
Some Ideas and Examples to Evaluate Ontologies

Asunción Gómez-Pérez
Knowledge Systems Laboratory

Stanford University
701 Welch Road, Building C
Palo Alto, CA, 94304, USA

Tel: (415) 723-1867, Fax: (415) 725-5850
Email: gomez@hpp.stanford.edu, Asun@fi.upm.es

Abstract

The lack of methods for evaluating ontologies in
laboratories can be an obstacle to their use in companies.
This paper presents a set of emerging ideas in evaluation of
ontologies useful for: (1) ontologies developers in the lab,
as a foundation from which to perform technical
evaluations; (2) end users of ontologies in companies, as a
point of departure in the search for the best ontology for
their systems; and (3) future research, as a basis upon which
to perform progressive and disciplined investigations in this
area. After briefly exploring some general questions such
as: why, what, when, how and where to evaluate; who
evaluates; and, what to evaluate against, we focus on the
definition of a set of criteria useful in the evaluation process.
Finally, we use some of these criteria in the evaluation of the
Bibliographic-Data [5] ontology.

1. Introduction

Several years ago, the idea of a knowledge factory
emerged when several research groups [3, 7, 9] put their
efforts in building ontologies in several application domains.
As libraries of definitions that can be used for different
purposes in different domains, ontologies allow the reuse
and sharing of knowledge and reasoning methods among
agents. From the point of view of knowledge reusability,
ontologies avoid the need to build a Knowledge Base (KB)
from scratch by allowing Knowledge-Based Systems (KBS)
developers to assemble reusable components [10]. From the
point of view of knowledge sharability, ontologies can be
used by software agents [3, 6, 8, 10] that are in operation.
We can say that ontologies are the platforms that enable the
sharing and reuse of knowledge by establishing common
vocabularies and semantic interpretations of terms.

While ontologies may provide for reusability, sharability
or both, the evaluation of their definitions and software

environment is critical to the success of the final
applications that reuse and share these definitions. If wrong
definitions from the ontology coexist with specific
knowledge formalized in the KB, the KBS may make poor
or wrong conclusions. If the ontology definitions and
software environment have not been sufficiently evaluated,
communication between software agents may not succeed
because ontologies provide the channel through which
queries are asserted.

Until now, the number of ontologies developed has not
been large and their practical use in final and real
applications in businesses is small. The lack of methods for
evaluating ontologies in laboratories can be an obstacle to
their use in companies. The purpose of the present work is
twofold. The first is to describe a set of initial and general
ideas that guide the evaluation of ontologies. The second is
to apply empirically some of these ideas in the evaluation of
the Bibliographic-Data ontology [5]. The following sections
describe the outcome of this research. In Section Two, we
briefly describe a set of emerging ideas in the evaluation of
Knowledge Sharing Technology (KST). Section Three
shows some criteria used in performing a technical
evaluation of the ontologies in the academic or industrial
laboratory. Section Four discusses a set of ideas related to
the assessment that the end user must perform before using
this technology in companies. Finally, Section Five
discusses three kind of examples in the technical evaluation
of the Bibliographic-Data ontology [5] written in KIF [2].

2. The Primary Ideas

This section briefly answers several questions in the
evaluation of KST.

What does evaluation and assessment mean?
Evaluation means to judge technically the features of KST,
and assessment refers to the usability and utility of KST in
companies.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148656457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

What can be evaluated? We can evaluate any of the
following items: any intermediate or final definition, a set of
definitions, documentation, and software environment.

Why evaluate? To guarantee to end users (both KE and
software agent developers) the correctness and completeness
of the ontologies' definitions, documentation, and software
when they leave the laboratory and are used in organizations
or by software agents in operation.

What to evaluate against? Evaluation of the ontologies
should be performed against a frame of reference. It can be a
set of competency questions [7], requirements, and the real
world. Evaluation of the software environment should be
performed against its requirements.

When to evaluate? Evaluation is an iterative process
that should be performed during each phase and between
phases of the KST life cycle. The goal is to detect as soon as
possible wrong, incomplete, or missed definitions.

How to evaluate? Avoid "ad hoc" techniques and use
standard techniques.

Who evaluates KST? The development team, other
development teams, and end users evaluate different features
of the ontologies' definitions and software. While the
development teams evaluate technical properties of the
definitions, end users evaluate their actual utility within a
given organization or by other software agents.

Where to evaluate? Evaluation can be performed
anywhere, including at the lab (technical evaluation) or at
the end user location (assessment).

3. Technical Evaluation

The Knowledge Factory idea allows different people
(whether related or not to the environment development
team) not only to reuse definitions but to build their own.
For this reason, the development team must perform a global
technical evaluation that ensures well-defined properties in:
(1) the definitions of the ontology, (2) the software
environment used to build, reuse and share definitions, and
(3) the documentation. Since that software evaluation can be
performed by using software engineering evaluation
techniques, this paper only covers evaluation of the
definitions and evaluation of the documentation.

Evaluation of the definitions1. Evaluation of the
definitions is a technical evaluation that must be performed
at the lab during the whole ontology life cycle. The goal is to

1A definition is written in natural language (informal definition) and in a
formal language (formal definition).

detect the absence of some well-defined properties in the
definitions. The evaluation steps include:

Check the structure or architecture of the ontology. The
goal is to figure out if the definitions are built following the
design criteria of the environment in which they are
included. Ontologies built in the Ontolingua environment [3]
should satisfy the five design criteria given by Gruber [4].

Check the syntax of the definitions, to detect as soon as
possible syntactically incorrect structure and/or wrong
keywords in definitions without looking into their meaning.
The environment should provide a syntactic analyzer that
automatically checks for the presence/absence of the natural
language documentation, wrong keywords in formal
definitions, structure of the formal definitions, absence of
loops between definitions, and so on.

Check the content in the definitions, to detect what the
ontology defines, doesn't define, or defines incorrectly, and
what can be inferred, cannot be inferred, or may be inferred
incorrectly. The purpose is to identify lack of knowledge and
mistakes in the definitions. It deals with the problem of the
three Cs: Consistency, Completeness and Conciseness. The
following definitions are independent of the languages used
to write ontologies' definitions.

Consistency refers to the incapability of getting
contradictory conclusions simultaneously from valid input
data. An ontology is semantically consistent if and only if its
definitions are semantically consistent. A given definition is
semantically consistent if and only if (1) the individual
definition is consistent, that means that the meanings of the
formal as well as the informal definitions are consistent with
the real world, and consistent with each other, and (2) they
are not contradictory sentences that may be inferred by using
other definitions and axioms that may or may not belong to
the same ontology.

Completeness refers to the extension, degree, amount or
coverage to which the information in a user-independent
ontology covers the information of the real world. The
completeness of a definition depends on the level of
granularity agreed to in the whole ontology. We can say that
a definition is complete if nothing has been forgotten. That
is to say, if all that is supposed to be in the definition is in
the definition or can be inferred from the axioms.
Completeness of the definitions deals with completeness of
their formal and informal definition. To figure out if a
formal definition is complete, first, we seek to determine
whether the definition meets the structural criteria for a
complete definition (a predicate defined by necessary and
sufficient conditions [4]). Second, we determine whether the
domain and range of the relations and functions are exactly
and precisely delimited. Third, we detect whether the
generalization/specialization of a given class exactly and
precisely represents the superclasses/subclasses of a given
class in the real world. Finally, we look for a complete set of
attributes in each class definition. An informal definition

written in natural language is complete if it expresses the
same knowledge intended in the formal definition.

Conciseness refers to if all the information gathered in
the ontology is useful and precise. Conciseness doesn't
imply absence of redundancies. Sometimes, some degree of
controlled redundancy can be useful in the definitions. We
can guarantee that a given definition in an ontology is
concise if we avoid redundancies in its formal as well as
informal definitions. Second, explicit redundancies don't
exist among definitions. Third, redundancies cannot be
derived using axioms attached to other definitions. Finally,
the set of properties in the definition of a class are precisely
and exactly defined. The natural language explanation of the
definitions and examples are not considered redundant
knowledge of the formal definitions.

Evaluation of the documentation. The role of
documentation in KST is a key factor in its dissemination.
The goals of this evaluation are to guarantee that certain
documents are developed and that they evolve in step with
the definitions and software. Documentation includes: the
natural language string in each definition, general
information about the ontology, its basic ontological
commitments, a summary of its definitions, studied cases in
its evaluation, definitions taken from other ontologies, and
also documentation about the software that the environment
provides, installation manual, reference manual, release
notes, frequently asked questions and tutorials. Special
attention is required if WWW documents are indexed
automatically. In this case, semantic incoherence, context
mistakes, and morphological mistakes can appear easily in
the indexes of the natural language documentation. A study
performed in Ontolingua ontologies reveals that the majority
of semantic and context errors can be easily avoided if the
ontology writer writes the words to be indexed using given
conventions (i.e.., using uppercase for all the words, and/or
using hyphenated strings of words).

4. Assessment

A technically well-evaluated ontology will not guarantee
the absence of errors in the integration of its definitions with
the KBS definitions or in the communication among agents,
but it will make the process easier. This section provides a
set of ideas that knowledge engineers and software agent
developers should be familiar with before using the
ontologies definitions.

Ontologies used in KBS. Developing and implementing
ontologies for reusing requires integrating their definitions
into the entire life cycle of the KBS. For some authors,
ontologies are useful in the KBS conceptualization phase [3,
10], or in the knowledge acquisition [3] phase, or in the
verification and validation [11] phases. In the Ontolingua
environment [3], definitions can be translated into a variety
of target representation languages, making ontologies
definition useful in the KBS implementation phase. Since

ontologies are useful in the entire life cycle of an ES, the
knowledge sharing community should create methods and
techniques that aid in the integration of the ontologies
definitions in the expert systems life cycle by developing
technology that: (1) supports, checks and makes effective
this integration, and (2) allows the integration of different
solutions provided by different families of ontologies.

When the KE decides to use reusable components, the
KE is looking for some definitions that simplify the
development process for the new system. So, KE assessment
is focused on judging the understanding, usability,
abstraction, quality, well-defined properties and portability
of the reusable definitions, the software environment
capabilities, and methodologies that make possible this
approach. Before using this technology, the KE should
evaluate the answer the following questions: Does the
ontologies environment provide methods and tools that help
the KE to design a KBS using reusable components? Does
the environment include a tutorial or case studies that reduce
the cost (time and money) required for KBS developers to
learn and assimilate this new technology? Has knowledge
stored in ontologies reduced the bottleneck in the knowledge
acquisition phase? Does the ontology software environment
provide translators that transform the ontology definitions
into the target language used in knowledge acquisition,
conceptualization, formalization, implementation and
evaluation tools? Are the definitions complete, consistent,
and concise? How much knowledge is lost when a given
definition from the ontology is translated into the target
language of the application? Is each definition self-
explanatory?, and questions related to the evaluation of
ontologies (the following questions should be asked if new
ontologies definitions or axioms will replace old ones in the
KBS, or if new definitions will be included in the KB): How
do new definitions modify the KB and the behavior of the
system? If the KBS was already evaluated, what kind of
evaluation should be performed when new definitions are
added?, and are the new axioms consistent with the old
axioms?

The KE will at some point report the chosen definitions
to the programming team. Because the programming team
integrates the definitions from the ontologies with the
domain-specific knowledge of the application, programming
team tries answer the following questions: How trustworthy
is the translation of the definitions in the chosen target
language? And is it possible to integrate the definitions in
the KB without making significant modifications?

Ontologies used by software agents. From the point of
view of knowledge sharability, an ontology [3] is defined as
the vocabulary with which queries and assertions are
exchanged among agents that are in operation. According to
Gruber and Olsen [6], the ontology vocabulary defines the
ontological commitments among agents that are agreements
to use the shared vocabulary in a coherent and consistent
manner. Guha and Lenat [8] view ontologies as foundational
knowledge shared by agents to enable them to communicate
their specialized knowledge.

When definitions are used in the dialog among agents,
inferences are always performed by the agent making the
query and by the agents giving the answers. Since ontologies
definitions are the channels through which agents request
and answer queries, the knowledge inferred by the agent
answering the query should be consistent with the whole set
of definitions made in the ontology. It is possible that
different agents could provide different answers for a given
query. In this case, each answer might or might not be
contradictory with the other answers, and each individual
answer might or might not be wrong. Software agent
answers, by themselves, can be wrong due to an ill-defined
or ambiguous query formulation, or because the agent itself
is wrongly implemented, is incomplete, inconsistent, or
ambiguous. In this last case, the solution would be to enable
the communication of the wrong agent with other agents
through the ontologies definitions. However, there are some
situations in which well-evaluated software agents would
provide ambiguous, or contradictory answers because the
query was not well-formulated. In this case, the software
agent should tolerate and recover from ambiguities,
omissions, and errors in human or agent requests [1]. The
evaluation of software agents is beyond the scope of this
paper. However, software agent developers should consider
evaluation of this new technology and its relations with
ontologies.

5. Cases Studied in the Evaluation

In this section, we describe part of the technical
evaluation of the Bibliographic-Data ontology [5]. Three
kinds of examples are analyzed. Case study number 1
evaluates a definition. Case study number 2 evaluates a
hierarchy of definitions. Finally, case number 3 evaluates the
domain and range of the relations and functions.

5.1. Case 1: Evaluating Definitions

In this example we analyze the completeness,
conciseness, consistency and coherence of the original
definition MONTH-NAME in the Bibliographic-Data
ontology [5].

Def.1: (define-class MONTH-NAME (?month)
"The months of the year, specified as an extensionally-
defined (i.e., enumerated) set of objects, in English.
Instances of this class of months are not symbols, they are
months that may be denoted by object constants."
 :iff-def (member ?month
 (setof january february march april may june july
 august september october november december)))

Def.2: (define-instance JANUARY (month-name))
 • • •

The analysis of the completeness in definition 1 reveals
that: (1) although the formal definition meets the structural
criteria for a complete definition and all the months are
enumerated, the formal definition is incomplete because
there are no references to the months' properties, and (2) the
informal definition is incomplete because the months are not
enumerated.

Although the formal and informal definitions of
MONTH-NAME have different semantics, the formal as
well as the informal definitions are individually consistent
and consistent with each other. In this example, the natural
language documentation complements the formal definition,
providing extra knowledge about how the definition deals
with its instances. Examples of real inconsistencies would be
the definition of an unknown month in the formal or
informal definition, or in both.

Definitions 1 and 2 also provide a clear case of explicit
redundancy. The class MONTH-NAME is extensionally-
defined by enumerating the set of months. The months are
also defined in definition 2 as instances in the ontology. To
avoid redundancies, definition 2 should be deleted.

Finally, note that the definition of some concepts about
time inside the Bibliographic-Data ontology alters its
coherence. Definitions about time should be set out in an
ontology about Time, and the Bibliographic-Data should
include this ontology.

5.2. Case 2: Evaluating a Hierarchy

In this example, we evaluate: (a) the individual
consistency, completeness and conciseness of the definitions
in a hierarchy and (b) the consistency, completeness and
conciseness among them. The aim is to evaluate the
completeness and conciseness of a given definition using
other definitions and axioms.

Biblio-Text

Biblio-name Biblio-NL-Text

Title Keyword
City-Address

Agent-Name
Author-Name
Publisher-Name

Figure 1. BIBLIO-TEXT Hierarchy.

BIBLIO-TEXT is the most general class of strings in the
Bibliographic-Data ontology. The original BIBLIO-TEXT
hierarchy explicitly sets out the subclasses linked by a plain
line in Figure 1. Dashed lines mean that the subclass
definition does not explicitly include the link with its
superclass, but it can be inferred using other definitions.
This hierarchy and the following definitions taken from the

Bibliographic-Data ontology will be the point of departure in
this evaluation.

Def.3 (define-class BIBLIO-TEXT (?string)
"The most general class of undifferentiated text objects."
 :def (and (biblio-thing ?string)
 (string ?string))

Def.4: (define-class BIBLIO-NAME (?string)
"A name of something in the bibliographic-data ontology."
 :def (biblio-text ?string))

Def.5: (define-class TITLE (?x)
 "A title is a string naming a publication, a document, or
something analogous."
 :def (biblio-name?string))

Def.6: (define-class KEYWORD (?keyword)
"A keyword is a name used as an index."
 :def (biblio-name ?keyword))

Def.7: (define-class CITY-ADDRESS (?name)
"A city-address is a string that identifies a city somewhere in
the world."
 :def (biblio-name ?name))

Def.8 (define-class AUTHOR-NAME (?name)
 "A string that is used as the author.name of some author.
Often databases of author names are kept separately from
databases of people or documents."
 :axiom-def (exact-range author.name author-name))

Before evaluating relationships among definitions, we
can say about each individual definition the following. First,
definition 3 is inconsistent. BIBLIO-TEXT is a subclass of
STRING, but not of BIBLIO-THING. A new definition for
BIBLIO-TEXT would delete the sentence (biblio-thing
?string). Second, definition 6 is not precise. To increase the
precision, the informal definition should say explicitly that
"A keyword is a string used as an index". If we had written
"A keyword is a number used as an index.", an inconsistency
would appear because ?keyword is a string in the formal
definition of BIBLIO-TEXT (Def. 3). Third, in Figure 1, the
classes AGENT-NAME , AUTHOR-NAME and PUBLISHER-
NAME are not connected explicitly with the BIBLIO-TEXT
hierarchy. However, this knowledge is implicit in the
ontology and could be inferred from other definitions. The
inclusion of the KIF sentence :constraint (biblio-name
?name) that connects explicitly each one of the three
subclasses with the class BIBLIO-NAME makes the three
definitions redundant. For example, in the AUTHOR-NAME
definition (Def. 8), it can be inferred from the definition of
EXACT-RANGE2 and AUTHOR.NAME (see Def. 14 in
section 5.3) that the class AUTHOR-NAME is a SUBCLASS-

2A relation maps elements of a domain into element of a range. For each
tuple in the relation, the last item is in the range, and the tuple formed by
the preceeding items is in the domain.The EXACT-RANGE is the class
whose instances are exactly those that appear in the last item of any tuple in
the relation.

OF3 BIBLIO-NAME . Since AUTHOR-NAME is the EXACT-
RANGE of the AUTHOR.NAME function, and a RANGE of
AUTHOR.NAME is BIBLIO-NAME , and since the EXACT-
RANGE of a BINARY-RELATION is a SUBCLASS-OF any of
ranges, then it follows that AUTHOR-NAME is a SUBCLASS-
OF BIBLIO-NAME. Consequently, the definition of
AUTHOR-NAME is concise and the inclusion of the
constraint in the definition makes it redundant Finally, if for
agents, authors and publishers the Bibliographic-Data
ontology defines their names, why doesn't the class
UNIVERSITY? In order to maintain the orthogonality of the
definitions, the class UNIVERSITY-NAME should be
included and defined as a subclass of BIBLIO-NAME in the
Bibliographic-Data ontology.

Def.9 (define-class UNIVERSITY-NAME (?name)
 "A name of some university"
 :axiom-def (exact-range university.name
 university-name))

The following evaluates the relationships between
definitions. First, if we delete the informal definitions of the
classes TITLE, KEYWORD and CITY-ADDRESS, there is no
semantic difference between the three formal definitions.
The three classes contain the same information: they are
subclasses of the class BIBLIO-NAME . So, these three formal
definitions are incomplete, because they miss the specific
properties that define and differentiate each class from the
other. In this example, the semantic differences between the
three classes are given by the natural language definition and
by its name, and not by the meaning of the KIF sentences. If
we do not introduce the properties into the previous formal
definitions, we wonder if a formal and incomplete definition
that is equal to another should be removed from the
ontology. The answer is no! For a KBS that would reuse the
definitions, they are not useful because they do not provide
specific knowledge of the classes. However, for an agent
that uses the ontology to communicate with other agents,
these definitions allow them to use the terms TITLE,
KEYWORD and CITY-ADDRESS to exchange titles,
keywords, and city addresses that are strings.

Second, incomplete definitions also appear if any general
design criteria are missing in any definitions. The analysis of
the class/subclass definitions reveals an interesting design
criteria in Bibliographic-Data: in order to assure that the
subclasses of a class are mutually disjoint, one should use

the relation SUBCLASS-PARTITION4 to define the
subclasses inside the class. However, this important criterion
that increases the completeness of the entire ontology is
sometimes not followed because its use can make the
ontology inconsistent. For example, if we added the
following sentence in definition 4:

3 Class C is a subclass of class P iff every instance of C is an instance of P.

4A subclass partition of a class C is a set of subclasses of C
that are mutually disjoint.

 :axiom-def (subclass-partition BIBLIO-NAME
 (setof title keyword city-address))

we would introduce an inconsistency because BIBLIO-NAME
deals with strings that may be equal or may not.
Consequently, if we don't introduce the previous :axiom-def
sentence, the original BIBLIO-NAME definition is consistent.

5.3. Case 3: Evaluating Functions and Relations

In this example we evaluate the precision in the domain
and range of the relations and functions. Figure 2
summarizes the domain (the hierarchy of AGENTs) and the
range (the class BIBLIO-NAME) of the relations PENNAME
and AUTHOR.NAME, and the domain and range of the
functions AGENT.NAME, ORGANIZATION.NAME and
PUBLISHER.NAME. Given the definitions 11 and 12, we can
increase the precision in the range of definition 12 by
replacing the term BIBLIO-NAME by AGENT-NAME . Since
we cannot increase precision without creating a loop, the
definition of AGENT.NAME is not precise, even though it is
syntactically well-defined.

Def.10 : (define-class AGENT (?x)
 :def (and (biblio-thing ?x)
 (has-one ?x agent.name))
 :axiom-def (subclass-partition AGENT
 (setof person organization)))

Def.11: (define-class AGENT-NAME (?name)
"A string that is the name of some agent."
 :axiom-def (exact-range Agent.Name Agent-Name))

Def.12: (define-function AGENT.NAME (?agent):-> ?name
"Function from an agent to the name by which it goes. If an
agent has more than one complete name (not parts of the
name, such as first and last name), then the agent.name is the
name used to identify that agent in the shared world ..."
 :def (and (agent ?agent)
 (biblio-name ?name)))

 The main problems appear in the definitions attached to
authors: AUTHOR (Def. 13), AUTHOR.NAME (Def. 14),
PENNAME (Def. 15) and AUTHOR-NAME (Def. 8).

Def.13: (define-class AUTHOR (?x)
"An author is an agent who writes things. An author must
have a name, which is its real name as an agent. The name
as author may or may not be the agent's name, but usually
is."
 :def (and (agent ?x)
 (has-one ?x agent.name))
 :default-constraints (same-values ?x
 author.name agent.name))

Def.14: ((define-relation AUTHOR.NAME (?author ?name)
 "An author name is the name of an agent used to identify it
as an author. It is not necessarily unique; authors may go
by pseudonyms."

 :def (and (author ?author)
 (biblio-name ?name)
 (or (agent.name ?author ?name)
 (penname ?author ?name))))

Def.15 ((define-relation PENNAME (?author ?name)
 "An author's pseudonym [Webster]. An author may use
several pseudonyms. Which name is a function of the
document."
 :def (author.name ?author ?name))

Definition 13 says that an AUTHOR is an AGENT (Def.
10) that has a name that is the AGENT.NAME (Def. 12) of
the AGENT. Since the name of the AUTHOR may or may not
be the agent name (the range of AGENT.NAME is BIBLIO -
NAME), and the author is always an AGENT, and since each
AGENT must always have a name and only one name in the
range of BIBLIO-NAME , then it follows that the AUTHOR
always has a unique name in the range of BIBLIO-NAME .
So, the AUTHOR definition is consistent but redundant
because we prove twice that the author has one agent name.
To make definition 13 non redundant, the sentence (has-one
?x agent.name) has to be deleted.

Two relations called AUTHOR.NAME and PENNAME are
defined in the domain of AUTHORs. Three kinds of
problems are found between these definitions. First, we
cannot increase the precision of the range in definition 14 by
replacing BIBLIO-NAME with AUTHOR-NAME because
it would create a loop between AUTHOR.NAME (Def. 14)
and AUTHOR-NAME (Def. 8) definitions. Second, since the
name of the author may or may not be unique, the following
discussion analyzes the relationships between
AUTHOR.NAME and PENNAME. Suppose that the author
Asun Gómez is named by the string "AG" and we wonder
whether this string is her author name or her penname.
When we try to prove that "AG" is the author name of the
agent Asun Gómez (AUTHOR.NAME Asun Gómez "AG"),
the first two KIF statements in definition 14 tell us that we
have to prove that Asun Gómez is an AUTHOR and that
"AG" is a string of BIBLIO-NAME . Having proved these two
sentences, we must prove that "AG" is her agent name or her
penname. If (AGENT.NAME Asun Gómez "AG") is true, it
should not matter whether "AG" is used to refer to her
penname because "AG" is a valid author name for her, and
(AUTHOR.NAME Asun Gómez "AG") is true. In the other
case, if we cannot prove that (AGENT Asun Gómez "AG") is
true, we must prove that (PENNAME Asun Gómez "AG") is
true for (AUTHOR.NAME Asun Gómez "AG") to be true.
However, since PENNAME is defined as a specialization of
AUTHOR.NAME, we must prove again the truth value of the
AUTHOR.NAME. This loop between definitions 14 and 15
prevents us from reaching any conclusion.

Finally, the definition of PENNAME is not well-defined
because this relation is not a specialization of the relation
AUTHOR.NAME. There are strings in BIBLIO-NAME that are
not AUTHOR-NAMEs and they may be used as a PENNAME.

Author.Name

Agent.Name

Organization.Name

AGENT

Person Organization Author

PublisherUniversity

BIBLIO-NAME

Title

Keyword

City-Address
Agent-Name

Author-Name
Publisher-Name

Domain Range

Penname

Publisher.Name

Figure 2. Domain and Range of functions and relations.

To solve the three problems, we don't change the
formal definition of the relation AUTHOR.NAME. We only
add in the informal definition of definition 14 the
following: "... A particular author.name of an author must
be either the author's real name (i.e., her agent.name), or
any other string". We also perform a new formal definition
of PENNAME that says that the penname of an author is a
string that is not its name as an agent:

 :def (and (author ?author)
 (biblio-name ?name)
 (not (agent.name ?author ?name))))

Conclusions

 As ontologies are used for several different purposes,
diverse kinds of evaluations are required. Evaluation of
their definitions and evaluation of their development
environment are critical in the process of transferring
knowledge sharing technology from laboratories to
companies. This paper described how different people
have different concerns in the evaluation process, and how
to carry out this evaluation through the example evaluation
of the Bibliographic-Data ontology.

 We found that ontologies evaluation includes technical
evaluation by the development team, and assessment by
the end user. Although the core of the technical evaluation
is the evaluation of the definitions, the ontology
development team must not forget evaluation of the
software environment and documentation. The most
important features to consider in the evaluation of the
definitions are their structure, content, syntax, and a set of
semantic properties that guarantee the coherence,
completeness, consistency and conciseness of the
definitions.

Acknowledgment

 This paper is supported by the Ministerio de Educación
y Ciencia in Spain. Special thanks to Tom Gruber for some
rewarding conversations, and to Bob Engelmore for their
insights and advice.

References

[1] Etzioni, O.; Weld, D. A Softbot-Based Interface to the
Internet. Communications of the ACM. July, Vol. 37. No.
7. 1994. PP: 72-79.

[2] Genesereth, M.R.; Fikes, R.E. Knowledge Interchange
Format . Version 3.0. Reference Manual. Report Logic-92-
1. Computer Science Department. Stanford University.
Stanford, CA, 94305. 1993.

[3] Gruber, T. A Translation Approach to Portable Ontology
Specifications. Knowledge Acquisition. Vol. 5. 1993. PP:
199-220.

[4] Gruber, T. Toward Principles for the Design of Ontologies
Used for Knowledge Sharing. Technical Report KSL 93-
04. Knowledge Systems Laboratory. Stanford University.
CA. 94305. 1993.

[5] Gruber, T. 1994. This ontology is available through
a n o n y m o u s f t p a t hpp.s tan fod .edu, as
/a/htw/Ontolingua/all-ontologies/biblio/bibliographic-
data.lisp~6~ .

[6] Gruber, T; Olsen, G. An Ontology for Engineering
Mathematics. Technical Report KSL 94-18. Knowledge
Systems Laboratory. Stanford University. CA. 1994.

[7] Gruninger, M.; Fox, M.S. The role of Competency
Questions in Enterprise Engineering. IFIP WG5.7
Workshop on Benchmarking. Theory and Practice.
Trondheim, Norway, 1994.

[8] Guha, R.V.; Lenat, D. Enabling Agents to work Together.
Communications of the ACM. July 1994. Vol. 37. N0 7.
PP: 127-142.

[9] Lenat, D.B., Guha, R.V.; Pittman, K.; Pratt, K.; Shepherd,
M. Cyc: Toward Programs with Common Sense.
Communications of the ACM. Vol. 33, 1990. PP: 30-49.

[10] Neches, R.; Fikes, R.; Finin, T.; Gruber, T.; Patil, R.;
Senator, T.; Swartout, W.R. Enabling Technology for
Knowledge Sharing. AI Magazine . Winter 1991. PP: 36-
56.

[11] Plaza, E.; KBS Validation: From tools to Methodology.
IEEE Expert. Vol. 8, No. 3, June. 1993, PP: 45-47.

