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Abstract

Ontology engineering is a hard and error-prone task, in which
small changes may lead to errors, or even produce an incon-
sistent ontology. As ontologies grow in size, the need for au-
tomated methods for repairing inconsistencies while preserv-
ing as much of the original knowledge as possible increases.
Most previous approaches to this task are based on remov-
ing a few axioms from the ontology to regain consistency.
We propose a new method based on weakening these axioms
to make them less restrictive, employing the use of refine-
ment operators. We introduce the theoretical framework for
weakening DL ontologies, propose algorithms to repair on-
tologies based on the framework, and provide an analysis of
the computational complexity. Through an empirical analy-
sis made over real-life ontologies, we show that our approach
preserves significantly more of the original knowledge of the
ontology than removing axioms.

Introduction

Ontology engineering is a hard and error-prone task, where
even small changes may lead to unforeseen errors, in par-
ticular to inconsistency. Ontologies are not only growing
in size, they are also increasingly being used in a variety
of AI and NLP applications, e.g., (Bateman et al. 2010;
Prestes et al. 2013). At the same time, methods to gen-
erate ontologies through automated methods gain popular-
ity: e.g., ontology learning (Lehmann and Hitzler 2010;
Sazonau, Sattler, and Brown 2015), extraction from web re-
sources such as DBpedia (Auer et al. 2007), or the combina-
tion of knowledge from different sources (Stuckenschmidt,
Parent, and Spaccapietra 2009).

Such ontology generation methods are all likely to require
ontology repair and refinement steps, and trying to repair an
ontology containing hundreds, or even thousands of axioms
by hand is infeasible. For these reasons, it has become funda-
mental to develop automated methods for repairing ontolo-
gies while preserving as much of the original knowledge as
possible.

Most existing ontology repair approaches are based on
removing a few axioms to expel the errors (Schlobach and
Cornet 2003; Kalyanpur et al. 2005; 2006; Baader, Peñaloza,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Suntisrivaraporn 2007). While these methods are effec-
tive, and have been used in practice, they have the side ef-
fect of removing also many potentially wanted implicit con-
sequences. In this paper,1 we propose a more fine-grained
method for ontology repair based on weakening axioms, thus
making them more general. The idea is that, through this
weakening, more of the original knowledge is preserved;
that is, our method is less destructive.

We show, both theoretically and empirically, that axiom
weakening is a powerful approach for repairing ontologies.
On the theoretical side, we prove that the computational
complexity of this task is not greater than that of the stan-
dard reasoning tasks in description logics. Empirically, we
compare the results of weakening axioms against deleting
them, over existing ontologies developed in the life sciences.
This comparison shows that our approach preserves signif-
icantly more of the original ontological knowledge than re-
moving axioms, based on an evaluation measure inspect-
ing the preservation of taxonomic structure (see e.g., (Alani,
Brewster, and Shadbolt 2006; Resnik 1999) for related mea-
sures).

The main result of this paper is to present a new on-
tology repair methodology capable of preserving most of
the original knowledge, without incurring any additional
costs in terms of computational complexity. By thereby pre-
serving more implicit consequences of the ontology, our
methodology also provides a contribution to the ontology
development cycle (Neuhaus et al. 2013). Indeed, it can be
a useful tool for test-driven ontology development, where
the preservation of the entailment of competency ques-
tions from the weakened ontology can be seen as a mea-
sure for the quality of the repair (Grüninger and Fox 1995;
Ren et al. 2014).

We begin by outlining formal preliminaries, including the
introduction of refinement operators and a basic analysis of
properties of both, specialisation and generalisation opera-
tors. This is followed by a complexity analysis of the prob-
lem of computing weakened axioms in our approach. We
then present several variations of repair algorithms, a de-
tailed empirical evaluation of their performance, and a qual-
ity analysis of the returned ontologies. We close with a dis-

1An extended version of the paper is available at https://arxiv.
org/abs/1711.03430.
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cussion of related work and an outlook to future extensions
and refinements of the presented ideas.

Preliminaries

From a formal point of view, an ontology is a set of formu-
las in an appropriate logical language with the purpose of
describing a particular domain of interest. The precise logic
used is in fact not crucial for our approach as most tech-
niques introduced apply to a variety of logics; however, for
the sake of clarity we use description logics (DLs) as well-
known examples of ontology languages. We briefly intro-
duce the basic DL ALC; for full details see (Baader et al.
2003). The syntax of ALC is based on two disjoint sets NC

and NR of concept names and role names, respectively. The
set of ALC concepts is generated by the grammar

C ::= A | ¬C | C � C | C � C | ∀R.C | ∃R.C ,

where A ∈ NC and R ∈ NR. A TBox is a finite set of
concept inclusions (GCIs) of the form C � D where C and
D are concepts. It is used to store terminological knowledge
regarding the relationships between concepts. An ABox is a
finite set of formulas of the form C(a) and R(a, b), which
express knowledge about objects in the knowledge domain.

The semantics of ALC is defined through interpretations
I = (ΔI , ·I), where ΔI is a non-empty domain, and ·I is
a function mapping every individual name to an element of
ΔI , each concept name to a subset of the domain, and each
role name to a binary relation on the domain. The interpre-
tation I is a model of the TBox T if it satisfies all the GCIs
in T . Given two concepts C and D, we say that C is sub-
sumed by D w.r.t. the TBox T (C �T D) if CI ⊆ DI for
every model I of T . We write C ≡T D when C �T D and
D �T C. C is strictly subsumed by D w.r.t. T (C �T D) if
C �T D and C 
≡T D.
EL is the restriction of ALC allowing only conjunctions

and existential restrictions (Baader, Brandt, and Lutz 2005).
It is widely used in biomedical ontologies for describing
large terminologies since classification can be computed in
polynomial time.2 In the following, DL denotes either ALC
or EL, and L(DL, NC , NR) denotes the set of (complex)
concepts that can be built over NC and NR in DL.
Definition 1. Let T be a DL TBox with concept names
from NC . The set of subconcepts of T is given by

sub(T ) = {�,⊥} ∪
⋃

C�D∈T
sub(C) ∪ sub(D) ,

where for C ∈ NC ∪ {�,⊥}, and sub(C) is the set of sub-
concepts in C.

The size |C| of a concept C is the size of its syntactic tree
where for every role R, ∃R. and ∀R. are individual nodes.
Definition 2. The size |C| of a concept C is inductively de-
fined as follows. For C ∈ NC ∪ {�,⊥}, |C| = 1. Then,
|¬C| = 1 + |C|; |C �D| = |C �D| = 1 + |C|+ |D|; and
|∃R.C| = |∀R.C| = 1 + |C|.

2The OWL 2 EL profile significantly extends the basic EL logic
whilst maintaining its desirable polynomial time complexity, see
https://www.w3.org/TR/owl2-profiles/.

The size |T | of the TBox T is
∑

C�D∈T (|C| + |D|).
Clearly, for every C we have card(sub(C)) ≤ |C| and for
every TBox T we have card(sub(T )) ≤ |T |+ 2.

We now define the upward and downward cover sets of
concept names. Intuitively, the upward set of the concept C
collects the most specific subconcepts of the TBox T that
subsume C; conversely, the downward set of C collects the
most general subconcepts from T subsumed by C. The con-
cepts in sub(T ) are some concepts that are relevant in the
context of T, and that are used as building blocks for general-
isations and specialisations. The properties of sub(T ) guar-
antee that the upward and downward cover sets are finite.
Definition 3. Let T be a DL TBox and C a concept. The
upward cover and downward cover of C w.r.t. T are:

UpCovT (C) := {D ∈ sub(T ) | C �T D and

�.D′ ∈ sub(T ) with C �T D′ �T D},
DownCovT (C) := {D ∈ sub(T ) | D �T C and

�.D′ ∈ sub(T ) with D �T D′ �T C}.
Observe that UpCovT and DownCovT miss interesting

refinements. Note also that this definition only returns mean-
ingful results when used with a consistent ontology; other-
wise it returns the whole set sub(T ). Hence, when dealing
with the repair problem of an inconsistent ontology O, we
need a derived, consistent ‘reference ontology’ Oref to steer
the repair process; this is outlined in greater detail in the sec-
tion on repairing ontologies.
Example 4. Let A,B,C ∈ NC and T = {A � B}.
We have UpCovT (A � C) = {A}. Iterating, we get
UpCovT (A) = {A,B} and UpCovT (B) = {B,�}. We
could reasonably expect B�C to be also a generalisation of
A � C w.r.t. T but it will be missed by the iterated applica-
tion of UpCovT . Similarly, UpCovT (∃R.A) = {�}, while
we can expect ∃R.B to be a generalisation of ∃R.A.

To take care of these omissions, we introduce a gener-
alisation and specialisation operator. We denote as nnf(C)
the negation normal form of the concept C. Let ↑ and ↓
be two functions from L(DL, NC , NR) to the powerset of
L(DL, NC , NR). We define ζ↑,↓, the abstract refinement op-
erator, by induction on the structure of concept descriptions
as shown in Table 1. Complying with the previous observa-
tion, we define two concrete refinement operators from the
abstract operator ζ↑,↓.
Definition 5. The generalisation operator and specialisa-
tion operator are defined, respectively, as

γT = ζUpCovT ,DownCovT , and
ρT = ζDowCovT ,UpCovT .

Returning to our example, notice that for T = {A � B},
we now have γT (A � C) = {B � C,A � �, A}.
Definition 6. Given a DL concept C, its i-th refinement iter-
ation by means of ζ↑,↓ (viz., ζi↑,↓(C)) is inductively defined
as follows:
• ζ0↑,↓(C) = {C};

• ζj+1
↑,↓ (C) = ζj↑,↓(C) ∪

⋃
C′∈ζj

↑,↓(C) ζ↑,↓(C
′), j ≥ 0.

1982



Table 1: Abstract refinement operator

ζ↑,↓(A) = ↑(A)

ζ↑,↓(¬A) = {nnf(¬C) | C ∈ ↓(A)} ∪ ↑(¬A)

ζ↑,↓(�) = ↑(�)

ζ↑,↓(⊥) = ↑(⊥)

ζ↑,↓(C 	D) = {C′ 	D | C′ ∈ ζ↑,↓(C)}∪
{C 	D′ | D′ ∈ ζ↑,↓(D)} ∪ ↑(C 	D)

ζ↑,↓(C 
D) = {C′ 
D | C′ ∈ ζ↑,↓(C)}∪
{C 
D′ | D′ ∈ ζ↑,↓(D)} ∪ ↑(C 
D)

ζ↑,↓(∀R.C) = {∀R.C′ | C′ ∈ ζ↑,↓(C)} ∪ ↑(∀R.C)

ζ↑,↓(∃R.C) = {∃R.C′ | C′ ∈ ζ↑,↓(C)} ∪ ↑(∃R.C)

The set of all concepts reachable from C by means of ζ↑,↓
in a finite number of steps is ζ∗↑,↓(C) =

⋃
i≥0 ζ

i
↑,↓(C).

Some basic properties about γT and ρT follow.
Lemma 7. For every TBox T :
1. generalisation: if X ∈ γT (C) then C �T X

specialisation: if X ∈ ρT (C) then X �T C

2. reflexivity: if C ∈ sub(T ) then C ∈ UpCovT (C) and
C ∈ DownCovT (C)

3. semantic stability of cover: if C1 ≡T C2 then
C1 ∈ UpCovT (C) iff C2 ∈ UpCovT (C) and C1 ∈
DownCovT (C) iff C2 ∈ DownCovT (C)

4. relevant completeness: UpCovT (C) ⊆ γT (C) and
DownCovT (C) ⊆ ρT (C)

5. generalisability: if C,D ∈ sub(T ) and C �T D then
D ∈ γ∗

T (C)
specialisability: if C,D ∈ sub(T ) and D �T C then
D ∈ ρ∗T (C)

6. trivial generalisability: � ∈ γ∗
T (C)

falsehood specialisability: ⊥ ∈ ρ∗T (C)

7. generalisation finiteness: γT (C) is finite
specialisation finiteness: ρT (C) is finite
Although γT (C) and ρT (C) are always finite (see

Lemma 7.7), this is not the case for γ∗
T (C) and ρ∗T (C). In-

deed, their iterated application can produce an infinite chain
of refinements.
Example 8. If T = {A�∃r.A}, then γT (A) = {A, ∃r.A}.
Thus γT (∃r.A) = {∃r.A, ∃r.∃r.A} ∪ {�} (notice that
� ∈ γ2

T (A)). Continuing the iteration of γT on A, we get
(∃r.)kA ∈ γk

T (A) for every k ≥ 0.
This is not a feature caused by the existential quan-

tification alone. Similar examples exist that involve uni-
versal quantification, disjunction, and conjunction.3 Notice
that although the covers of two provably equivalent con-
cepts are the same (Lemma 7.3), it is not the case that

3From the perspective of ontology repair, infinite refinement
chains are not an issue since there are always finite chains
(Lemma 7.6). If needed, it can be simply circumvented by impos-
ing a bound on the size of the considered refinements.

γT (C1) = γT (C2) whenever C1 ≡T C2. For example, with
the TBox T = {A � B}, we have γT (A) = {A,B} and
γT (� �A) = {� �A,� �B,A,B}.

Complexity

We now analyse the computational aspects of the refinement
operators.

Definition 9. Given a TBox T and concepts C,D, the prob-
lems γT -MEMBERSHIP and ρT -MEMBERSHIP ask whether
D ∈ γT (C) and D ∈ ρT (C), respectively.

We show that γT and ρT are efficient refinement op-
erators, in the sense that deciding γT -MEMBERSHIP and
ρT -MEMBERSHIP is not harder than deciding (atomic)
concept subsumption in the underlying logic. Recall that
subsumption is ExpTime-complete in ALC and PTime-
complete in EL. We show that the same complexity bounds
hold for γT -MEMBERSHIP.

For proving hardness, we first show that deciding whether
C ′ ∈ UpCoverT (C) is as hard as atomic concept subsump-
tion (Theorem 13). Then we show that γT -MEMBERSHIP
is just as hard (Theorem 17). For the upper bounds,
we first establish the complexity of computing the set
UpCoverT (C) (Theorem 15). We then show that we can de-
cide γT -MEMBERSHIP resorting to at most a linear number
of computations UpCoverT (C

′) (Theorem 18). Combining
Theorem 17 and Theorem 18, we obtain the result.

Theorem 10. γT -MEMBERSHIP is ExpTime-complete for
ALC and PTime-complete for EL.

Similar arguments can be used to establish the same com-
plexities for ρT -MEMBERSHIP.

Corollary 11. ρT -MEMBERSHIP is ExpTime-complete for
ALC and PTime-complete for EL.

The remainder of this section provides the details. We first
prove a technical lemma used in the reduction from concept
subsumption to deciding whether C ′ ∈ UpCoverT (C).

Lemma 12. Let T be a DL TBox and X /∈ sub(T ). Then,
for every model I of T ′ := T ∪ {X � B � �} there is a
model J of T ′ such that

1. XJ = ∅, and
2. for every C ∈ sub(T ), CI = CJ .

Proof. We define the interpretation J where all role names
are interpreted as in I, and for every concept name A ∈ NC

AJ :=

{
∅ if A = X

AI otherwise.

Since X only appears in a tautology, J is also a model of T ′.
Using induction on the structure of the concepts, it is easy to
show that the second condition of the lemma holds.

The following theorem is instrumental in the proof of
Theorem 17.

Theorem 13. Let T be a DL TBox and let C be an arbitrary
DL concept. Deciding whether D ∈ UpCovT (C) is as hard
as deciding atomic subsumption w.r.t. a TBox over DL.
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Proof. We propose a reduction from the problem of decid-
ing atomic subsumption w.r.t. a TBox. Let T be a DL TBox,
and A,B be two concept names. We assume w.l.o.g. that
{A,B} ⊆ sub(T ). Define the new TBox

T ′ := T ∪ {X �B � �} ,

where X is a new concept name (not appearing in T ).4 We
show that A �T B iff X �B ∈ UpCovT ′(X �A).
[⇒] If A �T B, then X � A �T X � B, and hence it
also holds X � A �T ′ X � B. Assume that there is some
E ∈ sub(T ′) with X � A �T ′ E �T ′ X � B. Then E
cannot be X � B, nor X . Hence E ∈ sub(T ). Let I be
an arbitrary model of T ′. By Lemma 12, there is a model
J with EI = EJ and XJ = ∅. But since by assumption
E �T ′ X�B, it must be that EJ = ∅, and hence EI = ∅. It
then follows that for every model I of T ′, we have EI = ∅,
which is a contradiction with the assumption X �A �T ′ E.
We conclude that X �B ∈ UpCovT ′(X �A).
[⇐] If A 
�T B, there is a model I of T with AI 
⊆ BI . We
can extend this interpretation to a model J of T ′ by setting
XJ = ΔI , and AJ = AI for all other concept names; and
rJ = rI for all role names. Then (X � A)J 
⊆ (X � B)J ,
and hence X �B /∈ UpCovT ′(X �A).

Theorem 14. Let T be a DL TBox and let C be an arbi-
trary DL concept. Deciding whether D ∈ UpCovT (C) can
be done in exponential time when DL = ALC and in poly-
nomial time when DL = EL.

Proof. An algorithm goes as follows. If D 
∈ sub(T ) or
C 
�T D, return false. Then, for every E ∈ sub(T ), check
whether: (1) C �T E, (2) E �T D, (3) E 
�T C, and
(4) D 
�T E. If conditions (1)–(4) are all satisfied, return
false. Return true after trying all E ∈ sub(T ). The routine
requires at most 1+4×card(sub(T )) calls to the subroutine
for DL concept subsumption. Since card(sub(T )) is lin-
ear in |T |, the overall routine runs in exponential time when
DL = ALC and in polynomial time when DL = EL.

The following theorem is instrumental in the proof of
Theorem 18.

Theorem 15. Let T be a DL TBox and let C be a DL con-
cept. UpCovT (C) is computable in exponential time when
DL = ALC and in polynomial time when DL = EL.

Proof. It suffices to check for every D ∈ sub(T ) whether
D ∈ UpCovT (C) and collect those concepts for which the
answer is positive. Since card(sub(T )) is linear in the size
of T , the result holds.

Lemma 16. Let T be a DL TBox, C a DL concept, and
X /∈ sub(T ). Define T ′ := T ∪ {X ≡ C}. If D ∈ sub(T )
then D ∈ UpCovT (C) iff D ∈ UpCovT ′(C).

Proof. We have sub(T ′)=sub(T )∪{X}. Let D ∈ sub(T ).
Suppose D ∈ UpCovT ′(C). Then C �T ′ D and there is
no E ∈ sub(T ′) such that C �T ′ E �T ′ D. We thus have

4We use this tautology only to ensure that X 	 B ∈ sub(T ′),
to satisfy the restriction on the definition of the upward cover.

C �T D. Since sub(T ) ⊂ sub(T ′) there is no E ∈ sub(T )
such that C �T E �T D.

Let D ∈ UpCovT (C). Then C �T D and C �T ′ D.
Moreover, there is no E ∈ sub(T ) with C �T E �T D. So
there is no E ∈ sub(T ) such that C �T ′ E �T ′ D.

Since X ≡T ′ C, it is not the case that C �T ′ X �T ′ D.
Since sub(T ′) = sub(T ) ∪ {X}, there is no E ∈ sub(T ′)
such that C �T ′ E �T ′ D. Then D ∈ UpCovT ′(C).

Theorem 17. Deciding γT -MEMBERSHIP is as hard as de-
ciding whether D ∈ UpCovT (C).

Proof. Let T be a DL TBox, C a concept, and X /∈ sub(T ).
Define T ′ := T ∪{X ≡ C}. For every concept D 
= X , we
show that D ∈ UpCovT (C) iff D ∈ γT ′(X).

By Lemma 16, D ∈ UpCovT (C) iff D ∈ UpCovT ′(C).
Since X ≡T ′ C, Lemma 7.3 yields D ∈ UpCovT ′(C) iff
D ∈ UpCovT ′(X). As X is a concept name, by definition
of γ we have D ∈ UpCovT ′(X) iff D ∈ γT ′(X).

Theorem 18. Let T be a DL TBox and C a concept.
γT -MEMBERSHIP can be decided in exponential time when
DL = ALC and in polynomial time when DL = EL.

Proof. We can decide whether γT (C) contains a particu-
lar concept by computing only a linear number of times
UpCovT (C

′), where |C ′| is linearly bounded by |C ′|+ |T |.
Theorem 15 tells us that each of these computations can be
done in exponential time when DL = ALC and in polyno-
mial time when DL = EL. This yields an exponential time
procedure when DL = ALC and a polynomial time proce-
dure when DL = EL.

Repairing Ontologies

Our refinement operators can be used as components of a
method for repairing inconsistent ontologies by weakening,
instead of removing, problematic axioms.

Given an inconsistent ontology O, we proceed as de-
scribed in Algorithm 1. Briefly, we first need to find a
consistent subontology Oref of O to serve as reference on-
tology in order to be able to compute a non-trivial up-
cover and downcover. The brave approach (which we use
in our evaluation) picks a random maximally consistent
subset of O and chooses it as reference ontology Oref.
The cautious approach takes as Oref the intersection of all
maximally consistent subsets (Ludwig and Peñaloza 2014;
Lembo et al. 2010). While the brave approach is faster to
compute and still guarantees to find solutions, the cautious
approach has the advantage of not excluding certain repairs
a priori. However, it also returns, e.g., a much impoverished
upcover.

Once a reference ontology Oref has been chosen, and as
long as O is inconsistent, we select a “bad axiom” and re-
place it with a random weakening of it with respect to Oref.
In view of evaluation, we consider two variants of the sub-
procedure FindBadAxiom(O). The first variant (‘mis’) ran-
domly samples a number of minimally inconsistent sub-
sets I1, I2, . . . Ik ⊆ O and returns one axiom from the
ones occurring the most often, i.e., an axiom from the set
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Algorithm 1 RepairOntologyWeaken(O)
Oref ← MaximallyConsistent(O)
while O is inconsistent do

BadAx ← FindBadAxiom(O)
WeakerAx ← WeakenAxiom(BadAx, Oref)
O ← O \ {BadAx} ∪ {WeakerAx}

end while
Return O

argmaxφ∈O(card({j | φ ∈ Ij and 1 ≤ j ≤ k})). The sec-
ond variant (‘rand’) of FindBadAxiom(O) merely returns an
axiom in O at random.

The set of all weakenings of an axiom with respect to a
reference ontology is defined as follows:
Definition 19 (Axiom weakening). Given a subsumption
axiom C � D of O, the set of (least) weakenings of C � D
w.r.t. O, denoted by gO(C � D) is the set of all axioms
C ′ � D′ such that

C ′ ∈ ρO(C) and D′ ∈ γO(D) .

Given an assertional axiom C(a) of O, the set of (least)
weakenings of C(a), denoted gO(C(a)) is the set of all ax-
ioms C ′(a) such that

C ′ ∈ γO(C) .

The subprocedure WeakenAxiom(φ,Oref) randomly re-
turns one axiom in gO(φ). For every subsumption or as-
sertional axiom φ, the axioms in the set gO(φ) are indeed
weaker than φ.
Lemma 20. For every subsumption or assertional axiom φ,
if φ′ ∈ gO(φ), then φ |=O φ′.

Proof. Suppose C ′ � D′ ∈ gO(C � D). Then, by defini-
tion of gO and Lemma 7.1, C ′ � C and D � D′ are inferred
from O. Thus, by transitivity of subsumption, we obtain that
C � D |=O C ′ � D′. For the weakening of assertions, the
result follows immediately from Lemma 7.1 again.

Clearly, substituting an axiom φ with one axiom from
gO(φ) cannot diminish the set of interpretations of an ontol-
ogy. By Lemma 7.6, any subsumption axiom is a finite num-
ber of refinement steps away from the trivial axiom ⊥ � �.
Any assertional axiom C(a) is also a finite number of gen-
eralisations away from the trivial assertion �(a). It follows
that by repeatedly replacing an axiom with one of its weak-
enings, the weakening procedure will eventually obtain an
ontology with some interpretations. Hence, the algorithm
will eventually terminate.

In the next section, we compare Algorithm 1 with Algo-
rithm 2, which merely removes bad axioms until an ontology
becomes consistent. We do so for both variants ‘mis’ and
‘rand’ of FindBadAxiom(O). As we will see, Algorithm 1
generally allows us to obtain consistent ontologies which re-
tain significantly more of the informational content of the
axioms of the original (and inconsistent) ontology than the
ones obtained through Algorithm 2. This is most significant
with the ‘mis’ variant of FindBadAxiom(O) which reliably
pinpoints the problematic axioms.

Algorithm 2 RepairOntologyRemove(O)
while O is inconsistent do

BadAx ← FindBadAxiom(O)
O ← O \ {BadAx}

end while
Return O

Abbreviation Name

bctt Behaviour Change Technique Taxonomy
co-wheat Wheat Trait Ontology
elig Eligibility Feature Hierarchy
hom Homology and Related Concepts in Biology
icd11 Body System Terms from ICD11
ofsmr Open Food Safety Model Repository
ogr Ontology of Geographical Region
pe Pulmonary Embolism Ontology
taxrank Taxonomic Rank Vocabulary
xeo XEML Environment Ontology

Table 2: BioPortal ontologies considered for experimental
validation

Evaluation

The question of which one of two consistent repairs O1 and
O2 of a given inconsistent ontology O is preferable is not, in
general, well-defined. In this work, we compare two such re-
pairs by taking into account the corresponding inferred class
hierarchies. To this end, we define:

Inf(Oi) = {A � B : A,B ∈ NC , Oi |= A � B} .

The intuition behind the choice of measure is that if
card(Inf(O1) \ Inf(O2)) > card(Inf(O2) \ Inf(O1)) (that
is, if there exist more subsumptions between classes which
can be inferred in O1 but not in O2 than vice versa) then O1

is to be preferred to O2. Furthermore, class subsumptions,
which can be inferred from both O1 or O2, should be of no
consequence to determine which repaired ontology is prefer-
able. That is, whenever Inf(O1) ⊆ Inf(O′

1), Inf(O2) ⊆
Inf(O′

2) and Inf(O′
1)\Inf(O1) = Inf(O′

2)\Inf(O2) it should
hold that the quality of O1 with respect to O2 is the same
as the quality of O′

1 with respect to O′
2. Thus, we define

the following measure to compare the inferable information
content of two ontologies.

Definition 21. Let O1 and O2 be two consistent ontologies.
If Inf(O1) 
= Inf(O2), we define the inferable information
content IIC(O1, O2) of O1 w.r.t. O2 as IIC(O1, O2) =

card(Inf(O1) \ Inf(O2))

card(Inf(O1) \ Inf(O2)) + card(Inf(O2) \ Inf(O1))
;

if instead Inf(O1) = Inf(O2), we set IIC(O1, O2) = 0.5.

It is readily seen that this definition satisfies the two con-
ditions mentioned above. Furthermore, the following prop-
erties hold:

1. IIC(O1, O2) ∈ [0, 1];

2. IIC(O1, O2) = 1− IIC(O2, O1);
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Figure 1: Comparing weakening-based ontology repair with
removal-based ontology repair. Mean IIC of weakening-
based against removal-based repair for each ontology, when
choosing axioms at random (left) or by sampling minimally
inconsistent sets (right).

3. IIC(O1, O2) = 0.5 if and only if card(Inf(O1)) =
card(Inf(O2));

4. IIC(O1, O2) = 1 if and only if Inf(O2) ⊂ Inf(O1);
5. IIC(O1, O2) > 0.5 if and only if card(Inf(O1) \

Inf(O2)) > card(Inf(O2) \ Inf(O1)).
Although this is by no means the only possible measure
for comparing two ontologies (Tartir et al. 2005; Alani,
Brewster, and Shadbolt 2006; Vrandečić and Sure 2007;
Vrandečić 2009), these properties suggest that our defi-
nition captures a notion of “quality” that is meaningful
for our intended application: in particular, if for two pro-
posed repairs O1, O2 of an inconsistent ontology O we have
IIC(O1, O2) > 0.5, then there are more class subsumptions
which can be inferred in O1 but not in O2 than vice versa,
and hence—all other things being equal—O1 is a better re-
pair of O than O2.

One possible criticism of our definition of IIC(O1, O2)
is that its value depends only on Inf(O1) and Inf(O2): if
O1 and O2 differ only w.r.t. subsumptions between complex
concepts, then IIC(O1, O2) = 0.5 (even though the implica-
tions of O1 might still be considerably richer than those of
O2). On the other hand, focusing on atomic subsumptions
makes also conceptual sense, as these are the ones that our
inconsistent ontology—as well as the proposed repairs—
discuss about. It is, in any case, certainly true that our mea-
sure is fairly coarse: if IIC(O1, O2) is significantly greater
than 0.5 there are good grounds to claim that O1 is a better
repair of O than O2 is, but it may easily be that repair can-
didates between which our measure cannot discriminate are
nonetheless of different quality.

To empirically test whether weakening axioms is a better
approach to ontology repair than removing them, we tested
our approach on ten ontologies from BioPortal (Matentzoglu
and Parsia 2017), expressed in ALC (see Table 2). On aver-

Random MIS

bctt 0.55 (0.35) 0.72 (0.36)
co-wheat 0.69 (0.29) 0.76 (0.31)
elig 0.61 (0.30) 0.72 (0.27)
hom 0.68 (0.26) 0.71 (0.31)
icd11 0.60 (0.30) 0.71 (0.40)
ofsmr 0.65 (0.31) 0.76 (0.29)
ogr 0.56 (0.32) 0.70 (0.35)
pe 0.56 (0.33) 0.67 (0.41)
taxrank 0.56 (0.31) 0.82 (0.36)
xeo 0.67 (0.29) 0.67 (0.34)

Table 3: Mean and standard deviation (in parentheses) of IIC
between RepairOntologyWeaken and RepairOntologyRe-
move, both when choosing axioms at random (left column)
and by sampling minimally inconsistent sets (right). Bolded
values are significant (p < 0.05) with respect to both
Wilcoxon and T-test with Holm-Bonferroni correction; non-
bolded values were not significant for either.

age the ontologies have 105 logical axioms and 90 classes.
We compared the performance of RepairOntologyWeaken
(Algorithm 1) with the one of the non weakening-based Re-
pairOntologyRemove (Algorithm 2) by first making the on-
tologies inconsistent through the addition of random axioms,
then attempting to repair them through the two algorithms
(using the original ontology as the reference), and then com-
puting IIC.This procedure has the following rationale: one
may think that the axioms added constitute some new claims
made concerning the relationships between the classes of the
ontology, which however unfortunately made it inconsistent.
It is thus desirable to fix this inconsistency while preserving
as much as possible of the informational content of these
axioms and of the other axioms in the ontology.

The procedure was repeated one hundred times per on-
tology, selecting the axioms to weaken or remove by sam-
pling minimally inconsistent sets, and one further hundred
times selecting the axioms to remove or weaken completely
randomly. We tested the significance of our results through
both Wilcoxon signed-rank tests and T-tests, applying the
Holm-Bonferroni correction for multiple comparison, with
a p-value threshold of 0.05.

Figure 1 and Table 3 summarise the results of our exper-
iments. When choosing the axioms to weaken or remove
through sampling minimally inconsistent sets, the means
(in the case of the T-test) and medians (in the case of
the Wilcoxon test) of the IIC for RepairOntologyWeaken
against RepairOntologyRemove were all significantly
greater than 0.5 for all ontologies. This confirms that our
repair-by-weakening technique is able to preserve more of
the informational content of axioms than repair-by-removal
techniques. When selecting the axioms to repair randomly,
on the other hand, this was not always the case, as shown
in Table 3. This illustrates how our repair-by-weakening
approach constitutes a genuine improvement over removal-
based ontology repair only when problematic axioms can be
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reliably pinpointed.
Figure 1 highlights the effect of choosing the axioms to

repair or remove randomly rather than through sampling in-
consistent sets. While the difference is not statistically sig-
nificant for all ontologies,5 we observe that the quality of the
repair compared to the corresponding removal is always im-
proved by choosing the axioms to repair via sampling. The
natural next step in this line of investigation would consist in
evaluating the effect of varying the number of minimally in-
consistent sets sampled by FindBadAxiom, which for these
experiments was set to one tenth of the ontology size.

To summarise, the main conclusion of our experiments is
that, when problematic axioms can be reliably identified, our
approach is better able to preserve the informational content
of inconsistent ontologies than the corresponding repair-by-
removal method.

Related Work

Refinements operators were also discussed in the context of
inductive logic programming (van der Laag and Nienhuys-
Cheng 1998), and formalised in description logics for con-
cept learning (Lehmann and Hitzler 2010). The refinement
operators used by our weakening approach were introduced
in (Confalonieri et al. 2016), and further analysed in (Con-
falonieri et al. 2017) in relation to incoherence detection.
They were not previously applied to ontology repair.

The problem of identifying and repairing inconsistencies
in ontologies has received much attention in recent years.
Our approach differs from many other works in the area, see
for instance (Schlobach and Cornet 2003; Kalyanpur et al.
2005; 2006; Baader, Peñaloza, and Suntisrivaraporn 2007;
Haase and Qi 2007), in that—rather than removing the prob-
lematic axioms altogether—we attempt to repair the ontol-
ogy by replacing them with weakened rewritings. On the
one hand, our method requires the choice of a (consistent)
reference ontology with respect to which one can compute
the weakenings; on the other hand, it allows us to perform a
softer, more fine-grained form of ontology repair.

A different approach for repairing ontologies through
weakening was discussed in (Lam et al. 2008). Our own ap-
proach is, however, quite different from it: while the repair
algorithm of (Lam et al. 2008) operates by pinpointing (and
subsequently removing) the subcomponents of the axioms
responsible for the contradiction, ours is based on a refine-
ment operator, which combines both semantic (via the cover
operators) and syntactic (via the compositional definitions
of generalisations and specialisations of complex formulas)
information in order to identify candidates for the replace-
ment of the offending axiom(s). In particular, this implies—
using the terminology of (Ji et al. 2014)—that our repair al-
gorithm, in contrast to (Lam et al. 2008), is ‘black box’ in
that it treats the reasoner as an oracle, and can thus be more
easily combined with different choices of reasoner (or, with
slightly more effort, applied to different logics).

5For instance, w.r.t. the Wilcoxon test it is statistically signif-
icant for bctt, elig, ogr, pe and taxrank, but not for the other five
ontologies.

Another influential approach to ontology repair is dis-
cussed in (Qi, Liu, and Bell 2006a) and in (Qi, Liu, and
Bell 2006b). That approach, like ours, attempts to weaken
problematic axioms; but it does so by adding exceptions to
value restrictions ∀R.C(a),6 rather than by means of a more
general-purpose transformation.

We leave to future work the evaluation of our approach in
comparison to other state-of-the-art ontology repair frame-
works. As already stated, this is not an entirely well-posed
problem; but if, as in this work, we accept that a suggested
repair O1 is preferable to another suggested repair O2 when-
ever card(Inf(O1) \ Inf(O2)) > card(Inf(O2) \ Inf(O1))
then the question becomes amenable to analysis. Possibly,
complementary metrics for further evaluations can be cho-
sen from (Alani, Brewster, and Shadbolt 2006). Experiments
involving user evaluation could be also considered in this
context.

Conclusions

We have proposed a new strategy for repairing ontologies
based on the idea of weakening terminological and asser-
tional axioms. Axiom weakening is a way to improve the
balance between regaining consistency and keeping as much
information from the original ontology as possible.

We have investigated the theoretical properties of the re-
finement operators that are required in the definition of ax-
iom weakening and analysed the computational complexity
of employing them. Furthermore, the empirical evaluation
shows that our weakening-based approach to repairing on-
tologies performs significantly better, in terms of preserva-
tion of information, than the removal-based approach.

Future work will concentrate on a few directions. Our ex-
periments show that weakening-based repairs allow one to
preserve more information than removal-based repairs. In
practice, it will be important to involve humans in the loop
to help make decisions, that are not only logically sensible,
but that also make sense from a domain perspective. As ini-
tiated in (Porello et al. 2017), we plan to integrate the repair
procedure into social choice mechanisms. In such mecha-
nisms, experts can express their opinions as votes and pref-
erences over the axioms of an ontology, that can then be
used to steer the repair. This will lead us to investigate other
evaluation measures that reflect the experts’ opinions. Other
measures of the quality of repairs could reflect the preserva-
tion of entailments of competency questions, or the enabling
of particular tasks (McNeill and Bundy 2007). Finally, we
plan to extend the presented approach to axiom weakening
to more expressive DL languages, including SROIQ un-
derlying OWL 2 DL (Horrocks, Kutz, and Sattler 2006) and
to full first-order logic, for which debugging is a particularly
challenging problem (Kutz and Mossakowski 2011). We ex-
pect that, for more complex languages, the weakening-based
strategy will likewise significantly improve on the removal-
based strategy, and indeed be even more appropriate by ex-
ploiting the higher syntactic complexity.

6Another difference is that we are also interested in repairing
TBoxes, whereas the approach of (Qi, Liu, and Bell 2006b) oper-
ates only over ABoxes.
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Baader, F.; Peñaloza, R.; and Suntisrivaraporn, B. 2007. Pinpoint-
ing in the description logic EL+. In Proc. of KI 2007, volume
4667 of LNCS, 52–67. Springer.

Bateman, J.; Hois, J.; Ross, R.; and Tenbrink, T. 2010. A Linguis-
tic Ontology of Space for Natural Language Processing. Artificial
Intelligence 174(14):1027–1071.

Confalonieri, R.; Eppe, M.; Schorlemmer, M.; Kutz, O.;
Peñaloza, R.; and Plaza, E. 2016. Upward refinement operators
for conceptual blending in the description logic EL++. Annals of
Mathematics and Artificial Intelligence.

Confalonieri, R.; Kutz, O.; Galliani, P.; Peñaloza, R.; Porello, D.;
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