9,082 research outputs found

    Towards ensuring Satisfiability of Merged Ontology

    Get PDF
    AbstractThe last decade has seen researchers developing efficient algorithms for the mapping and merging of ontologies to meet the demands of interoperability between heterogeneous and distributed information systems. But, still state-of-the-art ontology mapping and merging systems is semi-automatic that reduces the burden of manual creation and maintenance of mappings, and need human intervention for their validation. The contribution presented in this paper makes human intervention one step more down by automatically identifying semantic inconsistencies in the early stages of ontology merging. Our methodology detects inconsistencies based on structural mismatches that occur due to conflicts among the set of Generalized Concept Inclusions, and Disjoint Relations due to the differences between disjoint partitions in the local heterogeneous ontologies. We present novel methodologies to detect and repair semantic inconsistencies from the list of initial mappings. This results in global merged ontology free from ‘circulatory error in class/property hierarchy’, „common class/instance between disjoint classes error’, ‘redundancy of subclass/subproperty relations’, ‘redundancy of disjoint relations’ and other types of „semantic inconsistency’ errors. In this way, our methodology saves time and cost of traversing local ontologies for the validation of mappings, improves performance by producing only consistent accurate mappings, and reduces the user dependability for ensuring the satisfiability and consistency of merged ontology. The experiments show that the newer approach with automatic inconsistency detection yields a significantly higher precision

    Catalogue of Anti-Patterns for formal Ontology debugging

    Get PDF
    Debugging of inconsistent OWL ontologies is normally a tedious and time-consuming task where a combination of ontology engineers and domain expert is often required to understand whether the changes to be performed in order to make the OWL ontology consistent are actually changing the intended meaning of the original knowledge model. This task is aided by existing ontology debugging systems, incorporated in existing reasoners and ontology engineering tools, which ameliorate this problem but in complex cases are still far from providing adequate support to ontology engineers, due to lack of efficiency or lack of precision in determining the main causes for inconsistencies. In this paper we describe a set of anti-patterns commonly found in OWL ontologies, which can be useful in the task of ontology debugging in combination with those debugging tools

    Collaboratively Patching Linked Data

    Full text link
    Today's Web of Data is noisy. Linked Data often needs extensive preprocessing to enable efficient use of heterogeneous resources. While consistent and valid data provides the key to efficient data processing and aggregation we are facing two main challenges: (1st) Identification of erroneous facts and tracking their origins in dynamically connected datasets is a difficult task, and (2nd) efforts in the curation of deficient facts in Linked Data are exchanged rather rarely. Since erroneous data often is duplicated and (re-)distributed by mashup applications it is not only the responsibility of a few original publishers to keep their data tidy, but progresses to be a mission for all distributers and consumers of Linked Data too. We present a new approach to expose and to reuse patches on erroneous data to enhance and to add quality information to the Web of Data. The feasibility of our approach is demonstrated by example of a collaborative game that patches statements in DBpedia data and provides notifications for relevant changes.Comment: 2nd International Workshop on Usage Analysis and the Web of Data (USEWOD2012) in the 21st International World Wide Web Conference (WWW2012), Lyon, France, April 17th, 201

    Horizontal Integration of Warfighter Intelligence Data: A Shared Semantic Resource for the Intelligence Community

    Get PDF
    We describe a strategy that is being used for the horizontal integration of warfighter intelligence data within the framework of the US Army’s Distributed Common Ground System Standard Cloud (DSC) initiative. The strategy rests on the development of a set of ontologies that are being incrementally applied to bring about what we call the ‘semantic enhancement’ of data models used within each intelligence discipline. We show how the strategy can help to overcome familiar tendencies to stovepiping of intelligence data, and describe how it can be applied in an agile fashion to new data resources in ways that address immediate needs of intelligence analysts

    Constraint capture and maintenance in engineering design

    Get PDF
    The Designers' Workbench is a system, developed by the Advanced Knowledge Technologies (AKT) consortium to support designers in large organizations, such as Rolls-Royce, to ensure that the design is consistent with the specification for the particular design as well as with the company's design rule book(s). In the principal application discussed here, the evolving design is described against a jet engine ontology. Design rules are expressed as constraints over the domain ontology. Currently, to capture the constraint information, a domain expert (design engineer) has to work with a knowledge engineer to identify the constraints, and it is then the task of the knowledge engineer to encode these into the Workbench's knowledge base (KB). This is an error prone and time consuming task. It is highly desirable to relieve the knowledge engineer of this task, and so we have developed a system, ConEditor+ that enables domain experts themselves to capture and maintain these constraints. Further we hypothesize that in order to appropriately apply, maintain and reuse constraints, it is necessary to understand the underlying assumptions and context in which each constraint is applicable. We refer to them as “application conditions” and these form a part of the rationale associated with the constraint. We propose a methodology to capture the application conditions associated with a constraint and demonstrate that an explicit representation (machine interpretable format) of application conditions (rationales) together with the corresponding constraints and the domain ontology can be used by a machine to support maintenance of constraints. Support for the maintenance of constraints includes detecting inconsistencies, subsumption, redundancy, fusion between constraints and suggesting appropriate refinements. The proposed methodology provides immediate benefits to the designers and hence should encourage them to input the application conditions (rationales)

    Repairing Ontologies via Axiom Weakening.

    Get PDF
    Ontology engineering is a hard and error-prone task, in which small changes may lead to errors, or even produce an inconsistent ontology. As ontologies grow in size, the need for automated methods for repairing inconsistencies while preserving as much of the original knowledge as possible increases. Most previous approaches to this task are based on removing a few axioms from the ontology to regain consistency. We propose a new method based on weakening these axioms to make them less restrictive, employing the use of refinement operators. We introduce the theoretical framework for weakening DL ontologies, propose algorithms to repair ontologies based on the framework, and provide an analysis of the computational complexity. Through an empirical analysis made over real-life ontologies, we show that our approach preserves significantly more of the original knowledge of the ontology than removing axioms

    Some Ideas and Examples to Evaluate Ontologies

    Get PDF
    The lack of methods for evaluating ontologies in laboratories can be an obstacle to their use in companies. This paper presents a set of emerging ideas in evaluation of ontologies useful for: (1) ontologies developers in the lab, as a foundation from which to perform technical evaluations; (2) end users of ontologies in companies, as a point of departure in the search for the best ontology for their systems; and (3) future research, as a basis upon which to perform progressive and disciplined investigations in this area. After briefly exploring some general questions such as: why, what, when, how and where to evaluate; who evaluates; and, what to evaluate against, we focus on the definition of a set of criteria useful in the evaluation process. Finally, we use some of these criteria in the evaluation of the Bibliographic-Data [5] ontology
    corecore