
The Aberdeen University Ontology Reuse Stack

Edward Thomas, Derek Sleeman, Jeff Z. Pan, Quentin Reuland Joey Lam
Department of Computing Science

University of Aberdeen
Aberdeen, AB24 3FX

Contact emails:{d.sleeman,jeff.z.pan}@abdn.ac.uk

Abstract

This paper describes a set of tools which allow the large num-
ber of ontologies available on the Semantic Web to be discov-
ered and reused for other applications (both in the Semantic
Web and by the larger knowledge engineering community).
Firstly, these tools address the problem of finding an existing
ontology, with given characteristics. Secondly, we discuss
tools which allow the knowledge engineer to detect and re-
pair errors which occur in the ontology’s vocabulary (CleOn)
or are related to logical coherency/inconsistency (RepairTab).
Once a knowledge engineer is satisfied that the ontology is
lexically and semantically consistent, then he/she can extend
the ontology if the application requires that. Once the exten-
sion has been done, it again would be prudent to use those
same tools to check that the resulting ontology is consistent.

Introduction
This paper describes a set of tools which allow the large
number of ontologies available on the Semantic Web to be
discovered and reused for other applications (both in the Se-
mantic Web and by the larger knowledge engineering com-
munity). By using these tools, instead of creating their own
ontologies from scratch, people could reuse (parts of) exist-
ing relevant ones.

Firstly, these tools address the problem of finding an ex-
isting ontology, with given characteristics. Secondly, we
discuss tools which allow the knowledge engineer to detect
and repair errors which occur in the ontology’s vocabulary
(CleOn) or logical coherency/inconsistency(RepairTab).
Once a knowledge engineer is satisfied that the ontology is
lexically and semantically consistent, then he/she can extend
the ontology if the application requires that. Once the exten-
sion has been done, it again would be prudent to use those
same tools to check that the resulting ontology is consistent.

ONTOSEARCH2 (Pan, Thomas, & Sleeman 2006) is a
tool designed to allow end users of ontologies (knowledge
engineers, domain experts, or software agents) to discover
appropriate ontologies on the Semantic Web. It maintains a
large repository of ontologies which have been found from
various sources, and allows structured queries to be per-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ONTOSEARCH2

(find candidate

ontologies)

CleOn

(repair taxonomic

inconisitencies)

RepairTab

(repair logical

inconsistencies)

Refined Ontology

Candidate Ontology

Ontologies on the

Semantic Web

Requirements

Changes

Other KE

applications

Figure 1: The ontology toolkit

formed on individual ontologies, or the entire repository us-
ing SPARQL or a simplified keyword based interface.

ONTOSEARCH2 creates a semantic approximation (Pan
& Thomas 2007) of an OWL DL ontology in the tractable
language DL-Lite. DL-Lite has a characteristicOlog per-
formance for conjunctive queries, and because semantic ap-
proximation guarantees that no incorrect axioms are present
in the approximation with respect to the original ontology,
ONTOSEARCH2 is sound for all queries, further it is both
sound and complete for all queries which do not include
non-distinguished variables. This approach allows us to per-
form structural queries over very large repositories while
still maintaining good scalability and performance.

The CleOn system1 (Sleeman & Reul 2006) semi-

1The approach was formerly known as CleanOnto, but was re-
named to avoid unnecessary confusion with OntoClean

automatically creates a lexically coherent ontology, when
provided with an OWL ontology, and the corresponding
source of taxonomic information. Currently, we assess taxo-
nomic relationships by processing the linguistic information
inherent in concept labels. This is achieved by assessing the
lexical adequacy of a link between a parent and a child con-
cept based on their lexical paths. To date these lexical paths
have been extracted from sources such as WordNet 2.0 and
a mechanical engineering thesaurus.

We have implemented a graph-based approach imple-
mented in ReTAX++ (Lam, Sleeman, & Vasconcelos 2005)
to help knowledge engineers browse ontologies and resolve
logical inconsistencies. In fact, this has been implemented
as the RepairTab plug-in for Protéǵe. With the help of a rea-
soner, the system detects and highlights the inconsistent con-
cepts. We have implemented graph based algorithms to de-
tect which relationships among concepts cause the inconsis-
tencies, and provide options for the user to correct them. If
an incomplete or inconsistent ontology is imported, a num-
ber of ontological fragments may still be formed. In this
case, we aim to suggest to the user the best concept candi-
date to integrate the several fragments.

How these three tools interoperate to find and refine on-
tologies is illustrated in Figure 1. More details of these three
systems are given in the following three sections, and the
paper finishes with an overall conclusion.

ONTOSEARCH22

Searching for relevant ontologies is one of the key tasks to
enable ontology reuse. Now the W3C ontology language
OWL has become the defacto standard for ontologies and se-
mantic data, there are progressively more ontology libraries
online, such as the DAML Ontology Library and Protéǵe
Ontologies Library. While the Web makes an increasing
number of ontologies widely available for applications, how
to discover ontologies becomes a more challenging issue.

Currently it is difficult to find ontologies suitable for
a particular purpose. Semantic Web search engines like
Swoogle (Dinget al. 2005) and OntoKhoj (Patelet al. 2003)
allow ontologies to be searched using keywords, but further
refinement of the search criteria based on semantic entail-
ments is not possible. For example, if one wants to search for
ontologies in whichProfessor is a sub-class ofClient, using
a keyword based approach is not satisfactory, as all ontolo-
gies that contain the classesProfessor andClient would be
returned, whether or not the subsumption relationship holds
between them. In this paper, we present an ontology search
engine, called ONTOSEARCH2, which provides three ap-
proaches to searching ontologies semantically, namely: a
keyword-based search tool, a search tool based on query an-
swering and a search tool based on fuzzy query answering.
Detailed examples of the three searches are presented later
in this section.

ONTOSEARCH2 (Pan, Thomas, & Sleeman 2006) has
two principal components, namely an ontology repository
and query engine. It stores approximations of OWL ontolo-
gies in DL-Lite, and allows queries to be executed over all

2http://www.ontosearch.org/

or part of this repository using SPARQL (Prud’hommeaux
& Seaborne 2006). By using a DL-Lite approximation ON-
TOSEARCH2 is significantly faster than other comparable
tools which perform full OWL DL entailment (up to two or-
ders of magnitude faster on larger datasets (Pan & Thomas
2007)).

In Figure 2 we can see the structure of the system. Source
ontologies are first loaded into a DL Reasoner (Pellet), and
are checked for consistency before being classified. The re-
sulting class hierarchy is stored in the repository where it is
represented as a DL-Lite ABox against a meta-TBox which
defines the meta structure of all OWL-DL ontologies. The
ontology is then approximated using the semantic approxi-
mation technique presented in (Pan & Thomas 2007). On-
tology metadata is analysed and converted to a set of fuzzy
property instances, relating ontological structures to repre-
sentations of the keywords found in the metadata, with a
weight based on the semantic strength of the relationship.
Conjunctive queries can be performed over the repository;
each query being expanded by the PerfectRef algorithm in
DL-Lite to a set of SQL queries. These SQL queries are
then executed on the relational database engine which man-
ages the repository.

When a new OWL ontology is submitted to ON-
TOSEARCH2, the ontology is first examined for metadata.
This is stored as a mapping between the objects in the on-
tology (OWL ontologies, classes, properties, and instances)
and keywords that appear in the metadata attached to that
object (currently, the label and comment properties, and the
URL of the object). How the keyword is related to the object
is used to give a weighting for each mapping: for example, a
keyword occurring in a label is given the highest weighting,
and a keyword in a comment is given the lowest. In addition,
keywords can be inherited from parents of an object (super
classes or super properties); instances inherit the keywords
of their classes, and all objects in an ontology will inherit
the metadata of the ontology itself. In all cases, the greater
the semantic distance between two objects which have an
inheritance relationship, the lower the weighting is for the
keywords inherited. Punctuation is removed from keywords
before they are added to the metadata repository. If a key-
word is less than three characters long or is a common word
such as “and”, “the”, or “some”, it is discarded.

From this fuzzy ontology, we find objects within the
repository which match the requirements of the original
query. The weightings are used to specify minimum weights
required for each term in the query, or they are used to rank
the results by relevance to the initial terms.

Queries can be made through a simple keyword based
search form, or can be submitted as SPARQL queries, op-
tionally containing fuzzy extensions that can specify the
degree of confidence required for each term in the query.
Keyword based queries are expanded into fuzzy SPARQL
queries, so all searches use the same internal process. The
most basic search is for a set of keywords, where the results
will list ontologies containing all the keywords. The query
can be made more specific by adding search directives to the
query:

ONTOSEARCH2 Repositary

Pellet OWL Reasoner

TBox Store

Check

Consistency

Classify
Class

Hierarchy

ABox Store

Approximation

Algorithm

Entailment

Set

Queries Entailments

Source Ontology

(Fuzzy)

Conjunctive

Query

Metadata

Analyser

Metadata

Fuzzy

Property instances

(Fuzzy) PerfectRef

Implementation

SQL Queries

RDB Query

Engine

Query Results

Figure 2: ONTOSEARCH2 structure diagram.

1. TBox SearchingRestrictions on the search query can
specify that a particular keyword should only be matched
against a Class or a Property, but not against instance
values in the repository. This is done by prefixing the
keyword withclass:, so the queryclass:red winewould
match the keyword ”red” in class definitions only, and
match the keywordwineacross the entire ontology. Sim-
ilarly a keyword can be restricted to only occur within
property definitions within the ontology by prefixing the
keyword withproperty:. For queries where all keywords
should only match class and/or property definitions, the
directivespragma:Classand/orpragma:Propertycan be
added to the query.

2. ABox SearchingTo restrict a search term to only match
within ABox (or instance) data, it can be prefixed within-
stance: Similarly the directivepragma:Instancewill di-
rect the search engine to search instance data only for
every keyword. If used with bothpragma:Classand
pragma:Property, the search will exhibit its default be-
haviour, searching the entire contents of the repository
(Class and Property definitions as well as instance data).

3. Other Search DirectivesBy adding the search directive
pragma:Resource, the search engine will find the ob-
ject within each ontology which best matches the search
terms. It will also cause the results to be listed as indi-
vidual resources rather than as ontologies. Therefore if
an ontology contains a single class or instance which has
a very high match for the keywords, but which as an on-
tology has a low score, this class will be displayed above

other matches. The default behavior is for the whole on-
tology with the highest sum of its objects’ scores to be
returned first.

Search results can be ranked as entire ontologies, or
as individual objects within each ontology (by using the
pragma:Resourcedirective in a query). In the first instance,
we sum the total weightings for each object/keyword pair-
ing that matched in an ontology. This total is used to sort
the results, with the highest total being returned at the top
of the rankings. By ranking results based on the semantic
significance of the matches themselves, rather than by track-
ing the number of links to the ontology (Patelet al. 2003;
Ding et al. 2005) we are able to find ontologies which are
the closest match for a particular query regardless of their
popularity.

In the case that results are to be returned as individual
objects, the total sum of object/keyword weightings for each
object in the repository is used to determine rank. This is
used to return a list of all the different objects which matched
the search terms.

Examples

Query-based Search Example This search uses the query
answering facilities of ONTOSEARCH2 to find a class
which has a particular label, which is a subclass of a class
with a different label.

The search is specified in SPARQL. The query is for a
class with a label of “Chablis” which is a subclass of a class
with a label “Wine”. The query used is shown in listing 1.

SELECT ?X WHERE {
?X rdfs:label "Chablis" .
?X rdfs:subClassOf ?Y .
?Y rdfs:label "Wine" .

}
Listing 1: SPARQL Query

This is a standard SPARQL query which searches for some
class with ardfs:label of exactly “Wine” which has some
subclass with ardfs:labelof exactly “Chablis”. This query
may return classes which are not direct subclasses because
of the DL-Lite semantics which underlie the query engine in
ONTOSEARCH2, a search engine that used RDF semantics
would not match any indirect subclasses.

Fuzzy Query-based Search Example This search uses
the fuzzy query engine in ONTOSEARCH2 to find a class
which is a subclass of a different class, where both classes
have particular metadata associated with them, with a certain
level of confidence.

The search is specified using SPARQL with additional
fuzzy values included as comments. This current query is
for a class with a metadata keyword of “Chablis” with a de-
gree of confidence≥ 0.7 which is a subclass of a class with
a keyword of “Wine” with a confidence of≥ 0.5. The query
is shown in listing 2.

SELECT ?X WHERE {
?X os2:hasKeyword "Chablis" . #FT# 0.7
?X rdfs:subClassOf ?Y .
?Y os2:hasKeyword "Wine" . #FT# 0.5

}
Listing 2: fuzzy SPARQL Query

The propertyos2:hasKeywordis a fuzzy property in the ON-
TOSEARCH2 fuzzy metadata ontology which associates
objects with keywords. For details on such fuzzy queries and
related query answering algorithms, see (Panet al. 2008).

ONTOSEARCH2: Future Work

We have presented three methods for semantically search-
ing ontologies. By offering different methods of querying
for data, we can allow users to choose the best tool available
for their level of expertise and their requirements. Future
work is centered around improving the metrics used to give
different weightings. Additionally, we plan to investigate
the use of machine learning techniques to evaluate the suc-
cess of the weightings currently being used by comparing
the ontologies users eventually select for their application,
the position in the results which that ontology held, and the
weightings used to generate the results. To help users find
the best ontology or resource we are working on an ontol-
ogy browser integrated with the search engine which will
allow ontologies to be explored graphically, with matching
resources highlighted, on the results page.

Another aim is to expand the metadata captured to in-
clude other recognised sources of metadata such as Dublin
Core (DCMI 2003) and to eventually index all datatype
properties present in an ontology as potential metadata.

CleOn3

Given the central role of ontologies in the Semantic Web, it
is highly desirable that all ontologies are assessed for logi-
cal consistency and against specific criteria of the particular
application. Further, ontology evaluation should ensure that
the information available in the ontology is complete and
consistent with respect to the domain of interest. This evalu-
ation should be performed during the ontology development
process (i.e. ontology building) as well as during the ontol-
ogy maintenance process (e.g. ontology evolution4).

Although DL reasoners (e.g. FaCT++ (Tsarkov & Hor-
rocks 2006) and Pellet (Sirinet al. 2007)) can determine
the logical consistency of an ontology, they are unable to
evaluate whether the vocabulary used for class labels is co-
herent with the domain represented. Additionally, Volker et
al. (Volker, Hitzler, & Cimiano 2007) suggest that the terms
chosen as class names in ontologies (e.g. OWL axioms) con-
vey some of the meaning (semantics) of these axioms to the
human reader.

Let’s consider a team of knowledge engineers develop-
ing an ontology about the geography domain. The class
labeled with the termcountry has been used by different
knowledge engineers to be a subclass of both‘Location’ and
‘Social entity’ (Figure 3). However, this representation de-
scribes two distinct aspects of the domain through the same
class (i.e.‘Country’). On the one hand, the termcountry de-
fines the social and political aspects of countries (e.g. gov-
ernment). On the other hand, the term is used to describe
the territory occupied by a country. In information retrieval
systems, this ontology would cause many inappropriate re-
sults to be returned and would require the user to extract the
relevant information to his/her search.

The OntoClean methodology (Guarino & Welty 2000) as-
signs meta-properties; namelyUnity, Identity, Rigidity and
Dependence, to describe relevant aspects of the intended
interpretation of the properties, classes, and relations that
make up the ontology. The evaluation of the taxonomic
structure is dictated by the constraints imposed on the dif-
ferent meta-properties. The notion ofidentity is based on
intuitions about how objects interact with the world around
them. OntoClean proposes to distinguish between properties
that supply their “own” identity criteria and those that inherit
their identity criteria from subsuming properties. In general,
a country represents different social aspects and hence car-
ries its own identity, whereas a geographical region inherits
the identity of its location (e.g. fauna and flora). There-
fore, OntoClean suggests adding a new class (e.g.‘Geo-
graphical region’) to represent the physical aspects related
to countries. However, Volker et al. (Volker, Vrandecic,
& Sure 2005) have shown that this methodology was very
time consuming and that the agreement among knowledge
engineers was pretty low (only 38%). Moreover, they found
that knowledge engineers based the assignment of meta-
properties on the examples provided by Guarino and Welty

3http://www.csd.abdn.ac.uk/ qreul/CleOn.html
4Ontology evolution is the systematic application of changes to

an ontology while maintaining the consistency of the ontology and
all its dependent artifacts.

Figure 3: Example ontology.

rather than their formal definition, thus suggesting that it
would be difficult to apply OntoClean to highly specialised
domain ontologies.

As a result, we have developed an alternative approach,
called CleOn (Sleeman & Reul 2006; Reul, Sleeman, &
Fowler 2008), which detects lexical incoherencies in onto-
logical structures given a lexical resource (e.g. thesauri).
A thesaurus generally classifies linguistic terms by themes
or topics. Often, this classification is achieved through the
hypernymrelation, which specifies that if a termA is a hy-
pernym of a termB thenA is more general thanB.

Our overall approach contains three phases. We first ex-
tract alexical pathfor each class in the ontology. For this
example, we have extracted these paths from WordNet (Fell-
baum 1998) as it is a general purpose thesaurus and provides
the type of information that we require. A class is consid-
eredlexically satisfiableonly if an exact match for its class
label is found in the thesaurus. For example,social entity is
not a term in WordNet and therefore the concept islexically
unsatisfiableand its lexical path is the empty set. Once an
exact match for the class label has been found in the the-
saurus, the lexical path of the class is created by adding its
matching term in the thesaurus, then its hypernym, then the
hypernym of its hypernym, and so on until the root term of
the thesaurus is encountered. For example, an exact match
for ‘Location’ is found in the thesaurus. As a result, its
lexical path, denoted LP(‘Location’), contains the sequence
≺location, physical object, physical entity, entityÂ.

Secondly, we determine theadequacyof every taxonomic
relationship in the ontology. There are several reasons why
a link might be considered to be inadequate. Initially, every
taxonomic relationship containing one or more lexically un-
satisfiable classes are removed from the ontology. For exam-
ple, ‘Country’ v ‘Social entity’ is removed from the ontol-
ogy associal entity is present in the ontology. Then, CleOn
inspects theadequacyof every remaining taxonomic rela-
tionship in the ontology with regard to the lexical paths of
their constituents. A concept name‘A’ is adequately sub-
sumed by a concept name‘B’ if one of the sequences in the
lexical path of‘B’ is contained in one of the sequences in
the lexical path of‘A’ , where‘A’ is the child node, and‘B’
corresponds to the parent node. Examining the taxonomic
relationship between‘Location’ (parent node) and‘Coun-
try’ (child node), we retrieve the lexical paths for both these

concepts as described previously:

• LP(Location) [Parent node]
{≺location, physicalobject, physicalentity, entityÂ}

• LP(Country) [Child node]
{≺country, administrativedistrict, district, region, loca-
tion, physicalobject, physicalentity, entityÂ}

As all the elements of the parent path are included in the
child path, we consider this link to be adequate. The re-
moval of all inadequate links results in a skeleton tree, which
we refer to as Tree-0. Furthermore, this process creates “de-
tached” subtrees and/ororphannodes5.

Finally, CleOn places these orphan nodes and “de-
tached” subtrees back onto Tree-0 so as to create alexically
coherentontology (Definition 1). When there are several
nodes at which an orphan element or detached subtree can
be placed, the user is prompted to choose among the poten-
tial taxonomic relationships. It is important to note that we
do not wish to imply that a taxonomic relationship is wrong.
Instead we suggest that a taxonomic relationship is inade-
quate given a particular conceptualisation and a thesaurus.

Definition 1 (Lexically Coherent Ontology) An ontology
O is lexically coherent if all taxonomic relationships in O
are adequate.

In Sleeman and Reul (Sleeman & Reul 2006), we have
introduced the CleOn system, which when provided with an
OWL ontology (Bechhoferet al. 2004) and a thesaurus (e.g
WordNet) in the appropriate format, collaboratively creates
a lexically coherent ontology. The application is written in
Java and uses Jena API6 to process and manipulate OWL
ontologies. Furthermore, we described several possible im-
provements resulting in four different modes; namelycon-
servative mode, include head mode, inclusive modeandin-
teractive selection of word sense mode. The conservative
mode is the system default mode applying our approach to
OWL ontologies and only considers the first sense in Word-
Net when creating the different lexical paths. Whereas the
conservative mode determines the lexical satisfiability of a
concept name based on exact match, the include head mode
also searches for the head of the noun phrase when no prior

5An orphan node is a subtree with a single node.
6http://jena.sourceforge.net/ontology/index.html

match is found. The inclusive mode includes the intermedi-
ary nodes found in the lexical path of the child node but not
present in the lexical path of the parent node as part of the
Creating a lexically coherent ontologystep of the algorithm.
Finally, the interactive selection of word sense mode allows
the user to choose the intended meaning when an ambiguous
term is found in the thesaurus.

In Reul et al. (Reul, Sleeman, & Fowler 2008), we report
the results of an experiment in which we used our method-
ology to evaluate a domain dependent ontology. The eval-
uation demonstrated that our method does not solely rely
on WordNet, but relies on a thesaurus which is appropri-
ate for the domain. In this case, we had to create this the-
saurus as none was available for the engineering domain.
Moreover, we showed that our method was consistently sim-
pler to apply than the OntoClean methodology, which is
a very encouraging result. The precision and recall met-
rics (Dellschaft & Staab 2006) demonstrated that the discor-
dance was in the lexical layer rather than in the concept hi-
erarchy. Therefore, the precision and recall metrics suggest
that the terminology used in industry is somewhat inconsis-
tent with the terminology used by mechanical engineering
academics.

CleOn: Future Work
We realise that there is still room for improvements to both
the approach and the system. Firstly, theCreating a lexically
coherent ontologyphase proposes several potential super-
concepts when adding subtrees to Tree-0 based on the terms
contained in the lexical path of a subtree. However, it could
be argued that terms occurring in every lexical path con-
vey less information than terms occurring only once. Resnik
(Resnik 1995) proposes theinformation contentof a concept
which is calculated as the negative log likelihood of a con-
cept occurring in a repository. The implementation of this
assumption would reduce the number of choices offered as
part ofCreating a lexically coherent ontologystep of the al-
gorithm. Therefore, the system would only suggest the root
term of the thesaurus if no other alternative is available.

Secondly, the current approach evaluates General Con-
cept Inclusions (GCIs) between two concept names (e.g.
‘Country’ v ‘Location ’). However, many OWL DL on-
tologies are composed of GCIs between a concept name and
a concept description (e.g. conjunction). In further work,
we plan to use a DL reasoner (e.g. Fact++ (Tsarkov & Hor-
rocks 2006)) to extract the implicit knowledge from GCIs
composed of concept descriptions. Moreover, we plan to
also consider a wider range of OWL DL constructs, such as
owl:unionOf andowl:equivalentClass .

Finally, the CleOn methodology detects lexical inco-
herencies in these ontological structures given a thesaurus
(e.g. WordNet). A significant issue is how one might acquire
appropriate thesauri; one approach would be to use ON-
TOSEARCH2 (Pan, Thomas, & Sleeman 2006) to search
the web for them; the second and probably more practical
approach is to encourage domain experts to develop them.
In any event, we would hope that these thesauri would be
expressed in a standard formalism such as SKOS (Miles &
Perez-Aguera 2007). If the second route is followed, editors

will be needed to develop these thesauri, and we believe that
the use of information retrieval techniques would facilitate
this process.

RepairTab7

Inconsistencies in OWL ontologies can easily occur, and it is
a challenging task for ontology modelers, especially for non-
expert ontology modelers, to resolve such inconsistencies.
Therefore, we proposed an ontology debugging tool, called
’RepairTab’ that can provide guidance on (1) selecting the
axioms to modify, and (2) how to minimise the impact of
proposed modifications on the ontology.

Ranking Axioms
Existing ontology debugging approaches (Schlobach & Cor-
net 2003; Wanget al. 2005; Meyeret al. 2006) can iden-
tify the problematic axioms for unsatisfiable concepts. Af-
ter pinpointing these problematic axioms, the next step is
to resolve the error by removing or modifying one of the
pinpointed axioms. It is difficult for tools to make specific
suggestions for how to resolve problems, because it requires
an understanding of the meaning of the set of classes. Only a
few existing approaches provide support for resolving incon-
sistencies in ontologies. Tools such as SWOOP (Kalyanpur
et al. 2006) that provide this functionality are quite lim-
ited in their approach; the problematic axioms are ranked in
order of importance. We illustrate their strategies with the
following example.

Example 1 An ontology contains the following axioms:
(1) Cows vAnimals
(2) Sheep vAnimals
(3) Lions v ∃ eat.(Cows u Sheep)
(4) Tigers v ∃ eat.(Cows u Sheep)
(5) Cows v ¬ Sheep

Axioms (3) and (5) causeLions to be unsatisfiable; ax-
ioms (4) and (5) causeTigers to be unsatisfiable. In this
case, axiom (5) causes two unsatisfiable concepts; its re-
moval can resolve two unsatisfiabilities. Thus, axiom (5) is
regarded as less important than axioms (3) and (4). More-
over, removing axiom (5) is a change which preserves more
of the information in the ontology, as otherwise two axioms
would have to be removed (axioms (3) and (4)). By remov-
ing axiom (5) we can retain the information aboutLions
andTigers. Existing tools use these heuristics, i.e., number
of unsatisfiabilities caused by the axiom, and information
lost by a modification. Hence, the user is suggested to re-
move/modify axiom (5).

Intuitively, an axiom whose removal causes more infor-
mation to be lost is regarded as more important, and should
be preserved. However, it does not necessarily follow that
such suggestions are the best results for all ontologies. A
human ontology engineer may well propose a better solu-
tion in particular cases. For example, an ontologist may
believe that sibling concepts are usually disjoint with each
other. That means, the disjointness ofCows and Sheep

7http://www.csd.abdn.ac.uk/ slam/RepairTab/

should be kept in the above example. This heuristic has an
opposite result to the factor of information lost. Moreover,
Rectoret al. (Rectoret al. 2004) enumerate a number of
common error patterns made by non-expert users in mod-
eling OWL ontologies. For example, differences between
the linguistic and logical usage of ‘and’ and ‘or’ often cause
confusion. Non-expert users might interpret axiom (3) as
that ‘lions eat sheep and cows’; it actually means ‘lions eat
something which is both a cow and a sheep’. By using the
common error patterns, we are able to evaluate axioms (3)
and (4) as likely to be erroneous.

It is very difficult for tools to determine the optimal way
to resolve such errors (semi-)automatically. Many tools sim-
ply leave it up to the user to determine how to resolve such
errors. We believe that it will be useful to analyse the heuris-
tics ontology engineers use to solve these kinds of problems,
and to incorporate these heuristics in an ontology manage-
ment tool. We firstly acquired a number of heuristics used by
ontology engineers from an empirical study (see (Lam 2007)
for more details). We then combine our acquired heuristics
with those already incorporated in existing debugging tools
and divide them into the following categories:

1. Impact of removal on the ontology – two heuristics are
presented to analyse the loss of entitlements due to remov-
ing axioms (i.e., arity and number of lost entailments)

2. Knowledge of ontology structure – five novel heuristics
are proposed to analyse:

(a) disjointness between siblings,
(b) disjointness between non-siblings,
(c) sibling patterns,
(d) length of paths in a concept hierarchy, and
(e) depth of concepts in a concept hierarchy

3. Linguistic heuristic – one heuristic is presented to analyse
the similarities of the names of the concepts

From the result in the empirical study, we learnt that some
subjects (the ontology engineers) took common OWL mod-
eling errors into account when resolving the inconsistencies
in ontologies; some subjects took the process of constructing
ontologies into account, such as integrating/merging ontolo-
gies. We therefore, clustered the heuristics into two sets:
“common error heuristics” and “merging heuristics”, then
conducted a usability study with non-expert users. The re-
sults of our usability study (Lam 2007) show that (1) with
heuristic support, the users were guided towards the axioms
which would be the best to modify, and they achieved cor-
rect modifications in a shorter time; (2) the heuristics could
increase the users’ confidence in the modifications which
they make; (3) the common error heuristics were useful for
dealing with ontologies with common mistakes; and (4) the
merging heuristics were useful for dealing with merged on-
tologies.

Impact of Changes
Furthermore, whenever (parts of) an axiom is removed, it
is easy for the knowledge engineer to unintentionally re-
move implicit information from the ontology. In order to

minimise the impact on the ontology, it is important to cal-
culate the lost entailments (e.g., subsumption relationships)
of named concepts which occur due to the removal of (parts
of) axioms. We use the following example to illustrate our
approach.

Example 2 For a bird-penguin example, two axioms cause
Penguin to be unsatisfiable:

(1) Bird v Animal u CanFly
(2) Penguin v Bird u¬ CanFly

To resolve this problem, if we remove the partBird v
CanFly from axiom (1), then the implicit informationEagle
v CanFly will be lost (see Figure 4 on the left-hand side).
If we remove the partPenguin v Bird from axiom (2), then
the implicit informationPenguin v Animal will be lost (see
Figure 4 on the right-hand side).

To minimise the loss of information, whenBird v CanFly
is removed from axiom (1), the modeler should be notified
that the informationEagle v CanFly should be added back
to the ontology. WhenPenguin v Bird is removed from ax-
iom (2), the modeler should be notified that the information
Penguin v Animal should be added back to the ontology.

Animal

Bird

CanFly

Penguin

Eagle

?

Animal

Bird

CanFly

Penguin

Eagle

?

Animal

Bird

CanFly

Penguin

Eagle

?

Animal CanFly

Penguin

Eagle

?

????

Figure 4: (Left-hand side) Option one: removing ‘birds can
fly’, the implicit information ‘eagles can fly’ is lost (dashed
arrow). (Right-hand side) Option two: removing ‘penguins
are birds’, the implicit information ‘penguins are animals’ is
lost. (NB: Deletion is indicated by a× on the appropriate
link)

Whenever parts of an axiom or a whole axiom are re-
moved, it frequently happens that intended entailments are
lost. In order to minimise the impact on the ontology, we
analyse the lost information (e.g., concept subsumption) of
concepts due to the removal of (parts of) axioms. We pro-
pose a fine-grained approach which allows us to identify
changes which arehelpful in that they restore lost informa-
tion due to removal of axioms, and those that areharmful in
that they cause additional unsatisfiability.

Example 3 Continuing the above example, whenBird v
CanFly from axiom (1) is removed, the helpful change is
Eagle v CanFly; whenPenguin v Bird from axiom (2) is
removed, the helpful change isPenguin v Animal. Harm-
ful changes to replace the partCanFly in axiom (1) are
¬Animal, Penguin, and Eagle. This is because if the part

CanFly in axiom (1) is replaced by¬Animal, thenBird will
become unsatisfiable. If that part is replaced byPenguin,
thenPenguin is defined as a type ofPenguin. If it is re-
placed byEagle, thenPenguin is defined as a type ofEa-
gle.

We conducted a usability evaluation to test its effective-
ness by comparing RepairTab with existing ontology de-
bugging tools (Lamet al. 2007). The results show that
(1) the fine-grained approach greatly facilitated the subjects
understanding of the reasons for concepts unsatisfiability,
and (2) the subjects found the helpful changes very useful
to minimise the impact of changes on the ontologies; but the
harmful changes were less useful for them. For evaluating
the runtime and memory performance of the proposed algo-
rithms, we use a number of existing ontologies to evaluate
the efficiency. The results demonstrate that our algorithms
provide acceptable performance when used with real world
ontologies (Lam 2007).

RepairTab: Future Work
Our debugging approach combines heuristic and formal ap-
proaches for dealing with inconsistencies in ontologies. It
shows that the approach of acquiring human heuristics and
encoding them in a tool is viable for ontology debugging. It
also shows that the fine-grained approach for indicating lost
entailments and recommending modifications is a powerful
novel approach.

Conclusion
How these three tools interoperate to locate and refine on-
tologies, is illustrated in Figure 1 and will soon be the sub-
ject of various useability studies. The newly introduced
W3C standards have made the interoperation of such sys-
tems viable. Further, the use of tools such as CleOn and
RepairTab enhance and refine the set of ontologies available
on the Semantic Web.

Acknowledgment
Support from the AKT project (GR/N15764/01), the EC
Knowledge Web project (IST-2004-507842) and DTI/Rolls-
Royce IPAS project (DTI project No. TP/2/IC/6/I/10292).
We thank Dr. Wamberto Vasconcelos for helpful discussions
of aspects of this work.

References
Bechhofer, S.; van Harmelen, F.; Hendler, J.; Horrocks, I.;
McGuinness, D. L.; Patel-Schneider, P. F.; and Stein, L. A.
2004. OWL Web Ontology Language Reference. W3C
Recommendation, World Wide Web Consortium.
DCMI. 2003. Dublin Core Metadata Element Set, Ver-
sion 1.1: Reference Description. DCMI Recommenda-
tion, URLhttp://dublincore.org/documents/
dces/ .
Dellschaft, K., and Staab, S. 2006. On How to Perform a
Gold Standard Based Evaluation of Ontology Learning. In
Proceedings of the 5th International Semantic Web Confer-
ence (ISWC 2006), 228–241.

Ding, L.; Pan, R.; Finin, T.; Joshi, A.; Peng, Y.; and Kolari,
P. 2005. Finding and Ranking Knowledge on the Semantic
Web. InProceedings of the 4th International Semantic Web
Conference, LNCS 3729, 156–170. Springer.
Fellbaum, C. 1998.WordNet: An Electronic Lexical Data-
base. MIT Press.
Guarino, N., and Welty, C. 2000. Ontological Analysis of
Taxonomic Relationships. InProceedings of the 19th Inter-
national Conference on Conceptual Modeling (ER 2000),
210–224.
Kalyanpur, A.; Parsia, B.; Sirin, E.; and Cuenca-Grau, B.
2006. Repairing Unsatisfiable Concepts in OWL Ontolo-
gies. InProceedings of the 3rd European Semantic Web
Conference (ESWC2006), 170–184.
Lam, J. S. C.; Pan, J. Z.; Sleeman, D.; and Vasconcelos,
W. 2007. A Fine-Grained Approach to Resolving Unsatis-
fiable Ontologies.Journal on Data Semantics10.
Lam, J.; Sleeman, D.; and Vasconcelos, W. 2005. Re-
TAX++: a Tool for Browsing and Revising Ontologies. In
osters & Demonstration Proceedings of ISWC-05 (Galway,
Ireland). ISWC Conference Directorate.
Lam, J. S. C. 2007.Methods for Resolving Inconsistencies
in Ontologies. Ph.D. Dissertation, University of Aberdeen.
Meyer, T.; Lee, K.; Booth, R.; and Pan, J. Z. 2006. Find-
ing maximally satisfiable terminologies for the description
logic ALC. In Proceedings of the 21st National Conference
on Artificial Intelligence (AAAI-06).
Miles, A., and Perez-Aguera, J. 2007. SKOS: Simple
knowledge organisation for the web.Cataloging and Clas-
sification Quarterly43(3-4):69–83.
Pan, J. Z., and Thomas, E. 2007. Approximating OWL-DL
Ontologies. InProc. of the 22nd National Conference on
Artificial Intelligence (AAAI-07). To appear.
Pan, J. Z.; Stamou, G.; Stoilos, G.; Taylor, S.; and Thomas,
E. 2008. Scalable Querying Services over Fuzzy Ontolo-
gies. InProc. of the Seventeenth International World Wide
Web Conference (WWW 2008). To appear.
Pan, J. Z.; Thomas, E.; and Sleeman, D. 2006. ON-
TOSEARCH2: Searching and Querying Web Ontologies.
In Proc. of WWW/Internet 2006, 211–218.
Patel, C.; Supekar, K.; Lee, Y.; and Park, E. K. 2003.
OntoKhoj: a semantic web portal for ontology searching,
ranking and classification. InWIDM ’03: Proceedings of
the 5th ACM international workshop on Web information
and data management, 58–61. New York, NY, USA: ACM
Press.
Prud’hommeaux, E., and Seaborne, A. 2006. SPARQL
query language for RDF. W3C Working Draft,
http://www.w3.org/TR/rdf-sparql-query/.
Rector, A.; Drummond, N.; Horridge, M.; Rogers, J.;
Knublauch, H.; Stevens, R.; Wang, H.; and Wroe, C. 2004.
OWL Pizzas: Practical experience of teaching OWL-DL:
Common errors & common patterns. InProceedings of the
European Conference on Knowledge Acquistion, 63–81.
Resnik, P. 1995. Using Information Content to Evalu-
ate Semantic Similarity in a Taxonomy. InProceedings of

the 14th International Joint Conference on Artificial Intel-
ligence, 448–453.
Reul, Q.; Sleeman, D.; and Fowler, D. 2008. CleOn: Res-
olution of lexically incoherent concepts in an engineering
ontology. Technical report, University of Aberdeen. To be
published.
Schlobach, S., and Cornet, R. 2003. Non-standard reason-
ing services for the debugging of description logic termi-
nologies. In8th International Joint Conference on Artifi-
cial Intelligence (IJCAI’03).
Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; and Katz,
Y. 2007. Pellet: A practical OWL-DL reasoner.Web Se-
mantics: Science, Services and Agents on the World Wide
Web5(2):51–53.
Sleeman, D., and Reul, Q. 2006. CleanONTO: Evaluating
taxonomic relationships in ontologies. InProceedings of
4th International EON Workshop on Evaluation of Ontolo-
gies for the Web.
Tsarkov, D., and Horrocks, I. 2006. FaCT++ description
logic reasoner: System description. InProceedings of the
3d International Joint Conference on Automated Reason-
ing (IJCAR 2006), 292–297.
Volker, J.; Hitzler, P.; and Cimiano, P. 2007. Acquisition
of OWL DL axioms from lexical resources. InProceedings
of the 4th European Semantic Web Conference (ESWC’07),
670–685.
Volker, J.; Vrandecic, D.; and Sure, Y. 2005. Automatic
evaluation of ontologies (AEON). InProceedings of the
4th International Semantic Web Conference (ISWC2005),
716–731.
Wang, H.; Horridge, M.; Rector, A.; Drummond, N.; and
Seidenberg, J. 2005. Debugging OWL-DL Ontologies: A
heuristic approach. In4th Internation Semantic Web Con-
ference.

