9 research outputs found

    Intelligent Sensors for Human Motion Analysis

    Get PDF
    The book, "Intelligent Sensors for Human Motion Analysis," contains 17 articles published in the Special Issue of the Sensors journal. These articles deal with many aspects related to the analysis of human movement. New techniques and methods for pose estimation, gait recognition, and fall detection have been proposed and verified. Some of them will trigger further research, and some may become the backbone of commercial systems

    Uso de redes recorrentes para identificação automática de contaminantes e para a estimação de um sensor virtual de eletromiografia no contexto de um sistema tolerante a falhas

    Get PDF
    O desenvolvimento de sistemas inteligentes controlados por eletromiografia que possam se adaptar a possíveis contaminações extrínsecas e intrínsecas, que afetem a taxa de acerto do classificador de movimentos, leva a dispositivos mais robustos e seguros, vistos que evitariam acionamentos indevidos e inesperados. Esse trabalho apresenta uma solução para contaminações por Artefato de Movimento, Ruído de Linha Elétrica, Ruído Branco Aditivo e ECG em 9 diferentes níveis de SNR, de -40dB a 40dB, utilizando Redes Neurais Recorrentes (RNR) com unidades LSTM nas duas etapas deste trabalho. A primeira etapa é o sistema de identificação da contaminação, que traz como inovação a identificação do contaminante diretamente do sinal bruto de sEMG, deixando para a rede a extração das características temporais, onde os resultados apontaram uma taxa de mais de 90% de acerto do tipo de contaminante para SNR = -30dB. A segunda etapa é a geração de um Sensor Virtual a partir de 7 estudos de caso em falhas de eletrodos, que traz como inovação a regressão do sinal retificado e suavizado por um filtro AVT. A geração do sensor virtual é realizada a partir dos canais não contaminados também utilizando uma RNR - LSTM com o objetivo de recuperar a taxa de acerto em 18 classes de um classificador Extreme Learning Machine (ELM), aplicado nas bases NinaPro e IEE. Os resultados indicaram que foi possível recuperar a taxa média de acerto para 2 canais contaminados com ruído branco aditivo em -30dB, de um total de 12 canais, de 7,28% para 68,34% em 4 indivíduos não amputados e de 15,07% para 43,67% em 9 indivíduos amputados.The development of electromyographic controlled systems adaptable to possibles extrinsic and intrisec contaminations, affecting the movement classification hit rate, lead to more robust and secure devices avoiding unexpected situations. This work presents a solution for Movement Artifact, Electrical Noise, White Gaussian Noise and ECG in nine SNR levels, ranging from -40dB to 40dB in 10dB steps, using Recurrent Neural Networks with LSTM units in the two stages of this work. The first stage is an automatic contamination detector, that has the contaminant identification made direct from the raw sEMG signal as a novelty, where the the tests point to 90% correct identification for SNR = -30dB. The second stage is the development of a virtual sensor, that generates the corrupted channel using the non-corrupted ones using a RNR-LSTM with the objective to recover the 18 movement class classification hit rate for an Extreme Learning Machine (ELM). The results shows that was possible to recovery the classification hit rate for 2 contaminated channels from 7.28% to 63.34% in 4 non-amputee subjects and from 15,07% to 43.67% in 9 amputee subjects

    Exploring the potential of dynamic mode decomposition in wireless communication and neuroscience applications

    Get PDF
    The exponential growth of available experimental, simulation, and historical data from modern systems, including those typically considered divergent (e.g., Neuroscience procedures and wireless networks), has created a persistent need for effective data mining and analysis techniques. Most systems can be characterized as high-dimensional, dynamical, exhibiting rich multiscale phenomena in both space and time. Engineering studies of complex linear and non-linear dynamical systems are especially challenging, as the behavior of the system is often unknown and complex. Studying this problem of interest necessitates discovering and modeling the underlying evolving dynamics. In such cases, a simplified, predictive model of the flow evolution profile must be developed based on observations/measurements collected from the system. Consequently, data-driven algorithms have become an essential tool for modeling and analyzing complex systems characterized by high nonlinearity and dimensionality. The field of data-driven modeling and analysis of complex systems is rapidly advancing. Associated investigations are poised to revolutionize the engineering, biomedical, and physical sciences. By applying modeling techniques, a complex system can be simplified using low-dimensional models with spatial-temporal structures described using system measurements. Such techniques enable complex system modeling without requiring knowledge of dynamic equations governing the system's operation. The primary objective of the work detailed in this dissertation was characterizing, identifying, and predicting the behavior of systems under analysis. In particular, characterization and identification entailed finding patterns embedded in system data; prediction required evaluating system dynamics. The thesis of this work proposes the implementation of dynamic mode decomposition (DMD), which is a fully data-driven technique, to characterize dynamical systems from extracted measurements. DMD employs singular value decomposition (SVD), which reduces high-dimensional measurements collected from a system and computes eigenvalues and eigenvectors of a linear approximated model. In other words, by rather estimating the underlying dynamics within a system, DMD serves as a powerful tool for system characterization without requiring knowledge of the governing dynamical equations. Overall, the work presented herein demonstrates the potential of DMD for analyzing and modeling complex systems in the emerging, synthesized field of wireless communication (i.e., wireless technology identification) and neuroscience (i.e., chemotherapy-induced peripheral neuropathy [CIPN] identification for cancer patients). In the former, a novel technique based on DMD was initially developed for wireless coexistence analysis. The scheme can differentiate various wireless technologies, including GSM and LTE signals in the cellular domain and IEEE802.11n, ac, and ax in the Wi-Fi domain, as well as Bluetooth and Zigbee in the personal wireless domain. By capturing embedded periodic features transmitted within the signal, the proposed DMD-based technique can identify a signal’s time domain signature. With regard to cancer neuroscience, a DMD-based scheme was developed to capture the pattern of plantar pressure variability due to the development of neuropathy resulting from neurotoxic chemotherapy treatment. The developed technique modeled gait pressure variations across multiple steps at three plantar regions, which characterized the development of CIPN in patients with uterine cancer. Obtained results demonstrated that DMD can effectively model various systems and characterize system dynamics. Given the advantages of fast data processing, minimal required data preprocessing, and minimal required signal observation time intervals, DMD has proven to be a powerful tool for system analysis and modeling

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Self-selected modular recurrent neural networks with postural and inertial subnetworks applied to complex movements.

    No full text
    It has been shown that dynamic recurrent neural networks are successful in identifying the complex mapping relationship between full-wave-rectified electromyographic (EMG) signals and limb trajectories during complex movements. These connectionist models include two types of adaptive parameters: the interconnection weights between the units and the time constants associated to each neuron-like unit; they are governed by continuous-time equations. Due to their internal structure, these models are particularly appropriate to solve dynamical tasks (with time-varying input and output signals). We show in this paper that the introduction of a modular organization dedicated to different aspects of the dynamical mapping including privileged communication channels can refine the architecture of these recurrent networks. We first divide the initial individual network into two communicating subnetworks. These two modules receive the same EMG signals as input but are involved in different identification tasks related to position and acceleration. We then show that the introduction of an artificial distance in the model (using a Gaussian modulation factor of weights) induces a reduced modular architecture based on a self-elimination of null synaptic weights. Moreover, this self-selected reduced model based on two subnetworks performs the identification task better than the original single network while using fewer free parameters (better learning curve and better identification quality). We also show that this modular network exhibits several features that can be considered as biologically plausible after the learning process: self-selection of a specific inhibitory communicating path between both subnetworks after the learning process, appearance of tonic and phasic neurons, and coherent distribution of the values of the time constants within each subnetwork.Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-
    corecore