knowledge represented
by a first-order theory can be accessed from the rules. The theory will be called the external
theory. Going beyond Datalog makes it possible to use data structures, like lists, for pro-
gramming in the extended rule language. We want to define the semantics of the extended
language so that the existing reasoners for normal logic programs and for the external theory
can be re-used for querying the extended programs. Thus, our objective is to provide a frame-
work for hybrid integration of normal logic programs and external theories. Integration of
Datalog rules with ontologies specified in a Description Logic could then be handled within
the framework as a special case.

The choice of the well-founded semantics as the basis for our approach is motivated by
existence of top-down query answering algorithms, which facilitate building a query answer-
ing method for our framework. Notice also that the well-founded semantics and the answer set
semantics are equivalent for a wide class of programs, including stratified normal programs.

We introduce a notion of hybrid program; such a program is a pair (P, T ) where T is
a set of axioms in a first-order language L and P is a set of hybrid rules. T and P share
function symbols but have disjoint alphabets of predicate symbols. This reflects the intui-
tion that domain-specific knowledge is shared by many applications and is not redefined by
the applications. A hybrid rule is a normal clause whose body may include a formula in L,
called the constraint of the rule. We define declarative semantics of hybrid programs as a
natural extension of the well-founded semantics of logic programs. It is 3-valued; the seman-
tics of a program (P, T ) is a set of ground literals over the alphabet of P . The semantics is
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Hybrid rules with well-founded semantics 139

undecidable (as is the well-founded semantics for normal programs). However, it is decidable
for Datalog hybrid programs, provided the constraints are decidable.

The operational semantics presented in this paper is goal driven, and allows non-ground
goals. It employs data structures built of possibly non-ground goals and constraints. It com-
bines a variant of SLS-resolution (see e.g. [3]) with handling constraints. The latter includes
checking satisfiability of the constraints w.r.t. T , which is assumed to be done by a reasoner
of T . Thus the operational semantics provides a basis for development of implementations
integrating LP (logic programming) reasoners supporting/approximating the well-founded
semantics (such as XSB Prolog [37]) with constraint solvers (such as ontology reasoners).
The operational semantics is sound w.r.t. the declarative one, under rather weak sufficient
conditions. It is complete for Datalog hybrid programs under a certain syntactic condition of
safeness.

In the special case of hybrid rules without non-monotonic negation, the rules can be seen
as the usual implications of the FOL, thus as additional axioms extending T . In this case,
every ground atom which is true in the semantics of the hybrid program is a (2-valued) logical
consequence of P ∪ T . The paper is organized as follows. Section 2 gives an introduction to
the well-founded semantics of normal logic programs and presents the notion of constraint
used in this paper. Basic ideas of Description Logics and their use for defining ontologies and
ontological constraints are briefly discussed. The proposed approach to combining LP with
external theories is informally introduced by means of examples. Section 3 gives a formal
presentation of the syntax and declarative semantics of the generic language of hybrid rules,
parameterized by the constraint domain. Section 4 introduces the operational semantics; then
soundness and completeness results relating the declarative semantics and the operational
semantics are stated and proven. Section 5 discusses decidability of the declarative seman-
tics. The last two sections contain discussion of related work and conclusions. A preliminary,
abbreviated version of this work appeared as [16].

2 Preliminaries

2.1 Normal logic programs and the well-founded semantics

In this work, we use the standard terminology and notation of logic programming (see e.g.
[2]).

The language of hybrid rules will be defined as an extension of normal logic programs. We
assume that the programs are built over a first-order alphabet including a set PR of predicates,
a set V of variables and a set F of function symbols with their arities, including a non-empty
set of symbols of arity 0, called constants.

Atomic formulae (or atoms) and terms are built in a usual way. A literal is an atomic
formula (positive literal) or a negated atomic formula (negative literal). A literal (a term) not
including variables is called ground.

A normal logic program P is a finite set of rules of the form

H ← B1, . . . , Bn where n ≥ 0

where H is an atomic formula, and B1, . . . , Bn are literals. The rules are also called normal
clauses. The rules with empty bodies (n = 0) are called facts or unary clauses; they are
usually written without←. A normal clause is called definite clause iff all literals of its body
are positive. A definite program is a finite set of definite clauses. In this paper, a Datalog
program is a normal logic program with F being a finite set of constants.
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140 W. Drabent, J. Małuszyński

The Herbrand base H is the set of all ground atoms built with the predicates from PR ,
and function symbols from F . For a subset S ⊆ H, by ¬S we denote the set of negations of
the elements of S, ¬S = {¬a | a ∈ S }. A ground instance of a rule R is a rule R′ obtained
by replacing each variable of R by a ground term over the alphabet. The set of all ground
instances of the rules of a program P will be denoted ground(P). Notice that in the case of
Datalog ground(P) is a finite set of ground rules.

A 3-valued Herbrand interpretation (briefly – interpretation) I of P is a subset of
H∪¬H such that for no ground atom A both A and¬A are in I. Intuitively, the set I assigns
the truth value t (true) to all its members. Thus, A is false (has the truth value f) in I iff
¬A ∈ I, and ¬A is false in I iff A ∈ I. If A �∈ I and ¬A �∈ I then the truth value of A (and
that of ¬A) is u (undefined). This is in a natural way generalized to non-ground atoms and
non-atomic formulae (see e.g. [3]). An interpretation I is a model of a formula F (which is
denoted by I |	3 F) iff F is true in I.

As usual, a 2-valued Herbrand interpretation is a subset of H. It assigns the value t to all
its elements and the value f to all remaining elements of the Herbrand base. It is well known
that any definite program P has a unique least1 2-valued Herbrand model. We will denote it
MP . A normal program may not have the least Herbrand model.

The well-founded semantics of logic programs [40] assigns to every program P a unique
(three valued) Herbrand model, called the well-founded model of P . Intuitively, the facts
of a program should be true, and the ground atoms which are not instances of the head of
any rule should be false. This information can be used to reason which other atoms must be
true and which must be false in any Herbrand model. Such a reasoning gives in the limit the
well-founded model, where the truth values of some atoms may still be undefined. The well-
founded semantics has several equivalent formulations. We briefly sketch here a definition
following that of Ref. [21].

While defining the well-founded model, for every predicate symbol p, we will treat¬p as
a new distinct predicate symbol. A normal program can thus be treated as a definite program
over Herbrand base H ∪ ¬H. A 3-valued interpretation over H can be treated as a 2-valued
interpretation over H ∪ ¬H.

Let I be such an interpretation (I ⊆ H ∪ ¬H). We define two ground, possibly infinite,
definite programs P/t I and P/tu I . For a given program P , P/t I is the ground instantiation
of P together with ground unary clauses that show which negative literals are true in I .

P/t I = ground(P) ∪ {¬A | ¬A ∈ I }
P/tu I is similar but all the negative literals that are true or undefined in I are made true here:

P/tu I = ground(P) ∪ {¬A | A �∈ I, A ∈ H }
Now we define an operator �P (I ) which produces a new Herbrand interpretation of P:

�P (I ) = (MP/t I ∩H) ∪ ¬(H\MP/tu I )

It can be proved that the operator is monotonic; �P (I ) ⊆ �P (J ) whenever I ⊆ J . Its least
fixed point is called the well-founded model W F(P) of program P . For some countable
ordinal α we have W F(P) = �αP (∅).

The following example shows a simple Datalog program and its well-founded model.

Example 2.1 A two person game consists in moving a token between vertices of a directed
graph. Each move consists in traversing one edge from the actual position. Each of the players

1 in the sense of set inclusion.
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Hybrid rules with well-founded semantics 141

makes one move in order. The graph is described by a database of facts m(X, Y ) correspond-
ing to the edges of the graph. A position X is said to be a winning position X if there exists
a move from X to a position Y which is a losing (non-winning) position:

w(X)← m(X, Y ),¬w(Y ).
Consider the graph

d → e
↑ ↓

b ↔ a → c → f

and assume that it is encoded by the facts m(b, a),m(a, b), . . . ,m(e, f ) of the program.
The winning positions are e, c. The losing positions are d, f . Position a is not a losing one
since the player has an option of moving to b from which the partner can only return to a.
This intuition is properly reflected by the well-founded model of the program, it contains the
following literals with the predicate symbol w: w(c), w(e),¬w(d),¬w( f ).

This example follows [22,40]. A non-Datalog version, with an infinite graph, is presented
in Ref. [11].

2.2 External theories

In this section, we discuss logical theories to be integrated with logic programs.

2.2.1 Constraints

Our objective is to define a general framework for extending normal logic programs, which,
among others, can also be used for integration of Datalog rules with ontologies. Syntactically,
the clauses of a logic program are extended by adding certain formulae of a certain logical
theory. The added formulae will be called constraints. We use this term due to similarities
with constraint logic programming [30].

We will consider a 2-valued FOL theory, called external theory or constraint theory. A set
of its formulae is chosen as the set of constraints.2 The function symbols and the variables of
the language of the external theory are the same as those of the language of rules. On the other
hand, the predicate symbols of both languages are distinct. We will call them constraint pred-
icates and rule predicates. We assume that the external theory is given by a set of axioms T
and the standard consequence relation � of the FOL, or equivalently the logical consequence
|	. (Other consequence relations can be used instead; for instance deriving those formulae
which are true in a canonical model of T , or in a given class of models). We will sometimes
use T as the name of the theory.

Sometimes one deals with an external theory whose set Fc of function symbols is a proper
subset of the set F of function symbols of the rules. For instance, the external theory uses
only constants, and the rules employ term constructors (i.e. non-constant function symbols).
In such case, we simply extend the alphabet of the external theory so that its set of function
symbols is F . The modified external theory is a conservative extension of the original one
[38]. A formula without symbols from F\Fc is a logical consequence of T in one of them
iff it is a logical consequence in the other. Thus, such modification of the external theory is
inessential; this justifies our assumption of a common alphabet of function symbols.

2 Our operational semantics imposes certain restrictions on the set of constraints. They are discussed in
Sect. 4.1. The declarative semantics works for arbitrary constraints.
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2.2.2 Ontologies and ontological constraints

This section surveys some basic concepts of Description Logics (DLs) [4] and the use of
DLs for specifying ontologies. An ontology may be defined as a “specification of a concep-
tualization” [23]. An ontology should thus provide a formal definition of the terminology to
be shared.

Description Logics are specific fragments of the FOL. The syntax of a DL is built over
disjoint alphabets of class names, property names and individual names. From the point of
view of FOL they are, respectively, one and two argument predicate symbols, and constants.
Depending on the kind of DL, different constructors are provided to build class expressions
(or briefly classes) and property expressions (or briefly properties). Some DLs allow also
to represent concrete datatypes, such as strings or integers. In that case one distinguishes
between individual-valued properties and data-valued properties.

By an ontology we mean a finite set of axioms in some decidable DL. The axioms describe
classes and properties of the ontology and assert facts about individuals and data. An ontol-
ogy is thus a DL knowledge base consisting of two parts: a TBox (terminology) including
class axioms and property axioms and an ABox (assertions) stating facts about individuals
and data. The axioms of DLs can be seen as an alternative representation of FOL formulae.
Thus, the semantics of DLs is defined by referring to the usual notions of interpretation and
model, and an ontology can be considered a FOL theory.

For most of decidable DLs, there exist well-developed automatic reasoning techniques.
Given an ontology T in a DL one can use a respective reasoner for checking if a formula C
is a logical consequence of T . If T �|	 C and T �|	 ¬C then C is true in some models of the
ontology and false in some other models.

Ontologies are often specified in the standard web ontology language OWL DL, based
on the Description Logic SHOIN (D). OWL Ontologies can be seen as sets of axioms in
this DL.

OWL DL class axioms make it possible to state class equivalence A ≡ C and class inclu-
sion A � C , where A is a class name and C is a class expression. Class expressions are
built from class names using constructors, such as � (the universal concept), ⊥ (the bot-
tom concept), intersection, union and complement. Classes can also be described by direct
enumeration of members and by restrictions on properties (for more details see [33]).

Property axioms make it possible to state inclusion of properties, specify the domain and
the range of a property, state that a property is symmetric, transitive, functional, or inverse
functional.

OWL DL assertions indicate members of classes and properties. Individuals are referred
to by individual names. It is possible to declare that given individual names represent the
same individual or that each of them represents a different individual.

The following example using some expressive constructions of OWL DL will be used in
the sequel to discuss how integration of Datalog with OWL DL ontologies is achieved in our
framework.

Example 2.2 In some research area, an author of at least 3 books is considered an expert.
An OWL DL ontology referring to this research area has classes Author and Book, and a
property isAuthorOf with domain Author and range Book. The class Expert can now be
defined using OWL DL cardinality restriction:3

Expert ≡ isAuthorOf min 3 Book

3 In the Manchester OWL Syntax http://www.co-ode.org/resources/reference/manchester_syntax/.
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Hybrid rules with well-founded semantics 143

The property isAuthorOf has the inverse property hasAuthor. The following class expres-
sion defines the class of authors which co-authored a book with a given author X (e.g. smith)

(isAuthorOf some (hasAuthor value X))

All individuals of class Book which appear in the ontology are declared as distinct. The
ontology states that the individuals johns and brown of class Author are the same. (This
may happen e.g. due to a change of the name of a person). There are also authors smith and
burns; smith, burns and johns are declared to be distinct. In addition, the ontology asserts
that johns is an author of the books b1, b2 and brown is an author of the books b2, b3. Thus
an OWL DL reasoner will conclude that johns (brown) is an expert.

2.3 Datalog with constraints: introductory examples

We now illustrate the idea of adding constraints to rule bodies on two simple examples. The
intention is to give an informal introduction to the semantics of hybrid rules. The first example
will be used later on to accompany the formal presentation of the declarative and operational
semantics of our framework. The second one illustrates some aspects of expressing external
theories in OWL DL.

Example 2.3 The example describes a variant of the game from Example 2.1 where the
rules are subject to additional restrictions. Assume that the positions of the graph represent
geographical locations described by an ontology. The ontology provides, among others, the
following information

• subclass relations (TBox axioms): e.g. Fi � E (locations in Finland are locations in
Europe);

• classification of some given locations represented by constants (ABox axioms). For
instance, assuming that the positions of Example 2.1 represent locations we may have
Fi(b) (b is a location in Finland), E(c) (c is a location in Europe).

We now add some restrictions as ontological constraints4 added to the facts m(e, f ) and
m(c, f ):

w(X)← m(X, Y ),¬w(Y )
m(b, a)
m(a, b)
m(a, c)
m(c, d)
m(d, e)

m(c, f )← ¬Fi( f )
m(e, f )← E( f ) d −→ e

↑ ↓ E( f )

b ↔ a → c −→
¬Fi( f )

f

Intuitively, this would mean that the move from e to f is allowed only if f is in Europe
and the move from c to f —only if f is not in Finland. These restrictions may influence the
outcome of the game: f will still be a losing position but if the axioms of the ontology do
not allow to conclude that f is in Europe, we cannot conclude that e is a winning position.
However, we can conclude that if f is not in Europe then it cannot be in Finland. Thus, at least
one of the conditions E( f ),¬Fi( f ) holds. If E( f ) then, as in Example 2.1, e is a winning
position, d is a losing one, hence c is a winning position. On the other hand, if ¬Fi( f ) then
the move from c to f is allowed, in which case c is a winning position. Therefore c is always
a winning position; w(c) is considered to be a consequence of the program.

4 Symbol¬ is used to denote two kinds of negation. Within a constraint it is the classical negation of the exter-
nal theory. When applied to a rule predicate, ¬ denotes non-monotonic negation. Thus two distinct negation
symbols are not needed.
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Example 2.4 A committee of reviewers is to be created for evaluation of the applicants for an
opened position. A reviewer has to be an expert, as defined by the ontology of Example 2.2
and must not have a conflict of interest (coi) with an applicant. Persons who are co-authors
of a book have coi. (This implies that an author of a book has coi with himself/herself; this
applies in particular to each expert). Additionally, some conflicts of interest are declared by
facts.

The following rules define a potential reviewer X for a candidate Y (relation mayreview).
Two constraints are used: Expert (X) and (isAuthorOf some (hasAuthor value X))(Y ). They
refer to the ontology of Example 2.2.

mayreview(X, Y )← Expert (X),¬coi(X, Y )
coi(X, Y )← (isAuthorOf some (hasAuthor value X))(Y )
coi(johns, burns)

The intention is to query the rules and the ontology for checking if a given person may be a
reviewer for a given candidate. Consider the individual johns of Example 2.2 and check if
she might be appointed a reviewer for some of the people named in the ontology. An OWL
DL reasoner can check that johns is an expert and that she has the conflict of interest with
herself, i.e. with johns alias brown. The conflict of interest with burns is stated explicitly.
So johns cannot be appointed a reviewer for herself and for burns.

To check if johns has the conflict of interest with smith one has to refer to the ontology
for checking if they co-authored a book. If this is confirmed by the reasoner (e.g. when the
ontology asserts that both johns and smith are authors of b1) then coi(johns, smith) is true
and johns cannot be a reviewer for smith. If non-existence of any co-authored book follows
from the ontology, then coi(johns, smith) is false and johns can be a reviewer. Otherwise5

johns may be a reviewer for smith under the condition that they did not co-authored a book.
This constraint should be returned in the answer to the query.

An example employing non-nullary function symbols is given in Ref. [14]. The semantics
of hybrid programs presented below formalizes the intuitions presented in the examples of
this section.

3 Integration of rules and external theories

This section defines the syntax and the (declarative) semantics of hybrid programs, integrat-
ing normal rules with first-order theories. The general principles discussed here apply in a
special case to integration of Datalog with ontologies specified in Description Logics.

3.1 Syntax

We consider a first-order alphabet including, as usual, disjoint alphabets of predicate sym-
bols P , function symbols F (including a set of constants) and variables V . We assume that P
consists of two disjoint sets PR (rule predicates) and PC (constraint predicates). The atoms
and the literals constructed with these predicates will respectively be called rule atoms (rule
literals) and constraint atoms (constraint literals). We will combine rules over alphabets
PR, F, V with an external theory T over PC , F, V , employing constraints (a distinguished
set of formulae of T ).

5 They are co-authors in some models of the ontology, and are not in some others.
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Definition 3.1 A hybrid rule (over PR, PC , F, V) is an expression of the form:

H ← C, L1, . . . , Ln

where, n ≥ 0 each Li is a rule literal and C is a constraint (over PC , F, V); C is called the
constraint of the rule.

A hybrid program is a pair (P, T ) where P is a set of hybrid rules and T is a set of
axioms over PC , F, V .

Hybrid rules are illustrated in Example 2.3. We adopt a convention that a constraint true,
which is a logical constant interpreted as t, is omitted. Usually we do not distinguish between
sequences, like L1, . . . , Ln , and conjunctions, like L1 ∧ · · · ∧ Ln . Notation L will be used
to denote a sequence of rule literals (similarly t a sequence of terms, etc.); t = u will denote
a conjunction of equalities t1 = u1, . . . , tk = uk .

3.2 Declarative semantics

The declarative semantics of hybrid programs is defined as a generalization of the well-
founded semantics of normal programs; it refers to the models of the external theory T of
a hybrid program. Given a hybrid program (P, T ), we cannot define a unique well-founded
model of P since we have to take into consideration the logical values of the constraints
in the rules. However, a unique well-founded model can be defined for any given model of
T . Roughly speaking, the constraints in the rules are replaced by their logical values in the
model (t or f); then the well-founded model of the obtained logic program is taken. The
well-founded models are over the Herbrand universe, but the models of T are arbitrary.

By applying a substitution θ = {x1/t1, . . . , xn/tn} to a formula F we mean applying it to
the free variables of F . Moreover, if a bound variable x of F occurs in some ti (1 ≤ i ≤ n)
then x in F is replaced by a new variable.

By a ground instance of a hybrid rule H ← C, L1, . . . , Ln , where C is the constraint of
the rule, we mean any rule Hθ ← Cθ, L1θ, . . . , Lnθ , where θ is a substitution replacing the
free variables of H ← C, L1, . . . , Ln by ground terms (over the alphabetF). So the constraint
Cθ has no free variables, and Hθ, L1θ, . . . , Lnθ are ground literals. By ground(P) we
denote the set of all ground instances of the hybrid rules in P .

Definition 3.2 Let (P, T ) be a hybrid program and let M0 be a model of T . Let P/M0 be
the normal program obtained from ground(P) by

• removing each rule constraint C which is true in M0 (i.e. M0 |	 C),
• removing each rule whose constraint C is not true in M0, (i.e. M0 �|	 C).

The well-founded model W F(P/M0) of P/M0 is called the well-founded model of P based
on M0.

A formula F (over PR,F,V) holds (is true) in the well-founded semantics of a hybrid
program (P, T ) (denoted (P, T ) |	wf F) iff M |	3 F for each well-founded model M of
(P, T ). ��

Notice that the negation in the rule literals is non-monotonic, and the negation in the
constraints is that from the external theory, thus monotonic.

We say that F is false in the well-founded semantics of (P, T ) if (P, T ) |	wf ¬F , and
that F is undefined if the logical value of F in each well-founded model of (P, T ) is u.
There is a fourth case: F has distinct logical values in various well-founded models of P .
Formally, the semantics of (P, T ) does not assign any truth value to such F . We may say
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that its truth value depends on the considered model of the external theory. Classes of models
in which F has a specific truth value can be characterized by constraints. Such constraints
provide sufficient conditions for F to have the specific truth value. They are constructed by
the proposed operational semantics.

Example 3.3 For the hybrid program (P, T ) of Example 2.3, we have to consider mod-
els of the ontology T . For every model M0 of T such that M0 |	 E( f ) the program
P/M0 includes the fact m(e, f ). The well-founded model of P/M0 includes thus the literals
¬w( f ), w(e),¬w(d), w(c) (independently of whether M0 |	 Fi( f )).

On the other hand, for every model M1 of the ontology such that M1 |	 ¬Fi( f ) the
program P/M1 includes the fact m(c, f ). The well-founded model of P/M1 includes thus
the literals ¬w( f ), w(c) (independently of whether M1 |	 E( f )).

Notice that each of the models of the ontology falls in one of the above discussed cases.
Thus, w(c) and ¬w( f ) hold in the well-founded semantics of the hybrid program, and the
logical value of w(a) and that of w(b) is u in each well-founded model of the program. On
the other hand, w(e) and ¬w(d) are true in those well-founded models W F(P/M0) of P
for which the constraint E( f ) is true in M0. Similarly, ¬w(e) and w(d) are true in those
models for which E( f ) is false. Thus the well-founded semantics assigns unique truth values
tow(a), w(b), w(c) andw( f ), but not tow(d) andw(e). The truth values ofw(d) andw(e)
can be characterized by additional constraints.

Consider a case of hybrid rules without negative rule literals. So the non-monotonic
negation does not occur. Such rules can be seen as implications of FOL and treated as axioms
added to T . For such case the well-founded semantics is compatible with FOL in the following
sense: For any ground rule atom A if (P, T ) |	wf A then P ∪ T |	 A.6 We omit a detailed
proof.

As the well-founded semantics of normal programs is undecidable, so is the well-founded
semantics of hybrid programs. It is, however, decidable for Datalog hybrid programs with
decidable external theories (Sect. 5). In Sect. 4, we show that sound reasoning is possible (for
arbitrary hybrid programs) by appropriate generalization of SLS-resolution. For the Datalog
case, the proposed reasoning scheme is complete under a certain safeness condition.

3.3 Treatment of equality

In this section, we discuss how equality is treated by the declarative semantics introduced
earlier. The semantics is based on Herbrand models. Thus, it treats distinct ground terms as
having different values.

Example 3.4 Consider a hybrid program (P, T ), where P = { p(a) }. Both p(a) and¬p(b)
hold in the well-founded semantics of (P, T ), even if T implies that a and b are equal. This
feature of the semantics of hybrid programs may be found undesirable.

We will call this phenomenon the problem of two equalities. Below we first show that the
problem is well known in constraint logic programming (CLP) and explain how it is dealt
with. Then we discuss two more formal ways of avoiding it: external theories where equality

6 The reverse implication does not hold. As a counterexample take T = { ∃x .q(x) } and P = { p ←
q(x), r(x); r(x)←}. P ∪ T |	 p but (P,T ) �|	wf p, as there exist models of T in which each ground atom
q(t) is false.

We can obtain (something close to) the reverse implication by considering only those well-founded models
which are based on Herbrand models of T . If P ∪ T |	 A then M |	 A for each well-founded model M of
P based on a Herbrand interpretation M0 of T .
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satisfies Clark equality theory (CET), and hybrid rules which are congruent w.r.t. a given
external theory.

The problem of two equalities is familiar from CLP [30], and is not found troublesome
in practice. Most CLP implementations employ both syntactic equality and equality of the
constraint domain.7 Let us denote the latter by =′ (and use = for the syntactic equality of
the Herbrand domain). Formally, let us treat= as equality, and=′ as an equivalence relation.
As an example consider CLP over arithmetic constraints [30]. Terms 2+ 2 and 4 are distinct
but denote the same number, we have 2+ 2 �= 4 and 2+ 2 =′ 4. Constraint predicates (such
as arithmetic inequality < ) treat 2+ 2 and 4 as equal (Formally, =′ is a congruence for the
constraint predicates: p(t1, . . . , tn) iff p(u1, . . . , un) whenever t1 =′ u1, . . . , tn =′ un , for
any constraint predicate p). Other predicates may distinguish such terms. This is related to
using unification in the operational semantics; unification is related to the syntactic equality.

Apparently the programmers find this feature natural and not confusing. They are aware
of dealing both with the Herbrand interpretation and with a non-Herbrand one. They know
that the latter is employed only by constraint predicates. They take care of distinguishing the
two corresponding equalities. For instance, to express a fact that si ze should be true for the
number 4, a rule si ze(N )← N = ′4 will be used (instead of a fact si ze(4).).

Assume that we have an external theory T with equality =′. We say that a set of hybrid
rules P is congruent for a predicate symbol p w.r.t. T when T |	 t1 =′ u1, . . . , tn =′ un

implies

(P, T ) |	wf p(t1, . . . , tn) iff (P, T ) |	wf p(u1, . . . , un),

for any ground terms t1, . . . , tn, u1, . . . , un . When P is congruent w.r.t. T for any rule
predicate p then we say that P is congruent w.r.t. T (or shortly that (P, T ) is congruent).

Example 3.5 Program P = { p(a) } (from Example 3.4) is not congruent w.r.t. any T in
which T |	 a =′ b.

The hybrid program from Example 2.4 with the fact coi(johns, burns) removed is con-
gruent,8 independently from T .

Example 3.6 (Constructing congruent programs) Consider the program from Examples 2.3,
3.3. The program implies w(c) and ¬w(g) (formally (P, T ) |	wf w(c) and (P, T ) |	wf

¬w(g)). Assume that T implies that c =′ g. For instance, the equality may be explicitly
stated by an owl:sameAs assertion. Informally, equality c =′ g is incompatible with P;
the rules of P treat differently the objects c, g, while T states that they are equal. Formally,
(P, T ) is not congruent.

One can modify P to make it treat c, g in the same way. It is sufficient to add rules m(a, g),
m(g, d), and m(g, f ) ← ¬Fi( f ). (We replace c by g in the rules of P). Now w(c) and
w(g) hold in the well-founded semantics of the obtained program (P ′, T ). The program is
congruent, provided that T does not imply t1 =′ t2 for any other pair {t1, t2} �= {c, g} of
constants occurring in the program.

We can modify P to make it congruent independently from T . The idea is to replace
(implicit) = by explicit =′. For instance we may replace in P the rule w(X) ←
m(X, Y ),¬w(Y ) by

w(X)← X =′ X ′, Y =′ Y ′, m(X ′, Y ′), ¬w(Y ).
7 See for instance the comment on an example constraint domain on p. 414 in [30, Section 12.2].
8 The unchanged program is not congruent, unless the ontology implies that johns (brown) co-authored
a book with burns. This is because coi(johns, burns) holds and coi(brown, burns) does not hold in the
well-founded semantics of the program, but johns =′ brown.
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The obtained program (P ′′, T ) is congruent for w, w.r.t. any T . Alternatively, the rules for
m can be modified in a similar way to make the program congruent for m. Then the program
is also congruent for w (without modifying the rule for w).

The program transformations above can be seen as usual CLP programming tricks.

For congruent hybrid programs, the problem of two equalities does not exist (also it
does not exist for external theories without equality). Example 3.6 informally introduces
programming techniques for constructing congruent programs. Now we present two simple
criteria assuring that a program is congruent (congruency is undecidable, like other non-
trivial semantic properties of programs). The first criterion refers to the free equality theory
(CET, Clark equality theory) [6].

Definition 3.7 CET (Clark equality theory) consists of equality axioms

x = x,
x = y → f (x) = f (y) for each f ∈ F,
x = y → (p(x)→ p(y)) for each predicate symbol p, including =,

and freeness axioms

f (x) = f (y)→ x = y for each f ∈ F,
f (x) �= g(y) for each pair of distinct f, g ∈ F,
x �= t for each non variable term t such that

the variable x occurs in t.

If the set F of function symbols is finite then CET additionally contains the weak domain
closure axiom WDCA:9

∨

f ∈F
∃y (x = f (y)).

The syntactic equality over the Herbrand universe is a model of CET. When F contains only
constants then CET reduces to the unique name assumption (UNA).

If the equality=′ of T satisfies CET then each program (P, T ) is congruent (as then if t, u
are ground terms then t =′ u implies that the terms are identical). Apparently, for this reason,
some approaches of combining rules and ontologies require that the ontology satisfies the
unique name assumption.

Another sufficient criterion is syntactic. Program (P, T ) is congruent if in each rule H ←
C, L1, . . . , Ln of P all the arguments t1, . . . , tn of the head H = p(t1, . . . , tn) are variables,
and any variable occurs at most once in H, L1, . . . , Ln (thus the remaining occurrences of
the variable are in the constraint C of the rule). The proof that such (P, T ) is congruent is
based on the fact that for any model M of T if T |	 t1= ′u1, . . . , tn =′ un (for ground terms
t1, . . . , tn, u1, . . . , un) then a rule p(t1, . . . , tn)← B is in P/M iff p(u1, . . . , un)← B is
in P/M .

As an example, notice that the rule for w in P ′′ from Example 3.6 satisfies the sufficient
condition, and the rules for m do not. Notice also that the condition is different from usually
considered safeness conditions (roughly speaking, the former forbids, and the latter require
certain variable occurrences).

9 This axiom is needed for CET to be complete, in the sense that any closed formula (with = as its only
predicate symbol) has the same logical value in each model of CET. Consider for instance F = {a} and
∃x(x �= a). This formula is true in some models of CET without WDCA, but false in its Herbrand models.
(If = is the only predicate symbol then the Herbrand model is unique).
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It is rather obvious how to construct programs satisfying this syntactic restriction, provided
that the set of constraints includes equalities t =′ u of T . Instead of placing a non-variable
term t as an argument of the head of a rule, use a new variable xt and add xt =′ t to the
constraint of the rule. Instead of writing more than one occurrences of a variable x in the
rule literals of a rule, replace each (but one) occurrence of x by a new distinct variable x ′ and
add x ′ =′ x to the constraint of the rule.

4 Reasoning with hybrid rules

Now we present a way of computing the well-founded semantics of Definition 3.2. Like
in logic programming, the task is to find instances of a given goal formula G which are
true in the well-founded semantics of a given program. Similarly to logic programming,
our operational semantics is defined in terms of search trees. After introducing the opera-
tional semantics, we prove its soundness and completeness, the latter for a restricted class of
programs.

4.1 Constraints for the operational semantics

To construct the operational semantics we impose certain requirements on the external theory
and the set of constraints. We need to deal explicitly with the syntactic equality = and its
negation. So we require that = is a constraint predicate symbol and the external theory T
includes the axioms CET (cf. Sect. 3.3). An external theory T ′ which does not satisfy this
condition can be easily converted to a T which does (T ′ may be a theory without equality, or
contain equality =′ not satisfying CET). Namely T is the union T = T ′ ∪ CET. Reasoning
in such T can be implemented employing Prolog and a reasoner for T ′ [14,15]. The former
deals with =, the latter with the predicates of T ′.

The operational semantics constructs new constraints using conjunction, disjunction, nega-
tion, and existential quantification. So we require that the set of constraints is closed under
these operations. This imposes restrictions on the constraints. For instance many DLs do not
allow negation of roles; for such DL a formula of the form r(X, Y ) cannot be a constraint.
The actual choice of constraints is outside of the scope of this paper. It depends on the chosen
external theory and the available reasoner for it. For instance, if a formula C is a constraint
without = then the reasoner should be able to check whether C is satisfiable in T ′ (where T
and T ′ are as above).

4.2 Operational semantics

The operational semantics presented below is a generalization of SLS-resolution [34], which
is extended by handling constraints originating from the hybrid rules. It is based on the con-
structive negation approach presented in [11,12]. In logic programming, the term constructive
negation stands for generalizations of negation as failure (NAF) (see e.g. [3]). NAF provides
a way of checking whether a given negative goal is a consequence of the program (under a
relevant semantics). Constructive negation, roughly speaking, finds instances of a negative
goal which are consequences. The main contribution of the operational semantics presented
here is dealing with hybrid programs and arbitrary external theories. The constructive nega-
tion method of Refs. [11,12] dealt with logic programs, the equality was the only constraint
predicate and CET was the constraint theory.
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The operational semantics is similar to SLDNF- and SLS-resolution [27,34]. For an input
goal, a derivation tree is constructed; its nodes are goals. Whenever a negative literal is selected
in some node, a subsidiary derivation tree is constructed. So a tree of trees is obtained.

Definition 4.1 By the restriction F |V of a formula F to a set V of variables we mean the
formula ∃x1, . . . , xn F where x1, . . . , xn are those free variables of F that are not in V . By
F |F ′ we mean F |V , where V are the free variables of formula F ′.

By a goal we mean a conjunction of the form C, L1, . . . , Ln (n ≥ 0), where each Li is a rule
literal and C is a constraint (the constraint of the goal). Consider a goal G = C, L, p(t), L ′
and a rule R = p(u) ← C ′, K , such that no variable occurs both in G and R. We say that
the goal

G ′ = t = u,C,C ′, L, K , L ′

is derived from G by R, with the selected atom p(t), if the constraint t = u,C,C ′ is satisfiable.

We inductively define two kinds of derivation trees: t-trees and tu-trees. Their role is to
find out when a given goal is t, or respectively when it is t or u. Informally, if a constraint C
is a leaf of a t-tree with the root G then C implies that G is t in the well-founded semantics
of the program (more generally, the same holds if C is a disjunction of such leaves). On
the other hand, for a tu-tree we define a notion of its cross-section. If C1, . . . ,Cn are the
constraints of the goals of a cross-section of a tu-tree with the root G then, roughly speaking,
¬(C1∨· · ·∨Cn) implies that G is f in the well-founded semantics of the program. A formal
explanation is provided by the soundness Theorem 4.9 in the next section.

For correctness of the definition (to avoid circularity), we assign ranks to the trees. This
is a standard technique employed in similar definitions [27,12,34]. In the general case ranks
are countable ordinals, but natural numbers are sufficient for a language where the function
symbols are constants. The children of nodes with an atom selected are defined as in the
standard SLD-resolution. The only difference is that instead of explicit unification we employ
equality constraints. The children of nodes with a negative literal selected are constructed
employing the results of tu- (t-) trees of lower rank. A t-tree refers to tu-trees and vice versa.
This is basically a reformulation of the corresponding definitions of Ref. [11,12].

Definition 4.2 (Operational semantics) A t-tree (tu-tree) of rank k ≥ 0 for a goal G w.r.t.
a program (P, T ) satisfies the following conditions. The nodes of the tree are (labeled by)
goals. In each node a rule literal is selected, if such a literal exists. A node containing no rule
literal is called successful, a branch of the tree with a successful leaf is also called successful.

1. A constraint (C1 ∨ · · · ∨ Cn)|G (n ≥ 0)10 is an answer of the t-tree if C1, . . . ,Cn are
(some of the) successful leaves of the t-tree (it is not required that all the successful
leaves are taken).

2. By a cross-section (or frontier) of a tu-tree we mean a set F of tree nodes such that each
successful branch of the tree has a node in F . Let F be a cross-section of the tu-tree and
CF = {C1, . . . } the constraints of the nodes in F .
If CF = {C1, . . . ,Cn } is finite then the constraint¬(C1|G), . . . ,¬(Cn |G) (the negation
of

∨
(Ci |G)) is called a negative answer of the tu-tree.

If CF is infinite then a constraint C which implies ¬(Ci |G) for each Ci ∈ CF is called
a negative answer of the tu-tree. Moreover, it is required that each free variable of C is
a free variable of G.

10 If n = 0 then by C1 ∨ · · · ∨ Cn we mean false, and by C1 ∧ · · · ∧ Cn we mean true.
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3. If (in the t-tree or tu-tree) the selected literal A in a node G ′ is an atom then, for each
rule R of P , a goal derived from G ′ with A selected by a variant R′ of R is a child of G ′,
provided such a goal exists. Moreover, it is required that no variable in R′ occurs in the
tree on the path from the root to G ′.

4. Consider a node G ′ = C, L,¬A, L ′ of the t-tree (tu-tree), in which the selected literal
¬A is negative. The node is a leaf or has one child, under the following conditions.

(a) If the tree is a t-tree then
i. G ′ is a leaf, or

ii. G ′ has a child C ′,C, L, L ′, where C ′ is a negative answer of a tu-tree for C, A
of rank < k, and C ′,C is satisfiable.

(b) If the tree is a tu-tree then
i. G ′ has a child C, L, L ′, or

ii. G ′ has a child C ′,C, L, L ′, where C ′ = ¬C ′′ is the negation of an answer
C ′′ of a t-tree for C, A of rank < k, and C ′,C is satisfiable, or

iii. G ′ is a leaf and there exists an answer C ′′ of a t-tree for C, A of rank < k
such that ¬C ′′,C is unsatisfiable.

An informal explanation for case 2 is that the constraints of the cross-section include all
the cases in which G is t or u, thus their negation implies that G is f . A useful intuition is that
adding a negative answer C to the nodes of the tu-tree results in a failed tree—a tree for C,G
without any successful leaf. (Whenever Ci is the constraint of a node of the cross-section,
the constraint C,Ci is unsatisfiable. The same holds for any node which is a descendant of
some node of the cross-section).

An informal explanation for case 4 is that in a t-tree (case 4(a)ii) C ′ implies that C, A is f ,
equivalently¬(C, A) is t. Hence C ′,C implies that¬A is t. In a tu-tree (4(b)ii)¬C ′′ includes
all the cases in which C, A is not t. Hence ¬C ′′,C—the constraint of the child—includes
all the cases in which A is not t, equivalently in which ¬A is t or u.

Notice that in case 4(a)i the node G ′ = C, L,¬A, L ′ may unconditionally be a leaf
of a t-tree (of any rank). This corresponds to the fact that C ′ = ¬C is a negative answer
for any tu-tree for C, A. (Take the cross-section {C, A }). Hence in the supposed child of
G ′ (case 4(a)ii) the constraint ¬C,C is unsatisfiable. Conversely, according to 4(b)i, node
G ′ = C, L,¬A, L ′ in a tu-tree may have C, L, L ′ as the child. This corresponds to the fact
that C ′′ = false is an answer of any t-tree. Hence C is equivalent to ¬C ′′,C (which is the
constraint obtained in 4(b)ii). Thus 4(b)i is a special case of 4(b)ii.

Example 4.3 Consider a query w(c) for the hybrid program of Example 2.3. It can be
answered by the operational semantics by construction of the following trees (sometimes
we replace a constraint by an equivalent one).

1. A t-tree for w(c):

w(c)
|

X = c,m(X, Y ),¬w(Y )
/ \

X = c, Y = f,¬Fi( f ),¬w(Y ) X = c, Y = d,¬w(Y )
| |

X = c, Y = f,¬Fi( f ) X = c, Y = d,¬(X = c, Y = d,¬E( f ))

The tree refers to negative answers derived in the cases 2, 4 below. The constraint in
the second leaf is equivalent to X = c, Y = d, E( f ) (as α ∧ ¬(α ∧ β) is equivalent to
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α∧¬β). The answer obtained from the two leaves C1,C2 of the tree is ∃X, Y (C1∨C2).
It is equivalent to ¬Fi( f ) ∨ E( f ). As this constraint is a logical consequence of the
ontology, w(c) holds in each well-founded model of the program.

2. A tu-tree for X = c, Y = d, w(Y ), employing an answer from the t-tree from case 3:

X = c, Y = d, w(Y )
|

X = c, Y = d, X ′ = Y,m(X ′, Y ′),¬w(Y ′)
|

X = c, Y = d, X ′ = d, Y ′ = e,¬w(Y ′)
|

X = c, Y = d, X ′ = d, Y ′ = e,¬(X = c, Y = d, X ′ = d, Y ′ = e, E( f ))

The leaf is equivalent to X = c, Y = d, X ′ = d, Y ′ = e,¬E( f ), see the explanation in
the previous case. Hence from the cross-section containing the leaf we obtain a negative
answer equivalent to ¬(X = c, Y = d,¬E( f )) and to D = ¬(X = c, Y = d) ∨ E( f ).
Informally, D implies falsity of the root of the tu-tree. (For a formal treatment see
Theorem 4.9 and Lemma 4.8 below). Hence E( f ) implies ¬w(d). Formally, if M0 |	
E( f ) for some model M0 of T then w(d) is false in W F(P/M0) (the well-founded
model of P based on M0).

3. A t-tree for Y ′ = e, w(Y ′) employing a negative answer from case 4:

Y ′ = e, w(Y ′)
|

Y ′ = e, X ′′ = Y ′,m(X ′′, Y ′′),¬w(Y ′′)
|

Y ′ = e, X ′′ = Y ′, X ′′ = e, Y ′′ = f, E( f ),¬w(Y ′′)
|

Y ′ = e, X ′′ = e, Y ′′ = f, E( f )

The corresponding answer is (equivalent to) Y ′ = e, E( f ). Informally, the answer implies
Y ′ = e, w(Y ′). From Lemma 4.8 below it follows that if E( f ) holds in some model M0

of T then w(e) is true in the corresponding well-founded model of P .
Notice that if C, Y ′ = e is a satisfiable constraint then C may be added to the nodes of the
tree (maybe with renaming of variables X ′′, Y ′′). Hence C, Y ′ = e, E( f ) is an answer for
C, Y ′ = e, w(Y ′). To construct the t-tree of case 2 we use C = (X = c, Y = d, X ′ = d).

4. A tu-tree for Y = f, w(Y ), with atom m(X ′, Y ′) selected in the leaf:

Y = f, w(Y )
|

Y = f, Y = X ′,m(X ′, Y ′),¬w(Y ′)
From the empty cross-section a negative answer true is obtained. So w( f ) is false in
the well-founded semantics of the program. Similarly, true is a negative answer for
C, Y = f, w(Y ), where C is an arbitrary constraint.

Various simplifications of t- (tu-) trees are possible. For instance in case 3 of the last exam-
ple the nodes of the tree may be replaced by w(e); m(e, Y ),¬w(Y ); E( f ),¬w( f ); E( f )
[14, Example 2]. This issue is outside of the scope of this paper.

We do not deal here with actual implementing of the operational semantics (an implemen-
tation is described in [14]). We only mention that—similarly as in CLP—it is not necessary
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to check satisfiability of the constraint for each node. The answers (negative answers) of trees
obtained in this way are logically equivalent to those of t-trees (tu-trees) from Definition 4.2.

4.3 Soundness

In this section, we prove soundness of the operational semantics of hybrid programs (Defin-
ition 4.2) with respect to their declarative semantics (Definition 3.2). Before the actual proof
we discuss ground instances of goals and trees, and introduce safe programs and goals. These
notions are employed in the proof.

For our proofs, we use the characterization of the well-founded semantics of logic pro-
grams from Sect. 2.1. So for a given model M0 of the external theory, the well-founded model
of the program is �αP/M0

(∅) for some α.

4.3.1 Ground instances of trees

By an extension of a substitution θ we mean any substitution of the form θ ∪ θ ′ (where θ =
{x1/t1, . . . , xn/tn} and θ ′ = {y1/u1, . . . , ym/um} are substitutions with disjoint domains,
{x1, . . . , xn} ∩ {y1, . . . , ym} = ∅).

By a grounding substitution for the variables of a formula F (or just “for F”) we mean a
substitution replacing the free variables of F by ground terms (the domain of the substitution
may include other variables).

Let G = C, L be a goal and M0 a model of T . Let θ be a grounding substitution for the
variables of G (notice that Cθ has no free variables). If Cθ is true in M0 then we say that θ
is applicable to G (w.r.t. M0), and by the result Gθ of applying θ to G we mean the ground
goal Lθ ; it is called a ground instance of G. Similarly, we say that θ is applicable to a rule
H ← C, L; the result Hθ ← Lθ is called a normal ground instance of the rule.11 Notice
that a rule Rθ is a normal ground instance of a rule R ∈ P w.r.t. M0 iff Rθ ∈ (P/M0).

Consider a t-tree or tu-tree Tr for G and θ as above. A ground instance Trθ of Tr w.r.t.
M0 is defined recursively as follows. The nodes of Trθ are ground instances of (some) nodes
of Tr , each node H of Trθ corresponds to a node G ′ of Tr such that H is a ground instance
of G ′. The root of Trθ is Gθ and it corresponds to the root G of Tr . If a node G ′θ ′ of Trθ
corresponds to node G ′ of Tr (where θ ′ is a grounding substitution for the variables of G ′),
G ′′ is a child of G ′ in Tr , θ ′′ is an extension of θ ′ then G ′′θ ′′ is a child of G ′θ ′ in Trθ ,
provided that θ ′′ is applicable to G ′′.

A node of Trθ corresponding to a successful leaf of Tr will be called a successful leaf
of Trθ .

Example 4.4 Consider a program P = {p(a) ← q(y)}. The t-tree (or tu-tree) Tr for p(x)
consists of two nodes; the child of p(x) is x = a, q(y). For θ = {x/b} the ground instance
Trθ consists of one node p(b). For σ = {x/a} the root p(a) of Trσ has a child q(t) for each
ground term t . Each node q(t) in Trσ corresponds to the node x = a, q(y) of Tr .

Notice that if G ′θ ′ and its child G ′′θ ′′ in Trθ correspond, respectively, to G ′ and G ′′ in
Tr , and G ′′ is derived from G ′ by a rule R ∈ P then G ′′θ ′′ is derived from G ′θ ′ by a normal
ground instance Rσ ∈ (P/M0) of R (this means that Rσ is H← B, H is an atom in G ′θ ′
and G ′′ is G ′θ ′ with H replaced by B). Thus if a leaf G ′θ ′ of Trθ corresponds to a node G ′

11 Definition 3.2 employs another kind of ground instance, namely Hθ ← Cθ, Lθ . As ground instances in
that sense are not used below, we sometimes skip the word “normal.” To simplify notation, we write Rθ for a
normal ground instance of a rule R, when this does not lead to ambiguity.
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of Tr , and a positive literal A is selected in G ′ then no normal ground instance of a rule in
the program has the head Aθ . If no negative literal is selected in Tr then Trθ is an SLD-tree
([27]) for program (P/M0).

4.3.2 Safeness

We introduce a notion similar to DL-safeness [32,36], but taking into account that constraints
may contain equality =.

Definition 4.5 Let C be a constraint. A variable x is bound in C to a ground term t (to a
variable y) if T |	 C → x = t (respectively T |	 C → x = y).

For instance, in x = f (y), y = a variable x is bound to ground term f (a), and y is
bound to a. Notice that any variable is bound to itself independently of the constraint. A
simple sufficient condition is that, for variables x0, . . . , xn (n ≥ 0) and a ground term t ,
if C is a conjunction of constraints C1, . . . ,Cl and the set {C1, . . . ,Cl} contains equalities
x0= x1, . . . , xn−1= xn (resp. x0= x1, . . . , xn−1= xn, xn = t) then x0 is bound to xn (resp.
to t) in C .

Definition 4.6 A rule R = H ← C, L , where C is the constraint of R, is safe if

– each variable of H ,
– each variable of a negative literal of L , and
– each free variable of C

is bound in C to a ground term or to a variable appearing in a positive literal in L .
Let V be a set of variables. When the conditions above are satisfied with possible exception

for the variables from V then we say that R is safe apart of V .
A set of rules is safe if all its rules are safe. A hybrid program (P, T ) is safe if P is safe. A

goal G = C, L is safe if the rule p← G is safe (where p is a 0-argument predicate symbol).
G is safe apart of V if the rule p← G is safe apart of V .

If the root of a t-tree (tu-tree) for a safe program is safe then any node of the tree is safe.
Hence, in the constraint of a successful leaf, all the free variables are bound to ground terms.
In the Appendix we prove a more general property:

Lemma 4.7 Let (P, T ) be a safe program, V a set of variables, and G a goal. Consider a
t-tree (or a tu-tree) with the root G.

1. Each node of the tree is safe apart of V0, where V0 is the set of free variables of G.
2. Assume that no variable from V occurs in any variant of a rule from P used in constructing

the tree. If G is safe apart of V then each node of the tree is safe apart of V .

4.3.3 Soundness theorem

We will say that the set of constraints has the witness property if for any model M of the
external theory T and for any constraint C , whenever M |	 ∃C then M |	 Cθ for some
grounding substitution θ for C . The witness property is implied by the parameter names
assumption (PNA) [8] that restricts the interpretations of T to those in which every domain
element is a value of a ground term.

The operational semantics may be not sound for constraints without witness property and
non-safe programs. As an example take P = { p ← q(x) } and T = {∃x .q(x)}. Then (a
constraint ∃x .q(x) equivalent to) true is an answer of the t-tree for p. However (P, T ) �|	wf p
(as there exist models of T in which every ground instance of q(x) is false).
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Lemma 4.8 (Soundness) Consider a program (P, T ), a goal G, a model M0 of T , and a
countable ordinal number k. Assume that M0 is a Herbrand interpretation, or the set of
constraints has the witness property, or P is safe.

1. If C is an answer of a t-tree of rank k for G then for any grounding substitution θ (for
the variables of G) M0 |	 Cθ implies �k+1

P/M0
(∅) |	3 Gθ .

2. If C is a negative answer of a tu-tree of rank k for G then for any grounding substitution
θ (for the variables of G) M0 |	 Cθ implies �k+1

P/M0
(∅) |	3 ¬Gθ .

The proof is presented in the Appendix.12 It is based on studying ground instances of the
t- (tu-) tree for G and viewing them as SLD-trees of a program (P/M0)/t I (respectively a
program related to (P/M0)/tu I ) from the definition of �P/M0 .

As a corollary we obtain:

Theorem 4.9 (Soundness) Let (P, T ) be a hybrid program and G = C0, L a goal (where
C0 is the constraint of G). Assume that P is safe, or the set of constraints has the witness
property.

If C is an answer of a t-tree for (P, T ) and G then, for any substitution θ , T |	 Cθ implies
(P, T ) |	wf Lθ .

If C is a negative answer of a tu-tree for (P, T ) and G then, for any substitution θ ,
T |	 Cθ implies (P, T ) |	wf ¬Lθ .

Proof Let G = C0, L and C be an answer of the t-tree. T |	 Cθ implies M0 |	 Cθθ ′
for any substitution θ ′ and any model M0 of T . Consider a θ ′ such that xθ ′ is ground for
each free variable x of (C, L)θ . From Lemma 4.8, applied to M0, C , G, and the substitution
θθ ′, it follows that M |	3 Gθθ ′, where M is the well-founded model or P based on M0.
Notice that Gθθ ′ = Lθθ ′. As M |	3 Lθθ ′ for each θ ′ as above and M is a Herbrand
interpretation, we have M |	3 Lθ . As the latter holds for each well-founded model of P , we
obtain (P, T ) |	wf Lθ .

The proof for a negative answer of a tu-tree is analogical. ��
It may be desirable to have an operational semantics which is sound also for non-safe

programs and constraints without the witness property. This can be obtained by employing,
in formula restrictions (Definition 4.1), a certain non-standard quantifier ∃′ instead of ∃. For
the new quantifier it holds that if I |	 ∃′F then I |	 Fθ for some grounding substitution
θ for F (for any formula F and interpretation I ). The details are outside the scope of this
paper.

4.4 Completeness

In a general case, our operational semantics is not complete. Roughly speaking, the reason is
using only finite constraint formulae as (negative) answers13 in case 4 of Definition 4.2. We
show completeness of our operational semantics for the case where the Herbrand universe
is finite and the program and goals are safe. The completeness result includes independence
from the selection rule.

12 From the proof it follows that safeness is needed only for the rules that have been used in constructing t-trees
(the t-trees referred to, directly or indirectly, by the t- (tu-) tree for G). Alternatively, the witness property is
necessary only for the constraints that are successful leaves of these t-trees.
13 In Refs. [11,12] this problem was solved by allowing an infinite set of children of a node with a negative
literal selected. Example 4.10 in [11] shows that this is actually necessary. Thus it provides a counterexample
for completeness of the operational semantics of Definition 4.2.
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We first present a technical lemma about simplifying goals for which t-trees (tu-trees)
are constructed. Then we restrict our considerations to safe programs over a finite universe,
show how a kind of a most general (negative) answer for a given tree can be obtained, and
define a notion of a maximal t- (tu-) tree. Intuitively, a maximal tree (of a sufficiently high
rank) derives everything that is required by the declarative semantics. This is made formal
in a completeness lemma, from which completeness of the operational semantics follows.

The following lemma shows how a tree for A may replace a tree for C, A. So, for a fixed
A, many trees for goals C, A may be replaced by a single tree. On the other hand, for a fixed
C the tree for A may have more nodes than the corresponding one for C, A.

Lemma 4.10 Consider a program (P, T ). Let A be an atom and C a constraint. If
¬(C1|A), . . . ,¬(Cn |A) is a negative answer of a tu-tree (respectively a negation of an
answer of a t-tree) of rank k for A then ¬ (

C, (C1|A)
)
, . . . ,¬ (

C, (Cn |A)
)
, or equivalently

¬C ∨ ¬(C1|A), . . . ,¬(Cn |A), is a negative answer of a tu-tree (the negation of an answer
of a t-tree) of rank k for C, A.

Proof Without loss of generality we can assume that if a variable x occurs both in the tree for
A and in C then x occurs in A. If C ′, L is a node of the tree for A then C,C ′, L is a node of the
tree for C, A provided that C,C ′ is satisfiable. Assume the negative answer for A is obtained
from a finite cross-section. Consider a “corresponding” cross-section of the tree for C, A
whose node constraints are those of C,Ci that are satisfiable. The corresponding negative
answer is¬((C,C1)|A), . . . ,¬((C,Cn)|A). Each (C,Ci )|C,A is equivalent to C, (Ci |A). The
cases of an infinite cross-section, and of a t-tree, are similar. ��

4.4.1 Maximal trees

For this section, we assume that the Herbrand universe is finite. Hence the alphabet of function
symbols is finite and contains only constants.

A t- (tu-) tree may be infinite. Moreover, the set of nodes in the tree with a negative literal
selected may be infinite. Hence the tree may refer to an infinite set of subsidiary trees. The
answers (negative answers) of the tree may be obtained from an infinite set of successful
leaves (an infinite cross-section); so it seems that we have to deal with an infinite set of
answers (as there may not exists one which implies all the others). In what follows we show
how to avoid infinite sets of answers.

Notice first that the set of selected negative literals in a t- (tu-) tree is finite, up to renaming
of variables (as the Herbrand universe is finite). By Lemma 4.10, instead of constructing a
possibly infinite set of subsidiary tu- (t-) trees for goals of the form C, A, it is sufficient to
construct a finite set of tu- (t-) trees for goals of the form A.

In a t- (tu-) tree with a safe root, if C is a successful leaf then each free variable x of C is
bound to a constant cx . This defines a grounding substitution θ = {x1/cx1 , . . . , xm/cxm } for
the free variables x1, . . . , xm of C . Now C is equivalent to x1 = cx1 , . . . , xm = cxm ,C and
to x1 = cx1 , . . . , xm = cxm ,Cθ .

By a grounded constraint from a program P (from a goal G) we mean a constraint Cσ
such that constraint C is the constraint of a rule of P (the constraint of G) and the substitution
σ replaces all the free variables of C by constants. A constraint is in a solved form for a
program P and an initial goal G if it is a conjunction of constraints of the form x = c, C0 or
¬C0, where x is a variable, c is a constant, and C0 is a grounded constraint from P or G.

The set of grounded constraints from a given program or a given goal is finite. So the set
of constrains in solved form (for P and G) with the free variables from G is finite, up to
equivalence.
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We now show that, under certain conditions, the successful leaves of t- (tu-) trees may be
seen as disjunctions of constraints in solved form.

Lemma 4.11 Let the Herbrand universe be finite and Tr be a t-tree (tu-tree) for a safe goal
G and a safe program (P, T ). Assume that each negative answer (negation of an answer)
employed in the tree is of the form ¬C1, . . . ,¬Cn, where each Ci is in solved form for P
and G. Then the constraint of any success leaf C of the tree is equivalent to a disjunction of
constraints in solved form. Also, C |G is equivalent to a disjunction of constraints in solved
form for P and G.

Proof Consider a success leaf C . Each free variable x of C is bound in C to a constant cx . Let
θ = {x1/cx1 , . . . , xm/cxm } (where x1, . . . , xm are the free variables of C). C is equivalent to
x1 = cx1 , . . . , xm = cxm ,C and to x1 = cx1 , . . . , xm = cxm ,Cθ (Cθ has no free variables).

Cθ = C1, . . . ,Cn , where each Ci is a ground equality, or a grounded constraint from
P or from G, or a ¬C ′iθ where C ′i is a constraint in a solved form. ¬C ′i is equivalent to
¬D1 ∨ · · · ∨ ¬Dl , where each Di is of the form x = c or is a possibly negated grounded
constraint from P or from G. Thus ¬C ′iθ is equivalent to true (if some ground disequality
¬Diθ is true), or to ¬D j1 ∨ · · · ∨ ¬D jl′ , where each D ji is a possibly negated grounded
constraint from P or G. Each Ci which is a ground equality is equivalent to true (as it is
satisfiable).

So applying distributivity (φ, (ψ ∨ ψ ′) ≡ φ,ψ ∨ φ,ψ ′) to x1 = cx1 , . . . , xm = cxm ,

Cθ results in an equivalent disjunction of constraints in solved form. Removing from the
latter constraint each xi = ci where xi not free in G produces a disjunction of constraints in
solved form equivalent to C |G . ��

As discussed earlier, the set of disjunctions of constraints in solved form (for P and G)
with the free variables from G is finite, up to equivalence. Thus from the lemma it follows
that the set of success leaves of the t-tree (tu-tree) is equivalent to a finite set of disjunctions
of constraints in solved form. Formally: If the tree satisfies the conditions of Lemma 4.11
then there exists a constraint D (we will call it a finite answer of the t-tree, resp. finite
pseudo-answer of the tu-tree), such that

M0 |	 C |Gθ for some success leaf C of the tree iff M0 |	 Dθ ,

for every model M0 of T and every substitution θ grounding the variables of G. Moreover, D
is a disjunction of constraints in solved form, for P and the root G of the tree (D is equivalent
to a constraint (C1|G) ∨ · · · ∨ (Cm |G) where each Ci is a success leaf of the tree).

Notice that the negation of a pseudo-answer of a tu-tree is a negative answer of the tree (the
corresponding cross-section contains all the successful leaves). Informally, a finite answer is
a most general answer that can be obtained from a given t-tree, and the negation of a finite
pseudo-answer is a most general negative answer that can be obtained from a given tu-tree.

Now for a given rank and goal, we define a maximal t- (tu-) tree. The intention is that the
tree provides a (negative) answer which is more general than other (negative) answers for
this goal of the same rank.

Definition 4.12 Let the Herbrand universe be finite, and (P, T ) be a safe program. A max-
imal t-tree (tu-tree) for a goal and (P, T ) is defined inductively:

A maximal t-tree of rank 0 is a t-tree in which each node with a negative literal selected
is a leaf.

A maximal tu-tree of rank 0 is a tu-tree in which if a negative literal is selected in a node
G ′ and the constraint of G ′ is C then the constraint of the child of G ′ is C (cf. Definition 4.2
case 4(b)i).
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A maximal t-tree (tu-tree) of rank k > 0 is a t-tree (tu-tree) in which a node G ′ with a
negative literal ¬A selected has a child G ′′ iff C,¬D is satisfiable, where C is the constraint
of G ′ and D is a finite pseudo-answer (a finite answer) of a maximal tu-tree (t-tree) for A of
rank k − 1; moreover, C,¬D is the constraint of G ′′.14

The definition is correct: From Lemmas 4.10 and 4.11 by induction on the rank we obtain
that, for a safe program P and a safe goal G, the tree described in the definition satisfies
the conditions of Lemma 4.11, it has a finite (pseudo-) answer which is a disjunction of
constraints in solved form;15 hence the finite (pseudo-) answers employed in the definition
exist. Notice that a maximal t- (tu-) tree is defined for any safe program and any goal G0. If
G0 is safe then the tree has a finite (pseudo) answer.

4.4.2 Completeness theorem

By a selection rule we mean a function which, given a sequence of goals G0, . . . ,Gn , selects
a rule literal in Gn provided Gn contains at least one rule literal and G0, . . . ,Gn is a prefix
of a branch of a t-, tu-, or SLD-tree.

Now we are ready to state and prove completeness of the operational semantics. We
first show that a (negative) answer of any maximal (tu-) t-tree for G of rank j—speaking
informally—describes all the instances of G that are true (false) in a corresponding approx-
imation �k

P/M0
(∅) of the well-founded model of P/M0.

Lemma 4.13 (Completeness) Assume that the Herbrand universe is finite. Consider a safe
program (P, T ). Let G be a safe goal, C0 be the constraint of G, and k > 0 be a natural
number. Consider a selection rule R, and a maximal t-tree and a maximal tu-tree for G of
rank k − 1 if G does not contain a negative literal, and of rank k otherwise.

Let M0 be a model of T , and θ be a grounding substitution for the variables of G such
that M0 |	 C0θ

1. If �k
P/M0

(∅) |	3 Gθ and C is a finite answer of the t-tree then M0 |	 Cθ .

2. If �k
P/M0

(∅) |	3 ¬Gθ and D is a finite pseudo-answer of the tu-tree (and thus ¬D is a
negative answer) then M0 |	 ¬Dθ .

The basic idea of the proof is that in case 1. it follows that there exists a successful SLD-
derivation for Gθ and a certain program (P/M0)/t J . This derivation is shown to be a branch
of a ground instance of the maximal t-tree for G. In case 2. there does not exist a successful
SLD-derivation for Gθ and a certain program (P/M0)/tu J . However, such a derivation is
shown to be a branch of a ground instance of the maximal tu-tree for G, under assumption
that M0 |	 Dθ . Hence M0 |	 ¬Dθ . The detailed proof is given in the Appendix.

As a main result, we obtain completeness and independence from the selection rule (of
the operational semantics of Definition 4.2 w.r.t. the declarative semantics of Definition 3.2).

Theorem 4.14 (Completeness) Assume that the Herbrand universe is finite. Consider a safe
program (P, T ), a safe goal G = C0, L (where C0 is the constraint of G), and a selection
rule R. Let θ be a grounding substitution for the variables of G such that C0θ is satisfiable.

1. If (P, T ) |	wf Lθ then there exists a t-tree (of a finite rank) for G via R with an answer
C such that T |	 Cθ .

14 By Lemma 4.10, ¬C ∨¬D is a negative answer (the negation of an answer) for C, A. Hence according to
Definition 4.2, the constraint of the child of G′ is C, (¬C ∨ ¬D), which is equivalent to C,¬D.
15 For P and G. If G consists of a single atom A then the constraints are in solved form for P and any goal.
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2. If (P, T ) |	wf ¬Lθ then there exists a tu-tree (of a finite rank) for G via R with a
negative answer C such that T |	 Cθ .

Proof As the Herbrand universe is finite, the set of possible programs P/M0 is finite. Thus
there exists a natural number k such that �k

P/M0
(∅) is the well-founded model of P/M0 for

each M0. Now the Theorem follows from Lemma 4.13. ��

5 Decidability

Now we show that the well-founded semantics for hybrid programs is decidable in the case
of Datalog, i.e. when the set F of function symbols is a finite set of constants (no safeness
condition is needed). The proof employs the soundness and completeness results from the
previous sections.

Theorem 5.1 (Decidability) Assume that the Herbrand universe is finite, and that for any
closed constraint C it is decidable whether T |	 C. There exists an algorithm which, for a
hybrid program (P, T ) and a ground atom A, finds out whether (P, T ) |	wf A and whether
(P, T ) |	wf ¬A.

Proof We first show that each maximal t- and tu-tree for program (ground(P), T ) can be
represented and constructed in a finite way.

We say that a constraint is in ground solved form if it is built out of the constraints of
the rules of ground(P) by means of ¬ and ∧. The set of such constraints up to logical
equivalence is finite (convert them to a disjunctive normal form, remove repeated literals in
the conjunctions, remove repeated conjunctions).

Let B be a ground rule atom, and Tr be a t-tree or a tu-tree for B. Each satisfiable equality
constraint that appears in the tree is of the form a = a (where a ∈ F), hence it is valid and
may be removed. Assume that each lower rank (negative) answer employed in the tree is in
ground solved form. Then each constraint in the tree is in ground solved form. So the set of
these constraints is finite up to equivalence.

The set of rule literals that appear in Tr is a subset of the literals of ground(P). Thus
the set is finite. So the set of conjunctions of such literals is finite, up to logical equivalence
(repeated occurrences of a literal can be removed). As a result, we obtain that the set of nodes
of Tr is finite up to logical equivalence.

Assume now that the (negative) answers from lower rank trees employed in Tr are known.
Then a finite representation of Tr can be constructed top-down starting from the root B.
Before adding a node G to the current (sub-graph of the) tree, it is checked whether a node
G ′ logically equivalent to G already exists. If it does and the same literal is selected in both
nodes then G is not added. This process terminates, its result is a tree Tr ′ which is a finite
sub-graph of Tr . Each successful leaf of Tr is (logically equivalent to) a successful leaf of
Tr ′. In the terminology of the previous section, the disjunction of the successful leaves of Tr ′
is a finite (pseudo-) answer of Tr (and is logically equivalent to each finite (pseudo-) answer
of Tr ).

In this way, finite representations of the maximal t- and tu-trees for all the atoms can be
constructed, first for rank 0 and then stepwise for ranks 1, 2, . . . . The process is terminated
at rank k when for each atom A the obtained finite (pseudo-) answers of rank k− 1 and k are
equivalent (as it is then a finite (pseudo-) answer for A of any rank > k).

The well-founded models of P and those of ground(P) are the same; hence the programs
are equivalent: (P, T ) |	wf F iff (ground(P), T ) |	wf F for any formula F . As ground(P)
is finite and safe, the completeness Lemma 4.13 applies. Thus, for any selection rule R,

123



160 W. Drabent, J. Małuszyński

• if (P, T ) |	wf A then T |	 C , for some finite k ≥ 0 and any maximal t-tree of rank
≥ k for A and (ground(P), T ), with a finite answer C ,

• if (P, T ) |	wf ¬A then T |	 ¬D, for some finite k ≥ 0 and any maximal tu-tree of
rank ≥ k for A and (ground(P), T ), with a finite pseudo-answer D.

Hence, by the soundness Theorem 4.9, (P, T ) |	wf A iff T |	 C (respectively (P, T ) |	wf

¬A iff T |	 ¬D) for the finite answer C (pseudo-answer D) for A computed earlier.
Checking whether T |	 ¬C and T |	 ¬D is decidable by the assumptions of the theorem.

��

The decidability result should be compared with the fact that under the assumption of
Thoerem 5.1 it is undecidable whether P ∪ T |	 A [26]. The difference is that the logi-
cal consequence deals with arbitrary interpretation domains, while the semantics of hybrid
programs interprets P over the Herbrand universe, which in this case is finite.

6 Related work

The notions of external theory and constraints used in hybrid rules are similar to those used
in CLP. However, classical CLP does not support non-monotonic reasoning. The results
presented in this paper can thus also be seen as an approach to integration of both paradigms,
based on the well-founded semantics of normal programs.

We are aware of few papers on non-monotonic negation for CLP. The approach of [20]
employs the 3-valued completion semantics. It is similar to the work presented here; in both
cases the operational semantics follows the idea of Ref. [12] of selecting a cross-section
of a derivation tree and negating the disjunction of respective constraints. The completion
semantics is also used in Ref. [39]. An approach generalizing the well-founded semantics
for CLP is presented in Ref. [9]. It, however, assigns the semantics only to some programs
(those that can be transformed to an irreducible program), while our semantics deals with all
programs. In contrast to our approach, the operational semantics of Ref. [9] is not top-down
and goal driven. It consists of applying program transformations to obtain an irreducible
program; the latter can be used to obtain answers to goals.

The presented framework makes it possible to integrate normal logic programs with ontolo-
gies expressed as first-order theories, including those specified in the web ontology languages
OWL-DL and OWL-Lite.

The problem of integration of rules and ontologies has been addressed in different ways.
One line of research aims at achieving the integration by embedding rules, ontologies and
their combinations in a known logic. A well-known proposal of this kind is SWRL [24],
extending ontologies with Horn formulae within FOL, but not allowing non-monotonic rules.
More recent attempts [7,8,31] address the issue of non-monotonicity by embedding non-
monotonic rules and DL ontologies in various logics which make it possible to capture
non-monotonicity.

In contrast to that, we achieve the integration by a direct definition of the semantics of
hybrid rules. The declarative semantics combines the FOL semantics of the external theories
with the well-founded semantics of logic programs. Negation in the constraints of the external
theory is interpreted in the classical way, while negation in rule literals is non-monotonic.
We now compare our work with the approaches to integration of rules and ontologies which
make similar assumptions. We note first that all related work of this kind is based on Datalog
rules, while our approach admits non-nullary function symbols.
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Our work is strongly motivated by the early AL-log approach [10] where positive Datalog
was extended by allowing the concepts of ALC DL as constraints in safe Datalog rules.
The operational semantics of AL-log relies on an extension of SLD-resolution where the
disjunction of constraints from different derivations is to be submitted for validity check to
the DL-reasoner. We adopted the AL-log idea of extending rules with constraints in the body,
and applied it to more expressive rules including non-monotonic negation, and to arbitrary
external theories of FOL.

In our approach, the heads of the hybrid rules are atoms built with rule predicates. Thus
the semantics of the rule predicates depends on the external theory which is assumed to be
given a priori and not to depend on the rules. The rationale for that is that the rules describe
a specific application while the theory (for example an ontology) provides a knowledge
common for an application domain. In contrast to that, several papers [32,35,36] allow the
use of ontology predicates in the heads of rules, defining thus an integrated language where
rule predicates and ontology predicates may be mutually dependent, and ontology predicates
can be (re-) defined by rules.

The paper [32] defines DL rules, a decidable combination of OWL-DL with disjunctive
Datalog without non-monotonic negation. In contrast to that, our primary concern is non-
monotonic reasoning.

The r-hybrid knowledge bases [35] and DL+ log [36] are based on disjunctive Datalog
with non-monotonic negation under the stable model semantics. The objective is to define
a generic integration scheme of this variant of Datalog with an arbitrary Description Logic.
The DL-rules defined under this scheme may include DL predicates not only in their bodies
but also in the heads. A hybrid DL+ log knowledge base consists of a DL knowledge base
K and a set of hybrid rules P . A notion of non-monotonic model of such a knowledge base
is defined by referring to first-order models16 of K and to the stable models of disjunctive
Datalog. Similarly to our declarative semantics, models of K are used to transform the set of
grounded hybrid rules into a set of ground Datalog rules, not including DL-atoms. However,
as the heads of the hybrid rules may include DL-atoms, the transformation is more elaborate
than our P/M0 transformation. Also the semantics of DL+ log is based on stable models of
the transformed ground rules, while our semantics is based on the well-founded semantics
of P/M0. For stratified normal logic programs the stable model semantics is equivalent to
the well-founded semantics [3]. Thus for stratified sets of rules DL+ log coincides with our
approach (provided the rules are non- disjunctive, and without DL-atoms in their heads, and
the external theory satisfies the requirements of DL+ log).

The proposed reasoning algorithm (NMSAT-DL+ log) works bottom-up and is based
on grounding. Our operational semantics works top-down and does not require grounding.
Decidability of DL+ log is achieved by a weak safeness condition. The condition is similar
to that in our approach. However, we do not need it for decidability (but for completeness of
the operational semantics; it is also one of alternative sufficient conditions for soundness).

The language of Description Logic Programs (dl-programs) [18] integrates OWL DL with
Datalog rules with negation. This is done by allowing in the bodies so called dl-queries to
a given ontology. The queries may locally modify the ontology. Two kinds of declarative
semantics are considered for the integrated language. The semantics of choice extends the
stable model semantics of Datalog with negation17 [18] but an extension of the well-founded

16 However, only a fixed domain of interpretation is considered, with a fixed interpretation of constants.
Moreover, the interpretation is a bijection (each domain element is denoted by a distinct constant), and the
domain is countably infinite.
17 More recent versions of this work are based on disjunctive Datalog with negation. A further extension is
HEX-programs [17], where external atoms are used to model interface with arbitrary external computations.
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semantics is also considered [19]. In both variants of the declarative semantics the truth
value of a rule w.r.t. to an interpretation depends on dl-queries in the rule being logical
consequences of the respective ontologies. This makes the semantics incompatible with the
standard semantics of the first-order logic. For example consider rules P = { p← Q1; p←
Q2 }, where none of DL-formulae Q1, Q2 is a logical consequence of the ontology T , but in
each model of T at least one of them is true. Then p is a logical consequence of P ∪ T , but
will not follow from (P, T ) represented as a dl-program. In contrast to that, our approach is
compatible with FOL, in the sense explained in Sect. 3.2. In the last example, p follows from
the hybrid program (P, T ).

7 Conclusions

We presented a framework for integration of normal logic programs under the well-founded
semantics with first-order theories. Syntactically the integration is achieved by extending
the bodies of normal clauses with (certain) formulae of a given external theory, resulting in
the notions of hybrid rule and hybrid program. It is assumed that the theories are external
sources of knowledge and are not modified during the integration. Therefore, it is required
that the predicates of the extended normal program and the predicates of the external theory
are distinct.

The main contributions of this work are as follows:

• The declarative semantics of hybrid programs, combining the (3-valued) well-founded
semantics of normal programs with the (2-valued) logical semantics of the external theory.
It combines non-monotonic negation of the well-founded semantics with the classical
negation of FOL. It allows non-constant function symbols. In contrast to most of related
approaches it is defined for arbitrary external FOL theories.
The declarative semantics is undecidable, however, it is decidable for Datalog hybrid
programs with decidable external theories. In the special case of a hybrid program (P, T )
where P does not include negation, the declarative semantics is compatible with the
semantics of FOL, in the sense explained in Sect. 3.2. The semantics makes possible
reasoning by cases (cf. Example 2.3).

• The operational semantics that describes how to answer (not necessarily ground) conjunc-
tive queries. This includes handling of non-ground negative queries by combination of the
ideas of CLP [30] and constructive negation of Ref. [12]. The operational semantics can
be seen as an extension of SLS-resolution with handling of non-ground negative queries
and constraints of the external theory. It can be implemented by compilation to Prolog
[14,15], and employing an LP reasoner for the well-founded semantics and a reasoner for
the external theory. So the implementation requires rather small efforts thanks to re-using
the existing reasoners. A prototype implementation of this kind is described in Ref. [14].
It allows non- constant function symbols, the external theories are OWL ontologies. It
uses XSB Prolog [37] as an LP engine, and can use various OWL reasoners. It is efficient,
in the sense that the number of queries to the OWL reasoner is small.

• Soundness and completeness results: the operational semantics was shown to be sound
w.r.t. the declarative semantics. It is complete (and independent from the selection rule)
for safe hybrid programs where the function symbols are constants.

The external theory can be a theory of a constraint domain of CLP. Thus our frame-
work additionally provides a method of adding non-monotonic negation to CLP, in a way
generalizing the well-founded semantics.
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In contrast to most of related work, our approach works for arbitrary external FOL theo-
ries. There are no restrictions on the alphabet of function symbols (it may be finite or infinite).
We do not impose any conditions on the equality in the external theories, like unique name
assumption (UNA) or freeness axioms (CET). There are certain requirements related to the
operational semantics; however, we show how an arbitrary external theory T ′ can be extended
to a theory T satisfying the requirements.

Acknowledgments This research has been partially funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme project REWERSE number
506779(cf. http://rewerse.net).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

Appendix

Here we present proofs of Lemma 4.7 and of two main technical lemmas from Sects. 4.3
and 4.4. By var(F) we denote the set of free variables of a formula F .

Proof of Lemma 4.7 We first prove part 2 by induction. Then part 1 follows immediately.
Assume that a node Gi is safe apart of V . We show that each its child is safe apart of V .

Let Gi = C, L, p(t), L ′ and its child Gi+1 = t = u,C,C ′, L, K , L ′ be derived from
Gi by a rule R = p(u) ← C ′, K . Let N be the negative literals of L, L ′, and N ′ be the
negative literals of K . Each free variable of u,C ′, N ′, is bound in C ′ to a ground term or to a
variable occurring in a positive literal of K (as R is safe). Each variable from var(C, N )\V
is bound in C to a ground term or to a variable occurring in a positive literal of L, L ′ or in
t (as Gi is safe apart of V ). Hence each variable from var(C, N , t = u,C ′, N ′)\V is bound
in C, t = u,C ′ to a ground term or to a variable occurring in a positive literal of K , L, L ′.

Let Gi = C, L,¬A, L ′ with a negative literal ¬A selected, with a child Gi+1 =
C,C ′, L, L ′. We have var(C ′) ⊆ var(C, A), thus var(C,C ′)\V ⊆ var(C, A)\V . Thus
each variable from var(C,C ′)\V is bound in C,C ′ to a ground term or to a variable occur-
ring in a positive literal of L, L ′. As the negative literals of Gi+1 are those of Gi , we obtain
that Gi+1 is safe apart of V . ��

The proofs below refer to ground programs of the form P/M0 (cf. Definition 3.2), and
the operator defining the well-founded semantics of normal logic programs (cf. Sect. 2.1):

�P/M0(I ) = (M(P/M0)/t I ∩H) ∪ ¬(H\M(P/M0)/tu I )

Remember that from monotonicity of �P/M0 it follows that k′ ≤ k implies �k′
P/M0

(∅) ⊆
�k

P/M0
(∅).

Proof of Soundness Lemma 4.8 By transfinite induction on the rank of the t-tree and tu-tree.
Assume that the lemma holds for t-trees and tu-trees of rank< k. We can assume that θ binds
only the free variables of G.

1. Assume that C is an answer of a t-tree for G of rank k, and that M0 |	 Cθ . Consider the
branch G1, . . . ,Gm of the tree from the root G to the leaf C ′ (i.e. G1 = G, Gm = C ′)
such that C = (. . .∨C ′ ∨ . . .)|G and M0 |	 (C ′|G)θ . We show that some ground instance
of C ′θ is true in M0. This is obvious when M0 is a Herbrand interpretation or when the
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set of constraints has the witness property. If P is safe then C ′ is safe apart from the set
V0 = var(G), by Lemma 4.7. So each variable x ∈ var(C ′)\V0 is bound in C ′ to a
ground term tx . Consider a substitution ϕ = { x/tx | x ∈ var(C ′)\V0 }. Formula C ′|G
is equivalent to (C ′ϕ)|G and to C ′ϕ. Hence M0 |	 C ′ϕθ . The latter formula is a ground
instance of C ′θ , as ϕθ = θϕ.
Thus substitution θ can be extended to a substitution θ ′ such that M0 |	 C ′θ ′, and
Gθ ′ = Gθ . Notice that θ ′ is applicable to all the goals in the branch (as for any such
goal its constraint is of the form C1, . . . ,Cl , where C ′ = C1, . . . ,Cn, l ≤ n).
The sequence G1θ

′, . . . ,Gmθ
′ is a successful branch of an instance of the considered

t-tree for G. If a positive literal is selected in Gi then Gi+1θ
′ is derived from Giθ by

a rule from (P/M0). Whenever a negative literal ¬A is selected in Gi and Ci is the
constraint of Gi then the constraint of Gi+1 is Ci ,C ′′, where C ′′ is a negative answer of
a tu-tree of rank j < k for Ci , A. As θ ′ is applicable to Gi+1, we have M0 |	 (Ci ,C ′′)θ ′.
By the inductive assumption, � j+1

P/M0
(∅) |	3 ¬Aθ ′. The same holds for any k′ ≥ j .

Thus the sequence G1θ
′, . . . ,Gmθ

′ is a successful SLD-derivation for Gθ ′ and the
program Pt = (P/M0)/t�

k′+1
P/M0

(∅) for some k′ < k (if k = 0 then Pt = P/M0). Hence
MPt |	 Gθ , by soundness of SLD-resolution [2]. By the definition of �P/M0 , for each

positive literal A′ of Gθ we have �k′+2
P/M0

(∅) |	3 A′. For each negative literal ¬A′ of Gθ

we have ¬A′ ∈ Pt , i.e. �k′+1
P/M0

(∅) |	3 ¬A′. By monotonicity of �P/M0 for each literal

L of Gθ we have �k+1
P/M0

(∅) |	3 L . Hence �k+1
P/M0

(∅) |	3 Gθ .
2. Consider a tu-tree Tr of rank k for G. Let the negative answer C be obtained from Tr and

its cross-section F . Let CF be the constraints of the nodes of F . So C implies ¬(Ci |G)
for each Ci ∈ C F . Assume that M0 |	 Cθ . Then M0 �|	 Ciθ

′, for any extension θ ′ of θ
grounding the variables of Ci and for each Ci ∈ C F . Thus, in a ground instance Trθ of
the tree, no node corresponds to a node of F (nor to a descendant of a node of F). Hence
no leaf of Trθ is successful.
Out of Trθ we construct an SLD-tree with root Gθ for a certain ground program. The
tree has no success leaves, hence Gθ is false in the least Herbrand model of the program
(by completeness of SLD-resolution).
In Trθ , consider a leaf G ′θ ′ corresponding to a node G ′ = (C ′, L,¬A, L ′) of Tr , with
a negative literal ¬A selected. The node G ′ does not have a child C ′, L, L ′ (such a child
implies that G ′θ ′ is not a leaf). Hence case 4(b)ii or 4(b)iii has been applied to the node.
Thus there exists an answer C ′′ of a t-tree for C ′, A of rank k′ < k. Moreover, (¬C ′′,C ′)θ ′
is false in M0 (otherwise ¬C ′′,C ′ is satisfiable, G ′ has a child ¬C ′′,C ′, L, L ′, and G ′θ ′
has a child Lθ ′, L ′θ ′). Hence ¬C ′′θ ′ is false in M0 (as C ′θ ′ is true in M0). From M0 |	
C ′′θ ′ and from the inductive assumption we obtain�k′+1

P/M0
(∅) |	3 Aθ ′. By monotonicity

of �P/M0 the same holds for any k′′ ≥ k′. Thus ¬Aθ ′ �∈ (P/M0)/tu�
k′+1
P/M0

(∅), by the

definition of /tu . As k′ + 1 ≤ k, we have ¬Aθ ′ �∈ (P/M0)/tu�
k
P/M0

(∅). Hence the node

G ′θ ′ (with ¬Aθ ′ selected) is a leaf of an SLD-tree for program (P/M0)/tu�
k
P/M0

(∅).
Notice that this reasoning is also valid for a non-finite k. In particular, k′ + 1 < k if k is
a limit ordinal.
If a non-leaf node G ′θ ′ in Trθ corresponds to G ′ = (C ′, L,¬AG ′ , L ′) of Tr , with ¬AG ′
selected, then the child of G ′θ ′ is (L, L ′)θ ′. For each such node G ′θ ′ of Trθ , let us add
¬AG ′θ ′ to the child and all its descendants. The obtained tree is an SLD-tree for Gθ and
a program Ptu ∪ Pvoid, where Ptu = (P/M0)/tu�

k
P/M0

(∅), and each clause of Pvoid is of
the form¬A← ¬A. Adding Pvoid to a definite clause logic program does not change its
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least Herbrand model. The obtained tree does not have a success node. By completeness
of SLD-resolution [2] MPtu �|	 Gθ , and for some literal L of Gθ we have L �∈MPtu .
If L is of the form ¬A then A ∈ �k

P/M0
(∅) (by the definition of /tu), and L is f in

�k
P/M0

(∅). Otherwise L ∈ H\MPtu and ¬L ∈ �k+1
P/M0

(∅), hence L is f in�k+1
P/M0

(∅). In

both cases L is f in �k+1
P/M0

(∅), thus �k+1
P/M0

(∅) |	3 ¬Gθ . ��

Proof of Completeness Lemma 4.13 If �k
P/M0

(∅) |	3 Gθ or �k
P/M0

(∅) |	3 ¬Gθ then we
say that k − 1 is a level of Gθ when G does not contain a negative literal and k is a level of
Gθ when G contains a negative literal. The proof is by induction on a level of Gθ ; the rank
of the constructed t- or tu-tree for G is the level of Gθ .

Let Gθ be of level k′ ∈ {k − 1, k}. Let us denote I = �k−1
P/M0

(∅) and J = �k′
P/M0

(∅). So
J = �P/M0(I ) if G contains a negative literal, and J = I otherwise. In both cases I ⊆ J .

1. Assume�k
P/M0

(∅) |	3 Gθ . Each positive literal A in Gθ is a member of M(P/M0)/t I (by
the definition of �) and hence of M(P/M0)/t J . For each negative literal ¬A in Gθ , we
have J |	3 ¬A (as then�k

P/M0
(∅) = J ). Thus¬A ∈ (P/M0)/t J , by the definition of /t .

So, by completeness of SLD-resolution, for any selection rule there exists a successful
SLD-derivation D for the goal Gθ and program (P/M0)/t J .
We now show how negative literals in the derivation are related to lower rank tu-trees.
Consider a negative literal¬A occurring in D. We have¬A ∈ (P/M0)/t J (i.e.¬A ∈ J ),
so A is of level k′ − 1. By the inductive assumption, for any goal B such that A = Bθ ′
is a ground instance of B, if C ′ is the negation of a finite pseudo-answer of a maximal
tu-tree for B via R of rank k′ − 1 then M0 |	 C ′θ ′.
Consider a maximal t-tree Tr of rank k′ for G and (P, T ) via R. Let Trθ be a ground
instance of Tr . It can be seen as an SLD-tree via a selection rule R′, for a certain ground
definite program containing the rules of P/M0 and some facts of the form ¬A. For R′
there exists a derivation D as above. We show that D is a branch of Trθ . We prove by
induction on i that the i-th goal of D is a node of Trθ . Let a goal G ′θ ′ of D be a node
of Trθ , corresponding to a node G ′ of Tr . If a positive literal is selected in G ′θ ′ and in
G ′ then any goal derived from G ′θ ′ by a rule from P/M0 is a ground instance G ′′θ ′′
of a child G ′′ of G ′ in Tr , where θ ′′ is an extension of θ ′. If a negative literal ¬A is
selected in G ′θ ′ then a ¬B is selected in G ′ and ¬A = ¬Bθ ′. The tree Tr refers to a
maximal tu-tree for B, and to the negation C ′ of its finite pseudo-answer. As explained
in the previous paragraph, M0 |	 C ′θ ′ follows from the inductive assumption. The
child G ′′ of G ′ in Tr is G ′ with ¬Bi removed and C ′ added. So substitution θ ′ is
applicable to G ′′, and G ′′θ ′ is G ′θ ′ with ¬Ai removed. Thus the successor of G ′θ ′ in D
is the child G ′′θ ′ of G ′θ ′ in Trθ .
The last goal of D is empty, it is a ground instance of a leaf Cs of Tr . Thus M0 |	 (Csθ)|G .
Let C be a finite answer of the t-tree. M0 |	 Cθ .

2. Assume that �k
P/M0

(∅) |	3 ¬Gθ . Some literal L of Gθ is false in �k
P/M0

(∅) =
�P/M0(I ). If L = A is an atom then ¬A ∈ �P/M0(I ) ⊆ �P/M0(J ). Hence
A �∈ M(P/M0)/tu J (by the definition of �P/M0 ). If L = ¬A is a negative literal then
A ∈ �P/M0(I ) = J . Hence ¬A �∈ (P/M0)/tu J (by the definition of /tu). In both cases,
L �∈M(P/M0)/tu J . Thus, by soundness of SLD-resolution, there does not exist a success-
ful SLD-derivation for Gθ and the program (P/M0)/tu J (as otherwise L ∈M(P/M0)/tu J ,
contradiction).
Consider a maximal tu-tree Tr of rank k′ for G via R, with a pseudo-answer D. We have
to show that M0 |	 ¬Dθ . Assume the contrary; then Tr has a success leaf Cs such that
M0 |	 (Cs|G)θ . Consider a branch of Tr from G to Cs. Let G1, . . . ,Gl be the goals of
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the branch (G = G1, Gl = Cs). As P is safe, by Lemma 4.7 there exists a substitution
θ ′ which is an extension of θ and is applicable to the nodes of the branch (see part 1
of the proof of Lemma 4.8 for details). We show that G1θ

′, . . . ,Glθ
′ is a successful

SLD-derivation for Gθ and (P/M0)/tu J , which is a contradiction.
If a positive literal is selected in Gi and a rule r ∈ P is applied to Gi to obtain Gi+1 then
Gi+1θ

′ is obtained from Giθ
′ by applying a normal ground instance rσ ∈ (P/M0)/tu J

of r .
Assume a negative literal ¬B is selected in Gi . The constraint of Gi+1 is equivalent to
Ci ,¬C ′′ where Ci is the constraint of Gi and C ′′ is a finite answer of a maximal t-tree of
rank k′ − 1 for B. We have M0 |	 ¬C ′′θ ′, as θ ′ is applicable to Gi+1. Suppose Bθ ′ ∈ J .
This leads to contradiction: such Bθ ′ is of level k′ − 1 and, by the inductive assumption,
the answer C ′′ satisfies M0 |	 C ′′θ ′. Thus Bθ ′ �∈ J and ¬Bθ ′ ∈ (P/M0)/tu J . Thus
Gi+1θ

′ is obtained from Giθ
′ by applying a rule from (P/M0)/tu J .

Hence G1θ
′, . . . ,Glθ

′ is a successful SLD-derivation for Gθ and (P/M0)/tu J ; the
assumption that M0 |	 (Cs|G)θ is false. So M0 |	 ¬(Cs|G)θ for each success leaf
Cs of Tr . Let D be a finite pseudo-answer of Tr . Then M0 |	 ¬Dθ for a negative answer
¬D of the tree. ��
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