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Abstract 

The last decade has seen researchers developing efficient algorithms for the mapping and merging of ontologies to meet the 
demands of interoperability between heterogeneous and distributed information systems. But, still state-of-the-art ontology 
mapping and merging systems is semi-automatic that reduces the burden of manual creation and maintenance of mappings, and 
need human intervention for their validation. The contribution presented in this paper makes human intervention one step more 
down by automatically identifying semantic inconsistencies in the early stages of ontology merging. Our methodology detects 
inconsistencies based on structural mismatches that occur due to conflicts among the set of Generalized Concept Inclusions, and 
Disjoint Relations due to the differences between disjoint partitions in the local heterogeneous ontologies. We present novel 
methodologies to detect and repair semantic inconsistencies from the list of initial mappings. This results in global merged 
ontology free from ‘circulatory error in class/property hierarchy’, ‘common class/instance between disjoint classes error’, 
‘redundancy of subclass/subproperty relations’, ‘redundancy of disjoint relations’ and other types of ‘semantic inconsistency’ 
errors. In this way, our methodology saves time and cost of traversing local ontologies for the validation of mappings, improves 
performance by producing only consistent accurate mappings, and reduces the user dependability for ensuring the satisfiability 
and consistency of merged ontology. The experiments show that the newer approach with automatic inconsistency detection 
yields a significantly higher precision. 

Keywords: Ontology Mapping and Merging; Semantic heterogeneity; Inconsistency detection; Validation of mappings; Similarity Measure;  

1. Introduction

Recent years have witnessed great development and successful use of ontologies for the knowledge
representation, data annotation and information exchange between people, organizations, autonomous agents, web 
services or groups in open environments such as Semantic Web. But, as they are being developed for multiple 
purposes, needs, and requirements, same ontologies share overlapping domain knowledge and can be used for the 
annotation of multiple data sources such as web pages, xml repositories, relational databases, etc. [1]. The use of 
ontologies, as a means for providing a shared/common understanding of various domains, enables a certain degree 
of interoperation between these data sources. Thus, ontology alignment, mapping and merging systems have 
appeared to fulfill these demands, which are discussed in detail by [2]. They act as pillars in wide range of 
application domains and building collaborations that involve the sharing of data, knowledge and resources among 
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modern companies, and aid in developing a new ontology by reusing existing open ontologies. 
The problem of ontology matching and merging is very hard to perform manually beyond a certain degree of 

complexity, size, and number of ontologies, and need fully automatic methodologies for enabling interoperability in 
the dynamic environment such as the semantic web and data warehouse where analysis context is made on-the-fly. 
Although, there is a great effort seen, but, still state-of-the-art ontology mapping and merging systems is semi-
automatic that reduces the burden of manual creation and maintenance of mappings and needs human intervention 
for their validation. These systems and approaches use different aids such as common vocabulary, reference 
ontology, basic initial alignments by expert, etc., each of which might be appropriate in some tasks with given set of 
circumstances, but are not feasible for the dynamic environments [2]. Recent studies on ontology merging show that 
due to conceptualization and explication mismatches between local ontologies, fully automatic merging is 
unattainable [3]. But, effective algorithms for computing semantic correspondences help us reach at a position, 
where ontology merging can be carried out with minimum human intervention. In addition, in a study about the gap 
analysis between ontology mapping and merging techniques, [4] reported, "The gap identified here suggests that 
research is required to find ways through which different conceptualization mismatches can be detected and 
resolved in order to give accuracy to the process of mapping and thus verifying the knowledge being shared". 

The contribution presented in this paper minimizes human involvement one step more down during the ontology 
merging process and presents a novel methodology for the detection of semantic inconsistencies in the initial stages 
of ontology merging. Disjoint knowledge analysis and preservation in ontology merging helps to identify the 
conceptualization mismatches between heterogeneous ontologies and provides more accuracy to the process of 
mapping. Our ultimate goal is to check the semantic correctness and consistency of mappings, and ensure the 
satisfiability of merged ontology (as this will act as a fundamental analysis context later on in the semantic 
application). In order to achieve this, our methodology detects semantic inconsistencies from the list of initial 
mappings by exploiting Generalized Concept Inclusions (GCIs), and Disjoint Knowledge Axioms (DKA) present in 
local ontologies. It checks whether lexically same concepts within the local source ontologies must not contradict 
each other with respect to set of GCIs or DKA. The consistency checker module acts as a filter at the initial merging 
stage checking for a set of basic conditions before allowing axioms to be added to the global ontology. Due to the 
use of more semantics present in the source ontologies and test criteria for the validation of mappings, our approach 
enhances the accuracy of mappings, and produces consistent, complete and coherent global ontology. 

The rest of paper is organized as follows. Section 2 discusses state-of-the-art. Section 3 discusses an overview of 
our automatic ontology merger system, DKP-AOM. Section 4 presents semantic inconsistencies due to the conflicts 
among GCIs and DKA in local heterogeneous ontologies, and discusses algorithms for their detection. Section 5 
shows our experiment results. Finally, section 6 concludes the paper and shows future directions. 

2. Related Works 

In the research literature, there are many diverse approaches, techniques and systems for alignment, mapping and 
merging of heterogeneous ontologies. An instance based methodology, FCA-Merge, employs formal concept 
analysis to make the concept lattice, and considers concepts having the identical instance candidate for merge [5]. 
IF-Map, also, uses the formal analysis of concepts and gets aid from the common reference ontology that comprises 
common vocabulary about the local subject ontologies for their mapping [6]. GLUE follows a hybrid strategy 
making use of instance and taxonomic structure matching techniques with machine learning to determine the 
probabilities of concepts for the ontology integration [7]. OLA exploits distance based algorithms and alignment 
API for finding the correspondences between OWL-Lite ontologies by making use of all the elementary matching 
techniques [8]. QOM aimed at gaining efficiency by dynamic programming approach rather then effectiveness by 
matching algorithms. It avoids the complete pair-wise comparison of concepts and employs many heuristics for 
choosing only the best candidate mappings, and thus reduces the runtime complexity of matching operation [9]. 

The interactive ontology merging tools, PROMPT suite [10] and Chimaera [11], exploit syntactic concept label 
matching techniques and to some extent the structure of local ontologies for the initial comparisons, and merge 
ontologies on user feedback. ONION uses the structure of taxonomy, local definitions and formalization of 
articulation ontologies for the merging of different ontologies [12]. IMerge exploits visual analytics techniques for 
helping users in the process of ontology merging. It employs various interactive visualizations facilitating end-user 
about why and where concepts can be merged [13]. HCONE-merge makes use of the latent semantic indexing 
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mechanisms for computing possible mappings and then requires human intervention for their validation. Then, it 
employs reasoning services of DL for the automatic merging of local ontologies [3]. 

Besides above, very few recent works exploit semantic based techniques. CtxMatch [14], S-Match [15], aim at 
determining semantic matching and inconsistency detection between the concepts of ontologies. They transform 
concept descriptions into Description Logic (DL) axioms, i.e., change matching problem into a propositional 
unsatisfiability problem. Then, they make use of available open source DL reasoners for finding the semantic 
relations (e.g., equivalence, subsumption) between the concepts that correspond semantically. Niepert et al. provide 
a novel probabilistic-logical framework for ontology matching that employs a wide range of matching strategies. 
Their ontology matching framework is based on Markov logic which combines first-order logic and undirected 
probabilistic graphical models [16]. For inconsistency detection in the process of ontology alignment, [17], [18] and 
[19] propose correcting inconsistent alignments. Meilicke et al. aim at finding consistent alignments and feeding 
them back to the matcher to find new alignments [17]. Ruiz et al. exploit a revision operator for achieving the 
consistent result by modifying an alignment between the two ontologies [18]. In the field of argumentation, Trojahn 
et al. provide an approach for deciding which correspondences to preserve or reject in the ontology matching [19]. 
ASMOV matching algorithm exploits the lexical and structural analysis for determining the correspondences 
between ontologies. Then, it verifies the determined correspondences by the use of formal semantics to compute 
whether they comply with the desired characteristics [20]. 

Our analysis on research literature is that the approaches like [14], [15], [16], [17], [18], [19], [20], consider 
consistency issues or semantic-based technique for ontology matching process but did not extended their works for 
the automatic ontology merging. Interactive tools such as [3], [11], [12], [13] for the ontology merging are not 
semantic-based, don’t consider consistency issues and require human intervention for the validation of mappings. 
Our initial effort towards ontology merging was also a semi-automatic system, Disjoint Knowledge Preservation in 
Ontology Merging (DKP-OM). DKP-OM  follows a hybrid approach for the detection of mappings and employs test 
criteria to filter out inconsistent mapping in the process of ontology merging [21], [22]. The consistent 
correspondences act as a list of suggestions to the end user and then system requires human intervention for the 
generation of global merged ontology. Another approach for automatic ontology merging is formalized based on the 
hierarchical clustering and inference mechanisms in which semantic inconsistencies are neglected during the 
generation of merged ontology [23]. In this paper, we are working for overcoming both the limitations of existing 
works, i.e., reducing the human effort for providing the feedback and automation of inconsistency detection inside 
the ontology merging system. This paper presents DKP-AOM which extends the methodology of semi-automatic 
DKP-OM system to encounter more structural and semantic conflicts, and contribute more optimized fully 
automatic solution for accessing and resolving semantic consistencies in an ontology merging. DKP-OM detects the 
semantic inconsistencies with the help of hidden global merged ontology that is formed by leading initial mappings. 
Then, it applies consistency criteria on the hidden merged ontology to ensure its satisfiability. Making hidden 
ontology, consumes time and resources, and adds performance overheads to the overall performance of the system. 
The newer developed DKP-AOM system employs various algorithms to detect inconsistent mappings from the 
initial list of mappings, and saves time and resources for the generation of hidden intermediate global ontology. 

3. Overview of DKP-AOM: An Automatic Ontology Merging System 

DKP-AOM system is composed of three main components (see Fig 1). First, it generates the intermediate models 
(OWL-DL Graphs) of source ontologies using Jena API. Using these graphs, MatchManager, which comprises a set 
of individual matching algorithms, performs the first level task of finding the initial linguistic, synonym and 
axiomatic based mappings between concepts. Linguistic analysis of concept labels and properties is done with the 
MorphAdornera (version 1.0). Synonym similarity is detected with the help of JWNLb (version 1.4.1) that aids 
accessing the WordNetc (version 3.0) dictionary. MorphAdorner is helpful in various cases especially the 
lemmatization process is worth useful for detecting the base words of terms and irregular verbs used in local 
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ontologies. For example, concept “students” to lemma “student” and properties (“Accepted”, “accepting”, “Accept”, 
and “accepts”) to their base “accept”.  MatchManager propagates the initial mappings to ConsistencyChecker for 
their validation. ConsistencyChecker has many detectors that make the validation of each mapping found in the 
initial stage so that the merged ontology stays consistent with reference to the source ontologies. When the initial 
mappings pass the consistency test, ConsistencyChecker passes the mappings to the Reasoner. Finally, Reasoner 
aggregates the output of different similarity measures, resolves conflicts and merges initial mappings to generate 
global merged ontology. Finally, it compiles the output as merged global ontology automatically or final list of 
consistent mappings as required by the end user. In this step, it ensures the ultimate goal of achieving the 
satisfiability of merged ontology by checking the correctness and consistency of concepts, properties, and axioms of 
the generated global ontology. For semi-automatic generation of global ontology from mapping list, it shows the 
semantically consistent mappings to the user as a list of initial suggestions, and asks for the user feedback. In this 
case, it follows the cyclic approach as other merging systems (e.g., Prompt) to generate a global merged ontology. 
 

 

Fig. 1. Semantic Ontology Merging Methodology of DKP-AOM 

4. Ensuring Satisfiability of Global Merged Ontology 

The main goal of ConsistencyChecker module of DKP-AOM is to ensure the satisfiability of global merged 
ontology that is generated by following initial mappings, so that Tbox (Terminological box) and Abox (Assertional 
box) of  global ontology comprise of consistent set of Generalized Concept Inclusions (e.g., GCI: C   D stays 
consistent according to local ontologies). Formally, the satisfiability of global merged ontology is expressed as: 

Definition 1: A Global Ontology GO is a pair GO = ( , ) where  is a Tbox and  is an Abox, and Tbox  is 
generated from the Mapping_list {Mapping(C1,D1), Mapping(C2,D2),…,Mapping(Cn,Dn)} where C1,C2, ...,Cn belong 
to local ontology O1 and D1,D2, ...,Dn belong to local ontology O2. An interpretation  is a model for GO if it is 
both a model for  and . A Global Ontology GO logically implies , where alpha is either an Abox statement 
(i.e., concept or role instantiation) or a Tbox statement (i.e., concept introduction), written GO  , iff  is 
satisfied by every model of GO. 

Several inconsistency detectors, inside the ConsistencyChecker component, are responsible for finding the 
semantic inconsistencies in the initial mappings found. Each of the detectors works independently employing 
specific algorithm so that only consistent and accurate mappings are generated to build satisfiable merged ontology. 
When a detector discovers any inconsistent mapping, it notifies to the ConsistencyChecker that warns about the 
inconsistent situations, which could occur in merged global ontology by following inconsistent initial mapping. 
Hence, it reduces the human intervention by validating the merged ontology automatically. There are various types 
of inconsistencies, incompleteness and redundancies that may occur in an ontology (as discussed in [24]), and in 
merged ontology as well. We aim at building a quality criteria based on consistency, completeness and conciseness 
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for the merged ontology, but in this paper, we are only addressing the semantic inconsistencies and redundancies 
that occurs due to the conflicts between GCIs and DKA. 

4.1. Semantic Inconsistency due to GCIs Conflict 

Global Merged Ontology, GO, is meant to be semantically consistent when its Tbox satisfies all the set of 
Generalized Concept Inclusions (GCIs) of local heterogeneous ontologies, and all the concepts follow the 
subsumption criteria with respect to knowledge in local ontologies. When GCIs of local heterogeneous ontologies 
conflict with each other, then the global merged ontology suffers from various types of semantic inconsistencies. 
Formally, the following definitions express the subsumption rule for global ontology and inconsistent mappings. 

 
Definition 2: For Global Ontology GO, an interpretation  satisfies a GCI C  D, if , and an 

interpretation is a model of a Tbox , if it satisfies all GCIs in the TBox . 
Definition 3: Mapping(C,C’), Mapping(D,D’) are semantically inconsistent as they violate the subsumption rule 

with respect to GCIs of local ontologies O1 and O2, such that in O1, C D w.r.t. local Tbox  & in all the models 
of  , And in O2, D’  C’ w.r.t local Tbox  & in all the models of  . 

There are several possibilities which create semantic inconsistency in global merged ontology. For example, let 
O1 and O2 be two source ontologies (see Fig 2) of software engineering domain comprising workers following the 
Object Oriented (OO) approach or Structured Engineering approach for developing programs for the companies. 
Semantic inconsistent mappings (or GCIs conflict) mean a situation where a parent concept in O1 maps on a child 
concept of O2 and a child concept of O1 maps on a parent concept of O2. In this case, initial mappings by 
MatchManager subcomponent, i.e., MappingO1,O2(Designer, Designer) and MappingO1,O2(OOknow_Associate, 
OOKnow_Associate), create GCIs conflict.  
 

 

Fig. 2. Local ontologies O1 and O2 lead to Inconsistent Global Merged Ontology O3 

Our system works on these source ontologies as follows. It gets the source ontologies, makes the intermediate 
models for similarity computation, and annotates depth with each concept in the ontology hierarchy. MatchManager 
computes correspondences between the ontology concepts and produces initial mappings between source ontologies 
as follows: MappingsO1,O2{(SoftwareEngineer1, SoftwareEngineer1), (Programmer2, Programmer3), (Designer2, 
Designer3), (StructKnow_Associate3, StructKnow_Associate2), (OOKnowledge_Associate3, OOKnowledge 
_Associate2)}. Each of the mappings contains names of classes from O1 and O2 and depths of concepts in the 
ontology associated with it (here shown as subscript in MappingsO1,O2). It propagates these mappings to 
ConsistencyChecker, which ensures correctness and consistency issues. ConsistencyChecker applies the test 
criterion (shown in the Fig 3) to ensure the semantic correctness of mappings. It detects the GCIs conflict that lead 
to inconsistency from the depth associated in the mapping list and not by traversing the source ontologies to reduce 
the time complexity of validating initial mappings. Otherwise, traversing the ontologies again for detecting 
inconsistencies would be very much costly and compromises the performance of the system. First, it extracts 
mappings with unequal depth from the list of initial mapping as they are ambiguous due to the depth differences, but 
these may or may not create inconsistencies in merged ontology. Then, it validates whether selected mappings lead 
to inconsistencies, if they have parent-child relationship between them. It is a necessary condition for semantic 
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inconsistency caused by GCIs conflict that the mappings with unequal depth have parent-child relationship, which 
lead to cycles in the merged ontology. In this example, ConsistencyChecker detects MappingO1,O2(Designer2, 
Designer3) and MappingO1,O2(OOKnowledge_Associate3, OOKnowledge_Associate2) as inconsistent mappings that 
create the semantic inconsistency. As Designer in O1 ontology lexically corresponds to Designer in O2 ontology, 
and OOKnowledge_Associate in O1 corresponds to OOKnowledge_Associate in O2, and these mappings fulfil the 
condition of parent-child relationship. But, the mapping pairs (3 and 4), (2 and 4), and (2 and 5) in MappingsO1,O2 
have unequal depth but they do not fulfil the condition of parent-child relationship between them, and hence they 
cannot create inconsistencies in the merged ontology. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Algorithm for the detection of GCI conflict from the list of initial mappings 

This type of inconsistency present in initial mappings leads to redundancies and various other types of 
inconsistencies (i.e., ‘circulatory error in class hierarchy error’, ‘wrong subsumption inconsistencies’) in merged 
global ontology as indicated by the cases 2 and 3 in Table 1. Redundancy of subclass-of error can be observed in O3 
by analyzing subclass-of axiom between (Structknow_Associate, SoftwareEngineer), already having another 
subclass-of axioms between (Structknow_Associate, Designer) and (Designer, SoftwareEngineer) as indicated by 
IS-A relationships (a, and b, c) in the Fig 2. Therefore, it is very crucial to identify all these scenarios of semantic 
inconsistencies and repair them before building the global merged ontology. 

Table 1. Various cases of Semantic Inconsistency due to GCIs conflict among ontologies 

S. No. Let {A, B, C, …,L}  O1 and {N, M, O, …,Z}  O2 

Case 1. Mapping (A,M) and Mapping (B,O) create semantic inconsistency when in O1 A⊑ B, and in O2 O⊑ M 

Case 2. Mapping (A,M), Mapping (B,N) then Mapping (C,O) create redundant subsumption when in O1 C⊑B⊑A, and in 
O2 N⊑M,O⊑M, but O⊑ N (here C,B,O,N are not satisfiable in GO) it is a special kind of satisfiability conflict, 
This type of satisfiability conflict is important because it creates redundant subsumptions. 

Case 3. Mapping (A,M) and Mapping (B,O) create cyclic inconsistency when in O1 A⊑ B, and in O2 O⊑ M 

4.2. Semantic Inconsistency due to Alignment Conflict among Disjoint Relations 

Global Merged Ontology GO is free from alignment conflict among disjoint relations when all the concepts in its 
TBox satisfy all the set of axioms present in local heterogeneous ontologies, and all the concepts follow the 
satisfiability criteria with respect to disjoint or overlapping knowledge in local ontologies. Formally, the following 
definitions express the satisfiability of concepts in global ontology and semantically inconsistent mappings. 

Definition 4:  A concept C in global merged ontology GO that is generated by Mapping (C, C’) from local 
ontologies O1, O2 is satisfiable w.r.t a TBox if there exist a model of such that C ≠ , and TBox of global

Program: Integer Test_GCIConflict( mappingList, O1, O2) 
1   START 
2      FOREACH mp in mappinglist  
3            IF( mp.depth1 != mp.depth2) THEN 
4          selectedMappingList.add(mp); 
5      END FOREACH 
6      n = selectedMappingList.length; 
7      FOR ( i=0; i<n-1; i++) DO 
8           Mapping mp1 = selectedMappingList( i ); 
9           FOR (j=i+1; j<n; j++) DO 
10     Mapping mp2 = selectedMappingList( j ); 
11     IF (mp1.depth1<mp2.depth1 and mp1.depth2>mp2.depth2) THEN 
12   IF(O1.CheckParentChildRelation(mp1.name1, mp2.name1)AND             
13    O2.CheckParentChildRelation(mp2.name2, mp1.name2))       
14          THEN 
15       Return 1; //semantic consistency found 
16    ELSE Return 0; 
17      End Inner For 
18     End outer For 
19 END PROGRAM
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merged ontology is satisfiable if it admits a model.  
Definition 5: Mapping(C,C’), Mapping(D,D’) suffers from alignment conflict among disjoint relations as they 

violate the satisfiability rule with respect to knowledge in local ontologies O1 and O2, Given that in O1, C 
disjointWith D w.r.t a local Tbox  & in all models of   disjointWith , But in O2, C’overlapping D’ w.r.t a 
local Tbox  & in all models of  ’ overlapping ’. 

 
For an example, consider local ontologies in Fig 4, where Designer and Programmer are disjoint concept in 

software engineer ontology O1 to avoid the situation where same person may design and program in a wrong way, 
but in ontology O2 they are overlapping concepts and have a common class Tester between them. In this scenario, 
MatchManager suggests the following three Mappings; MappingsO1,O2{(SoftwareEngineer1, SoftwareEngineer1), 
(Programmer2,Programmer2), (Designer2, Designer2) }. Then, ConsistencyChecker applies the test criteria for the 
consistency analysis of initial mappings and employs the algorithm for the detection of alignment conflict among 
disjoint relations. In this example, the initial MappingO1,O2(Designer, Designer) and MappingO1,O2 (Programmer, 
Programmer) create alignment conflict among disjoint relations as Designer and Programmer are disjoint in O1 but 
there is a common class between them in O2. 

 

 

Fig. 4. Ontologies O1 and O2 lead to an inconsistent merged ontology O3 

There are several possibilities (see table 2) of alignment conflict among  disjoint relations  between local 
ontologies that occur when two concepts in source ontology O1 are disjoint but overlapping in ontology O2, i.e., 
there is a common class (case 1), equivalence relation (case 2), parent-child relationship (case 3), common instance 
(case 4) between them. There can be a situation (case 5) where concepts are not specified as disjoint in O2, i.e., it 
may be a disjoint knowledge omission between them or cannot be considered as disjoint due to the open world 
assumption. The Test_DisjointConflict (see Fig 5) analyzes the mappings belonging to the concepts having disjoint 
axioms among them. When it gets the mapping (e.g., 2) of concept (e.g. O1:Programmer) having disjoint axiom, 
then it analyzes it’s disjoint concepts (e.g., Designer in this case), and find their mappings (e.g., O1:Designer,  
O2:Designer) in the mapping list MappingsO1,O2. Then, it checks whether the disjoint concepts in O1 are overlapping 
in ontology O2. In case of inconsistency, system warns the situation and does not proceed merging with these 
mappings as they lead to ‘common class between disjoint classes error’. Then, it follows the repair mechanism by 
placing the common class or preserving the disjoint knowledge in the merged ontology. 

Table 2. Various cases of Semantic Inconsistency due to DKA conflict among ontologies 

S. No. Mapping Rules when {A, B, C, …,L}  O1 and {N, M, O, …,Z}  O2 

Case 1. Mapping (A,M) and Mapping (B,O) are inconsistent when in O1 A⊑ B, and  X (concept) in O2 such that X⊑M, X⊑O 

Case 2. Mapping (A,M) and Mapping (B,O) are inconsistent when in O1 A⊑ B, and in O2 M  O 

Case 3. Mapping (A,M) and Mapping (B,O) are inconsistent when in O1 A⊑ B, and in O2 M ⊑ O 

Case 4. Mapping (A,M) and Mapping (B,O) are inconsistent when in O1 A⊑ B, and  {x} (instance) in O2 such that {x} M & {x} O 

Case 5. Mapping (A,M) and Mapping (B,O) are inconsistent when in O1 A⊑ B, and in O2 M notDisjointWith O 
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Program: Integer Test_DisjointConflict( mappingList, O1,O2) 
1 START 
2   n = mappingList.length; 
3   FOR( i=0; i<n; i++) DO 
4     Mapping mp = mappingList(i); 
5       IF (HasDisjointConcepts(mp.name1) ) THEN 
6     Discon[] = GetDisjointSiblings(mp.name1); 
7      FOR (j=0; j<Discon.length; j++) DO 
8  Mapping mp2 = SearchMapping(Discon[j]); 
9  IF ((mp.name2 & mp2.name2) are NotDisjointwith OR   Equivalence OR           
10    ParenChildRelationship OR CommonClass OR CommonInstance )  THEN 
11    Return 1; 
12   ELSE Return 0; 
13        END IF 
14         END For 
15      END IF 
16    END FOR 
17 END PROGRAM 

Fig. 5. Algorithm for the detection of alignment conflict among disjoint relations from the list of initial mappings 

5. Discussion and Experiment Results 

We have observed that these inconsistent situations are very much common dealing with the real world 
heterogeneous ontologies due to inherent semantic conflicts that came out from different communities over the 
internet. These inconsistencies between local ontologies can occur during the mappings of properties to build the 
property hierarchies in the merged ontology. Our approach employs the similar rules as described above for the 
detection of inconsistencies among property hierarchies. But, their occurrences in property hierarchies (datatype and 
object property hierarchies) are very less observed in real ontologies. However, in all these scenarios, system does 
not automatically follow the initial mappings to build global merged ontology. The system should detect the 
erroneous situations and employ repair mechanisms for building the merged ontology. The time complexity of 
presented test criterion for the detection of disjoint conflict is O(n*d) and GCI conflict is O(n), where n is the 
number of mappings in the mapping list and d is the number of disjoint axioms in an ontology. These tests give good 
performance working with the real world corpus. As compared to Prompt [9], Chimera [10], I-Merge [4], OMerSec 
[26], our ontology merger performs a step ahead for building automatic merged ontology employing repair 
mechanisms, also with informing the end user about the situation and/or inconsistencies during the building of 
automatic merged ontology. The concept of instant validation of initial mappings, for the users who are not much 
experts in building ontologies, but, interested to build ontologies for their domain by reusing the existing several 
domain ontologies is highly useful. Otherwise, the user may face various consequences as he may not be familiar 
with ontological errors of these kinds. 

We have evaluated the quality of automatically generated merged ontology by performing different type of 
experiments on web ontologies that belong to 4 different categories, i.e., University, Publication, Book, and 
Conference. To ensure the significance of disjoint axiom analysis for ensuring satisfiability and consistency 
checking, we added various disjoint axioms in these ontologies manually at disjoint partitions. Finally, the OWL 
ontology constructs in global merged ontology are manually checked to measure the consistency, completeness and 
coherency. The experiment result can be positive or negative depending on the algorithm’s accuracy. The 
experiment results for each concept may or may not match with the manual expert discussion, resulting four 
different cases. First, True Positive (TP) or Correct Mappings, which means that OWL Concept Ca is correctly 
mapped on Cb in merged ontology and Human Expert is agreed with it. Second, True Negatives (TN) or Correct 
Not-Mappings, which means that OWL Concept Ca is not mapped on Cb in merged ontology and Human Expert is 
agreed with it. Third, False Positives (FP) or Incorrect Mappings, which means that OWL Concept Ca is incorrectly 
mapped on Cb in merged ontology and Human Expert is not agreed with it. Fourth, False negative (FN) or Missed 
Mappings, which means that OWL Concept Ca is not mapped on Cb in merged ontology and according to Human 
Expert it should be mapped. On the basis of these four cases, Precision (TP/TP+FP) and Recall (TP/TP+FN) values 
are calculated. Fig 6 shows the comparative analysis between the hybrid approach with exploiting consistency 
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detection and simple approaches without employing test criterion. The result of our hybrid approach is promising as 
the test criterion has rejected the initial incorrect linguistic mappings. The experiments show that the newer 
approach with automatic inconsistency detection yields a significantly higher precision. In addition, use of 
MorphAdorner that reduces inflected spellings of concept labels to its lexical root or lemma form is highly useful to 
cope with the semantic heterogeneities in local ontologies. When the precision is equal to 1, it means that there are 
no False Positives, i.e., concepts that should be mapped between local ontologies are truly mapped by the approach. 
But, when the precision is low, it means that the approach has made some concept mappings which it should not 
made. Similarly, when the recall is equal to 1, it means that there are no False Negatives, i.e., concept mappings 
made by approach are actually be made. But, when the recall is low, it means that the approach has missed some 
concept mappings that it should made according to the human expert.  By manual inspection, we conclude that the 
incorrect or missed mappings are due to the concepts labels formed from composite words or defined by technical 
terms, and their detection is beyond the power of linguistic or synonym strategies. 
 

 

Fig. 6. Comparing Precision and Recall of DKP-AOM with other ontology merging systems 

6. Conclusion and Future Directions 

In this paper, we have presented our methodology of DKP-AOM system that exploits linguistic, synonym and 
axiomatic matching to find correspondences between concepts. In addition, it employs test criterion for the detection 
of semantic inconsistencies that originates when concepts in local ontologies contradict according to their 
subsumption or disjointness criterion. In this way, it detects explication and conceptualization mismatches between 
heterogeneous ontologies and promotes a larger pool of knowledge and information to be integrated to facilitate new 
reliable communication and reuse. The detection of conflict among Generalized Concept Inclusions between local 
ontologies would result global ontology free from ‘circulatory error in class/property hierarchy’, ‘redundancy of 
subclass/subproperty of relations’ errors and other types of ‘semantic inconsistency’ that occur due to wrong 
placement of concept in merged ontology from local heterogeneous ontologies. Similarity, detection of alignment 
conflict among disjoint relations between local ontologies would result global ontology free from ‘common 
class/instance between disjoint classes’ and ‘redundancy of disjoint relations’ errors. Our algorithm detect 
inconsistency from initial mappings in the early stages of ontology merging so that only consistent mappings would 
result global merged ontology with consistent set of axioms. Early automatic detection of inconsistency not only 
saves time and resources, but also lessons user intervention for ensuring the consistency of merged ontology. We 
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have implemented the algorithm of detecting such inconsistencies and evaluated the working of system on real 
world ontologies. The outcomes are very interesting by embedding inconsistency detection algorithms inside the 
ontology merging system in terms of precision of results, reduction of human expert dependability, computational 
efficiency, and good level of automatic consistency checking, etc. One of our ongoing researches is to apply a 
variety of architectural, optimization, and design principle to improve the performance of our system, and further 
enhance it based on other test criteria based on consistency, completeness and conciseness (as presented in [24]) that 
lead towards accurate merged ontology with avoidance of higher level of user intervention in the merge process.  
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