
Brief Announcement: Loosely-stabilizing Leader
Election with Polylogarithmic Convergence Time
Yuichi Sudo
Graduate School of Information Science and Technology, Osaka University, Japan
y-sudou@ist.osaka-u.ac.jp

Fukuhito Ooshita
Graduate School of Science and Technology, Nara Institute of Science and Technology, Japan
f-oosita@is.naist.jp

Hirotsugu Kakugawa
Graduate School of Information Science and Technology, Osaka University, Japan
kakugawa@ist.osaka-u.ac.jp

Toshimitsu Masuzawa
Graduate School of Information Science and Technology, Osaka University, Japan
masuzawa@ist.osaka-u.ac.jp

Abstract
We present a fast loosely-stabilizing leader election protocol in the population protocol model. It
elects a unique leader in a poly-logarithmic time and holds the leader for a polynomial time with
arbitrarily large degree in terms of parallel time, i.e, the number of steps per the population size.

2012 ACM Subject Classification Theory of computation → Self-organization

Keywords and phrases Self-stabilization, Loose-stabilization, Population protocols

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.52

Acknowledgements This work was supported by JSPS KAKENHI Grant Numbers 17K19977,
16K00018, 18K11167, and 18K18000 and Japan Science and Technology Agency(JST) SICORP.

1 Introduction

We consider the population protocol (PP) model [1] in this paper. A network called population
consists of a large number of finite-state automata, called agents. Agents often make
interactions, each between a pair of agents to communicate with, by which agents update
their states. As with the majority of studies on population protocols, we consider only
the population of complete graphs and the uniformly-random scheduler, which selects an
interacting pair of agents at each step uniformly at random.

We focus on Self-Stabilizing Leader Election (SS-LE) problem, which is one of the most
important and well-studied problems in the PP model. This problem requires that starting
from any configuration, a population reaches a safe configuration in which exactly one
leader exists; and after that, the population keeps that leader forever. Unfortunately, it
is well known that no protocol solves SS-LE unless every agent knows the exact size n of
the population (i.e., the number of agents). To circumvent this impossibility, our previous
work [3] introduced the concept of loose-stabilization, a relaxed variant of self-stabilization:
Starting from any initial configuration, the population must reach a safe configuration within
a short time; after that, the specification of the problem must be sustained for a sufficiently
long time, though not necessarily forever. This previous work gave a loosely-stabilizing leader

© Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 52; pp. 52:1–52:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/161589456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:y-sudou@ist.osaka-u.ac.jp
mailto:f-oosita@is.naist.jp
mailto:kakugawa@ist.osaka-u.ac.jp
mailto:masuzawa@ist.osaka-u.ac.jp
https://doi.org/10.4230/LIPIcs.DISC.2018.52
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


52:2 Loosely-stabilizing Leader Election with Polylogarithmic Convergence Time

Table 1 LS-LE protocols in the PP model. Time complexities are presented in parallel time.

Convergence Time Holding Time Agent Memory
Sudo et al. [3] O(N log N) Ω(eN ) O(log N)

Izumi [2] O(N) Ω(eN ) O(log N)
Proposed Protocol (PPL) O(c log3 N) Ω(cn10c) O(log log N)

Algorithm 1 PPL: specifying a state-transition at interaction between agents a0 and a1.
1: a0.timerP ← a1.timerP ← max(a0.timerP − 1, a1.timerP − 1, 0)
2: for i ∈ {0, 1} such that ai.timerP = 0 do ai.leader← > endfor
3: if ∃i ∈ {0, 1} : ai.leader = > then a0.timerP ← a1.timerP ← tmax endif
4: a0.virus← a1.virus← max(a0.virus− 1, a1.virus− 1, 0)
5: for i ∈ {0, 1} such that ¬ai.shield ∧ (ai.virus > 0) do ai.leader← ⊥ endfor
6: for i ∈ {0, 1} do ai.timerL ← max(ai.timerL − 1, 0) endfor
7: if a0.timerL = 0 ∧ a0.leader = > then
8: a0.virus← tvirus
9: a0.shield← >

10: end if
11: if a1.timerL = 0 ∧ a1.leader = > then a1.shield← ⊥ endif
12: for i ∈ {0, 1} such that ai.timerL = 0 do ai.timerL ← temit endfor

election (LS-LE) protocol assuming that every agent knows only a common upper bound N of
n. This protocol is practically equivalent to an SS-LE protocol since it maintains the unique
leader for exponential time in n after reaching a safe configuration within O(N log N) parallel
time, i.e., the number of steps (interactions) per the population size n. Recently, Izumi [2]
presented a method to improve the convergence time of this protocol to O(N) parallel time.
He also proved the optimality of its convergence time by showing that any LS-LE protocol
whose holding time is exponential requires Ω(N) parallel time for convergence.

In this paper, we break through the barrier of this linear lower bound of convergence
time and achieve poly-logarithmic parallel convergence time. Given a parameter c ≥ 1 and
an upper bound N of n, our protocol converges to a safe configuration in O(c log3 N) time,
and preserves the unique leader for Ω(cn10c) time thereafter (Table 1). Owing to the above
impossibility result by [2], the holding time of our protocol is no longer exponential but
polynomial in n. However, we can arbitrarily increase the degree of the polynomial using
parameter c. For example, the holding time is Ω(n100) if we assign c = 10, which is expected
to be large enough in all practical situations.

2 Proposed Protocol

The pseudo code of PPL is shown in Algorithm 1. Each agent has five variables leader ∈
{>,⊥}, shield ∈ {>,⊥}, virus ∈ [0, tvirus], timerP ∈ [0, tmax], and timerL ∈ [0, temit].
The first two variables leader and shield are Boolean variables: v.leader = > means that
agent v is a leader, and v.shield will be explained later. The variables virus, timerP ,
and timerL are count-down timers where their maximum values are tvirus = 60dlog Ne,
tmax = 12c · tvirusdlog Ne, and temit = 12c · tvirusdlog Ne, respectively (tmax = temit).

Protocol PPL consists of a timeout mechanism (Lines 1-3) and a virus-war mechanism
(Lines 4-12). The timeout mechanism creates a leader when no leader exists in the population
while the virus-war mechanism reduces the number of leaders when two or more leaders exist.



Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa 52:3

The timeout mechanism of PPL (Lines 1-3) is almost the same as that of the protocol
given in [3]. This mechanism uses a propagating timer timerP , which indicates the possibility
of existence of a leader. A leader agent always keeps the maximum value of the timer, i.e.,
timerP = tmax, and resets the timer of the other agent to tmax every time it interacts with
a non-leader agent (Line 3). When two non-leaders interact, the higher value of the two
timers is propagated, but is decremented by one (Line 1). When the timer of a non-leader
decreases to zero, it suspects that no leader exists in the population, and it becomes a new
leader (Line 2). The loosely-stabilizing property of this mechanism holds because (i) when no
leader exists, some agent detects the timeout of its timer within a short time (O(tmax log n)
parallel time) and it becomes a leader, and (ii) when at least one leader exists, timeout rarely
happens thanks to the timer reset by the leader(s) and the larger-value propagation.

We uses the virus war mechanism presented in [4], but implements it in a considerably
different way to achieve a poly-logarithmic convergence time. Every leader tries to kill other
leaders by using viruses and become the unique leader. We say that agent v has a virus if
v.virus > 0, and that v is wearing a shield if v.shield = >. Every agent has a local timer
timerL to create a new virus periodically. This timer is decreased by one every time the
agent interacts (Line 6). When the local timer of a leader reaches zero at an interaction, the
leader meets a different fate according to its role, initiator or responder, in the interaction.
If the leader is an initiator, it succeeds in creating a new virus and wears a shield, that is, it
substitutes virus← tvirus and shield← > (Lines 8-9). If it is a responder, it fails to create
a new virus and its shield gets broken if it wears (Line 11). Note that the uniformly-random
scheduler gives each side of the coin-toss (initiator or responder) the same probability, i.e.,
1/2. Thereafter, the local timer is reset to the maximum value temit (Line 12). A virus
spreads by interactions (Line 4). A leader is kelled and becomes a non-leader if it catches
a virus when it does not wear a shield (Line 5). The value of virus corresponds to the
TTL (time to live) of a virus and decreases in the large-value propagation fashion. The
loosely-stabilizing property of this mechanism holds because (i) as long as multiple leaders
exist, the number of leaders decreases by half in every O(temit) parallel time thanks to the
fair coin-toss of the uniformly random scheduler and (ii) viruses rarely remove all leaders
from the population thanks to tvirus � temit. (tvirus � temit guarantees that at least one
leader wears a shield with high probability when viruses exist in the population.)

The above intuitive explanation holds if tvirus is sufficiently large. However, we assign
logarithmic value to tvirus to get poly-logarithmic convergence time. A critical question arises
here: Are created viruses propagated to the whole population with high probability? A
similar question arises for the propagating timers. Careful and non-trivial analysis, omitted
from this paper, affirms these questions and proves the performance of PPL in Table 1.

References
1 D. Angluin, J Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation in networks

of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253, 2006.
2 T. Izumi. On space and time complexity of loosely-stabilizing leader election. In SIROCCO,

pages 299–312, 2015.
3 Y. Sudo, J. Nakamura, Y. Yamauchi, F. Ooshita, et al. Loosely-stabilizing leader election

in a population protocol model. Theoretical Computer Science, 444:100–112, 2012.
4 Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa. Loosely-stabilizing leader election

on arbitrary graphs in population protocols. In OPODIS, pages 339–354, 2014.

DISC 2018


	Introduction
	Proposed Protocol

