647 research outputs found

    Loosely-Stabilizing Leader Election on Arbitrary Graphs in Population Protocols Without Identifiers nor Random Numbers

    Get PDF
    In the population protocol model Angluin et al. proposed in 2004, there exists no self-stabilizing leader election protocol for complete graphs, arbitrary graphs, trees, lines, degree-bounded graphs and so on unless the protocol knows the exact number of nodes. To circumvent the impossibility, we introduced the concept of loose-stabilization in 2009, which relaxes the closure requirement of self-stabilization. A loosely-stabilizing protocol guarantees that starting from any initial configuration a system reaches a safe configuration, and after that, the system keeps its specification (e.g. the unique leader) not forever, but for a sufficiently long time (e.g. exponentially large time with respect to the number of nodes). Our previous works presented two loosely-stabilizing leader election protocols for arbitrary graphs; One uses agent identifiers and the other uses random numbers to elect a unique leader. In this paper, we present a loosely-stabilizing protocol that solves leader election on arbitrary graphs without agent identifiers nor random numbers. By the combination of virus-propagation and token-circulation, the proposed protocol achieves polynomial convergence time and exponential holding time without such external entities. Specifically, given upper bounds N and Delta of the number of nodes n and the maximum degree of nodes delta respectively, it reaches a safe configuration within O(m*n^3*d + m*N*Delta^2*log(N)) expected steps, and keeps the unique leader for Omega(N*e^N) expected steps where m is the number of edges and d is the diameter of the graph. To measure the time complexity of the protocol, we assume the uniformly random scheduler which is widely used in the field of the population protocols

    Silent MST approximation for tiny memory

    Get PDF
    In network distributed computing, minimum spanning tree (MST) is one of the key problems, and silent self-stabilization one of the most demanding fault-tolerance properties. For this problem and this model, a polynomial-time algorithm with O(log2 ⁣n)O(\log^2\!n) memory is known for the state model. This is memory optimal for weights in the classic [1,poly(n)][1,\text{poly}(n)] range (where nn is the size of the network). In this paper, we go below this O(log2 ⁣n)O(\log^2\!n) memory, using approximation and parametrized complexity. More specifically, our contributions are two-fold. We introduce a second parameter~ss, which is the space needed to encode a weight, and we design a silent polynomial-time self-stabilizing algorithm, with space O(logns)O(\log n \cdot s). In turn, this allows us to get an approximation algorithm for the problem, with a trade-off between the approximation ratio of the solution and the space used. For polynomial weights, this trade-off goes smoothly from memory O(logn)O(\log n) for an nn-approximation, to memory O(log2 ⁣n)O(\log^2\!n) for exact solutions, with for example memory O(lognloglogn)O(\log n\log\log n) for a 2-approximation

    Memory lower bounds for deterministic self-stabilization

    Full text link
    In the context of self-stabilization, a \emph{silent} algorithm guarantees that the register of every node does not change once the algorithm has stabilized. At the end of the 90's, Dolev et al. [Acta Inf. '99] showed that, for finding the centers of a graph, for electing a leader, or for constructing a spanning tree, every silent algorithm must use a memory of Ω(logn)\Omega(\log n) bits per register in nn-node networks. Similarly, Korman et al. [Dist. Comp. '07] proved, using the notion of proof-labeling-scheme, that, for constructing a minimum-weight spanning trees (MST), every silent algorithm must use a memory of Ω(log2n)\Omega(\log^2n) bits per register. It follows that requiring the algorithm to be silent has a cost in terms of memory space, while, in the context of self-stabilization, where every node constantly checks the states of its neighbors, the silence property can be of limited practical interest. In fact, it is known that relaxing this requirement results in algorithms with smaller space-complexity. In this paper, we are aiming at measuring how much gain in terms of memory can be expected by using arbitrary self-stabilizing algorithms, not necessarily silent. To our knowledge, the only known lower bound on the memory requirement for general algorithms, also established at the end of the 90's, is due to Beauquier et al.~[PODC '99] who proved that registers of constant size are not sufficient for leader election algorithms. We improve this result by establishing a tight lower bound of Θ(logΔ+loglogn)\Theta(\log \Delta+\log \log n) bits per register for self-stabilizing algorithms solving (Δ+1)(\Delta+1)-coloring or constructing a spanning tree in networks of maximum degree~Δ\Delta. The lower bound Ω(loglogn)\Omega(\log \log n) bits per register also holds for leader election

    Population stability: regulating size in the presence of an adversary

    Full text link
    We introduce a new coordination problem in distributed computing that we call the population stability problem. A system of agents each with limited memory and communication, as well as the ability to replicate and self-destruct, is subjected to attacks by a worst-case adversary that can at a bounded rate (1) delete agents chosen arbitrarily and (2) insert additional agents with arbitrary initial state into the system. The goal is perpetually to maintain a population whose size is within a constant factor of the target size NN. The problem is inspired by the ability of complex biological systems composed of a multitude of memory-limited individual cells to maintain a stable population size in an adverse environment. Such biological mechanisms allow organisms to heal after trauma or to recover from excessive cell proliferation caused by inflammation, disease, or normal development. We present a population stability protocol in a communication model that is a synchronous variant of the population model of Angluin et al. In each round, pairs of agents selected at random meet and exchange messages, where at least a constant fraction of agents is matched in each round. Our protocol uses three-bit messages and ω(log2N)\omega(\log^2 N) states per agent. We emphasize that our protocol can handle an adversary that can both insert and delete agents, a setting in which existing approximate counting techniques do not seem to apply. The protocol relies on a novel coloring strategy in which the population size is encoded in the variance of the distribution of colors. Individual agents can locally obtain a weak estimate of the population size by sampling from the distribution, and make individual decisions that robustly maintain a stable global population size

    Making local algorithms efficiently self-stabilizing in arbitrary asynchronous environments

    Full text link
    This paper deals with the trade-off between time, workload, and versatility in self-stabilization, a general and lightweight fault-tolerant concept in distributed computing.In this context, we propose a transformer that provides an asynchronous silent self-stabilizing version Trans(AlgI) of any terminating synchronous algorithm AlgI. The transformed algorithm Trans(AlgI) works under the distributed unfair daemon and is efficient both in moves and rounds.Our transformer allows to easily obtain fully-polynomial silent self-stabilizing solutions that are also asymptotically optimal in rounds.We illustrate the efficiency and versatility of our transformer with several efficient (i.e., fully-polynomial) silent self-stabilizing instances solving major distributed computing problems, namely vertex coloring, Breadth-First Search (BFS) spanning tree construction, k-clustering, and leader election

    Self-stabilizing algorithms for Connected Vertex Cover and Clique decomposition problems

    Full text link
    In many wireless networks, there is no fixed physical backbone nor centralized network management. The nodes of such a network have to self-organize in order to maintain a virtual backbone used to route messages. Moreover, any node of the network can be a priori at the origin of a malicious attack. Thus, in one hand the backbone must be fault-tolerant and in other hand it can be useful to monitor all network communications to identify an attack as soon as possible. We are interested in the minimum \emph{Connected Vertex Cover} problem, a generalization of the classical minimum Vertex Cover problem, which allows to obtain a connected backbone. Recently, Delbot et al.~\cite{DelbotLP13} proposed a new centralized algorithm with a constant approximation ratio of 22 for this problem. In this paper, we propose a distributed and self-stabilizing version of their algorithm with the same approximation guarantee. To the best knowledge of the authors, it is the first distributed and fault-tolerant algorithm for this problem. The approach followed to solve the considered problem is based on the construction of a connected minimal clique partition. Therefore, we also design the first distributed self-stabilizing algorithm for this problem, which is of independent interest

    Brief Announcement: Loosely-stabilizing Leader Election with Polylogarithmic Convergence Time

    Get PDF
    We present a fast loosely-stabilizing leader election protocol in the population protocol model. It elects a unique leader in a poly-logarithmic time and holds the leader for a polynomial time with arbitrarily large degree in terms of parallel time, i.e, the number of steps per the population size

    Smoothed Analysis of Population Protocols

    Get PDF
    corecore