403 research outputs found

    Description Logic for Scene Understanding at the Example of Urban Road Intersections

    Get PDF
    Understanding a natural scene on the basis of external sensors is a task yet to be solved by computer algorithms. The present thesis investigates the suitability of a particular family of explicit, formal representation and reasoning formalisms for this task, which are subsumed under the term Description Logic

    Scene Understanding of Urban Road Intersections with Description Logic

    Get PDF

    Aerial LaneNet: Lane Marking Semantic Segmentation in Aerial Imagery using Wavelet-Enhanced Cost-sensitive Symmetric Fully Convolutional Neural Networks

    Get PDF
    The knowledge about the placement and appearance of lane markings is a prerequisite for the creation of maps with high precision, necessary for autonomous driving, infrastructure monitoring, lane-wise traffic management, and urban planning. Lane markings are one of the important components of such maps. Lane markings convey the rules of roads to drivers. While these rules are learned by humans, an autonomous driving vehicle should be taught to learn them to localize itself. Therefore, accurate and reliable lane marking semantic segmentation in the imagery of roads and highways is needed to achieve such goals. We use airborne imagery which can capture a large area in a short period of time by introducing an aerial lane marking dataset. In this work, we propose a Symmetric Fully Convolutional Neural Network enhanced by Wavelet Transform in order to automatically carry out lane marking segmentation in aerial imagery. Due to a heavily unbalanced problem in terms of number of lane marking pixels compared with background pixels, we use a customized loss function as well as a new type of data augmentation step. We achieve a very high accuracy in pixel-wise localization of lane markings without using 3rd-party information. In this work, we introduce the first high-quality dataset used within our experiments which contains a broad range of situations and classes of lane markings representative of current transportation systems. This dataset will be publicly available and hence, it can be used as the benchmark dataset for future algorithms within this domain.Comment: IEEE TGRS 2018 - Accepte

    Long-Term Urban Vehicle Localization Using Pole Landmarks Extracted from 3-D Lidar Scans

    Full text link
    Due to their ubiquity and long-term stability, pole-like objects are well suited to serve as landmarks for vehicle localization in urban environments. In this work, we present a complete mapping and long-term localization system based on pole landmarks extracted from 3-D lidar data. Our approach features a novel pole detector, a mapping module, and an online localization module, each of which are described in detail, and for which we provide an open-source implementation at www.github.com/acschaefer/polex. In extensive experiments, we demonstrate that our method improves on the state of the art with respect to long-term reliability and accuracy: First, we prove reliability by tasking the system with localizing a mobile robot over the course of 15~months in an urban area based on an initial map, confronting it with constantly varying routes, differing weather conditions, seasonal changes, and construction sites. Second, we show that the proposed approach clearly outperforms a recently published method in terms of accuracy.Comment: 9 page

    Uses and Challenges of Collecting LiDAR Data from a Growing Autonomous Vehicle Fleet: Implications for Infrastructure Planning and Inspection Practices

    Get PDF
    Autonomous vehicles (AVs) that utilize LiDAR (Light Detection and Ranging) and other sensing technologies are becoming an inevitable part of transportation industry. Concurrently, transportation agencies are increasingly challenged with the management and tracking of large-scale highway asset inventory. LiDAR has become popular among transportation agencies for highway asset management given its advantage over traditional surveying methods. The affordability of LiDAR technology is increasing day by day. Given this, there will be substantial challenges and opportunities for the utilization of big data resulting from the growth of AVs with LiDAR. A proper understanding of the data size generated from this technology will help agencies in making decisions regarding storage, management, and transmission of the data. The original raw data generated from the sensor shrinks a lot after filtering and processing following the Cache county Road Manual and storing into ASPRS recommended (.las) file format. In this pilot study, it is found that while considering the road centerline as the vehicle trajectory larger portion of the data fall into the right of way section compared to the actual vehicle trajectory in Cache County, UT. And there is a positive relation between the data size and vehicle speed in terms of the travel lanes section given the nature of the selected highway environment

    Going Deeper with Convolutional Neural Network for Intelligent Transportation

    Get PDF
    Over last several decades, computer vision researchers have been devoted to find good feature to solve different tasks, object recognition, object detection, object segmentation, activity recognition and so forth. Ideal features transform raw pixel intensity values to a representation in which these computer vision problems are easier to solve. Recently, deep feature from covolutional neural network(CNN) have attracted many researchers to solve many problems in computer vision. In the supervised setting, these hierarchies are trained to solve specific problems by minimizing an objective function for different tasks. More recently, the feature learned from large scale image dataset have been proved to be very effective and generic for many computer vision task. The feature learned from recognition task can be used in the object detection task. This work aims to uncover the principles that lead to these generic feature representations in the transfer learning, which does not need to train the dataset again but transfer the rich feature from CNN learned from ImageNet dataset. This work aims to uncover the principles that lead to these generic feature representations in the transfer learning, which does not need to train the dataset again but transfer the rich feature from CNN learned from ImageNet dataset. We begin by summarize some related prior works, particularly the paper in object recognition, object detection and segmentation. We introduce the deep feature to computer vision task in intelligent transportation system. First, we apply deep feature in object detection task, especially in vehicle detection task. Second, to make fully use of objectness proposals, we apply proposal generator on road marking detection and recognition task. Third, to fully understand the transportation situation, we introduce the deep feature into scene understanding in road. We experiment each task for different public datasets, and prove our framework is robust
    • …
    corecore