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Abstract

Over last several decades, computer vision researchers have been devoted to find

good feature to solve different tasks, such as object recognition, object detection,

object segmentation, activity recognition and so forth. Ideal features transform raw

pixel intensity values to a representation in which these computer vision problems

are easier to solve. Recently, deep features from covolutional neural network(CNN)

have attracted many researchers in computer vision. In the supervised setting,

these hierarchies are trained to solve specific problems by minimizing an objective

function. More recently, the feature learned from large scale image dataset have

been proved to be very effective and generic for many computer vision task. The

feature learned from recognition task can be used in the object detection task.

This work uncover the principles that lead to these generic feature representa-

tions in the transfer learning, which does not need to train the dataset again but

transfer the rich feature from CNN learned from ImageNet dataset.

We begin by summarize some related prior works, particularly the paper in object

recognition, object detection and segmentation. We introduce the deep feature to

computer vision task in intelligent transportation system. We apply deep feature

in object detection task, especially in vehicle detection task. To make fully use

of objectness proposals, we apply proposal generator on road marking detection

and recognition task. Third, to fully understand the transportation situation, we

introduce the deep feature into scene understanding. We experiment each task for

different public datasets, and prove our framework is robust.
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Chapter 1

Background

This chapter will provide a brief history and background about machine learning

and computer vision, especially neural networks.

1.1 Machine Learning

Machine learning is usually divided to two types, supervised learning and unsuper-

vised learning.

1.2 Types of machine learning

supervised learning For the supervised learning method, it learns a mapping from

input X to output Y, given a labeled set of datasets (also called training sets). We

talk about classification first. Assume we have a goal to learning a mapping from

input X to output Y, where Y belong to 1, 2, . . . , C. If C = 2, this is called

binary classification, if C ¿ 2, we call it multi-class classification. There are two

major steps in supervised learning: Training: The learning phase that examines the

provided data (called the training dataset) and constructs a classification model;
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Testing: the model that has been built in the training phase is used to classify new

unseen instances. A toy example of classification, you would like to use software

to examine individual customer accounts, and for each account we need to decide

if it has been hacked or compromised. We have two classes of objects which cor-

respond to hacked or compromised. The input are individual customer accounts.

These have been described by a set of D features or attributes, which are stored

in an N * M matrix X. Also we have a training vector Y (hacked = 1; compro-

mised = 0). Thus we are required to generalize beyond the training set and find

which attributes belong to hacked and which attributes belong to compromised.

There exist a number of supervised learning classification algorithms, for example,

Decision Tree and Naive Bayes classification algorithms.

Unsupervised learning In unsupervised learning, we are just given output

data, without any inputs. The goal is to discover internal connection in these data.

Unlike supervised learning, these data cannot told what the desired outputs for each

input. Unsupervised learning is more typical of human learning. It is more widely

used than supervised learning, since it does not require a human experience (no need

to labeled data). La belled data is not only expensive, but also cannot provide us

with enough information. The example of unsupervised learning is clustering data

into groups. X1 and X1 denotes the attributes Of input data, but they has not

given outputs. It seems that there might be two clusters, or subgroups. Our goal

is to estimate which cluster each point belongs to. There are three basic clustering

methods: the classic K-means algorithm, incremental clustering, and the probability

based clustering method. The classic k-means algorithm forms clusters in numeric

domains, partitioning instances into disjoint clusters, while incremental clustering

generates a hierarchical grouping of instances.

Reinforcement learning Reinforcement learning (RL) is learning by interact-
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ing with an environment. An RL agent learns from the consequences of its actions,

rather than from being explicitly taught and it selects its actions on basis of its past

experiences (exploitation) and also by new choices (exploration), which is essentially

trial and error learning. The reinforcement signal that the RL-agent receives is a

numerical reward, which encodes the success of an action’s outcome, and the agent

seeks to learn to select actions that maximize the accumulated reward over time.

1.3 Deep Learning

Deep learning (DL) is a branch of machine learning based on a set of algorithms that

attempt to model high-level abstractions in data by using model architectures, with

complex structures or otherwise, composed of multiple non-linear transformations.

Deep learning is part of a broader family of machine learning methods based

on learning representations of data. An observation (for example, an image) can be

represented in many ways such as a vector of numerical values, or in a more abstract

way as a set of edges, regions of particular shape, etc. Some representations make

it easier to learn tasks from a set of images, audios and documents. One of the

great progressions of deep learning is replacing handcrafted features with efficient

algorithms for unsupervised or semi-supervised feature learning and hierarchical

feature extraction.

Deep learning are based on the supervised or unsupervised learning of multiple

levels of features or representations of the data. Higher level features are derived

from lower level features to form a hierarchical representation.
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1.4 Deep Learning in Computer Vision

In 1998, Lecun proposed convolution neural network on MNIST dataset, a popular

dataset for image classification. MNIST is composed of handwritten digits and

includes 60000 training examples and 10000 test examples. The current best result

on MNIST is an error rate of 0.23%, achieved by Ciresan et al. in 2012, the real

impact of deep learning in image or object recognition, one major branch of computer

vision, was felt in the fall of 2012 after the team of Geoff Hinton and his students

won the large-scale ImageNet competition by a significant margin over the then-

state-of-the-art shallow machine learning methods. The technology is based on

20-year-old deep convolutional nets, but with much larger scale on a much larger

task, since it had been learned that deep learning works quite well on large-scale

speech recognition. In 2013 and 2014, the error rate on the ImageNet task using

deep learning was further reduced at a rapid pace.
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Chapter 2

Introduction

In recent years, deep Convolutional Networks(ConvNets) have become the most

popular architecture for large-scale image recognition tasks. The field of computer

vision has been pushed to a fast, scalable and end-to-end learning framework, which

can provide outstanding performance results on object recognition, object detec-

tion, scene recognition, semantic segmentation, action recognition, object tracking

and many other tasks. With the explosion of computer vision research, Advanced

Driver Assistance System (ADAS) has also become a main stream technology in the

automotive industry. Autonomous vehicles, such as Google’s self-driving cars, are

evolving and becoming reality. A key component is vision-based machine intelli-

gence that can provide information to the control system or the driver to maneuver

a vehicle properly based on the surrounding and road conditions. There have been

many research works reported in traffic sign recognition, lane departure warning,

pedestrian detection, and etc. Car detection is a type of object detection, which is

related to rich applications in car safety, surveillance, and robotics. This paper is

to evaluate if the success of ConvNets is applicable to real-time vehicle detection.

Vehicle detection is challenging due to the changes of road conditions, lighting,
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positions and viewpoints. Many classical object detectors have been developed for

car detection. They use feature extraction from image, such as HOG, combined with

a classifier, such as Support Vector Machine(SVM) or Boosting, to train a model to

detect the object. Deformable Part-based Model (DPM) have also been proposed

to handle complex object variations.

Among recent works using ConvNets, Region Convolutional Neural Networks(R-

CNN) attract great attentions in the field of computer vision. It combines selective

search, a method of proposal generator, CNN feature extractor, SVM classifier, and

bounding box regressors to provide an end-to-end trainable framework for object

detection. R-CNN utilizes ConvNets, which is pre-trained by a large-scale image

dataset such as ImageNet or PLACE, to extract feature from region proposals and

achieves an outstanding performance of objection detection evaluated on PASCAL

VOC dataset.

Inspired by the R-CNN framework, we formulate a technique specifically for car

detection by making training pipeline more unified and reducing the complexity of

R-CNN framework. Firstly, we focus on two classes only - car or non-car, so we

remove the SVM classifier for each class in R-CNN and substitute it with a softmax

classifier by CNN, which produce an even better end-to-end trainable network than

R-CNN. To compensate the possible performance degradation caused by the removal

of SVMs, we carefully fine-tune the CNN using the KITTI car detection dataset.

Secondly, to reduce the complexity of running time for R-CNN model, we reduce

the net structure of fully connected (FC) layers since many weights in FC layers are

redundant.

The rest of this paper is organized as follows. In Section 2, we review some

related works. In Section 3, we present the details of our work followed by the

experimental result in Section 4. We conclude our work and future work in Section

6



5.

2.1 Prior work on Object Detection

The following will present a brief review about some related works in object detection

and vehicles detection.

In this section, we will present a brief review of some related works in object de-

tection and vehicles detection. In recent years, object detection has achieved many

successes in computer vision field, from raw images (e.g. image pixels) to hand-

crafted features, such as HOG or SIFT (e.g. [51], [42], [55] ), for the improvement of

detection accuracy. These features are often combined with SVM or Boosting [44]

algorithms that are widely used in applications such as pedestrian detection.

There are also several works about deformable part-based model (DPM) by

Felzenszwalb et al. [13]) and their derivatives [14] for object detection. The approach

was the winner of PASCAL Object Detection Challenge in 2012 and the object

detector achieved excellent results on the PASCAL and INRIA people detection

datasets. DPM extends HOG feature and combines it with a discriminative model

together. Their approach uses ensemble SVM [35] as well as latent SVM based

on HOG features from a limited dataset. But their approach needs an exhaustive

search for all possible locations and different scales to detect objects within an image.

Another limitation is of using weak features usually HOG [9]).

With the appearance of large scale labeled datasets, e.g. ImageNet [10], and the

surge of powerful computing machines, Krizhevsky et al. [26] won the Large-Scale

Visual Recognition Challenge (ILSVRC-2012) and their CNN-based approach has

been widely used in object classification. Most recently, OverFeat [45] uses a CNN

as a regressor to localize objects in a coarse sliding-window detection framework.
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In ILSVRC 2013, Ross proposed a R-CNN framework for ImageNet detection and

obtained 31.4% mAP , which is an increment of 7.1% comparing to OverFeat [45] at

24.3% mAP. Their method utilizes transferrable feature from pre-trained CNN to a

unknown dataset. When combined with a fast object proposals selection method, it

achieves state-of-art results on PASCAL VOC dataset. Our work is inspired by R-

CNN but applies specifically for vehicle detection using KITTI dataset. For vehicle

detection, Ohn-Bar [40] proposed a method using AdaBoost, which employed pixel

lookup features for fast detection and showed some promising results.
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Chapter 3

Convolutional Neural Network for

Vehicles Detection

In this section, we will talk about detailed method that employed in our vehicle

detection framework. We propose a method for object detection using deep con-

volutional networks, especially on car detection. Convolutional neural networks

(CNN) have demonstrated great success in various computer vision tasks. Our ap-

proach is simple, by transferring the rich feature hierarchies of CNN learned by

large scale image dataset to specific task - car detection. We also evaluate the per-

formance of the car detection algorithm using KITTI dataset. We improve runtime

performance through algorithmic and implementation optimizations and are able to

achieve near-realtime frame rates of over 10 FPS for high resolution images. Our

proposed method can achieve the detection mean average precision of 66% on the

KITTI car detection dataset.
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3.0.1 Proposals generation

Some recent works on object proposals attempt to improve the detection accuracy

by reducing the number of candidates and possible regions, which may increase the

recall of detection result. These works includes objectness [1], selective search [49],

BING [6], Edge Boxes [57], CPMC, Geodesic object proposals(GOP [25], MCG [2]

and most recently LPO [24]. In our framework, we choose Edge Boxes as the pro-

posal generator. The main idea behind the Edge Boxes is based on the edge map of

an image. Compare to selective search used in original R-CNN pipeline, Edge Boxes

generate 2k object proposals within 0.2 seconds, while selective search need more

than one second. We also compare the results which proposals generated by MCG

shows in figure 2.

3.0.2 Early rejection of proposals

To reduce the computational time on CNN forward passing, which is only needed

in predicting process, we design a new model for objectness also based on CNN.

In order to decide whether the proposals is an object or not, the objectness CNN

is a simple binary classifier. We use the edge box results as training data: pro-

posals with 70% overlap on ground truth are set as positive sample and the oth-

ers are set as negative samples. We finetune a four convolutional layer model,

initialized with Alexnet pretrain model. During test, we simply pass all the pro-

posals generated by Edgebox and re-rank them using softmax score from object-

ness CNN model. Our experiments show that using only the top 50 proposals

from our objectness CNN model can achieve comparable results from using all

2000 proposals from Edgebox. In addition, we find this early rejection module
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can speed up our detector considerably by passing at most 50 samples to VGGNet

or GooogleNet, resulted in much less computational time than R-CNN approach.

3.0.3 Network architectures

Starting with LeNet-5 [27], CNN has form a standard structure with stacked con-

volutional layers, each optionally followed by local response normalization and max

pooling layer, and also several fully-connected layers at the output. The deep Con-

vNets design attracts many researchers to work on it. Variants of the LeNet-5 model

become prevalent in image classification and they have achieved the unprecedented

results to some classical datesets, such as MNIST, CIFAR-10, CIFAR-100, and most

notably the ImageNet. In the past several years, many famous network structures

have been proposed for image classification, such as AlexNet [26], GoogLeNet [48],

VGGNet [46], and so on. Some trends can be observed from the evolution of AlexNet

to VGGNet: smaller convolutional kernel size, smaller convolutional strides, and

deeper network architectures. These are effective techniques that can improve the

performance for object recognition.

GoogLeNet. It is essentially a deep convolutional network architecture named

Inception, whose basic idea is Hebbian principle and the intuition of multi-scale pro-

cessing. An important component of the Inception network is the Inception module.

Inception module is composed of multiple convolutional filters with different sizes

alongside each other. In order to speed up the computational efficiency, 1×1 convo-

lutional operation is chosen for dimension reduction. GoogLeNet is a 22-layer net-

work consisting of Inception modules stacked upon each other, with occasional max-

pooling layers with stride 2 to halve the resolution of grid. More details can be found
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in its original paper[48].

VGGNet. It is a new convolutional architecture with smaller convolutional

size (3 × 3), smaller convolutional stride (1 × 1) , smaller pooling window (2 × 2),

and deeper structure (up to 19 layers). The VGGNet systematically investigates

the influence of network depth on the recognition performance, by building and

pre-training deeper architectures based on the shallower ones. Two successful net-

work structures are proposed for the ImageNet challenge: VGG-16 (13 convolu-

tional layers and 3 fully connected layers) and VGG-19 (16 convolutionallayers

and 3 fully-connected layers). More details can be found in its original paper [46].

DeepCar. We name our proposed model as DeepCar for vehicle detection using

deep ConvNets. Due to the high accuracy and rich feature on VGGNet, we choose

VGGNet with 16 layers as the basis. Because an average forward pass of VGGNet

need 2298.68 ms and each image has 2k proposals generated by EdgeBox, we have

to modify the VGGNet to reduce the forward time. Because more depth layers often

results higher accuracy of a CNN model, we opt not to reduce the convolution layers

in VGGNet. The computational time of forward and back propagation is largely

depended on the fully connected layers, so we decided to prune 3/4 of weights in the

fully connected layers (FC-6, FC-7).

3.0.4 Data augmentation

In the R-CNN model, they choose the bounding box with IoU (intersection over

union) larger than 0.5 as positive data and others as negative (or background)

data. For SVMs training process, they use the ground truth as positive data

12



to improve localization precision and IoU less than 0.3 as negative data. In our

work, all the training data are extracted from the raw images. Our data aug-

mentation schemes can be described as follows. For the detection problem, the

number of background proposals is typically much larger than that of the posi-

tive proposals during the test time. We generate 2k proposals for each images

and calculate the IoU with ground truth. We set two different choices during the

model training process. First, if the IoU with ground truth less than 0.5, we set

these proposals as negative data and the rest as positive data. Secondly, the IoU

with ground truth higher than 0.7 is set as positive data and less than 0.7 are set

as negative data. The last step is to shuffle all data. By designing the training

data in this way, we can achieve a precise localization without class specific SVMs.

3.0.5 Feature learning

For feature learning, we can finetune the pre-trained CNN models using the gener-

ated training data from KITTI dataset. We finetune the four models described above

as our pre-trained models. These four models are all stacked with several convolu-

tional layers, also pre-trained by the ILSVRC2012 ImageNet dataset. The last layer

(FC-8) has two output: 0 for vehicle class and 1 for background. We will describe the

detailed experiments and results in the next section.

3.0.6 Object detection

Next step is to detect objects using trained CNN model. Firstly, we generate some

region proposals by Edge Boxes and then resize each proposal to the input blob size

of each CNN model (for AlexNet is 227 and for VGGNet and GoogleNet is 224).
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Then, we forward each proposal to CNN model and obtain the softmax output for

each proposals. Each element of softmax output represents the probability of corre-

sponding class (background or vehicle).

Subsequently, we employ the non-maximum suppression (NMS) algorithm to ig-

nore the redundant proposals. The idea is to sort the proposals by their confidence

scores and then ignore the proposals overlapping with a higher-scored proposal. The

overlapping threshold is typically defined as the IoU between two proposals. Note

that the IoU threshold will affect the performance of our detector, which should be

tuned carefully to achieve the best performance.

3.0.7 Drop the SVM

As discussed in Section 2.1, R-CNN involves training an SVM classfier for each tar-

get object class as well as finetuning the CNN features for all classes. An obvious

question is whether SVM training is redundant and can be eliminated. The finetun-

ing process learned the last fully connected layers for the softmax predictor on top

of CNN, whereas SVM training learns a linear predictor SVM the same features. In

the first case, The softmax score Ps is an estimate of the class posterior for each

proposals, in the second case Pc is a score that discriminates class c from any other

class. In our case background is treated as one of the classes. As verified by our

experiments in Section 4, Ps works poorly as a score for an object detector.However,

and somewhat surprisingly, using Pn = Ps/P0 will lead to better performance nearly

as good as using an SVM as score, where the P0 is the probability of the background

class.
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3.0.8 Bounding box refinement

We apply non-maximal suppression (NMS), which is a popular post-processing

method for eliminating redundant object detection windows, for selected bounding

boxes passed through by CNN before being evaluated. Non-maximum suppression

can eliminate duplicated bounding box regions with higher softmax score. Starting

from the highest ranked region in an image, other regions are iteratively removed

if they overlap more than 0.3 with any of the currently retained regions so far.

3.1 From CNN to LSTM

Recurrent Neural Networks(RNN) have been used for many vision tasks for decades.

Recently, RNN are explosive to be used in natural language processing(NLP), speech

recognition and machine translation. A significant

To produce intermediate representations, we use expressive image features from

GoogLeNet that are further fine-tuned as part of our system. Our architecture can

thus be seen as a “decoding” process that converts an intermediate representation

of an image into a set of predicted objects. The LSTM can be seen as a “controller”

that propagates information between decoding steps and controls the location of the

next output . Importantly, our trainable end-to-end system allows joint tuning of

all components via back-propagation.

3.1.1 RNN background

Recurrent Neural Networks can be used for modeling complex temporal dynamics

information by mapping input sequences to a sequence of hidden states. Although
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RNN has been successfully used in speech recognition and natural language process-

ing, but not many works try to resolve the non-sequence problems, such as object

detection and object recognition. Due in part to the vanishing and exploding gra-

dients problem that can result from propagating the gradients down through the

many layers of the recurrent network, each corresponding to a particular timestep.

[?] propose a CNN+LSTM framework for people detection in crowded scene to

form a end-to-end trainable system. They use CNNs to get the rich feature then use

RNN with LSTM units to decode image content into a coherent real-valued output

of variable length. Inspired by their work, we implement LSTM for car detection

with CNN feature.

3.2 Experiments

Dataset description. The KITTI object detection benchmark consists of 7481

training images and 7518 test images, comprising a total of 80256 labeled objects

and 9 classes: ”Car”, ”Van”, ”Truck”, ”Pedestrian”,”Person sitting”, ”Cyclist”,

”Tram”, ”Misc” or ”DontCare”. All images are color. We split training dataset

for training and validation, which split as 5500 and 1981 images. Also we select

images with object ”Car”, ”Van”, and ”Trunk” for our experiment. All the result

we describe below use the training image to train and most result are based on

validation set. The detailed results will discuss in next section.

We use the Caffe [23] and cuDNN [7] libraries for our convolutional network

implementation. All experiments were performed on one workstation equipped with

a hex-core Intel 4790K CPU with 32 GB of memory. A single NVIDIA Tesla K40

with 12 GiB of memory was used for GPU computations.

Ensemble of Multiple CNNs: Several successful deep CNN architectures have
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been designed for the task of object recognition at the ImageNet Large Scale Vi-

sual Recognition Challenge. These architectures can be roughly classified into two

categories: (i) deep CNN including AlexNet and Clarifai, (ii) very-deep CNN includ-

ing GoogLeNet and VGGNet. We exploit these very-deep networks in our proposed

Object-Scene CNN architecture and aim to verify the superior performance of deeper

structure.

3.3 From CNN to LSTM

Recurrent Neural Networks(RNN) have been used for many vision tasks for decades.

Recently, RNN are explosive to be used in natural language processing(NLP), speech

recognition and machine translation. A significant limitation of simple RNN models

which strictly integrate state information over time is known as the “vanishing

gradient” effect: the ability to back-propogate an error signal through a long-range

temporal interval becomes increasingly impossible in practice. To resolve “vanishing

gradient” issue, recently many works proposed a LSTM unit and show improvement

for performance.

To produce intermediate representations, we use expressive image features from

GoogLeNet that are further fine-tuned as part of our system. Our architecture can

thus be seen as a “decoding” process that converts an intermediate representation

of an image into a set of predicted objects. The LSTM can be seen as a “controller”

that propagates information between decoding steps and controls the location of the

next output . Importantly, our trainable end-to-end system allows joint tuning of

all components via back-propagation.

17



3.3.1 RNN background

Recurrent Neural Networks can be used for modeling complex temporal dynamics

information by mapping input sequences to a sequence of hidden states, and hidden

states to outputs via the following recurrence equations:

Although RNN has been successfully used in speech recognition and natural

language processing, but not many works try to resolve the non-sequence problems,

such as object detection and object recognition. Due in part to the vanishing and

exploding gradients prob- lem [12] that can result from propagating the gradients

down through the many layers of the recurrent network, each corresponding to a

particular timestep. [?] propose a CNN+LSTM framework for people detection in

crowded scene to form a end-to-end trainable system. They use CNNs to get the

rich feature then use RNN with LSTM units to decode image content into a coherent

real-valued output of variable length. Inspired by their work, we implement LSTM

for car detection with CNN feature.

3.3.2 Best practice of finetune

In our work, we have finetune full VGGNet, reduced VGGNet, GoogleNet and

AlexNet on KITTI car detection dataset. First, we try to reproduce R-CNN result,

but apply our model achitecture on on PASCAL 2007 dataset [11] which has 20

object class and one background class.

We use the almost the same protocal with R-CNN provided solver, but we reduce

the iteration for just 40k of finetune the AlexNet. Also we used ”xaviar” initial-

ization for new layers(FC8 layer). Furthermore, we use ”poly” learning rate policy

instead of ”step” policy as it is proved to converge faster than ”step”. The result

presented in section 5.
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Figure 3.1: mAP on the KITTI car detection data as proposals generted by EdgeBox
and model by GoogleNet

Figure 3.2: mAP on the KITTI car detection data as proposals generted by MCG
and model by GoogleNet

Figure 3.3: mAP on the KITTI car detection data as proposals generted by EdgeBox
and model by Reduce VGGNet
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VOC2007 IoU mAP
0.1 0.3589
0.2 0.3665
0.3 0.3712
0.4 0.3722
0.5 0.3680

ensemble 0.3738

Table 3.1: Finetune AlexNet on PASCAL VOC2007.

KITTI on VGGNet. We then finetune VGGNet on KITTI dataset. To explore

the finetuning process, we try several methods for updating weights. We use the very

deep VGG16 model to validate the convolutional layers are important for detection.

We first make first 13 layers remain fixed at their initialization, and only the 3-layer

fully connected layers will be updated, and achieve the mAP as 48.52%. Then we

release the all conv5 1 to conv5 3 convolutional layers, and set 10 times learning rate

than previous layers, which make mAP increase to 49.80%. We continue to explore

the effect on convolutional layers for detection, to release conv4 1 to conv4 3 layers,

we get 50.32% mAP.

Faster detection on VGGNet. For VGGNet-16 model, one forward pass

time average need 2000 ms or more, for detection task the large amount proposals

need to forward several thousands time for fully connected layers. We use offers a

simple way to compress fully connected layers. By sub-sampling the weight of fc6,

fc7 and fc8 weights, we compression the 4096 to 1024 by average sampling. On the

other size, the target of our task is specifically for two class (car and non-car), the

original fully connected layer weights is heavily redundant for our scenarios. This

simple compression method gives good speedups for detection without the need for

additional fine-tuning.
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IoU mAP
from fc 48.52%

from conv5 49.80%
from conv4 50.32%

Table 3.2: Finetune VGGNet16 on KITTI.

Figure 3.4: mAP on the KITTI Benchmark by CNN + LSTM

KITTI Benchmark Easy Moderate Hard

Car (Detection) 83.70 % 82.36 % 68.35 %

KITTI on GoogleNet. Finally, we apply the very deep GoogleNet model on

the KITTI dataset, in order to balance the performance and speed, we just finutune

the the 3-layer classifier, which means the learning rates for other layers remain

fixed at their initialization. Compared to VGGNet, we can obtain a better mAP as

51.50%. Also the speed for GoogleNet improved a lot than VGGNet.

Compare of proposals. R-CNN starts by running an algorithm such as Selec-

tive Search(SS) to extracts from an image x a shortlist of of image regions R that

are likely to contain objects. To reduce the complexity of the R-CNN, we adopt

edge box instead of selective search used in R-CNN. The figure shows that even

though the mean average precision (mAP) between edge boxes and selective search

are almost the same, edge boxes runs much faster than selective search.
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EdgeBox[57] is a scoring function is evaluated in a sliding window fashion. This

method uses object boundaries estimates (obtained via structured decision forests)

as feature for the scoring. Interestingly, the authors propose tuning parameters to

optimize recall at a desired overlap threshold.

MCGMC[2] is one of the most recent methods combining gPbUCM and CPMC.

The authors propose an improved multi-scale hierarchical segmentation, a new strat-

egy to generate proposals by merging up to 4 segments, and a new ranking procedure

to select the final detection proposals.

For these proposals, in the order of a few thousands per image, may have arbi-

trary shapes, but in the following are assumed to be converted to rectangles. For

fast detection, we select EgdeBox as proposals generator as the header of the de-

tection pipeline. Also we measure the proposal generator MCG to evaluate the

performance. We find that the increase number of proposals would not increase the

performance for detection result.

We can draw several interesting conclusions. First, for the same low number of

candidate boxes, EdgeBox is much better than any fixed proposal set; less expected

is that performance does not increase even with 3 times more candidates, indicating

that the CNN is unable to tell which bounding boxes wrap objects better even when

tight boxes are contained in the shortlist of proposals. This can be explained by the

high degree of geometric invariance in the CNN.

speed of detection time. In the testing procedure, we first generate proposals

for each test image by edge boxes. The average run time for each image(1242×375)is

around 0.15 seconds. However, for each image the number of proposals ranges from

2000 up to 6000. We use the Caffe framework, the forward pass for each batch(batch

size is 128) takes roughly 500 ms per batch and around 5 to 15 seconds per image.

Based on the analysis above, we try to explore the real time application, and try to
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diminish the number of proposals to 200 per image heuristically. and found directly

performs really poorly, with a drop of about 10% mAP point.

3.3.3 Discussion

Comparison with state-of-the-art: To evaluate the performance of the detec-

tion, we use the mean average precision (mAP). The mAP equals to the integral

over the precision-recall curve.To determine the precision-recall curve, we need to

compute the true positive and false positive value of our prediction first. We use the

IoU (intersection of union) to determine the successful detection.Then we designate

a threshold for IoU, for example 0.5, if the IoU exceeds the threshold, the detection

marked as correct detection. Multiple detections of the same object are considered

as one correct detection and with others as false detections. After we get the true

positive and false positive values, we can compute the precise-recall curve, and then

evaluate the mAP.

3.3.4 Conclusion

In this work we presented CarNet, a simple end to end trainable convolutional neural

network architecture that works good in object detection. As part of developing and

analyzing this approach we provided analysis of many architectural choices for the

network, discussing best practices for training, and demonstrated the importance

of finetuning, proposal generation and how deep the model effect the detection

performance.

Our most significant finding is that current CNNs do contain sufficient spatial

information for accurate object detection, although in the convolutional rather than

fully connected layers. This finding opens the possibility of building state-of-the-art

object detectors that rely exclusively on CNNs, removing region proposal generation

23



schemes such as EdgaBox, and resulting in integrated, simpler, and faster detectors.

Our current implementation of a proposal-free detector is already much faster

than R-CNN, and very close, but not quite as good, in term of mAP. However, we

have only begun exploring the design possibilities and we believe that it is a matter

of time before the gap closes entirely. In particular, our current scheme is likely to

miss small objects in the image. Although theoretically, features from higher level

layers of a network have very large receptive fields, in practice the size of receptive

fields at higher levels is much smaller.

Given the simplicity and easy of training, we find these results very encouraging.

In our ongoing work, we are exploring combining our technique with proposal-free

framework, such as done in [17].
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Figure 3.5: Result using DeepCar model
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Figure 3.6: Result using LSTM model
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Chapter 4

Road Marking Detection and

Classification

This chapter presents a novel approach for road marking detection and classification

based on machine learning algorithms. Road marking recognition is an important

feature of an intelligent transportation system (ITS). Previous works are mostly de-

veloped using image processing and decisions are often made using empirical func-

tions, which makes it difficult to be generalized. Hereby, we propose a general

framework for object detection and classification, aimed at video-based intelligent

transportation applications. It is a two-step approach. The detection is carried

out using binarized normed gradient (BING) method. PCA network (PCANet) is

employed for object classification. Both BING and PCANet are among the latest

algorithms in the area of machine learning. Practically the proposed method is

applied to a road marking dataset with 1,443 road images. We randomly choose

60% images for training and use the remaining 40% images for testing. Upon train-

ing, the system can detect 9 classes of road markings with an accuracy better than

96.8%. The proposed approach is readily applicable to other ITS applications.
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4.1 Introduction

Object detection and classification have attracted considerable interests from re-

searchers in recent decades. Various databases are built to evaluate the latest object

detection and classification algorithms, such as the Caltech101 [12] and Caltech256

[20], Pascal visual object classes dataset [VOC], ETHZ shape classes [15], face de-

tection dataset, and etc. These datasets have been broadly used as benchmarks for

new algorithm development and performance comparison.

In recent year, the approach of machine learning has become increasingly pop-

ular to explore the structures or algorithms that a system can be programmed to

learn from data or experience. It has been widely used in computer vision, search

engines, gaming, computational finance, robotics and many other fields. Since Hin-

ton et. al proposed an effective method to train the deep belief networks[21] in 2006,

deep learning networks have gained lots of attentions in the research community.

Deep learning networks are able to discover multiple levels of representations of a

target object. Therefore, they are particularly powerful for the tasks of pattern

recognition. For instance, the convolution neural network (CNN) has demonstrated

superior performance on many benchmarks [CNN1, CNN2], although CNN requires

significant computations. PCA network (PCANet) [3] is a type of deep learning

networks that has been introduced recently. When compared to CNN, the structure

of PCANet is much simpler, but it has been demonstrated as an effective method for

image classification [3]. The PCANet architecture mainly consists of the following

components: patch-mean removal, PCA filter convolutions, binary quantization and

mapping, block-wise histograms, and an output classifier. More details about the

PCANet algorithm will be discussed in Section [sec:Proposed-Method].

Advanced Driver Assistance System (ADAS) has become a main stream tech-
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nology in the auto-industry. Autonomous vehicles, such as Google’s self-driving

cars, are evolving and becoming reality. A key component is video-based machine

intelligent that can provide information to the system or the driver to maneuver a

vehicle properly based on the surrounding and road conditions. There have been

lots of research works reported in traffic sign recognition [36], [56], lane departure

warning [lane], pedestrian detection [8], and etc. Most of these video-based object

detection methods are developed using the classic image processing and feature ex-

traction algorithms. For different types of objects, certain features usually works

better than others as reported in the literature. Often, object detection is followed

by a classification algorithm in these intelligent transportation applications. Typical

classifiers, such as Support Vector Machine (SVM), artificial neural network, and

boosting, are applied to identify one or multiple classes of the detected objects.

4.2 Related work

Road marking detection is an important topic in Intelligent Transportation System

(ITS) and has been researched extensively. As described in [37], many previous

works were developed based on various image processing techniques such as edge

detection, color segmentation and template matching. Road marking detection can

also be integrated as part of a lane estimation and tracking system [50]. The lane

borders and arrow markings were detected using scan-lines and template matching

methods. The information of the lane types, i.e. forward, left-turn, and right-

turn, were sent to the console or the driver. In [31], it presented a method of lane

detection. Lines were extracted from the original image through edge detection,

following by some rule-based filtering to obtain the candidates of lanes. Additional

properties such as brightness and length of the lines were examed to detect the
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lanes. [16] was able to detect and recognize lanes, crosswalks, arrows and many

other markings on the road. The road marking on an image were extracted first

using a modified median local threshold method. The road displayed on the image

was a trapezoidal area due to the effect of camera angle and 3D space projection.

Thus, road markings on the image also had distortions and variations in shape and

size. Then perspective transform was applied to convert the trapezoidal road area

into a rectangular area, which reduced the distortions and variations of the road

marking, making it easier for detection. Similarly, perspective transformation was

also applied in [32]. The lanes were detected using Augmented Transition Network

(ATN). Subsequently, the detected lanes were used to locate the Region of Interests

(ROIs) on an image for detecting other road marking such as arrows. In [53], the

Maximally Stable Extremal Regions (MSERs) was employed as an effective way

of detecting region of interest. Both Histograms of Oriented Gradients (HOG) [8]

features and template matching methods were used for classification.

4.3 proposed method

We propose a system that is capable of detecting and recognizing different road

markings. We use BING feature to find and locate the potential objects on a

road image, i.e. road markings. The potential objects are then classified by a

PCANet [chan2014pcanet] classifier to obtain the final results. Unlike the traditional

approach of tuning image processing techniques geared specifically for road marking

detection, our system is an extendable framework that can be adopted to other

detection and classification tasks.
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4.4 BING feature for detection

The BING feature is employed to find the potential objects in an image. It is the

binary approximation of the 64D norm of the gradients (NG) feature. Each image

window is resized to 8× 8 pixels for computational convenience, and its norm of the

gradients forms the 64D NG feature. It represents the contour of the target object

in a very abstracted view with little variation. Thus, the BING features can be used

to find objects in an image. It is very efficient in computations compared to some

existing featureextract algorithms. The BING feature is suitable for finding road

markings, because the road markings have closed boundaries and high gradients

around the edges.

In order to locate the target objects in an image using the BING feature, we need

to train it with training samples. The positive samples are true objects manually

labeled in images and the negative samples are the background in images. The

machine learning method inside BING is actually linear SVM. It is observed that

some window sizes (e.g. 100 × 100 pixels) are more likely to contain objects than

other sizes (e.g. 10×500 pixels). Therefore an optional fine-tune step trains another

SVM, taking window size into consideration. These two SVMs form a cascaded

predictor with better accurate.

Although BING is an efficient way of finding objects in an image, it has certain

limitations. First, because the 64D NG feature or BING feature represents the object

in a very abstracted view, the trained detector does not filter some background

very well. In other words, some background may have similar BING feature as

the true objects, and they may still be selected as potential objects. Secondly,

as a bounding box based detection algorithm, it has the common problem that a

bounding box may not accurately locate the true object. Such inaccuracy may
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cause failure in the subsequent recognition stage. However, these limitations can

be alleviated or overcome. As a fast object detection method, we manually assign

an arbitrary number that represents the number of potential objects to be selected

by the detector, according the their confidence values. This number is often much

large than the number of true objects in an image. For example, BING may provide

30 potential objects from an image, while there are only one or two true objects

in it. Therefore, the true objects are unlikely to be missed, but adversely many

false objects might also be included in the candidates pool. We deal with the false

candidates in the classification step using PCANet. For the problem of inaccurate

bounding box locations, we have collected a large number of true objects at various

bouding box locations by multiple runs of BING detection. Therefore, the true

objects can still be recognized even if the bounding box locations are not precise. Fig.

2 shows an example that BING produces 30 candidates through object detection.

4.5 PCANet for Detection

Taking the detection results from the BING stage, we build a PCANet classifier

to filter out the false candidates and to recognize the true road markings. The

PCANet classifier consists of a PCANet and a multi-class SVM. The structure of

PCANet is simple, which includes a number of PCA stages followed by an output

stage. The number of PCA stages can be varied. A typical PCANet has two stages.

According to [chan2014pcanet], the two-stage PCANet outperforms the single stage

PCANet in most cases, but increasing the number of stages does not always improve

the classification performance significantly, depending on the applications. In this

work, we choose two-stage PCANet.

To a certain extend, the structure of PCANet is to emulate a traditional convolu-
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tional neural network [Hinton2012]. The convolution filter bank is chosen to be PCA

filters. The non-linear layer is the binary hashing (quantization). The pooling layer

is the block-wise histogram of the decimal values of the binary vectors. There are

two parts in the PCA stage: patch mean removal and PCA filters for convolution.

For each pixel of the input image, we have a patch of pixels whose size is the same as

the filter size. We then remove the mean from each patch, followed by convolutions

with PCA filters. The PCA filters are obtained by unsupervised learning during

the pre-training process. The number of PCA filters can be variant. The impact

of the number of PCA filters is discussed in [chan2014pcanet]. Generally speaking,

more PCA filters would result better performance. In this paper, we choose the

number of filters equals to 8 for both PCA stages. We find that it is sufficient to

deliver desirable performance. The PCA stages can be repeated multiple times as

mentioned above, and here we choose to repeat it only once.

The output stage consists of binary hashing and block-wise histogram. The

output of PCA stages are converted to binary values by a step function, which

converts positive values to 1 and else to 0. Thus, we obtain a binary vector for each

patch and the length of this vector is fixed. We then convert this binary vector to

decimal value through binary hashing. The block-wise histogram of these decimal

values forms the final output features. We then feed the SVM with the features

from PCANet. Fig 3. shows the structure of a two-stage PCANet. The number of

filters in stage 1 is m and in stage 2 is n. The input images are object candidates

from BING.
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4.6 Result

In our experiments, we evaluate the proposed system using the road marking dataset

provided by [53]. The dataset contains 1,443 road images, each with size of 800×600

pixels. There are 11 classes road marking in these images. In this paper, we evaluate

9 of them because the data of the other 2 classes are insufficient for machine learning.

We train the object detection model by manually labeling the true road markings

in the images. The PCANet model is trained iteratively to ensure its accuracy. The

initial training samples are manually labeled from a small portion of the dataset,

and the trained model along with the object detection model is applied to the whole

dataset to detect road markings. The results are examined and corrected by human

interference in order to ensure the correctness of the data during the next training

iteration. Through the iterative procedure, one road marking on an image can

be detected multiple times and generates multiple training samples. Because of

the utilization of the BING feature and its object detection model, the true samples

may be extracted using various bounding boxes, making the PCANet classifier more

robust.

We measure the performance of our PCANet classifier by using 60% images

for training and 40% images for test. The 1,443 images are re-ordered randomly

and thus the training and test images are selected randomly without overlap. The

window-sized training samples and test samples are from the training images and

test images respectively. We perform data augmentation over the collected samples

by transforming the original images with parameters such as roll, pitch, yaw, blur

and noise. Table [Tab:result] shows the evaluation results of the PCANet classifier,

which is referred as the confusion matrix. The test samples for each class is 250.

The cell at the ith row and the jth column gives the percentage that the ith sam-
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ples are recognized as the jth samples. The “OTHERS” class represents negative

samples without road marking. Comparing to the previous results in [Wu2012], our

classification accuracy is more consistent and significantly better especially for the

“FORWARD” sign.

4.7 Conclusion

In this chapter, we present a framework for object detection and classification using

the latest machine learning algorithms including BING and PCANet. BING can

quickly identify the target classes of objects after the system is trained with a set

of images with target objects. Subsequently, these detected objects are classified by

the PCANet classifier. Similarly, the classifier is also pre-trained using the dataset

and is capable of identifying many types of objects simultaneously. As an example,

we demonstrate this approach by building a system that can detect and identify

9 classes of road marking at very high accuracy. More importantly, the proposed

approach can be employed for many other video-based ITS applications provided

that sufficient training datasets are available.
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Chapter 5

End-to-end Convolutional

Network for Weather Recognition

with Deep Supervision

We propose a novel weather recognition algorithm based on pixel-wise semantic in-

formation. The proposed end-to-end convolutional network model combines a seg-

mentation model with a classification model. The segmentation model is inspired

by the fully convolutional net-works (FCN) [33] and is able to produce intermedi-

ate pixel-wise semantic segmentation maps. Next, an ensemble of color image and

semantic segmentation maps feed to the next classification model to designate the

weather category. Since the proposed model is complex, it makes training more dif-

ficult and computationally expensive. In order to train deeper networks, we transfer

the early supervision idea from deeply-supervised nets [28] into our segmentation

task by adding auxiliary supervision branches in certain intermediate layers dur-

ing training. The experiments demonstrate that the proposed novel segmentation

model makes the training much easier and also produces competitive result with the
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Figure 5.1: The proposed end-to-end convolutional network model combines a se-
mantic segmentation model with a weather classification model.

current state-of-the-art FCN on the PASCAL Context dataset. By employing our

segmentation network for weather recognition on a end-to-end training classification

framework with additional semantic information, we gain a significant improvement

(i.e., from the state-of-the-art 91.1% to 95.2%) for the public weather dataset.

5.1 Introduction

Understanding weather conditions is crucial to our daily life. Weather conditions

strongly influence many aspects of our daily lives from solar technologies, outdoor

sporting events, to many machine application including the driver assistance systems

(DAS), surveillance and real time graphic interaction. While most current existing

weather recognition technologies rely on human observation or expensive sensors,

they limit scalability of analyzing local weather conditions for multiple locations.

Thanks to the cost of decreasing cameras, cameras have spread extensively every-

where in the world. Image-based weather recognition derived from computer vision

techniques is a promising and low cost solution to automatically obtain weather

condition information anywhere in the world.

Semantic information can successfully help provide effective cues for scene classi-
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fication. Li et al. [29] proposed an object bank representation for scene recognition.

The word ”object” mentioned is a very general form where any number of data points

can be classified as such, from cars and dogs, to sky and water. This representation

carries high-level semantic information rather than low-level image feature informa-

tion, making its result superior than other methods of high-level visual recognition

processes. However, this approach also highly relies on the performance of object

detection and the cost of scaling is very high to expand the object categories.

In this paper, we propose an end-to-end convolutional network to predicts the

class of the weather on a given image (e.g., cloudy, sunny, snowy, and rainy). This

model combines a segmentation model with a classification model shown in Figure

5.1. The former model conveys high-level semantic information to the latter model

which gets better accuracy. During the training, the end-to-end learning framework

automatically decides the most re-liable features of the specific category, e.g., the

dusky sky corresponding to cloudy, but the non-uniform dusky color on roads might

be the shadow corresponding to sunny.

The main contributions of this work can be summarized as follows.

1. To the best of our knowledge, this is the first paper to propose an end-to-

end convolutional network model which combines a segmentation model with a

classification model, allowing for high-level visual recognition tasks.

2. The proposed model effectively conveys semantic information to the enhance

classification performance. Our results have a significant improvement over current

state-of-the-art weather classification methods. Our approach achieves an accuracy

of 94.2% instead of 91.1% from current practices [38].

3. The modified segmentation model with early supervision and global/feature

fusion can show improvement over current state-of-the art methods that involve

fully convolutional networks (FCN) [33].
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The rest of this paper is organized as follows. In Section 2, we review related

works. In Section 3, we present the details of our work followed by the experimental

result in Section 4. We conclude our work and future works in Section 5.

5.2 Related work

Only a few methods have investigated image-based weather recognition using low-

level features. These methods [43, 54, 5, 34] usually extract a set of hand crafted

low-level features from Regions of Interest (ROIs) and then train the classifiers, e.g.,

Support Vector Machine (SVM)[43, 5], Adaboost[54] and k-nearest neighbor[47].

[43] extracts features using hue, saturation, sharpness, contrast and brightness his-

tograms from the predefined global and sub region of interest (ROI). Based the

extracted features, support vector machine is applied to classify the data into three

classes, clear, light rain, and heavy rain. [54] focus the image captured in vehi-

cle. Both histograms of gradient amplitude, HSV and gray value on the road area

are extracted and classify the image into three classes (sunny, cloudy, and rainy).

In addition to the static features, the dynamic motion features also applied in [5],

extracts the color(HSV), shape, texture(LBP and gradient) and dynamic motion

features from the sky region and classify it by way of the SVM classifier. These

approaches may work well for some images with specific layouts but they fail for

weather classification of images taken in the wild, i.e., it can not be expected to

extract the features from the specific semantic regions, e.g., sky or road.

In order to better address these challenges, Cewu [34] et al. recently proposed a

complex collaborative learning framework using multiple weather cues. Specifically,

this method proposed a 621 dimensional feature vector formed by concatenating

five mid-level components, namely: sky, shadow, reflection, contrast and haze which
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correspond to key weather cues. To extract these cues, this process involves many

pre-processing techniques such as sky detection, shadow detection, haze detection

and boundary detection. This makes this model highly relies on the performance of

the aforementioned techniques.

Recently, deep convolutional neural network (CNN) have shown great potential

to learn the discriminative features and the decision boundary of classification simul-

taneously. Some pre-trained convolutional neural networks [26, 18, 4] have shown

the ability to possess rich and diverse features that have been learned from the large

scale dataset, e.g., LSVRC-2012 ImageNet challenge dataset [10]. Elhoseiny et al

[38] apply the finetuning procedure on the Krizhevskys CNN [26], which follows the

same structure in the first seven layers while the output layer (8th layer) is replaced

with two nodes, one for cloudy and one for sunny. This approach uses an extract

holistic feature without any semantic information e.g., objects category and spatial

location. However, semantic information can lead to good feature cues that con-

tribute high-level visual recognition tasks [29]. As a result, we proposed a method

to take advantage of the power of the CNN while also leveraging the classification

result based on the semantic information.

5.3 Our Method

Our proposed convolutional network model combines a segmentation model with a

classification model. To implement this, we first introduce our segmentation model

and then the classification model after.
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Figure 5.2: Illustration of our early supervision full convolutional network (ES-FCN)
models. The network consists of a main branch and one additional early supervision
loss branch, which allows the deeper network to be trained easily. Meanwhile,
this network integrates the global pooling and multiple features fusion to generate
reliable semantic segmentation results.

5.3.1 Segmentation Model: Early Supervision Full Convo-

lutional Network (ES-FCN)

Pixel-wise semantic segmentation map can be considered the most informative se-

mantic information which provides not only the category information but also the

spatial layout of each category. Recently, many CNN segmentation methods [33, 30]

have shown a promising result to extract the pixel-wise semantic segmentation map.

Inspired by the novel architecture fully convolutional neural network (FCN)[33]

which modifies the contemporary classification networks(AlexNet [26], the VGGNet

[4], and GoogLeNet [48]) to allow the network to produce a segmentation result with

correspondingly-sized input image. The format of this semantic segmentation map

is suitable for being intermediate cues for advanced scene classification. As shown in

Figure 5.1, we use the fully convolutional neural network to fulfill the segmentation

task.

We perform the network surgery of the object classification contemporary classi-

fication networks(deeply-supervised nets(DSN) [28]) to maintain feature map as the
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image format via converting original full connected layers to the convolution layers.

Since the proposed model is complex, it makes training more difficult and com-

putationally expensive. In order to train deeper networks, we transfer the early

supervision idea from deeply-supervised nets(DSN) [28] into our segmentation task

by adding auxiliary supervision branches in certain intermediate layers during train-

ing. Meanwhile, we adopt two additional procedures, ”global pooling” and ”feature

fusion”. ”Global pooling”, as shown the proposed network in Figure 5.2 smooths

out some discontinuous segmentation results and the ”feature fusion” enhances the

discriminative power of feature by combining global pooling results with coarse fea-

ture maps from previous layers. These modification can produce more accurate and

detailed segmentations shown in the experiment section.

5.3.2 Early Supervision Module

Since very deep neural network [46, 48, 28], has made great progress on large scale

image dataet - ILSVRC ImageNet Contest [10], it is incredibly hard to train the

model efficiently and effectively. VGG group suggests a 19 layer CNNs [48]. To

train the model, they finetune the larger network based on the small initialized

CNN till 19 layers. While they achieve very good performace on the ImageNet

competition, the training process is very slow and time-consuming. Their approach

also relies on experience for finetuning very deep models. Deepy-supervised nets

(DSN [28]) integrated deep supervision in intermediate hidden layer. The optimized

loss function combines intermediate hidden layer loss and final classification loss

together to prevent gradient from vanishing.

We follow the rule in DSN [28] to add the supervision module in intermediate

hidden layers. To decide where to put the deep supervision branch, we follow the

rule from [52]. In their eight layers model, the gradient start vanish at fourth

42



convolutional layers, so we decided to put deep auxiliary supervision module after

the third convolutional layers with a max-pooling operation.

Contrary to DSN with simple fully connected layers in auxiliary supervision,

our target is not the classification task, but the segmentation task. So we convert

classifiers to dense fully convolutional layer for auxiliary supervision module and

final output module. Firstly, we convert the fully connected layers into 1× 1 kernel

convolutional layers. For Pascal context segmentation task, there are 60 classes

(59 classes + 1 background), so the last convolutional layer should have 60 output

feature maps, also the output feature map size will be the same as the size of the

ground truth label.

5.3.3 Global Feature Extraction: Global Pooling

For semantic segmentation, due to the per-pixel classifier or per-patch classifier

in the top layer of CNN, the local information can lead to a final segmentation

result. However, ignoring the global information of the image would easily generate

segmentation results with small noise fragments. This problem has been solved with

many different methods. ParseNet[30] uses global pooling to get global information

and fuse with local information. FCN [33] fuses together different layers feature

map to contribute to the final output segmentation result.

Considering the FCN model [33], the features from higher level layers have very

large receptive fields (e.g. FC7 in FCN has a 404 × 404 pixels receptive field).

However if the size of a receptive field at higher levels is much smaller, it will

prevent the model from making global decisions. Thus, adding features from the

global information of the whole image is needed and is rather straightforward for

our ES-FCN framework.

To simplify our model structure, we apply a method similar with ParseNet.
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Specifically, we use global average pooling after convolution seven layer and combine

the context features from the last layer or any previous desired layer. The quality

of semantic segmentation is greatly improved by adding the global feature to local

feature map. Experiment results on PASCAL-Context [39] dataset also verifies our

assumption. Compared with FCN, the improvement is similar to using CRF to

post-process the output of FCN.

5.3.4 Feature Fusion

We get the extract the global information via global pooling to get M feature maps

of size 1 × 1 then unpooling to the same size as high level feature. The global

unpooling map concatenates with high level feature (previous layer in our setting) to

M new fusion layers using element product, as shown in Table ?? where M = 1024.

Because the features in different layers are in different scales, simple fusion of top

layer feature with low level features will lead to poor performance. Thus, ParseNet

apply L2-norm and learn the scale parameter for each channel before using the

feature for classification, which leads to a more stable training. For our model

structure, we replaced the L2-norm layers by a batch normalization layer [22] which

shows a more reliable result.

5.3.5 Ensemble Semantic Segmentation Map for Classifica-

tion

To fully utilize the segmentation result from our ES-FCN model, we proposed four

types of fusion methods for segmentation results and raw images, which transfer

the segmentation task to classification and make the whole network trainable end

to end. The fusion methods are as follows: 1. raw RGB images concatenate with 60
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channel segmentation results (63 channels in total); 2. Based on the segmentation

map, we employ a convolutional layer with 1×1 kernel size, used for feature selection

and use element-wise product with raw image. 3. generate a full segmentation map

within one channel and concatenate with a 3 channel raw image.

5.4 Experiments

We use the Caffe [23] and cuDNN [7] libraries for our convolutional network im-

plementation. All experiments are performed on one workstation equipped with an

Intel E5-1620 CPU with 32 GB of memory and an NVIDIA TiTan X with 12 GB

of memory for GPU computations.

Dataset We evaluated our algorithm on PASCAL Context dataset, which is

extend PASCAL VOC 2010. This dataset is a set of additional annotations for

PASCAL VOC 2010. It goes beyond the original PASCAL semantic segmentation

task by providing annotations for the whole scene. The segmentation results for the

59 categories(and background class) Following the same training and validation split

by FCN, we employed 4998 images for training, and 5105 images for validation. All

the results are employed by the validation set. We also use Caffe and finetune our

ES-FCN model. Without supervision model on ImageNet dataset public available

now, we start a new training process for ImageNet (ILSVRC) dataset with 1.2

million images and 1k classes.

Evaluation metrics For segmentation task, all previous works used mean In-

tersection over Union(mIoU) to evaluate performance. We not only evaluate our

model employed on mIoU and compare it with well-known results. We also use

per pixel accuracy, per label accuracy, and weighted IoU accuracy to evaluate and

compare models.

45



Train a Deep Supervision model DSN [28] reports results on the ILSVRC

subset of ImageNet [10], which includes 1000 categories and is split into 1.2M train-

ing, 50K validation, and 100K testing images (the latter has held-out class labels).

The classification performance is evaluated using top-1 and top-5 classification er-

ror. Top-5 error is the proportion of images such that the ground-truth class is not

within the top five predicted categories.

In our work, we pretrain an ImageNet-DSN model first, which contains 8 con-

volutional layers and 3 fully connected layers, using the strategy: we use stochastic

gradient descent with polynomial decay policy to train a network with five convo-

lutional layers, and then we initialize the first five convolutional layers and the last

three fully connected layers of the deeper network with the layers from the shallower

network. The other intermediate layers are initialized by Xavier [19] initialization

method, which works well in practice. Including the time for training the shallower

network, ImageNet-DSN takes around 6 days with 80 epochs on two NVIDIA TiTan

X GPUs with batch size 128. Then, we add deep supervision branch on ImageNet-

DSN model using our method in section 5.3.1. This model is trained with auxiliary

supervision that’s added after the third convolutional layer as shown in Table ??.

This model takes around 3 days to train with 35 epochs on two TiTan X GPUs with

batch size 128. The learning rate starts with 0.05 and weight decay as 1e-5 in all

our ImageNet-DSN training.

Fully Convolutional Layer To fully exploit the rich feature in ImageNet-DSN

pretrain model, we do net surgery for all the fully connected layers for supervision

module and final classifiers, simply replace fully connected to convolutional layers

with 1×1 kernel size. Also we remove the last classifiers(1000 outputs), then replace

with a convolutional layers with 1 × 1 kernel size, but the output we set as 60(59

classes + 1 background). Following PaserNet, we remove the 100 padding in the
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first convolutional layer, which employed in FCN model. To carefully design the

kernel size, we use 12× 12 kernel size in fc-6 (convolutional layer).

5.4.1 Global Feature Fusion

For simplicity, we use features from pooling layer as the global context feature. We

then apply the same model on PASCAL-Context by concatenating features from

different layers of the network. By adding global context pool6, it instantly improves

mean IoU by about 1.5%. Context becomes more important proportionally to the

image size. In contrast from Parsenet [30], we do batch normalization for pool-6

feature, which will increase mean IoU by about 1.0%.

5.4.2 Supervision for Segmentation

To verify our supervision model on segmentation task, we train two models, one with

supervision branch and another without supervision. To accelerate the training

process, for the supervision branch, we remove the global fusion and simply add

deconvolution layer in order to get the feature map same with the size of label.

But for the final output prediction, we add batch normalization layer for both then

concatenate features from pool6 layer and fc7 layer. To get the same size feature

map with fc7 layer, we need to do unpooling for pool6 feature back to the size with

fc7 layer, which is a one dimensional feature vector. We also use ”poly” learning rate

policy to train the network with 1e-8 as base learning rate, 0.99 as momentum and

power set to 0.9. We train the network with 150k iteration to achieve the 38.87 mean

IoU shown in Table 5.1. Our method outperforms the well-know approach FCN [33]

and show the effectiveness of the early supervision for the semantic segmentation

problem.
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model FCN-32s[33] ES-FCN

per pixel acc 61.75 68.47
per label acc 44.04 50.23
weighted iou acc 46.52 49.12
mean IoU 35.10 38.87

Table 5.1: Pixel-wise semantic segmentation comparison on PASCAL Context
dataset [39].

Figure 5.3: Some Semantic segmentation results using Early Supervision Full Con-
volutional Network (ES-FCN), where blue represents the grass, green represents
the sky, light blue represents the ground and other colors represent other specific
objects (referencing the object color corresponding to the list in PASCAL-Context
Dataset[39])
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5.4.3 Two Class Weather Classification

To validate our model for a new dataset, we evaluate our method using the most re-

cent and largest a public weather image dataset available [34]. This two-class dataset

consists of 10K sunny and cloudy images. For comparison, we adopt the same evalua-

tion metric in [34] which is the normalized accuracy as max {(a− 0.5) /(1− 0.5), 0},

where a is the general accuracy. We following the same experimental setting in [38]

which randomly selects 80% of the image from each class for training and the remain

20% of images are used for testing.

In order to distinguish three different semantic segmentation ensemble methods

mention in Section 5.3.5, we name the first method: raw RGB images concatenate

with 60 channel segmentation results (63 channel input for classification model)

as Directly Ensemble; the second one: employing a convolutional layer with 1 × 1

kernel size to a pre-defined number of output(setting 3 in our experiment), used for

feature selection and use element-wise product with raw image as Mixed Ensemble

(3 channel input for classification model), and the third mode: generating a full

segmentation map within one channel and concatenate with a 3 channel raw image

as Unify Ensemble (4 channel input for classification model). The comparison of

three different ensemble methods is shown in Table 5.3. The result shows that the

Unify Ensemble provides the most compact semantic information and is the most

accurate.

Table 5.2 shows the comparison with current state-of-the-art methods. We select

two well known low level hand-crafted features, HOG [9], GIST [41] (top 3 rows in

Table 5.2) and the delicate features which is specifically designed for the weather

recognition. Our method achieves 95.2%, a new state-of-the-art performance stan-

dard on a two-class weather classification dataset. Although the CNN is a powerful

neural network model especially in classification tasks [38], the additional semantic
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Methods NormAcc Acc

GIST +SVM [41] 11.3% 89.3%
HOG + SVM [9] 38.5% 93.7%
Combined Feature [34] + SVM 41.2% 70.6%
Yen et al. [54] 24.6% 62.3%
Roser et al. [43] 26.2% 63.2%
Lu et al. [34] 53.1% 76.6%
Weather CNN [38] 82.2% 91.1%

Ours 90.4% 95.2 %

Table 5.2: Weather recognition comparison with current state-of-the- art methods.

type ensemble method Acc

1 Directly Ensemble 89.3%
2 Mixed Ensemble 93.7%
3 Unify Ensemble 95.2%

Table 5.3: Weather recognition results using different semantic ensemble methods.

information cues can leverage the CNN to obtain even more precise results.

To make our model more scalable, we extend our model for two more class of

weather- rainy and snowy. We use Fliker crawler to grab 3000 images for each class.

We also finetune from our original 2 class model and change the output layer for 4

outputs, see the result in Table 5.4.

5.5 Conclusion

We believe this is the first paper to propose an end-to-end convolutional network

model which combines a segmentation model with a classification model, allowing

for high-level visual recognition tasks. Our segmentation algorithm learns the pixel

Class sunny cloudy rainy snowy

Ours 95.1% 94.2% 88.91% 90.6%

Table 5.4: Weather recognition results on our extended weather data set.
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level information for the representation of an image through the pretrain model,

and captures the semantic information for whole images. The semantic segmenta-

tion information provided by the segmentation model gives leverage to the image

classification in order to obtain better accuracy. This approach can then generally

be deployed in the recognition task. We achieve outstanding performance on both

public semantic segmentation datasets as well as weather classification datasets,

compared to current state-of-the-art weather classification algorithms in use today

(i.e., from the state-of-the-art 91.1% to 95.2%).
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