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Abstract 

The exponential growth of available experimental, simulation, and historical data 

from modern systems, including those typically considered divergent (e.g., 

Neuroscience procedures and wireless networks), has created a persistent need 

for effective data mining and analysis techniques. Most systems can be 

characterized as high-dimensional, dynamical, exhibiting rich multiscale 

phenomena in both space and time. Engineering studies of complex linear and 

non-linear dynamical systems are especially challenging, as the behavior of the 

system is often unknown and complex. Studying this problem of interest 

necessitates discovering and modeling the underlying evolving dynamics. In such 

cases, a simplified, predictive model of the flow evolution profile must be 

developed based on observations/measurements collected from the system. 

Consequently, data-driven algorithms have become an essential tool for modeling 

and analyzing complex systems characterized by high nonlinearity and 

dimensionality.  

The field of data-driven modeling and analysis of complex systems is rapidly 

advancing. Associated investigations are poised to revolutionize the engineering, 

biomedical, and physical sciences. By applying modeling techniques, a complex 

system can be simplified using low-dimensional models with spatial-temporal 

structures described using system measurements. Such techniques enable 

complex system modeling without requiring knowledge of dynamic equations 

governing the system's operation. 

The primary objective of the work detailed in this dissertation was 

characterizing, identifying, and predicting the behavior of systems under analysis. 

In particular, characterization and identification entailed finding patterns 

embedded in system data; prediction required evaluating system dynamics. The 
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thesis of this work proposes the implementation of dynamic mode decomposition 

(DMD), which is a fully data-driven technique, to characterize dynamical systems 

from extracted measurements. DMD employes singular value decomposition 

(SVD), which reduces high-dimensional measurements collected from a system 

and computes eigenvalues and eigenvectors of a linear approximated model. In 

other words, by rather estimating the underlying dynamics within a system, DMD 

serves as a powerful tool for system characterization without requiring 

knowledge of the governing dynamical equations.  

Overall, the work presented herein demonstrates the potential of DMD for 

analyzing and modeling complex systems in the emerging, synthesized field of 

wireless communication (i.e., wireless technology identification) and 

neuroscience (i.e., chemotherapy-induced peripheral neuropathy [CIPN] 

identification for cancer patients). In the former, a novel technique based on DMD 

was initially developed for wireless coexistence analysis. The scheme can 

differentiate various wireless technologies, including GSM and LTE signals in the 

cellular domain and IEEE802.11n, ac, and ax in the Wi-Fi domain, as well as 

Bluetooth and Zigbee in the personal wireless domain. By capturing embedded 

periodic features transmitted within the signal, the proposed DMD-based 

technique can identify a signal’s time domain signature.  With regard to cancer 

neuroscience, a DMD-based scheme was developed to capture the pattern of 

plantar pressure variability due to the development of neuropathy resulting from 

neurotoxic chemotherapy treatment. The developed technique modeled gait 

pressure variations across multiple steps at three plantar regions, which 

characterized the development of CIPN in patients with uterine cancer. 

Obtained results demonstrated that DMD can effectively model various 

systems and characterize system dynamics. Given the advantages of fast data 

processing, minimal required data preprocessing, and minimal required signal 
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observation time intervals, DMD has proven to be a powerful tool for system 

analysis and modeling. 
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Chapter 1 Introduction 

The rapid development of technology over the past two decades has precipitated 

increasingly sophisticated systems-modeling and -analysis methods. Data-driven 

techniques have played a key role in revolutionizing these approaches and 

enabled researchers in gaining valuable insights and knowledge from vast 

amounts of available data. Large dataset analysis can identify patterns and trends 

that would be difficult—if not impossible—when using traditional methods. 

Moreover, engineering studies of complex dynamical systems is especially 

challenging, as the behavior of the system is often unknown and complex. Studying 

this problem of interest necessitates discovering and modeling the underlying 

evolving dynamics. In such cases, a simplified, predictive model of the flow 

evolution profile must be developed based on observations/measurements 

collected from the system. Consequently, data-driven algorithms have become an 

essential tool for modeling and analyzing complex systems characterized by high 

nonlinearity and dimensionality across a range of fields [1, 2]. 

A data-driven approach enables the development of a model that can 

accurately capture a system's evolution dynamics without requiring a detailed 

understanding of the underlying physics. Such models can be useful in a wide 

range of applications, including but not limited to engineering, fluid dynamics, 

neuroscience, and biomedical systems. Data-driven techniques for modeling 

complex dynamical systems are mainly based on two theories: Koopman theory 

and proper orthogonal decomposition (POD). Koopman theory was first 

introduced in1931 by mathematician Bernard Koopman [3] as part of his 

construction of Koopman-von Neumann classical mechanics. The Koopman 

operator—an infinite-dimensional linear operator that can express the time-

evolution of a complex dynamical system-simplifies the modeling of high-

dimensional or complex systems [4]. The main alternative to operator-based 
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Koopman analysis is the projection-based POD method, which achieves model 

reduction of a high-dimensional system via a Galerkin projection of the temporal 

dynamics onto a low-dimensional subspace [5, 6].  

When compared to Koopman analysis, POD performs better for low-

dimensional systems where most of the "energy" is concentrated in a few key 

states. POD analysis has been used to successfully model various complex systems, 

including fluid flows, chemical reactions, and biomedical systems. However, its 

performance can be limited for high-dimensional systems with complex dynamics. 

Although Koopman analysis is more computationally complex, it provides 

improved accuracy for high-dimensional systems and greater insight into subtle 

secondary modes within a narrow frequency band in the dataset. Therefore, the 

choice between Koopman analysis and POD depends on the specific 

characteristics of the system being modeled and the research questions under 

investigation [7, 8]. 

The work described herein focuses on implementing dynamic mode 

decomposition (DMD—an algorithm developed by Schmid in 2010 [9]. DMD is a 

fully data-driven, equation-free, mathematical modelling algorithm that 

approximates linear infinite-dimensional modes of the Koopman operator. The 

resulting modes represent infinite-dimensional dynamics. It is notable that DMD 

allows for their approximation even in the presence of nonlinearity. In other 

words, DMD modeling can be seen as computing eigenvalues and eigenvectors of 

a linear model that approximates the underlying dynamics, allowing for the 

identification of key features of a system's behavior.  

While various alternative methods for determining approximation of 

Koopman operator in data-driven modeling exist (e.g., Generalized Laplace 

Analysis [10-12], Galerkin discretization [13], [14], Prony analysis [15], and 

Ulam’s method [16]), DMD has emerged as the most popular implementation of 

data-driven Koopman spectral analysis [8]. The technique has demonstrated 
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promising results in a variety of fields. In general, DMD can be leveraged to 

accomplish two primary tasks [2]: 

1. System characterization 

DMD characterizes complex, high-dimensional systems by extracting key 

low-rank spatiotemporal features, allowing for physically interpretable 

results in terms of spatial structures and their associated temporal 

responses. 

2. State estimation and future-state prediction 

The generated DMD model can be used for future-state predictions of a 

dynamical system. DMD utilizes the spatiotemporal structures (i.e., modes) 

that are dominant in the data to construct dynamical models of the 

underlying processes observed through best-fit (i.e., least-square) linear 

model to the dynamical system generating the data. 

1.1 Contributions 

The work detailed in this dissertation demonstrates DMD as an algorithm for 

analyzing and modeling complex systems in the fields of wireless communication 

and cancer research. The treatise provides a brief overview of two specific 

applications of DMD, as follows. 

1. Wireless technology identification. 

This research introduces three novel techniques for wireless technology 

identification based on DMD data-driven modeling. DMD modes frequency 

bandwidth-based identification (DMD-BW), DMD mode amplitude-based 

identification (DMDA), and DMD mode oscillation frequency-based 

identification (DMDF) techniques were developed for extracting the unique 

periodic features embedded within a transmitted wireless signal. The 
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developed algorithms process raw power-measured signals, capturing 

specifically embedded periodic features within the targeted signals 

represented in pilot, preamble, synchronization, and control signals. The 

classification was performed for both individual (or baseline) and different 

coexistence scenarios. To improve user experiences with signal quality and 

boost coexistence and spectrum utilization, the aforementioned schemes 

offer a strategy that can be practically applied to smart radio devices within 

contemporary heterogeneous networks (i.e., HetNets). 

2. Gait cycle analysis for cancer patients’ CIPN identification. 

CIPN is a major area of research in the field of cancer. The condition refers 

to nerve damage that can occur as a side effect of chemotherapy treatment, 

which leads to troublesome symptoms (i.e., pain, numbness, and tingling in 

the hands and feet). CIPN can have a significant impact on cancer patients’ 

quality of life, as it may increase the risk of falling while walking. The 

purpose of this study was analyzing and modeling gait variability in women 

with uterine cancer who were undergoing chemotherapy treatment. DMD-

data driven modeling was used to capture characteristic features of plantar 

pressure variations between steps for various walking trials. 

Classical methods outlined in the related work section in chapter 2 primarily 

relied on statistical analysis of collected gait parameters. This involved using 

statistical measures—mean, median, standard deviation, symmetry/asymmetry 

index, and variability index or variation coefficient—to identify changes in 

walking behavior. Although such approaches are simple to implement and 

effective in detecting changes at later stages of a disease, early detection of 

neuropathy requires more advanced methods to accurately characterize gate 

cycle dynamics and identify slight changes in the dynamics as a result of CIPN. 

Recently, machine learning techniques have been introduced to recognize this 
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paradigm; however, they require additional data preprocessing and expert 

knowledge to assess the data structure. In this work, a new approach based on 

DMD is proposed. The developed DMD technique has the advantage of requiring 

minimal data preprocessing and/or model training. For example, in this study, the 

DMD method was applied directly to the raw plantar pressure data following foot 

region segmentation.  

Based on outcomes, the proposed methods for using DMD in signal 

identification provide the following benefits over equivalent methods. 

1. Long observation intervals are not necessary, and fewer signal samples are 

required to execute the technique. 

2. The truncated singular value decomposition (SVD) technique used by DMD 

significantly reduces processing time and computational complexity. 

3. When processing signals, time synchronization is not necessary. 

4. Identification and classification are direct, one-step processes that do not 

require further classification techniques for extracting features. 

5. Accuracy is not affected by signal power and SNR variations, as DMDA 

normalizes signal power before classification, and DMDF relies on 

comparing oscillation frequencies. 

6. The techniques can identify signals in real-time. 

The balance of this dissertation is organized as follows: Chapter 2 provides a 

detailed explanation of the standard DMD algorithm, which serves as the primary 

modeling method for the analysis presented in this study. The chapter emphasizes 

the relationship between DMD and Koopman theory, in addition to demonstrating 

how the resulting DMD modes and eigenvalues can be used to describe the 

dynamics of a system. Chapter 3 reports the development of three novel 



 

6 

techniques for wireless technology identification, namely DMD-BW, DMDA, and 

DMDF, which are the first to employ a DMD algorithm for identifying signals. 

Results showed that developed DMD-based algorithms had lower complexity and 

achieved higher performance for identifying various wireless technologies 

compared to techniques used in the cited literature. In Chapter 4, DMD was 

utilized to analyze the impact of neurotoxic chemotherapy on plantar pressure 

variation among female uterine cancer patients during footfall. To quickly and 

accurately extract the studied footstep segments, an innovative image processing-

based segmentation technique was developed. The magnitude of dominant DMD 

modes (i.e., eigenvectors) and eigenvalues were used to quantify variation. Results 

showed that the instability in walking behavior increased as chemotherapy 

treatment progressed, indicating the progression of neuropathy. Finally, Chapter 

5 concludes the dissertation. 
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Chapter 2 Dynamic Mode 

Decomposition: Background 

The DMD data-driven modeling algorithm is the foundation of identification 

schemes developed in this dissertation. DMD applications are diverse and include 

fluid dynamics, image processing, biometrics, neuroscience, and life sciences. In 

fluid dynamics, DMD was used to extract coherent structures from spatial-

temporal fluid flow data and demonstrated its superior capability for extracting 

relevant modes from complex fluid flows [17-20]. In image processing, DMD was 

used to separate frames into background and foreground objects [21-23], while in 

biometrics, DMD was used to detect spoofed samples [24, 25]. In neuroscience, 

DMD was used to extract coherent patterns in large-scale neural recordings and 

analyze electrical signals in brain research [26, 27]. In the life sciences, DMD has 

been used to model complex systems, such as human locomotion [28], brain 

neural activity [29], and blood flow [30]. 

Koopman theory forms the rudimentary block for DMD, describing a dynamical 

system by calculating a linear infinite dimensional (Koopman) operator from a set 

of observables (i.e., measurements) in the form of a time series signal generated 

by either experiment or simulation. The operator’s eigenvectors (modes) and 

eigenvalues capture crucial information about the dynamics of a system, 

describing the evolution of the observables in time. The corresponding 

eigenvalues describe growth/decay rates and oscillation frequencies for each 

mode. Jointly, DMD modes and eigenvalues describe dynamics observed in the 

time series in terms of oscillatory components and serve as an efficient tool for 

identifying system dominant frequencies. DMD represents a perfect combination 
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of proper orthogonal decomposition (POD), and Fourier transforms in the time 

domain [31]. DMD breaks down a dynamical system into a number of 

approximated Koopman modes. In addition to energy (or amplitude), DMD modes 

are ranked by detected dynamics (or frequency). As a result, each mode has a 

distinct amplitude and frequency property [32]. Without relying on presumptions, 

DMD finds dominant frequencies that show repeating periodicity in signals or 

systems [33, 34]. 

2.1 Mathematical Formulation of Koopman Theory 

The Koopman operator 𝐾𝑡 is an infinite-dimensional linear operator that acts on 

measurement functions g (i.e., observables), which are elements of an infinite-

dimensional Hilbert space: 

 𝐾𝑡 g = g o 𝐹𝑡, (2.1) 

where o is the composition operator. For a discrete-time system with timestep Δt, 

Koopman operator advances the observation of the state g(𝑥𝑘) to the next time 

step: 

 𝑔(𝑥𝑘+1) = 𝐾𝛥𝑡 𝑔(𝑥𝑘) = 𝑔(𝐹𝑡(𝑥𝑘)) (2.2) 

Equation 2.2 indicates that when Koopman operator is applied to a dynamic 

system with an infinite-dimensional function space, it defines a new infinite-

dimensional linear dynamical system that evolves the original dynamic system 

forward in time. In other words, the application of the infinite-dimensional 

Koopman operator transitions a system from a finite dimensional nonlinear state 

space to an infinite-dimensional linear function space [35, 36]. 

Notably, infinite-dimensionality indicates that many degrees of freedom are 

required to describe the space among all possible measurement functions of the 

state g. This complicated process cannot be applied on many systems. Finding a 

finite-dimensional approximation of Koopman operator has proven to be a 
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challenging process, involving the identification of a subspace spanned by a subset 

of eigenfunctions of the Koopman operator [35, 36].  

2.2 The standard DMD Algorithm 

Assume a dynamical system is approximated by a best linear-fit operator A, which 

evolves state X forward in time for each k = 1, 2,…..,n-1 

 𝑋𝑘+1 = 𝐴𝑋𝑘 (2.3) 

Operator A ϵ Rmxm is the best linear fit operator, and it approximates a Koopman 

operator. Furthermore, the operator satisfies equation (2.3) and represents the 

solution of a Frobenius norm, least-squares optimization between the one-step 

future state (𝑋𝑘+1) and the expected future state (𝐴𝑋𝑘): 

 𝑚𝑖𝑛 ‖𝑋𝑘+1 − 𝐴𝑋𝑘‖ (2.4) 

Consequently, we can write the equation in data matrix format as  

 𝑋’ = 𝐴𝑋 , (2.5) 

where X is the spatial temporal data matrix and X’ is the data matrix advanced one 

step (Δt) in the future. 

The standard DMD method can be illustrated in the following steps. 

Step 1: Compute the singular value decomposition (SVD) of X. 

 

 X = Ur Σr Vr* , (2.6) 

 

Such that: U𝑟  ϵ Rmxr  , Σ𝑟 ϵ Rrxr , V𝑟  ϵ Rkxr. Ur and Vr consist of r left/right singular 

vectors corresponding to the r dominant singular values, and Σr is the singular 

values diagonal matrix. The non-negative diagonal elements of Σr are the r singular 

values denoted by σi, which are sorted in descending order to satisfy the 

truncation approximation. 
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Step 2: Calculate the reduced order matrix Ã ϵ Rrxr. Matrix Ã  describes a low-

dimensional, approximated linear model of the system. 

 𝐴 = 𝑋′𝑋† = 𝑋′ 𝑉𝑟 𝛴𝑟
−1𝑈𝑟

∗ (2.7) 

 Ã = 𝑈𝑟
∗𝐴 𝑈𝑟 = 𝑈𝑟

∗ 𝑋′𝑉𝑟 𝛴𝑟
−1  (2.8) 

Step 3: Find the eigenvectors and eigenvalues of Ã by solving the equation. 

 Ã 𝑊 =  𝛬 𝑊,   (2.9) 

where † is the Moore–Penrose pseudoinverse, the columns of W are the 

eigenvectors and Λ is a diagonal matrix containing the corresponding eigenvalues 

λk. Note that λk represents the eigenvalues of both A and Ã. 

Step 4: Compute the eigenvectors of A (i.e., DMD modes), which are given by 

columns of matrix Φ (Φϵ Cmxr). 

 

 𝛷 = 𝑋′ 𝑉𝑟 𝛴𝑟
−1𝑊  (2.10) 

To summarize, the DMD algorithm can be seen as an ideal combination of 

spatial dimensionality-reduction techniques, such as the proper orthogonal 

decomposition (POD), with Fourier transforms in time [31]. Thus, correlated 

spatial modes are associated with a given frequency, magnitude, and decay rate. 

These three parameters are the unique characteristics of each DMD mode. More 

specifically, DMD modes’ characteristic features reflect the dynamics of the input 

spatiotemporal data (i.e., time domain) in the frequency domain. The method 

collects snapshots of data 𝑋𝑘 from a dynamical system at a number of times tk, 

where k = 1,2,3, . . . ,m. DMD is a regression of data onto locally linear dynamics 

𝑋𝑘 =  𝐴𝑋𝑘+1 , where A is chosen to minimize the mean square error between 

𝐴𝑋𝑘+1 and 𝑋𝑘 over the whole number of samples denoted by k = 1,2,3, . . . , m −1. 

Figure 2.1 provides an overview of DMD analysis for time series datasets.  
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2.3 DMD modes and eigenvalues 

DMD dynamic modes are characteristic eigenvectors whose direction does not 

change following transformation. DMD modes are characterized by energy 

(amplitude) and dynamics (oscillation frequency). The amplitude determines 

which DMD mode is more dominant, or, in other words, which mode is more 

represented in the decomposition. Each DMD mode is associated with a DMD 

eigenvalue, which describes its temporal behavior. DMD discrete eigenvalues 

describe the growth/decay and oscillatory characteristics of the corresponding 

dynamic mode. DMD eigenvalues can be realized by the complex-cartesian 

coordinate plane in the vicinity of the unitary circle. DMD modes corresponding 

to eigenvalues inside the unit circle are decaying modes; DMD modes 

corresponding to eigenvalues outside the unit circle are growing modes. Modes 

corresponding to eigenvalues on the circle are stable, oscillatory modes [31, 35]. 

To summarize, DMD is a powerful mathematical tool for analyzing time-series 

signals in complex systems (i.e., wireless networks and medical systems). DMD 

extracts the underlying dynamics of a system from high-dimensional data by 

identifying embedded patterns and trends. More specifically, DMD identifies the 

dominant modes of the dynamics within a system and separates them from noise 

and other irrelevant data.  
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Figure 2.1. System characterization using DMD analysis. 
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Chapter 3 Wireless Technology 

Identification Employing DMD 

3.1 Background 

Escalating traffic demands and significant growth in broadband wireless services, 

as well as ever-increasing demand on the spectrum caused by vast connectivity 

and the Internet of Things (IoT), have overstretched limited available spectrum 

space for wireless services [37, 38], thus, increasing spectrum scarcity. 

Constrained licensed spectrum resources are simply unable to meet the ever-

rising demand [1, 3]. Scarcity and the high cost of licensed spectrum have 

compelled wireless technologies (e.g., Wi-Fi, ZigBee, and Bluetooth) to share 

spectrum in unlicensed bands [39]—the Industrial, Scientific, and Medical (ISM) 

band being one such unlicensed and unrestricted band.  Consequently, many 

technologies attempt to coexist in the ISM band [40]. This trend has led to 

overutilization and congestion, which, in turn, has caused various levels of 

interference among coexisting technologies. 

Heterogeneous wireless networks (HetNets) — wherein multiple wireless 

technologies (e.g., Wi-Fi, Bluetooth, Zigbee, LTE, and GSM) coexist and share 

spectrum—are a promising solution for enhancing spectrum sharing, network 

capacity, data rate, coverage, and spectrum resource utilization [37, 41, 42]. 

Ensuring effective coexistence across suitable wireless technologies is imperative. 

Wireless technologies must be identified within a frequency range for intelligent 

cognitive radio devices to analyze spectrum occupancy, identify available 

channels, and model interference while attempting to coexist. Only then can 

communication be effective and successful [40]. 

An essential element in developing coexistence protocols is correctly identifying 

wireless technologies anticipated to share spectrum, and then shifting users 
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between available wireless technologies in an effort to optimize spectrum usage 

and minimize interference. For the coexistence research reported in this 

dissertation, performance of a developed novel algorithm based on DMD 

mathematical modeling was analyzed to identify and differentiate among various 

wireless technologies. More specifically, the technique identified GSM and LTE 

signals in the cellular domain and IEEE802.11n, ac, and ax in the Wi-Fi domain, 

and Bluetooth, and Zigbee. The proposed DMD-based technique identifies the time 

domain signature of a signal by capturing embedded periodic features transmitted 

within the signal. Performance and accuracy were tested and validated using an 

experimental dataset collected for various time series and raw-power 

measurements of the targeted technologies. Results showed that the developed 

DMD-based algorithm can differentiate and classify individual and coexisting 

wireless signals with high accuracy: greater than 90% for most cases. 

Furthermore, only a short time—less than one second—is required for identifying a 

signal and enabling implementation in real-time practical networks. The 

advantage of the developed technique over comparable techniques is lower 

complexity (e.g., shorter processing and training time, no channel estimation, no 

time/frequency synchronization, and no need for long observation-time 

intervals). 

3.2 Related Work 

Wireless technology identification schemes can be classified into likelihood-based 

(LB) and feature-based (FB) methods. Recent research has focused on FB schemes 

that capture common features shared among similar signal types. Conventional LB 

methods are based on calculating maximum average probability for proper 

identification. Comparing LB methods with FB methods reveals that although the 

latter has suboptimal performance, it has a simpler implementation, lower 

computational complexity, and relative robustness for modeling mismatches 
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among various operation cases [37, 43]. Since the DMD used in this work is an FB 

technique, the related work focuses on FB algorithms based on wavelets, 

cumulative distribution functions (CDF), second-order cyclostationarity, machine 

learning (ML), and deep learning (DL). These techniques will be briefly described 

in the following sections and ordered from oldest to most recent schemes. 

3.2.1 Wavelet-based Algorithms 

The authors in [44] and [45] introduced a wavelet-based algorithm for identifying 

GSM and UMTS signals relying on differences in their respective modulation 

schemes. The algorithm applied wavelet transform to extract transient behaviors 

within signals resulting from modulation types, and then utilized template 

matching in the wavelet transform domain for identification. Researchers in [46] 

and [47] employed wavelet transform for classifying various digitally modulated 

signals. The wavelet transform magnitude detected distinctive peaks of the 

transient characteristics of a modulation type, allowing simple processing for 

identification. 

3.2.2 Second-order Cyclostationarity-based Algorithms 

Researchers in [48] utilized a second-order cyclostationarity-based algorithm to 

detect and identify cyclic patterns of GSM, wideband code division multiple access 

(WCDMA), and orthogonal frequency division multiplexing (OFDM) modulated 

signals. Cyclostationarity generated by cyclic prefix, preamble, and pilot signals 

were exploited by [37] to classify GSM, LTE, and CDMA signals utilizing fast 

Fourier transform (FFT), autocorrelation function (ACF), power spectral density 

(PSD), and spectral correlation function (SCF) as features for support vector 

machines (SVM). [49] investigators successfully employed a cyclostationarity-

based technique to classify LTE and GSM signals based on their perspective pilot 

signals. Researchers also investigated the effect of signal-to-noise ratio (SNR) and 
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observation time on identification accuracy. A classifier model developed by [42] 

was used for recognizing eight wireless standard signals, namely WCDMA, LTE, 

GSM, CDMA, Digital Enhanced Cordless Telecommunications (DECT), WLAN, 

Bluetooth, and Digital Video Broadcasting (DVB). The technique is based on 

transforming second order cyclostationarity to SCF, and then utilizing it as an 

input to SVM for classification. By utilizing hidden Markov Models to find second-

order cyclic OFDM features, 802.11 a/g signals were categorized in [50]. Authors 

used a software-defined radio in [51] to present a combined energy detection and 

cyclostationarity-based technique for detecting IEEE 802.11g and IEEE 802.15.4 

signals in the 2.4 GHz range. Ninety percent accuracy was the highest for signals 

with 1.6 dB SNR. 

3.2.3 CDF-based Algorithms 

CDF-based algorithms mitigate the primary limiting issues in wavelet-based and 

cyclostionarity-based algorithms by processing signals that require a shorter 

observation interval and can tolerate signal SNR variation. Researchers in [52] 

introduced a novel identification method for distinguishing GSM signals from LTE 

signals. The amplitude of observed signal samples was employed to extract 

technology-based features using statistics and signal structures obtained from 

time and frequency domains. A Kolmogorov-Smirnov (K-S) test was then used to 

develop a decision principle. This same technique was used in [53] to identify LTE, 

UMTS, GSM, and CDMA2000 networks. 

3.2.4 DL-based Algorithms 

Recently, DL-based methods have been introduced as effective techniques for 

classifying wireless technologies. The fundamental concept behind DL-based 

algorithms is to input a large number of labeled signal datasets. The neural 

network then learns and extracts features of a wireless signal technology in the 
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labeled dataset. Finally, classification is performed based on common features 

associated with each wireless technology [54]. 

Convolutional neural networks (CNN) are the most popular DL architectures 

exploiting both modulation and wireless technology recognition [38]. Highlighting 

the most recent work in the DL area, researchers in [55] and [56] chiefly 

constructed classification models based on CNN to process time series signals for 

GSM, UMTS, and LTE. Authors in [56] enhanced the trained model by utilizing both 

image and vector representations of the signals. The model achieved high accuracy 

for classifying signals, including GSM and LTE, with additive white Gaussian noise 

(AWGN) and Rayleigh fading channels used for identifying UMTS, LTE, and 5G 

signals simulated by MATLAB LTE and 5G toolboxes. [57] authors proposed a DL-

based intelligent recognition method for identifying unlicensed band LTE and Wi-

Fi signals generated in a laboratory environment. CNN and recurrent neural 

network (RNN) models were trained using in-phase and quadrature (IQ) signals. 

[58] reported the use of a CNN-based approach for classifying 802.11 b/g, 

802.15.4, and 802.15.1 signals that coexist in 2.4GHz unlicensed bands. For SNR 

greater than or equal to 5 dB, the model’s accuracy was greater than 95%. Authors 

in [59] classified LTE, WiFi, and DVB-T technologies that shared the same ISM 

band using received signal strength indication (RSSI), IQ samples, and 

spectrogram features. A CNN model was employed in [40] to distinguish 

individual and coexisting 802.11n, Bluetooth, and Zigbee signals using frequency 

domain features. The model was trained using power-frequency measurements 

taken from the IQ components and recorded at various SNR levels. Researchers 

compared different ML models’ categorization accuracy. Results revealed that for 

signals with an SNR higher than 15dB, CNN had the highest classification 

accuracy—greater than 90%. Convolutional denoising autoencoders (CDAEs) 

were used in a similar study published in [60] to recover distorted spectrograms 

before categorizing signals with CNN. The model achieved 91% accuracy when 

identifying IEEE 802.11a, IEEE 802.11n, IEEE 802.11ax, IEEE 802.11ac, and 
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unlicensed LTE signals. A WaveNet model-adapted neural network was created by 

authors in [61] to distinguish between 802.11n, 802.11ac, and 802.11ax Wi-Fi 

signals. Raw power time series data were gathered for both standalone and 

coexisting signals at different throughputs. The approach had a high classification 

accuracy of between 90 and 98%. Ten wireless technologies, including Wi-Fi, 

ZigBee, and Bluetooth, were classified in the 2.4GHz ISM band in [62]. 

Experimentally, raw IQ samples were collected in an indoor lab. A DL multi-task 

neural architecture was created by researchers for identifying signals by way of  

their modulation properties. [63] researchers classified separate and coexisting 

Bluetooth, Wi-Fi, and microwave signals using a pre-trained, InceptionV3, CNN-

based model. ComBlock’s commercial, off-the-shelf modules generated signals in 

the 2.4GHz ISM band. The model’s overall accuracy was 98% for 800 testing 

samples. Researchers in [64] utilized CNN to identify various wireless signals 

based on their modulation. Constellation diagrams were generated for each signal 

category, and then used for training and testing several pre-trained CNN-based 

models, including AlexNet, VGG-16, and VGG-19. Classification accuracy was 

higher than 85% for signals with SNR greater than 5 dB.  Accuracy was extremely 

low for signals with SNR less than 3 dB. An improved DL model (i.e., multilayer 

perceptron neural architecture) was proposed in [62, 65] to classify received 

signals based on their modulation. Signals were classified with accuracy higher 

than 95% when SNR was greater than 0 dB. Researchers in [66] applied deep 

residual network (ResNet), convolutional long short term deep neural network 

(CLDNN), CNN, and RNN on the RadioML dataset. The models successfully 

classified 11 wireless technologies with SNRs ranging from -20 dB to 18 dB. 

AutoML was employed to reduce time for training and tuning hyper-parameters 

of the models. CNN accuracy was highest (i.e., 85% for signals with SNR>2 dB), 

and RNN was the lowest. Authors in [67] proposed a dilated CNN scheme wherein 

a one-dimensional modulation signal was converted into a two-dimensional 

asynchronous delay histogram. Subsequently, the histogram was input to CNN 

https://www.mdpi.com/2076-3417/12/23/12052#B53-applsci-12-12052
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centered on dilated convolution kernel. The model showed improved accuracy for 

low SNR signal classification. [68] researchers proposed five CNN models, 

including ResNet18, SqueezeNet, GoogleNet, MobileNet and RepVGG, for wireless 

modulation recognition. The SqueezeNet model achieved the highest accuracy of 

97.5%, given SNR was +8 dB. Moreover, using weighted ensemble learning 

improved classification accuracy at low SNR. The ensemble learning model had 

52.7% accuracy at SNR of -20 dB and 77% at SNR of -2 dB. 

3.2.5 ML-based Algorithms 

Although DL approaches achieve high accuracy models with the advantage of 

simple feature pre-processing or even raw data input, they also require large-scale 

training datasets, resulting in high implementation costs and significant 

computational time. As a result, ML techniques, such as SVM in [37, 69] and 

Random Forest (RF) in [43, 70], have been widely used in related research for 

identifying various standards’ wireless signals. Researchers have demonstrated 

promising results using SVM with reduced-size datasets [43]. Hierarchical 

clustering and nearest neighbor classifiers were employed in [71] to classify 

802.11b, 802.11g, and Bluetooth signals. The model classified resulting cluster 

centroids using bandwidth, frequency, and temporal characteristics. A similar 

method introduced by [72] successfully clustered Wi-Fi and ZigBee, employing 

unsupervised learning with accuracy ranging between 80 and 90%.  Individual 

and coexisting IEEE 802.11b/g/n, 802.15.4, 802.15.1, and Bluetooth Low Energy 

(BLE) technologies were categorized by authors in [73] for the 2.4 GHz ISM band. 

Researchers used a variety of ML algorithms, including decision trees (DT), RF, 

and SVM, and demonstrated 90 to 97% identification accuracy for signals with 

SNR greater than 0 dB. A noise robust SVM classification model was developed by 

researchers [74] to identify various wireless signals based on their modulation. 

The method was founded on selecting noise-insensitive features from a large 

https://www.mdpi.com/2076-3417/12/23/12052#B56-applsci-12-12052
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feature set to ensure that the trained classifiers were robust to SNR variations. 

Features were selected by normalizing variances among all features, such that 

features with large variances were eliminated from the initial set. The model 

achieved classification accuracy above 92% when SNR varied between 5 and 20 

dB. [75] authors proposed a low-complexity technique to classify numerically 

simulated wireless signals having 2ASK, QPSK, and 16QAM modulations. Signals 

simulated with SNRs varied from 0 to 30 dB. The proposed approach used an SVM-

model trained by features extracted through principal component analysis (PCA). 

The proposed model was able to identify signals based on their modulation with 

99.83% accuracy. Authors in [76] classified various digitally modulated signals 

using multi-layer perceptrons (MLP), radial basis function (RBF), adaptive neuro-

fuzzy inference system (ANFIS), decision tree (DT), and naïve Bayes (NB), SVM 

ML-algorithms. Optimal parameters for each model were obtained by utilizing a 

genetic algorithm (GA). Simulated signals were generated in the presence of 

additive white Gaussian noise (AWGN) with an SNR ranging between −10 dB and 

30 dB. SVM achieved the highest classification accuracy: greater than 90% over 

the entire SNR range..  

3.3 Research Contribution Compared to Literature 

The FB approaches detailed above are based on extracting specific features from 

a certain signal, and then identifying the signal using a classification model. The 

classification decision is performed by analyzing the probability distribution 

function (PDF) of feature vectors or minimizing the error between calculated and 

estimated values. These approaches have the advantages of being a) simple to 

implement and b) proven to provide near-optimal performance. However, they 

are sensitive to noise level and/or might require prior information about targeted 

signals [43]. Cyclostationarity-based and wavelet-based schemes require long 

observation intervals. The same is true for DL-based algorithms. Additionally, DL 
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algorithms are highly computationally complex and require increased time to 

converge. ML-based algorithms require further data preprocessing and rely on 

expert knowledge for understanding the data structure. Table 3.1 provides a 

summary of the recent algorithms proposed in the literature, along with the pros 

and cons of each technique. 

The DMD-based algorithms developed in this work differ from the 

aforementioned techniques and recent studies thereof by two distinguishing 

features. First, the DMDF and DMD-BW identification techniques’ accuracy is 

independent of SNR. Instead, the algorithm relies on tracking oscillation 

frequencies for various technologies, while,  DMDA algorithm implements power 

normalization among received signals to reduce its dependence on SNR. Resulting 

accuracies were above 90%. Second, DMD algorithms were able to track the 

periodic preamble transmissions within a signal under poor channel conditions, 

while other algorithms track signal modulation requiring good channel conditions 

and SNR greater than 0 dB, in most cases, to achieve high accuracy. 

Table 3.1. Recent Wireless Technologies Identification Schemes 

Model Cyclostationar

y-based 

CDF-based ML-based DL-based 

Identified 

technologie

s 

GSM, LTE, 

CDMA, 

WCDMA, 

OFDM, 

WLAN, 

Bluetooth 

GSM, LTE, 

UMTS, 

CDMA2000 

2ASK, 4ASK, 

QPSK, 2FSK 

and 4FSK ITS-

G5, LTEV2X, 

NR-V2X, BPSK, 

MSK, OFDM, 

IEEE 

802.11b/g/n, 

802.15.4, 

802.15.1, and 

BLE 

GSM, LTE, UMTS, 

IEEE 

802.11a/ac/b/g/n/a

x, 802.15.4, 

802.15.1, DVB-T, 

Bluetooth, and 

ZigBee 

Employed 

features 

FFT spectrum, 

ACF, 

PSD, SCF, and 

cyclic 

frequency 

CDF function High order 

cumulants, 

Instantaneous 

Frequency, 

SCF, burst 

length, burst 

mean power, 

maximum 

envelope 

variation, and 

ripple 

Image 

representation, IQ 

samples, RSSI, 

spectrogram 

features, power-

frequency 

measurements 
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Pros Low 

implementatio

n 

cost. 

Low 

computational 

time 

and complexity 

Highly 

Robust to 

timing 

and 

frequency 

mismatches. 

Low 

computation

al 

complexity. 

Low 

implementatio

n cost. Small 

data sets are 

sufficient for 

the algorithm. 

Low 

computational 

time. 

Minor data 

preprocessing is 

required. 

Cons Affected by 

noise and 

SNR variation; 

require long 

signal 

observation 

time. 

Accuracy is 

highly 

reduced for 

signals of 

SNR <2dB. 

Require 

further data 

preprocessing 

and  rely on 

expert 

knowledge for 

understanding 

data structure 

High computational 

complexity,  

requiring large 

amounts of data; 

require long-signal 

observation time 

3.4 Methodology 

The DMD data-driven modeling algorithm serves as the foundation for 

identification schemes created for research reported in this dissertation. Three 

DMD-based wireless technology identification methods were developed: 1) DMD 

modes frequency bandwidth-based identification (DMD-BW); 2) DMD mode 

amplitude-based identification (DMDA); and 3) DMD mode oscillation frequency-

based identification (DMDF). These methods identify and distinguish between 

various wireless technologies coexisting in a heterogeneous network and utilizing 

the resulted DMD eigenvalues and eigenvectors (i.e., DMD modes). Techniques 

employ DMD modes’ features for identifying the time domain signature of a 

wireless signal.  The proposed algorithms process raw power-measured signals, 

capturing specifically embedded periodic features within the targeted signals 

represented in pilot, preamble, synchronization, and control signals. The DMD-BW 

method uses the frequency spectrum bandwidth of DMD modes, while DMDA 

utilizes the amplitudes of DMD modes. DMDF, on the other hand, utilizes the slope 

of the frequency decay of the DMD modes. Each identification methodology was 

performed in three steps: 1) data formatting (Hankel stacking), 2) extracting DMD 

modes and eigenvalues by the standard DMD algorithm (Algorithm 3.1), and 3) 

Classify signals by applying the developed identification schemes. 
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3.4.1 Data Formatting 

All DMD-based identification methodologies developed in this work perform data 

formatting as a first step in processing the available dataset. Timeseries-raw 

power signals are prepared as algorithm input during this stage. A mapping 

procedure, Hankel matrix staking method [31, 77] was used to transform a 

univariate time series data with length n into a multidimensional matrix of size (m 

x k). Equation (3.1) describes a time series signal of length n and fixed sampling 

time Δt:  

 𝑌 = [𝑦1 𝑦2 𝑦3 … … … 𝑦𝑛] (3.1) 

Data matrix X and its related one-time step evolution data matrix X′ were created 

using the Hankel matrix stacking approach: 

 𝑋 = [

𝑦1 𝑦2 𝑦3 … … 𝑦𝑘

𝑦2 𝑦3 𝑦4 … … 𝑦𝑘+1

: : : : :
𝑦𝑚 𝑦𝑚+1 𝑦𝑚+2 … … 𝑦𝑚+𝑘−1

] (3.2) 

 𝑋′ = [

𝑦2 𝑦3 … … 𝑦𝑘+1

𝑦3 𝑦4 … … 𝑦𝐾+2

: : : :
𝑦𝑚+1 𝑦𝑚+2 … … 𝑦𝑚+𝑘

], (3.3) 

such that 

 m = n – k + 1 , (3.4) 

where m is the number of stacks. Column vectors of data matrices were defined as 

snapshots, such that k was the number of snapshots. 

 X = [x1  x2 ……..xk] (3.5) 

 𝑋′ = [x2  x3 ……..xk+1] (3.6) 
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Figure 3.1 illustrates data formatting steps for GSM positive samples when 

forming data matrices X and X′, which were utilized by DMD to build a matrix 

containing GSM signals’ captured features. The same steps were applied to LTE 

training signals. Note that the combination step is a row wise stacking for training 

signals.  

 

Figure 3.1. DMD data matrix formation using Hankel stacking. 

3.4.2 Applying DMD Algorithm 

In the second step, the standard DMD algorithm (Algorithm 3.1) was applied to the 

constructed data matrices X and X. DMD decomposes the data matrices into a DMD 

mode Φ and DMD eigenvalues Λ. 

Algorithm 3.1: Standard DMD Algorithm 
Input: signal y1, k, m, r, and Δt 
Output: Φ, Λ, and λi 
Perform Hankel stacking: 
1: Initialize Y11 
2: for j = 1:m do 
3:    Y11 = [Y11  y1(:, j : end − m + j)] 
4: end for 
Construct input matrices: 
5: X = Y11(:, 1 : end − 1) 
6: X’ = Y11(:, 2 : end) 
Compute SVD of X: 
7: X = 𝐔 𝚺 𝐕∗ 

Apply truncation: 
8: 𝐔𝒓 = 𝐔(:, 1 : r) 
9: 𝚺𝒓 = 𝚺(:, 1 : r) 
10: 𝐕𝒓 = 𝐕(:, 1 : r) 
11: Ã = 𝐔𝒓

∗ 𝐗′𝐕𝒓  𝚺𝒓
−𝟏 

12: Ã 𝐖 =  𝚲 𝐖 
     DMD modes matrix 
13: 𝚽 = 𝐗′𝐕𝒓 𝚺𝒓

−𝟏𝐖 
      DMD eigenvalues 
14: 𝛌𝒓 = 𝒅𝒊𝒂𝒈(𝚲) 
Calculate DMD mode magnitudes: 
9: 𝒙𝟏 =  𝐗 (: , 𝟏)  

10: 𝐦𝐚𝐠 =  𝚽† 𝒙𝟏 
15: Repeat for all signals 
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3.4.3 DMD-BW Identification Scheme  

The developed DMD-BW technique utilized amplitude-frequency features of the 

DMD modes (i.e., DMD spectrum) to classify and differentiate between 

experimentally collected signals of Wi-Fi, Bluetooth, LTE, and GSM wireless 

technologies. Each wireless technology was associated with a unique DMD modes 

frequency bandwidth. Figure 3.2 highlights the outline of a DMD-BW identification 

scheme. Amplitudes of the DMD modes can be calculate as [31]: 

 𝐴 = 𝛷†𝑥1  , (3.7) 

where † is the Moore–Penrose pseudoinverse. 𝑥1is the first-row vector of data 

matrix X. Oscillation frequency of the ith DMD mode can be defined as [33, 78]: 

 𝑓𝑖 = |𝑖𝑚𝑎𝑔(
𝑙𝑛 (𝜆𝑖)

𝛥𝑡
)| , (3.8) 

where λ𝑖 is the eigenvalues associated with DMD modes. 

 
Figure 3.2. Outline of DMD-BW identification scheme. 

3.4.4 DMDA Identification Scheme  

Utilizing eigenvalue matrix Λ  and DMD modes matrix Φ , DMDA technique 

calculates a template-features matrix 𝐹𝑥 from a set of training samples of a certain 

technology x. As Figure 3.3 illustrates, we projected the features matrix 𝐹𝑥  on 
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testing samples of different technologies, and then the technique classified the 

signal by evaluating the resultant DMD mode amplitudes. Utilizing the resultant 

DMD eigenvalues and modes [31, 78], we arrived at the following: 

 𝑥𝑖 =  𝛷 𝛬𝑖 𝑏 , (3.9) 

where i=1, 2, ..., k, and b are vectors containing the coefficients of the initial 

condition x1 in the eigenvector basis, such that: 

 𝑏 =  𝛷† 𝑥1 (3.10) 

From Equation (3.9), two terms- Φ and Λi —are combined to define a new matrix: 

 𝐹𝑥 = 𝛷 𝛬𝑖 (3.11) 

Matrix Fx contains unique features of a wireless technology x, which is composed 

of eigenvalues and eigenmodes. This matrix represents a model describing a 

specific technology class feature in the DMD domain. DMD modes amplitude can 

be calculated as: 

 𝑏𝑡 =  𝐹𝑥
† 𝑋𝑡 . (3.12) 

Since b is a vector composed of complex values, its amplitude can be represented 

by: 

 𝑆𝑡 = 𝑏𝑡 𝑏𝑡
∗ , (3.13) 

where t represents a testing sample of a wireless technology and b𝑡
∗  is the 

complex conjugate of b𝑡. 

The resulting modes’ amplitude determines the detected signal class. Given that 

the signal class includes similar features, subsequent mode amplitude derived 

from technology x training samples is anticipated to have larger values than other 

technologies. According to (3.12), power measurements in X𝑡 affect the values of 

DMD modes amplitude. Therefore, power measurements of various signals should 
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be at comparable levels. Thus, before using DMDA for classification, signal power 

must be normalized. This was achieved at a minimum value of zero and a 

maximum value of one. The pseudo-code of the proposed DMDA technique is given 

in Algorithm 3.2. 

 

Figure 3.3. Outline of DMDA identification scheme. 

Algorithm 3.2: Wireless Signal Features Matrix Formation (Matrix F) 
Input: signal y1, k, m, r, and Δt 
Output: F 
    Calculate required number of samples: 
1: n = m + k-1 
    Extract required signal window: 
2: 𝒀𝟏 = 𝒚𝟏(𝟏: 𝒏) 
    Perform Hankel stacking: 
3: Initialize 𝒀𝟏𝟏 
4: for j = 1 : m do 
5:    𝒀𝟏𝟏 = [𝒀𝟏𝟏, 𝒀𝟐𝟐, … . . 𝒀𝒏𝒏] 
6: end for 
    Repeat for all training signals. 
    Combine to form data matrix: 
7: 𝑫 = 𝒚𝟏(𝟏: 𝒏) 
    Construct input matrices for DMD: 
8: 𝑿 = 𝒀𝟏𝟏(: , 𝟏: 𝒆𝒏𝒅 − 𝟏) 
9: 𝑿′ = 𝒀𝟏𝟏(: , 𝟐: 𝒆𝒏𝒅) 
    Apply DMD: 
7: X = 𝐔 𝚺 𝐕∗ 
8: 𝐔𝒓 = 𝐔(:, 1 : r) 
9: 𝚺𝒓 = 𝚺(:, 1 : r) 
10: 𝐕𝒓 = 𝐕(:, 1 : r) 
11: Ã = 𝐔𝒓

∗ 𝐗′𝐕𝒓  𝚺𝒓
−𝟏 

12: Ã 𝐖 =  𝚲 𝐖 
13: 𝚽 = 𝐗′𝐕𝒓 𝚺𝒓

−𝟏𝐖 
      Construct features matrix: 
14: Initialize 𝑭 
15: for j = 1 : k do 
16:    𝑭 = [𝑭; 𝚽𝚲𝒋] 
17: end for 
    Repeat for all signals 
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3.4.5 DMDF Identification Scheme  

DMDF identification is based on analyzing the resulted DMD modes oscillation 

frequency for various signals. This was performed after extracting DMD modes 

matrix Φ and DMD eigenvalues by applying the standard DMD on data matrices X 

and X’ (see Algorithm 3.3). Oscillation frequency of the ith DMD mode was defined 

in Equation 3.8 [33, 78]. 

fi represents the absolute oscillation frequency of a DMD mode. The suggested 

notion recommends comparing the oscillation trend of signals’ DMD modes, which 

can be accomplished by rearranging the fi values for each signal class into 

descending order, and then plotting fi against an index j, where j=1, 2, 3,..., r. The 

received signal is then classified using the resulting plots. An overview of this 

procedure can be found in Figure 3.4. To categorize the signals, we used the slope 

of the ensuing trends. The slope represents the decay of frequencies from 

extracted DMD modes. Algorithm 3.3 provides a detailed illustration of the 

suggested technique. 

 

Figure 3.4. Outline of DMDF identification scheme. 

Algorithm 3.3: DMDF technique  
Input: signal y1, k, m, r, and Δt 
Output: figure 
Calculate required number of samples: 
1: m = n = k-1 
    Extract required signal window: 
2: 𝒀𝟏 = 𝒚𝟏(𝟏: 𝒏) 
    Perform Hankel stacking: 
3: Initialize 𝒀𝟏𝟏 
4: for j = 1 : m do 
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5:    𝒀𝟏𝟏 = [𝒀𝟏𝟏, 𝒀𝟐𝟐, … . . 𝒀𝒏𝒏] 
6: end for 
    Construct input matrices for DMD: 
7: 𝑿 = 𝒀𝟏𝟏(: , 𝟏: 𝒆𝒏𝒅 − 𝟏) 
8: 𝑿′ = 𝒀𝟏𝟏(: , 𝟐: 𝒆𝒏𝒅) 
    Apply DMD: 
9: X = 𝐔 𝚺 𝐕∗ 
10: 𝐔𝒓 = 𝐔(:, 1 : r) 
11: 𝚺𝒓 = 𝚺(:, 1 : r) 
12: 𝐕𝒓 = 𝐕(:, 1 : r) 
13: Ã = 𝐔𝒓

∗ 𝐗′𝐕𝒓  𝚺𝒓
−𝟏 

14: Ã 𝐖 =  𝚲 𝐖 
15: 𝚽 = 𝐗′𝐕𝒓 𝚺𝒓

−𝟏𝐖 
      Calculate eigenvalues and oscillation frequencies: 
16: 𝛌𝐢 = 𝒅𝒊𝒂𝒈(𝚲) 
17: 𝐟𝐢= abs (imag (log (𝛌𝐢/ Δt) ) ) 
18: 𝐟𝐢= sort(𝐟𝐢, descend); 
      Define index j: 
19: j=[1:r]; 
20: figure: Plot (j, 𝐟𝐢) 
Repeat for all signals 

3.5 Datasets and Experimental Setup  

3.5.1 Wi-Fi Dataset  

The Wi-Fi dataset used in this work was collected at the wireless laboratory 

located at the University of Oklahoma Tulsa campus. For signals with maximum 

throughputs of 956 Mbps, 340 Mbps, and 250 Mbps, the data set included 450 raw 

power time series measurements containing 90 million packets for 802.11ax, 

802.11ac, and 802.11n, respectively. The collection included individual (or 

baseline) and coexisted signals in the 5 GHz ISM band with a minimum and 

constant noise level of less than -73 dBm. Three Wi-Fi network setups—each with 

a pair of access points (Tx) and station (Rx) equipment—were available. 

An Asus RT-AX88U device was used To establish an 802.11ax network with 

160 MHz of bandwidth on channel 36 (e.g., central frequency 5180 MHz).The 

device featured Orthogonal Frequency-Division Multiple Access (OFDMA) and 4x4 

Multiple User Multiple-Input Multiple-Output (MU-MIMO) technology; it 

supported single-carrier data rate speeds of 4.8 Gbps on the 5 GHz band with 160 

MHz channel bandwidth. 
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The 802.11n and 802.11ac networks were built using two pairs of Mikrotik 

Router boards (RB953GS) with R11e-2HPnD radio card boards. During 

coexistence, the networks shared the same channel with the 802.11ax network. 

LabVIEW software was used to extract time domain IQ components from raw 

power measurements of transmitted signals obtained by NI PXIe-5644R RF vector 

signal transceiver (VST). The platform included the NI PXIe-8133 1.73 GHz Quad-

Core PXI Express embedded controller, NI PXIe-1082 8-Slot 3U PXI Express 

chassis, and VERT2450 antenna. VST is FPGA-based and capable of real-time 

signal processing and control. Measuring radio frequency (RF) can be broken into 

acquiring I/Q samples, transferring I/Q samples into a host PC, and performing a 

proprietary measurement algorithm based on LabVIEW. Real-time bandwidth IQ 

sampling rate was set to 10 MS/s. Figure 3.5 depicts the time domain properties 

of randomly selected samples with various duty cycles (DCs) for a 20ms time 

interval. Table 3.2 shows DC average values. 

3.5.2 ZigBee/BLE Dataset  

Experimental testing and data collection were conducted at the wireless 

laboratory at the University of Oklahoma Tulsa campus. A semi-anechoic chamber 

was used for testing to eliminate external noise. A heterogeneous wireless 

network was set up andcomposed of BLE and ZigBee subnetworks. The system 

was characterized by a pair of access points (Tx) and station (Rx) devices in each 

network. 220 separate (i.e., not sharing a baseline)raw power timeseries signals 

of each technology were collected, in addition to 220 coexisting signals in the 2.4 

GHz ISM band. A CC2530 development kit board was used to create ZigBee traffic 

via channel 14 at a central frequency of 2.42 GHz. Two laptops equipped with 

nRF52840-BLE Bluetooth 5.3 chipsets were used for BLE communication. An NI 

vector network analyzer and PXIe-1075 chassis were used to record the 

transmitted signals’ raw power measurements. Power measurements were 

gathered using a sampling frequency of 500 MHz. Transmitted signals were 
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recorded with an SNR range of 0 to 25dB for various transmitter and receiver 

locations and heights. To summarize, 660 timeseries signals containing 10.3 

million packets were captured from three scenarios, namelyindividual BLE, 

individual ZigBee, and heterogeneous coexisting BLE. and ZigBee, comprised the 

dataset. For each case, 220 signals (i.e., 3.5 million packets) were collected. Time 

domain features of randomly selected signals are shown in Figure 3.6. 

 

Figure 3.5. Raw power measurements of Wi-Fi signals with various duty cycles. 

Table 3.2  

Average Values of Wi-Fi Signals Duty Cycles 
DC1 DC2 DC3 DC4 DC5 

22% 40% 64% 80% 93% 
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Figure 3.6. Experimentally collected ZigBee and BLE raw power signals.  

3.5.3 GSM/LTE Dataset  

A GSM and LTE dataset provided by [79] was used and consisted of GSM and LTE 

signals generated at various SNR levels with a combination of non-line-of-sight 

(NLOS) and line-of-sight (LOS) conditions. The experiment was performed in the 

Wireless Research Laboratory in Tubitak, Belgium. Researchers deployed an 

Agilent vector signal generator (VSG) E4438C as a transmitter. An Agilent PSA 

series vector signal analyzer (VSA) E4440A was employed as a receiver for 

capturing transmitted signals. GSM average received signal strengths ranged from 

-50 dBm to - 45 dBm, while LTE varied between -50 dBm and -40 dBm. Sampling 

time Δt was set to 0.78μs and 0.14μs for GSM and LTE, respectively. Figure 3.7 

shows various samples of the available time series signals obtained from the 

dataset. 
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Figure 3.7. Samples of GSM and LTE raw power signals. 

3.6 Signal Frame Format and Features  

This section explains the signal model and frame structure of various wireless 

technologies included in the analysis. The inherent unique periodicity in each 

signal, which serves as the DMD-based algorithms’ fundamental property for 

identification, is highlighted by the frame structure. More specifically, the 

developed algorithms analyze raw power-measured signals, capturing embedded 

periodic features within the targeted signals represented in pilot, synchronization, 

and control signals. 

3.6.1 Wi-Fi  

When highlighting the physical layer (PHY) frame structure of 802.11n, 802.11ac, 

and 802.11ax Wi-Fi standard signals in the 5 GHz bands, the 802.11 PHY employs 

burst packets for transmission. Both a preamble and payload are present in each 

packet. Preamble enables synchronization of time and frequency; estimates 

channel parameters for equalization; and gives receiver header details about the 

packet (e.g., configuration, format type, and data rates). Data from the user is 

transmitted in the payload.  

Figure 3.8 shows packet formats for 802.11n, 802.11ac, and 802.11ax Wi-Fi 

standard signals. The 802.11n high throughput (HT) mixed format begins with 
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legacy preambles, including legacy Short Training sequence (L-STF), legacy Long 

Training sequence (L-LTF), and legacy Signal Description (LSIG), which can be 

decoded by legacy 11a/g devices. Legacy preambles are followed by the 11n 

specific HT preambles, and finally the user data. The 802.11ac frame format has 

the same beginning legacy preambles, followed by very high throughput (VHT) 

preambles, which are unique for 11ac devices. Like 11n and 11ac, the 802.11ax 

packet begins with a traditional preamble followed by a high efficiency (HE) 

preamble sequence that can only be decoded by 11ax devices. At the end of an 

802.11ax frame, a packet extension (PE) with length of 8 or 16 μ s can be 

employed. The proposed DMD-based techniques are based on acquiring these 

periodic features to differentiate between targeted signals. 

 

Figure 3.8. 802.11n, 802.11ac, and 802.11ax packet structure. 

3.6.2 ZigBee  

Data was transmitted via packets by the Zigbee IEEE 802.15.4 PHY. As indicated 

in Figure 3.9, each packet was composed of a preamble (32 bits) for 

synchronization; the start of packet delimiter, which is a unique bit sequence that 

indicates the start of the frame (8 bits); physical header containing information 

about the frame type; addressing mode; destination and source addresses (8 bits); 

and payload segment data unit containing actual data being transmitted (0 to 1016 

bits) [80]. Figure 3.9 highlights the frame structure of ZigBee IEEE 802.15.4 PHY 
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and the periodic features within the frame, mainly represented in preamble, 

delimiter, and header sequences.  

 

Figure 3.9. ZigBee signal packet structure. 

3.6.3 BLE  

According to the BLE v5.1 standard created by the Bluetooth SIG, a PHY 

transmitted packet has four parts: 1) the synchronization preamble (8 bits), 2) 

access address (32 bits), 3) protocol data unit (PDU)—advertisement or data 

packet (2-257 octets), and 4) cyclic redundancy check (CRC), which is used to 

identify packet errors (24 bits) [81]. Figure 3.10 highlights the frame structure of 

BLE v5.1 signals.  

 

Figure 3.10. BLE v5.1 packet structure. 

3.6.4 GSM  

GSM frame structure is a time division multiple access (TDMA). Each frame 

consists of eight timeslots. Figure 3.11 shows timeslot-per-frame for a normal 

burst of GSM signal [40], which carries encrypted data transmitted between users. 

Periodicity of the pilot training signals, tail bits (TB), and guard bits (GB) were 

noted. A dedicated 26 bits for the training (i.e., pilot) signal utilized for channel 

estimation in each time slot were repeated in the same instance per slot. Since the 

duration of each timeslot is 577μs, the repetitive frequency of the pilot sequence 

is 1/577=1733 Hz. Guard and tail (i.e., synchronization) bits had the same value of 
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repetitiveness. Other signaling GSM bursts (i.e., frequency correction, 

synchronization, and access bursts) have similar repetitive sequences with the 

same 1733 Hz frequency, yet a different duration. 

 

Figure 3.11. GSM timeslot structure for normal burst. 

3.6.5 LTE  

The detailed frame structure of LTE FDD downlink is avilable in Figure 3.12 [83, 

84]. The LTE frame is divided into 10 subframes every 10ms, each with 1ms 

duration. Also, each subframe contains two timeslots (or resource blocks [RBs]) 

characterized by 0.5ms duration and six or seven OFDM symbols, depending on 

short- or long-cyclic prefix. The periodicity of various signals demonstrates a 

constant repetition for the following. 

1. Reference/pilot signals (blue). Fixed location along the time axis on the 

first and fifth OFDM symbol of each RB. These are repeated once per RB (i.e., 

one time per 0.5ms), 

2. PDCCH, PCFICH, PHICH (yellow, red, purple, respecitviely; see below). 

Exist at the beginning symbol of each subframe and are repeated once per 

subframe (i.e., one time per 1ms), and 

3. PSS and SSS (green and orange, respecitvely). Repeated at fixed locations 

once every 5ms,  

where PDCCH is Physical Downlink Control Channel; PCFICH is Physical Control 

Format Indicator Channel; PHICH is Physical HARQ Indicator Channel; PSS is 

Primary Synchronization Signal; and SSS is Secondary Synchronization Signal. 
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Figure 3.12. LTE FDD downlink frame structure. 

3.7 Results and Discussion  

3.7.1 Selection of DMD-based identification 

techniques’ input parameters 

As shown earlier, algorithms 1, 2, and 3 required four input parameters for 

carrying out the proposed classification algorithm, as follows. 

1. Number of snapshots k. Inputting the entire captured raw signal into the 

algorithm results in unnecessarily long computational time. Instead, a 

minimum number of snapshots (i.e., number of column vectors of data 

matrices) should be used in data matrix X. Based on the discussion in the 

methodology section, for DMD to accurately capture the periodic features 

embedded in the signals, one must choose an adequate number of snapshots 

to represent an ample number of packet timeslots. The following formula 

was used to calculate the required k value: 

 𝑘 =
𝑁𝑠𝑙𝑜𝑡 𝑥 𝑇𝑠𝑙𝑜𝑡

𝛥𝑡
 , (3.14) 
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where Nslot is the number of the standard frame packets and Tslot is the duration 

of each packet. Empirically, it was found that Nslot = 4 was sufficient for DMD to 

capture repetitive sequence frequencies and assign a signal (see subsection 3.72). 

2. Number of stacks m for Hankel matrix formulation. The Hankel matrix 

number of rows m significantly impacts DMD accuracy. The value of m is 

dependent on the length of the time series signal n. When m was smaller 

than n/2 or approximate to n, error increased and accuracy decreased. 

Therefore, the value of m follows the threshold [33, 78]: 

 
𝑛

2
< 𝑚 < 𝑛     (3.15) 

The value of m was selected to be approximately 60% of the value of n: 

 𝑚 = 0.6 𝑛         (3.16) 

3. Truncation value r. The optimal value of r can be found from the inflection 

point in the decay of the singular values of data matrix X [33], which are 

elements of the diagonal matrix Σ of the SVD process. For example, Figures 

3.13 and 3.14 indicate the decay of the singular values of GSM signal. 

Singular values were normalized with respect to the first singular value. 

Based on the inflection point, six modes are ample to represent a GSM signal. 

This result confirms the significance of DMD, which required only a few 

numbers of extracted (i.e., dominant ) modes for identifying a signal. 

4. Number of samples n. This parameter represents the length of the 

timeseries signal, as indicated in (3.1). The value of n can be calculated using 

(3.4), given the value of m and k, as calculated in (3.14) and (3.16). 
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Figure 3.13. Decay of GSM signals singular values. 

 

Figure 3.14. Decay of LTE signals singular values 

3.7.2 GSM/LTE Identification 

3.7.2.1 Applying DMD-BW Technique 

The developed DMD-BW identification technique (see Figure 3.2) was applied to 

raw power timeseries signals of GSM and LTE signals. The technique 

differentiated/classified the targeted wireless technologies based on their DMD 

spectrum characteristics. It was found that each technology has its unique DMD 

spectrum. Figure 3.15 shows a sample of the resulted DMD spectrum for the 



 

40 

targeted technologies (i.e., DMD modes’ amplitude versus their frequencies). 

Each wireless technology was associated with a unique DMD modes frequency 

bandwidth. 

LTE signals had higher DMD spectrum bandwidth compared to GSM. As 

Figures 3.11 and 3.12 demonstrated, the frequencies of the periodic sequences of 

LTE- transmitted packets have the highest throughput, while GSM had the lowest 

(i.e., 9.6 kbps). Higher throughput means shorter transmission time and, 

consequently, higher periodic frequencies. The identification rule was empirically 

developed and expressed as: 

 𝐵𝑊𝐿𝑇𝐸 > 𝐵𝑊𝐺𝑆𝑀 , (3.17) 

where 𝐵𝑊𝐿𝑇𝐸 and 𝐵𝑊𝐺𝑆𝑀are the DMD modes’ frequency spectrum bandwidth for 

LTE and GSM wireless technologies, respectively. 

 

Figure 3.15. DMD frequency spectrum for a sample of LTE and GSM signals. 

3.7.2.2 Applying DMDA Technique 

This section describes results obtained using DMDA signal identification. DMDA 

evaluates the resultant DMD mode amplitudes. Figure 3.16 shows the resulting 

modes of two GSM and LTE testing samples for a various number of transmitted 
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timeslots (or packets) Nslot. The developed algorithm achieved better distinction 

as Nslot  increased. Six resultant DMD mode amplitudes of GSM and LTE test 

samples were evaluated relative to features stored in matrix F, which was 

constructed using GSM training signals (see Figure 3.3). DMD mode amplitudes 

were evaluated by comparing maximum and average values. As expected, GSM test 

samples had higher amplitudes than LTE test samples due to common features 

matching with matrix F. Results confirm the ability of DMDA to identify signals 

with short time duration (i.e., only 4 packets/timeslots are sufficient). Regarding 

GSM, Nslot = 4 was empirically found to sufficiently capture the repetitive 

sequence frequency, as clearly shown in Figure 3.14. Given Tslot = 577μs and Δt 

= 0.78 μs, k equals approximately 2950. For LTE, Nslot = 5 was empirically found 

to capture repetitive sequence frequencies. Given Tslot = 0.5ms and Δt = 0.14 μs, 

k equals approximately 17850. 

 

Figure 3.16. Resulted DMD modes amplitudes for testing samples with different 
values of Nslot. 

3.7.2.3 Applying DMDF Technique 

The DMDF identification method classifies signals based on evaluating the slope 

of DMD mode oscillation frequencies, as explained in Section 3.4.5. The technique 

was applied on all the available GSM and LTE samples, and then plotted the 

oscillation frequency trend for 20 modes (i.e., value of r was set to 40, and then 
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duplicate values were removed, as resultant eigenvalues were complex 

conjugates). 

Figure 3.17 shows that LTE testing samples had a more pronounced, distinct 

trend (e.g., higher slope) than GSM testing samples. Figure 3.17 also demonstrates 

that only one GSM signal could potentially be misclassified. When observing this 

signal, it is obvious that the signal contained a high amount of noise when 

compared with other signals, which affected algorithm accuracy. The absolute 

value of slope α of the linearly fitted line for modes oscillation frequencies was 

utilized for identifying each signal class. The identification rule was developed as: 

 𝛼𝐿𝑇𝐸 > 𝛼𝐺𝑆𝑀 , (3.18) 

where 𝛼𝐿𝑇𝐸 and 𝛼𝐺𝑆𝑀  are the absolute values of slope of the linearly fitted line for 

modes and their associated oscillation frequencies of LTE and GSM signals, 

respectively. 

 

Figure 3.17. Oscillation frequency for LTE and GSM signals arranged in 
descending order. 

3.7.3 Wi-Fi Standard Technology Identification 

Classification was performed on both individual (or baseline) and various 

coexistence scenarios of 802.11n, 802.11ac, and 802.11ax Wi-Fi standard signals 
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in the 5 GHz ISM band. Processed time series raw power signals were collected in 

a shared heterogeneous deployment. 

3.7.3.1 Individual signals Identification employing 

DMDA. 

DMDA technique was applied for classifying/differentiating between individual 

(or baseline) 802.11n, 802.11ac, and 802.11ax Wi-Fi standard signals in the 5 GHz 

ISM band. Classified signals had the same duty cycle. In the available dataset, each 

technology contained 25 individual signals divided into five groups. Each group 

contained five signals having a specific duty cycle (see Table 3.2). In Figure 3.18, 

six resultant DMD mode amplitudes were evaluated for three random testing 

samples, regarding features stored in the 802.11ac feature matrix 𝐹𝑎𝑐 . Mode 

amplitudes were evaluated by comparing maximum and average values. Figure 

3.18 indicates that the DMDA technique could clearly differentiate between the 

targeted signals. The 802.11ac signals had the highest amplitudes due to common 

features matching the feature matrix 𝐹𝑎𝑐 . The 802.11n signals had lower amplitude 

than 802.11ac, while the 802.11ax signals had the lowest amplitude. The 

identification rule was empirically developed and expressed as: 

 𝑆𝑎𝑐 > 𝑆𝑛 > 𝑆𝑎𝑥 , (3.19) 

where Sac, Sn, and Sax  are the maximum mode amplitude for Wi-Fi-802.11ac, 

802.11n, and 802.11ax signals, respectively. 

3.7.3.2 Individual signals Identification employing 

DMDF. 

When applying DMDF on the same dataset for each signal, the oscillation 

frequencies were plotted for 16 modes. Figure 3.19 shows the resulting modes 

oscillation frequencies of a randomly chosen signal for each duty cycle. More 

specifically, the absolute value of slopeαof the linearly fitted line for modes 

oscillation frequencies (or dashed line) was utilized for identifying each signal 
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category. As Figure 3.19 indicates, the identification rule for all duty cycles can be 

defined as: 

 𝛼𝑎𝑐 > 𝛼𝑛 > 𝛼𝑎𝑥   , (3.20) 

where 𝛼𝑎𝑐, 𝛼𝑛, and 𝛼𝑎𝑥 are the absolute value of slope from the linearly fitted line 

for modes oscillation frequencies of Wi-Fi-802.11ac, 802.11n, and 802.11ax 

signals, respectively. This result indicated that the DMDF technique can extract 

unique features and accurately classify targeted signals. 

 

Figure 3.18. Individual Wi-Fi signals identification employing DMDA. 

 

Figure 3.19. Individual Wi-Fi signals identification employing DMDF. 
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Conversely, the DMD-BW identification scheme was not able to 

differentiate/classify the signals as they had similar DMD frequency spectrum 

bandwidth without an ample separating margin for accurate classification.  

3.7.3.3 Coexisting Signals Identification 

Five coexistence scenarios were created, each coexisting two Wi-Fi signals having 

the same duty cycle. Each scenario was repeated according to duty cycles provided 

in Table 3.2. A DMDF technique was applied to differentiate between coexisting 

signals and individual signals of the same Wi-Fi technology. Figures 3.20, 3.21, and 

3.22 compared the resulting modes oscillation frequencies of a randomly chosen 

signal from each coexistence scenario with individual signals having the same duty 

cycle. The slope of the linearly fitted line for modes oscillation frequencies (see 

dashed line) demonstrates that the coexisted signal has the lowest slope of all 

cases. Alternatively, DMDA was able to classify ac, n, and coexisted ac-n signals; 

however, it was not able to differentiate between ax and coexisted signals 

containing ax (e.g., coexisted ax-ac and ax-n signals), as they had similar amplitude 

values without an adequate separating margin for accurate classification. 

 

Figure 3.20. Identifying coexisted ac-ax Wi-Fi signals employing DMDF. 



 

46 

 

Figure 3.21. Identifying coexisted ac-n Wi-Fi signals employing DMDF. 

 

Figure 3.22. Identifying coexisted ax-n Wi-Fi signals employing DMDF. 
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3.7.4 ZigBee/BLE Identification 

The developed DMD-based techniques were proposed to classify individual (i.e., 

non-sharing baseline) and coexistence scenarios for experimentally collected BLE 

and Zigbee signals in a shared heterogeneous deployment in the 2.4 GHz ISM band. 

3.7.4.1 Applying DMD-BW Technique 

The developed DMD-BW identification technique was applied to raw power 

timeseries signals of BLE and ZigBee. The technique differentiated/classified the 

targeted wireless technologies based on their DMD frequency spectrum 

bandwidth. It was found that each technology was associated with a unique DMD 

modes frequency bandwidth. Figure 3.23 shows a sample of resulted DMD 

spectrum for the targeted technologies (i.e., DMD modes’ amplitude versus their 

frequencies). BLE signals had higher DMD spectrum bandwidth. An identification 

rule was empirically developed and expressed as: 

 𝐵𝑊𝐵𝐿𝐸 > 𝐵𝑊𝑍𝑖𝑔., (3.21) 

Where 𝐵𝑊𝐵𝐿𝐸 and 𝐵𝑊𝑧𝑖𝑔 are the DMD modes’ frequency spectrum bandwidth for 

BLE and ZigBee wireless technologies, respectively. 

 

Figure 3.23. DMD frequency spectrum for a sample of LTE and GSM signals. 
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3.7.4.2 Applying DMDA Technique 

In Figure 3.24, six resultant DMD mode amplitudes were evaluated for three 

random testing samples with regard to features stored in the Zigbee feature matrix 

𝐹𝑍𝑖𝑔 . Mode amplitudes were evaluated by comparing maximum and average 

values. Figure 3.24 indicates that DMDA technique was able to clearly differentiate 

between the targeted signals. As expected, ZigBee test samples had the highest 

amplitudes due to common features with 𝐹𝑍𝑖𝑔 . BLE test signals had lower 

amplitude than ZigBee; the coexisted signal had the lowest amplitude. The 

identification rule was empirically developed and expressed as: 

 𝑆𝑍𝑖𝑔 > 𝑆𝐵𝐿𝐸 > 𝑆𝑐𝑜  , (3.22) 

where 𝑆𝑍𝑖𝑔, 𝑆𝐵𝐿𝐸 , and 𝑆𝑐𝑜 are the maximum mode amplitude for ZigBee, BLE, and 

coexisted ZigBee/BLE signals, respectively. 

 

Figure 3.24. ZigBee-BLE identification employing DMDA scheme. 

3.7.4.3 Applying DMDF Technique 

Figure 3.25 shows the oscillation frequency trend for 10 unique DMD modes of 

two randomly chosen dataset samples. Each technology had a pronounced, 
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distinct trend (i.e., slope). The identification rule was empirically developed and 

expressed as: 

 𝛼𝑧𝑖𝑔 > 𝛼𝐵𝐿𝐸 > 𝛼𝑐𝑜  , (3.23) 

where 𝛼𝑎𝑐, 𝛼𝑛, and 𝛼𝑎𝑥   are the absolute value of slope from the linearly fitted line 

for modes oscillation frequencies ZigBee, BLE, and coexisted ZigBee/BLE signals, 

respectively. 

 

Figure 3.25. ZigBee-BLE identification employing DMDF scheme. 

3.8 Evaluating Performance of Developed 

Techniques 

3.8.1 GSM/LTE Identification 

The performance of the developed DMD-based techniques was evaluated 

leveraging classification accuracy and processing time required to classify a signal. 

DMD-BW technique classified the signals by thresholding the value of DMD 

modes frequency bandwidth. The selected thresholding values are indicated in 

Table 3.3. The technique correctly classified signals with a high overall accuracy 

of 95%. Classification accuracy of GSM and LTE was 95% and 100%, respectively. 

The processing time required to identify a signal was approximately 1.5 seconds. 

Concerning DMDA, signals were classified by comparing the maximum value of 

DMD modes amplitude, as indicated in Figure 3.16. GSM signals had higher modes 

amplitude than LTE signals. Classification accuracy of both GSM and LTE was 90%. 
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The processing time required to identify a signal was approximately 1.5 seconds. 

The time required to train the DMDA model with four GSM signals was 

approximately 20 seconds. 

By employing a DMDF scheme—where GSM acquires lower slope than that of 

LTE—the DMDF technique achieved 90% accurate detection for GSM and 100% 

for LTE. The DMDF technique required no training and only 3 seconds to identify 

a signal. 

The developed techniques were compared to [42], which utilized second-order 

cyclostationarity to calculate spectral correlation functions (SCFs). Resulting SCFs 

were utilized as an input to SVM for classifying various signals, including GSM and 

LTE. The method achieved 78% accurate detection for GSM and 100% for LTE 

signals. In addition, the techniques’ performance was compared with [52, 53], 

which distinguished GSM signals from LTE signals by applying CDF analysis using 

the same dataset used in the analysis reported herein. The magnitude of GSM 

signals follows a Rician distribution, while the magnitude of LTE signals follows a 

Rayleigh distribution. Using a distribution fitting the MATLAB tool and a CDF 

calculation, GSM and LTE were classified based on their respective CDFs. Results 

achieved 80% accurate detection for GSM and 70 %n for LTE. Table 3.4 provides 

a comprehensive summary of the overall classification accuracy for the compared 

techniques. 

Specific baseline methods were selected for evaluation and comparison due to 

their relevance in approach and recency to the developed DMD-based methods. 

Specifically, cyclostationary methods track the periodicity of pilot signals 

embedded in their transmission. Although this approach is similar to the 

developed methods, the one proposed in this dissertation requires fewer samples 

with less complexity for facilitating accurate identification. 
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Table 3.3  

DMD Modes’ Frequency Bandwidth Threshold Values  

Used for GSM/LTE Classification 
Threshold (MHz) class 

BW < 6 GSM 

BW > 10 LTE 

Table 3.4  

GSM/LTE Classification Models Accuracy 
Identification 

Technique 

DMD-BW DMDA DMDF Cyclostationarity CDF 

Overall  

Accuracy 

95% 90% 95% 89% 75% 

Processing 

time 

1 sec 1 sec 2 sec 5 sec 1 sec 

Training 

time 

No 

training 

1 min. No 

training 

No training No 

training 

 

3.8.2 Wi-Fi 802.11n/ac/ax classification  

DMDA classified the signals by thresholding the maximum value of DMD modes 

amplitude. DMDF classified the signals by thresholding the values of slopes. 

Selected thresholding values are indicated in Table 3.5. 

Regarding individual signals classification, the DMDA technique correctly 

classified ac signals with 84% accuracy, n signals with 88% accuracy, and ax 

signals with 92% accuracy. DMDF achieved superior accuracy, correctly 

classifying signals with an overall accuracy of 98.6 %. DMDF classification 

accuracy of n, ac, and ax signals was 96%, 100%, and 100%, respectively. 

When classifying individual and coexisted signals of the same technology (as 

Figures 3.20, 3.21, and 3.22 indicate), DMDF technique achieved 93.3% accuracy 

for classifying n, ac, and coexisted n-ac signals; 93.3% for classifying n, ax, and 

coexisted n-ax signals; and 97.3% for classifying ax, ac, and coexisted ax-ac signals. 

DMDA was able to classify n, ac, and coexisted n-ac signals with 82% accuracy. 

CNN, ResNet, and WaveNet are indicative of recently studied and published 

deep learning architectures used for wireless signal identification. These 
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approaches are somewhat relevant to our developed algorithms since data 

training and model development are part of both approaches. As such, we selected 

the aforementioned models to compare and evaluate the developed DMD-based 

techniques. Comparing results with the WaveNet DL model utilized in [61], 

researchers achieved lower classification accuracies of 96%, 98%, and 98% for n, 

ac, and ax individua signals, respectively. For coexisted signals, the [61] technique 

achieved 90% accuracy for classifying coexisted ax-n and 91% for coexisted ax-ac 

signals. The DMDF technique proposed in this work not only achieved higher 

accuracy, alsocomputational time was extensively reduced by approximately 85%. 

In addition, a developed CNN architecture and ResNet9 CNN model [85] were 

trained to classify the collected signals. Gramian angular summation field (GASF) 

transformation [86] was used to extract features. GASF was utilized to encode the 

collected, one-dimensional (1D) raw power timeseries signals into two-

dimensional (2D) texture images for inputting into CNN classifier models. 

Generated images were 300x300 pixels. Because signal power measurements are 

distinct and to alleviate the effect of diverse SNR values between technologies, a 

preprocessing normalization step was performed on signals before applying the 

transformation. Training was conducted on 50% of the dataset for both individual 

and coexisting scenarios with batch size of eight images, using a cross-entropy loss 

function along with an Adagrad optimizer [87]. The learning rate was set to 0.001. 

Models were implemented, trained, and tested in the open-source Pytorch 

software library. The developed CNN was structured with six transformation 

layers, and the network was convolutional with batch normalization and ReLU 

activation layers, a pooling layer, and dense fully connected (FC) layers. The final 

FC layer was the output layer, which computed scores for each of the three class 

labels. The label with the highest score was the one predicted by the model. Figure 

3.26 depicts the complete structure and Kernel filter sizes K of the developed CNN 

network.  
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Table 3.6 shows the evaluation and comparison of model performance in terms 

of overall classification accuracy, processing time required to identify a signal, and 

model training time. For CNN models, the best accuracy was attained for 50 

epochs. It should be noted that CNN models are expected to have higher accuracy 

for larger training samples when compared with the sample trained and reported 

herein. However, these results are at the expense of additional time required to 

train the models. 

 

Figure 3.26. CNN network developed for classifying wireless signals. 

Table 3.5  

DMD Modes’ Frequency Bandwidth Threshold Values  

Used for ZigBee/BLE Classification 
DMDA threshold DMDF threshold Class  

S < 0.1 220,000 < α < 280,000 ax 

0.1 < S < 1.5 280,000 < α < 550,000 n 

S > 1.5 α > 550,000 ac 

- α < 220,000 Coexisting signal 
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Table 3.6  

Performance Evaluation for Various Implemented Models  

to Classify Wi-Fi Signals 
Model Overall 

accuracy 

(individual) 

Overall 

accuracy 

(coexistence) 

Processing 

time 

Training 

time 

DMDA 88% 82% 0.5 sec. 1 min. 

DMDF 98.6% 94.6% 3 sec. No training 

required 

WaveNet 97.3% 91% 0.4 sec. 14 hrs 

CNN 71% 70% 2 sec. 6 min. 

ResNet9 80% 78% 2.5 sec. 20 min. 

 

3.8.3 ZigBee/BLE Classification 

DMD-BW technique classified the signals by thresholding the value of DMD modes 

frequency bandwidth. The selected thresholding values are indicated in Table 3.7. 

The technique correctly classified signals with an overall accuracy of 85%. 

Classification accuracy of ZigBee and BLE was 78% and 92%, respectively. The 

processing time required to identify a signal was approximately 1.3 seconds. 

Concerning DMDA, signals were classified by thresholding the maximum value 

of DMD modes amplitude, as indicated in Table 3.8. The technique correctly 

classified signals with an overall accuracy of 86.3%. Classification accuracy of 

ZigBee, BLE, and coexisted signals was 86%, 81%, and 91%, respectively. 

Applying DMDF scheme, signals were classified by thresholding values of the 

slopes, as indicated in Table 3.8. DMDF achieved an overall classification accuracy 

of 87.6%. Classification accuracy of ZigBee, BLE, and coexisted signals was 91%, 

85.5%, and 86.4%, respectively. 

The performance of DMD-BW, DMDA, and DMDF techniques were evaluated 

using overall classification accuracy, processing time required to identify a signal, 

and model training time. Both techniques were compared with the developed CNN 

model and ResNet-9 model for validation (see subsection B). CNN-based models 
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training was conducted on 50% of the dataset with a batch size of eight images, 

using a cross-entropy loss function along with an Adagrad optimizer. The learning 

rate was set to 0.001. Model accuracy was calculated using the same set of testing 

samples. Table 3.8 provides a comparison of implemented model performance. 

Results showed that the developed DMD-based techniques achieved high 

performance for classifying various individual and coexisting wireless signals. In 

most cases analyzed during and compared for this work, DMD-based techniques 

had the advantage of high accuracy and short training/processing time required 

to identify a signal. The DMDF scheme outperformed all compared techniques and 

did not require training. DMDF also achieved the highest accuracy and shortest 

processing time for identifying a signal. 

Table 3.7  

DMD Modes’ Frequency Bandwidth Threshold Values  

Used for ZigBee/BLE Classification 
DMD-BW threshold DMDA threshold DMDF threshold Class  

BW ≤ 28 10 < S < 30 33,000 < α < 70,000 ZigBee 

BW > 28 2 < S < 8 11,000 < α < 31,000 BLE 

- 0.01 < S < 1 900 < α < 9,000 Coexisting 

signal 

 

Table 3.8  

Performance Evaluation for Various Implemented Models to  

Classify ZigBee and BLE signals 
Model Overall 

accuracy  

Processing 

time 

Training time 

DMD-BW 85% 1.3 sec. No training required 

DMDA 86.3% 0.5 sec. 1 min. 

DMDF 87.6% 3 sec. No training required 

CNN 72% 2.1 sec. 12 min. 

ResNet9 80% 2.5 sec. 40 min. 
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3.9 Computational Complexity 

Four algorithms (e.g., CNN, ResNet, WaveNet, and cyclostationary) were 

implemented to confirm the computational advantage of this work’s developed 

techniques over others. DMD-based techniques’ computational complexity is 

attributed to the SVD calculation [31]. Notably, the proposed algorithm was 

successfully implemented using a truncated SVD solution. Doing so limited its 

complexity to O(rn2). Truncation value r was less than 10, and n was limited to less 

than five wireless packet samples. However, the implemented three-layer CNN 

model complexity was O(knd2) per convolutional layer, where d is the layer 

dimension [88]. Furthermore, the implemented nine-layer ResNet complexity was 

O(knd2) per layer. The implemented WaveNet had a very high exponential 

complexity O(2L), where L is the number of layers of the network (i.e., large 

number) [89]. Finally, cyclostationary complexity was O(2n[4 + 2log2h + 4n + 2h 

+ hlog2(4n/h)]), where h is the FFT number of points [37]. In comparison, the 

approach developed for this dissertation required fewer signal samples and 

achieved higher accuracy with less computational time, as demonstrated in Tables 

3.4, 3.6, and 3.8. 

3.10 Conclusion 

Three novel techniques for wireless technology identification—the first to employ 

a DMD algorithm for identifying signals—were explained in this chapter. The 

DMD-BW technique identifies signals by evaluating the values of the resulting 

DMD modes’ frequency spectrum bandwidth. The DMDA technique is based on 

evaluating a template-features matrix obtained for a specific signal class, and then 

classifying signals under evaluation according to the values of the resulting 

projected DMD mode amplitude. The DMDF technique classifies signals based on 

evaluating the slope of the DMD modes oscillation frequency trend. The proposed 

techniques were implemented on experimental datasets captured under various 

channel conditions. When compared with various similar techniques 
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implemented in the literature, results showed that DMD-based algorithms had 

lower complexity and achieved higher performance. The developed algorithms 

can differentiate and classify wireless signals with high accuracy by employing 

short observation intervals (e.g., four-time slots or packets), which enable them to 

be implemented in real-time for identifying various operating wireless 

technologies coexisting in heterogeneous networks. The DMDF scheme 

outperformed all compared techniques, as it is a direct identification scheme (i.e., 

no training required). This technique achieved the highest accuracy—greater than 

90% for most cases—in the shortest time—less than one second—required to 

identify a signal. The proposed DMD-based identification algorithms showed 

promising performance in accurately identifying three wireless technologies 

simultaneously operating in the same environment.  
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Chapter 4 CIPN identification 

employing DMD 

4.1 Background 

According to [90], more than 50% of newly diagnosed cancer cases are adults aged 

60 and above. Researchers in [91] predict that the incidence of cancer among older 

adults will increase by 67% by 2030. Elderly cancer patients are at a high risk of 

developing toxicities associated with chemotherapy, with over 50% of patients 

over age 60 experiencing severe, disabling, or even fatal treatment-related 

toxicities [92-94]. For example, when compared to younger cancer patients, older 

patients who undergo chemotherapy are more likely to suffer from grade 4 life-

threatening toxicity, experience treatment disruptions (e.g., discontinuations due 

to toxicity), and die from complications related to treatment [95, 96]. 

Consequently, even low-grade chemotherapy toxicities (≤grade 2) are considered 

clinically significant in older adults and can be the motive for modifying or 

discontinuing chemotherapy [97]. 

Peripheral neuropathy is a common chemotherapy-related toxicity 

experienced by adult patients, regardless of their age. Neuropathy could damage 

one or more peripheral nerves [98]. CIPN is characterized by various sensory and 

motor symptoms, such as numbness, tingling, reduced sense of feeling in toes, 

pain, weakness, balance disturbances, and shortages in motor skills [99]. CIPN is 

one of the most disturbing side effects of chemotherapy for cancer patients [100]. 

Symptoms typically increase in severity during treatment and may partially 

reduce after its completion [101]. However, some patients experience chronic 

CIPN symptoms that continue even after treatment [102,103]. Symptoms might 

last for months following cancer treatment with unknown cessation [104]. 
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Additionally, affected CIPN individuals frequently fall while walking, resulting 

in harm, hospitalization, or even death [105]. In the US, CIPN has impacted over 

20 million individuals [106], with over 60% of cancer survivors reporting side 

effects from neuropathy [98, 104]. Patients with neuropathy have a 23-fold 

greater risk of falling [107]. 

Given the ever-increasing number of cancer patients and survivors, managing 

the side effects of cancer treatment is critical. Understanding how gait cycles and 

walking behaviors are affected for cancer patients suffering CIPN is essential for 

preventing falls and fall-related injuries [108]. Postural control systems (i.e., gait) 

are necessary for safe walking. Uterine cancer is likely to impact such systems, 

thus imposing an increased fall risk.  Clinical studies comparing healthy controls 

and patients with diabetes suffering from neuropathy show that the latter have 

slower walking speeds, shorter steps, and more variable gaits [109,110]. 

Peripheral neuropathy in patients with Parkinson's disease causes individuals to 

walk with considerably shorter strides, more variable stride lengths, and slower 

walking speeds with increased fall risk [111]. 

In a typical gait, foot plantar pressure transfers from heel to toe in a 

spatiotemporal pattern with each step. When viewed across steps, some degree of 

intra-individual variability in pressure pattern is normal; however, nervous 

system pathology increases variability beyond an individual’s pre-morbid range. 

The goal of this research was capturing the pattern of plantar pressure variability 

as it changes with the development of foot weakness resulting from neurotoxic 

chemotherapy treatment. This work reports plantar pressure variation measured 

at regular treatment visits compared to assumed baseline signals collected during 

the first visit. DMD-data driven modeling was used to capture characteristic 

features of plantar pressure variations between steps at three plantar regions for 

various walking trials. For gait assessment, patients repeated several 20-ft. walks 

at a self-selected, usual pace across a high-resolution Tekscan® Strideway™ 

sensor-impregnated walkway. Analyses and modeling aided in early identification 
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of CIPN toward optimizing chemo-dose titration and supportive care referrals. 

This information can improve quality of life for women during and after cancer 

treatment. This dissertation postulates that plantar pressure variation between 

steps (i.e., gait fluctuations) provides critical and required information for 

identifying CIPN and predicting fall risk. Persistent deviation from an individual’s 

pre-chemotherapy, baseline variability could be used for clinical research and in 

treatment clinics to detect the onset of CIPN and high risk of fall. 

4.2 Related Work 

In published studies, walking behavior was characterized by various spatial and 

temporal parameters of gait, including stride length, step width, speed, and single- 

or double-support, as well as swing time, average, and peak pressure variation. 

Gait features characterization was performed using statistical analysis and data 

driven-based techniques. 

4.2.1 Statistical Analysis-Based Techniques.  

Researchers in [112] employed one-way ANOVA with Tukey’s post-hoc statistical 

analysis to identify cancer survivors with and without neuropathy. Plantar 

pressure variability analysis included gait speed, average step length/width, and 

average step length/ width standard deviation (i.e., step length/width variability). 

Study participants included males and females at an average age of 55 years. Each 

individual completed two walking trials at their comfortable pace across a 6m 

Zeno™ pressure-sensitive walkway. Results indicated that cancer survivors with 

neuropathy had significantly less step length variability and more step width 

variability when compared with healthy controls.  Researchers in [113] calculated 

repeatability and variability between various visits for plantar pressure 

measurements recorded for patients at various ages and of different gender. Data 

were acquired using a pressure mat system (Matscan, Tekscan Inc., Boston, MA, 

US). Average and peak pressure were analyzed in the forefoot (FF), midfoot (MF), 

and rearfoot (RF) regions. Plantar pressure variability was determined by 
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coefficient of variation (CV). The study concluded that although average pressure 

variability did not differ between age groups, peak pressure variability differed 

across foot regions and age groups. 

Researchers in [114] proposed a method for identifying characteristic gait 

features using sensor-based gait analysis for patients with Huntington’s disease 

(HD). Forty-three patients with HD and a cohort of age- (average 50 years old) and 

gender-matched healthy controls performed a standardized 4 × 10m overground 

gait test [80] on a 10m-long corridor at free walking speed. Gait parameters (e.g., 

stride length and gait velocity, as well as stride, stance, and swing time) were 

collected using sensor-based, wearable SHIMMER sensors (Shimmer Research 

Ltd., Dublin, Ireland). Other features were extracted using methods formulated in 

[115, 116]. Gait variability was evaluated by each parameter’s CV. Results 

indicated that stride length and gait velocity were reduced by 15% and 19%, 

respectively, while stride time and stance time increased by 7% and 2%, 

respectively. CV coefficient increased by 17% for stride length and 41% for stride 

time. Researchers in [117] proposed a new foot-type classification method based 

on calculating bitmap index (BI) in static and dynamic conditions. Healthy 

volunteers were asked to perform footprint tests with full load, as well as plantar 

pressure distribution measures, using a Jasenco, JSP-C5 pressure plate. 

A Pedar-X system (Novel Inc., Munich, Germany), in-shoe plantar pressure 

distribution measuring system was used for various research studies to measure 

pressure features within gait cycle. Researchers in [118] investigated the effect of 

previously diagnosed foot ulcers on plantar pressure variation during gait of 

patients with diabetic neuropathy. Plantar pressure variability was determined by 

CV. Neuropathic subjects presented higher variations than control subjects, 

mainly at the lateral forefoot, midfoot, and rearfoot. Another study [119] evaluated 

potential fatigue-related gait instability for the elderly to minimize injury due to 

fall risk. Peak pressure, contact time, and pressure-time integrals were measured 

for nine regions of the foot. Participants completed a 60-min. brisk walk on a 
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treadmill with median calculated for contact time, peak pressure, and pressure-

time integrals in each plantar region, in addition to their asymmetry and 

variability. Results showed a significant increase in peak pressure and pressure-

time integral at the medial and lateral arch regions, as well as central metatarsal 

regions. Plantar pressure variability at the medial arch was significantly increased, 

although asymmetry decreased. Contact time was significantly increased at all 

plantar regions. A similar work [120] calculated symmetry, variability, and 

laterality indices among 15 healthy volunteers and 14 patients suffering from 

diabetes and distal symmetrical polyneuropathy. Various gait features from force-

time signals of gait cycle were extracted and analyzed. Results indicated that all 

indices were significantly greater in the diabetic cohort. Researchers in [121] 

analyzed variation in plantar pressure distribution due to foot deformation in 

diabetic patients. All participants completed walking trials at three different 

speeds (slow, normal, and fast walking) across a 4.5 m walkway, foot scanning 

system (3dMD LLC, Atlanta, GA, USA). Their plantar pressure distributions were 

also measured using a Pedar in-shoe system. Peak plantar pressure and pressure 

time integral variation in the toes, metatarsal heads, medial and lateral midfoot, 

and heel areas were statistically analyzed. Researchers in [122] developed a 

method for differentiating between stroke patients and healthy adults by 

analyzing changes in the center of pressure (COPx) in the medial-lateral axis. 

Participants were instructed to walk 5 m on flat ground at a comfortable pace 

while wearing insole pressure sensors, which measured ground reaction force 

(GRF). COPx data was then calculated and used to draw a polar gaitogram. The 

difference between the areas inside the two closed curves in the polar gaitogram, 

area ratio index (ARI), and slope of the tangential line common to the two closed 

curves were used as identification features. Researchers in [123] differentiated 

between Parkinson’s disease (PD) patients’ and healthy subjects’ (HS) gait 

features using dynamic and kinematic analysis. Gait-related data were collected 

using an instrumented force-sensitive insole placed in subjects’ shoes while they 
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walked at normal pace. Kinematic features showed statistically significant 

differences among the two groups for gait speed and time-up/go-test, as well as 

for selected indices (e.g., standard deviation and interquartile range of swing, 

stance, and double support time). Dynamic features did not show any statistically 

significant difference. 

4.2.2 Data-driven Techniques.  

Researchers in [124] proposed a potential solution for ML application to identify 

patients with diabetic neuropathy (DN) and diabetic foot ulceration (DFU). Eight 

conventional ML models were trained using features extracted from muscle 

electromyography (EMG) and ground reaction forces (GRF) data. The K-nearest 

neighbor (KNN) algorithm achieved the highest identification accuracy (98%). A 

developed convolutional neural network (CNN) was employed [125] for 

classifying non-diabetes mellitus (DM) and five DM severity grades from plantar 

thermal images. Model performance surpassed pre-trained neural networks, such 

as AlexNet and Cruz-Vega, with 98% classification accuracy and 0.96 F-score. 

Researchers [126] evaluated the fall risk of elderly individuals while walking by 

detecting foot weakness. Their method was based on extracting 44 

multidimensional features related to the foot center of pressure (COP). 

Participants were allowed to walk a 20 m-long corridor at a normal pace while 

wearing an in-shoe plantar pressure sensing system. To classify subjects as high 

risk (HR) or low risk (LR), seven ML classifiers were utilized, including logistic 

regression, KNN, SVM, decision tree (DT), RF, gradient boosting decision tree 

(GBDT), and AdaBoost. [127] reearchers utilized CNN to identify subjects by 

capturing changes in individualss unique gait signatures. A plastic optical fiber 

(POF)-distributed, floor sensor system was used to capture spatiotemporal gait 

samples caused by varying ground reaction force (GRF) of a subject while walking.  

Researchers in [128] used a  DMD-based method to analyze gait cycle of healthy 

control human gait with and without use of a cane by identifying dynamical 
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mapping between an upper limb and its contralateral lower limb. Dynamic 

variables for upper limb include the angular positions and velocities of the 

shoulder, elbow, wrist, and cane; lower limb variables include contralateral hip, 

knee, and ankle angles, which are measured with a motion-analysis, camera-

system recording. 

Researchers have reported significant changes in gait characteristic for CIPN 

patients walking on level ground at a self-selected speed.  [112, 129] reported 

increased stride time. [129, 130] reported a significant decrease in gait speed 

among the patient group. An increased double support time was reported in [129, 

131, 132]. Increased step width variability was reported in [129]. Similar changes 

were also noted among patients with diabetes and diabetic neuropathy [133, 134]. 

Peripheral neuropath associated with PD highly impacted walking balance and 

gait parameters [135]. 

4.2.3 Research Contribution Compared to Literature.  

The aforementioned studies differ from the approach examined in this work in the 

following ways. To collect gait data, many researchers have utilized in-shoe 

pressure and insole sensors. However, the reliability of gait analysis results from 

most of these devices is low, because pressure sensors are usually only installed 

in the main parts of the insole, which limits their coverage. Consequently, the 

accuracy of the collected data is highly dependent on the location and installation 

of the sensors. Improper installation can lead to errors and noise in the data, which 

compromises the accuracy of the proposed scheme. 

Most earlier studies utilized statistical approaches, measuring mean, median, 

standard deviation, symmetry/asymmetry index, and variability index or CV to 

model walking behavior. Employing statistical methods for gait analysis is less 

efficient, as the nature of the problem is complex and nonlinear. Furthermore, 

these methods are highly sensitive to noisy data that may lead to performance 

degradation. For example, earlier studies limited their performances to averaging 
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motion kinematics, reducing the scope of temporal analysis that a technique could 

achieve. Cited papers considered and processed pressure peaks (i.e., one or 

multiple points in a foot template [space]), while the approach reported in this 

work tracks pressure distribution across the foot, as well as temporal variability 

per pressure sensor. Furthermore, novel approaches may be effective in detecting 

changes in walking behavior at later stages of a disease. Notably, early detection 

of changes in walking behavior due to CIPN requires more advanced methods to 

better characterize gate cycle dynamics and identify any slight change in the 

dynamics due to neuropathy. Recognizing this paradigm, ML and DL techniques 

have recently been introduced. However, ML techniques require additional data 

preprocessing and expert knowledge to understand the data structure. DL 

techniques have high training costs, as such models require large training datasets 

to generate accurate results. [128] researchers employed DMD to analyze angular 

positions and velocities extracted from video recordings; however, these should 

initially be processed to generate said parameters. Video processing could 

possibly include uncertainties due to many factors that could affect recording or 

processing quality. [128] processed a significantly reduced spatial domain of only 

12 parameters to describe a gait cycle.  The spatial resolution of the investigation 

reported herein was significantly higher.  

The system used for data collection in the analysis performed for this 

dissertation employs a pressure mat for data collection, which (when calibrated) 

provides stable and repeatable measurements with less variability. This approach 

tracks pressure distribution across the foot, as well as temporal variability per 

pressure sensor. Pressure levels were measured directly from the interaction of a 

foot with a mat. Given CIPN occurs, its effect was expected to directly influence the 

amount of pressure exerted on the mat. A DMD approach has several advantages. 

First, it has high accuracy for complex non-linear systems, which makes it a 

suitable method for gait analysis and CIPN identification. Additionally, it can 

extract and analyze spatiotemporal patterns from high-dimensional data. DMD 
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can also identify dominant modes of motion in a system and separate them from 

noise and other irrelevant data. Finally, DMD can be used for real-time gait 

analysis, as it requires minimal data preprocessing and no model training. These 

features save time and resources. 

4.3 Methodology 

4.3.1 Subjects and Data Collection  

Data collection was performed at the University of Oklahoma Health Sciences 

Center’s Stephenson Cancer Center (SCC) Rehab Research Laboratory (OUHSC IRB 

#11473). Thirty-two women aged 40 to 85 scheduled to begin neurotoxic 

chemotherapy enrolled in a CIPN observational study and were measured before 

their first infusion. Patients wearing standard slipper-socks were instructed to 

perform repeated walks at a self-selected, usual pace across a 20-ft, high-

resolution (3.88 sensels/cm2) Tekscan® Strideway™ (Tekscan, Inc; Boston, MA) 

[136]. Collected data represented a spatial-temporal plantar pressure map, as 

indicated in Figure 4.1. Because diabetic neuropathy places women at risk for 

chemo neuropathy, the current longitudinal study included more than 50% of the 

women who were diagnosed with diabetes for baseline measurements. Table 4.1 

shows demographic and clinical characteristics of patients participating in the 

study’s data collection. 

The TekscanTM Strideway device is a modular human gait analysis system 

widely used by many health organizations for physiotherapy and rehabilitation 

applications [137, 138, 139]. The device consists of hundreds of embedded force 

sensors that collect detailed spatiotemporal parameters of a gait cycle. The 

assembled system covers an area of approximately 4 m2 and is wired through a 

USB cable to a nearby computer equipped with Strideway software. The program 

automatically reads data collected from the physical sensors in the mat, and then 

performs calculations to derive various gait parameters (e.g., step/gait time, 

cadence, velocity, and walked distance). The system provides reliable measures 
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for human gait plantar pressure. During the tests, the software stores and 

visualizes performed steps a heat-map, which shows locations of the performed 

steps on the mat, as well as each step’s pressure intensity.  

 

Figure 4.1. Tekscan™ Strideway® [136] at the OUHSC SCC Rehab Research 
Laboratory.  

Table 4.1  

Demographic Characteristics of Patients Participating  

in the Study’s Data Collection 

 Sensory & Motor 

with Numbness   

Sensory & Motor 

without 

Numbness& 

Motor Only No 

Symptoms 

Age (years) 

Mean ± SD 

63.09 ± 10.07 55.5 ± 4.94 46.5 ± 16.26 60 

White/Not 

Hispanic or Latino 

11 (91.667) 2 (100.0) 0 (0) 1 (100) 

White/Hispanic or 

Latino 

0 (0.0) 0 (0.0) 2 (100) 0 (0) 

Black/African 

American/Not 

Hispanic or Latino 

1 (8.33) 0 (0.0) 0 (0) 0 (0) 
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Weight 176.26 ± 53.56 158.12 ± 3.99 212.46 ± 36.55 164.35 ± 

1.68 

Height 65.42 ± 2.35 63.5 ± 0.71 66.5 ± 2.12 65 

BMI 29.05 ± 9.03 27.66 ± 0.62 32.97 ± 4.54 27.35 ± 

0.31 

Skeletal Muscle 

Mass 

56.95 ± 9.29 

 

52.41 ± 4.73 68.19 ± 10.86 50.38 ± 

0.98 

Cancer Type 

number (%) 

    

Breast  2 (16.67) 0 (0.) 1 (50) 0 (0) 

Uterine  6 (50) 0 (0) 0 (0) 1 (100) 

Ovarian 4 (33.33) 1 (50) 1 (50) 0 (0) 

Peritoneal 0 (0) 1 (50) 0 (0) 0 (0) 

Not Diabetic 4 (33.33) 2 (100) 2 (100) 0 (0) 

Pre-Diabetic 3 (25) 0 (0) 0 (0) 0 (0) 

Diabetic 5 (41.66) 0 (0) 0 (0) 1 (100) 

Onset of NTX 

number (%) 

    

After 1 Cycle of 

Chemo 

8 (66.67%) 2 (100%) 2 (100%)  

After 2 Cycles of 

Chemo 

3 (25%) 0 (0%) 0 (0%)  

After 1 or 2 Cycles 

of Chemo 

1 (8.33%) 0 (0%) 0 (0%)  

 

4.3.2 Plantar Pressure Variation Analysis and 

Modeling  

Figure 4.2 illustrates the modeling and methodology developed for analyzing step-

to-step plantar pressure variation, which involves examining the intra-step 

plantar pressure variability within the heel, metatarsal, and big toe foot segments. 

The methodology can be described in the following steps. 

 



 

69 

1. First, patients' walking-phase plantar pressure spatial-temporal raw data 

is read as an input, which represents a heat map for plantar pressure 

intensity measured by Tekscan sensors.  

2. Next, the data is converted into a 2D image consisting of pixels (2D matrix), 

wherein each pixel represents a pressure value measured by a sensor (see 

Figure 4.3). 

3. Each footstep is then extracted from the image and segmented into various 

regions using a novel image processing-based technique developed for this 

work (see Figure 4.6). 

4. Subsequently, temporal signals are formed by horizontally concatenating 

timeseries pressure signals for multiple individual sequential footsteps, as 

described in Figures 4.4 and 4.5. Individual timeseries signals for a foot 

segment were constructed from the spatial-temporal raw data output of 

the Tekscan device. Raw data are in the form of a spatial-temporal tensor 

(3D-matrix) with two dimensions for spatial location (X, Y-axes) and a third 

dimension (Z-axis)  consisting of multiple frames (each 0.02 sec) for 

temporal dimension. Required temporal signals are constructed by 

summing the values of activated pixel pressure values per frame. 

5. Finally, a standard DMD algorithm (see Algorithm 3.1) is applied to the 

formed temporal signals to extract DMD eigenvalues and DMD modes, and 

then model/analyze plantar pressure variation for CIPN identification. 

 

Figure 4.2. Developed methodology of plantar pressure variability analysis and 
modeling. 
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Figure 4.3. Raw plantar pressure map measured by Tekscan strideway. 

 

Figure 4.4. Constructing temporal signals from raw data tensor for a foot 
segment. 

 

Figure 4.5. Concatenated temporal signals of left foot heel sequential steps. 

4.3.2.1 Footstep Plantar Pressure Segmentation  

The analysis performed for this dissertation focused on variation in plantar 

pressure for three plantar regions: heel, metatarsal, and big toe. The midfoot 

segment was excluded from analysis, as it was reported to have high variation at 

usual walking conditions [113] and may not provide a clear indication of 

characteristic feature changes in pressure variations across steps and among 

visits. 

An innovative footstep segmentation software (MATLAB-based) was 

developed to generate accurate foot segments. Figure 4.6 shows an example of a 



 

71 

footstep segmented with the newly developed algorithm. Using a set of 

geometrical operations to process an extracted image for a phase trial pressure 

map afforded the opportunity to extract every footstep, and then segment it into 

anatomically relevant regions/segments. Figure 4.6 highlights the multi-phase 

segmentation process. 

The developed segmentation method has the following advantages. 

1. The generated template is adaptive, adjusting dimensions to fit each 

footstep. 

2. The algorithm is fully automated and does not require user interaction. 

3. The algorithm extracts required segments with high accuracy in a short 

processing time (i.e., approximately 1 second per step).   

 

Figure 4.6. Footstep segmentation using the developed scheme. 

4.3.2.1.1 Extracting and Identifying Single Footstep 

(Right or Left Foot) 

The first step in the segmentation process is extracting each footstep and 

identifying it as left foot (LF) or right foot (RF). To extract a single footstep, a zero-
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value isolation between pixels was used, as illustrated in Figure 4.7. The processed 

image appears as a matrix with pixel values along each column summed into a one 

row vector. Scanning the resulted vector along the x-axis from right to left shows 

the beginning pixel location of a footstep (i.e., the first pixel with a value greater 

than zero) and the ending pixel of a footstep (i.e., the last pixel location with value 

greater than zero).  By capturing the locations of the start and end pixels of a 

footstep, the data of a footstep can be easily cropped/extracted. 

In addition, the sign of angle θ between the horizontal axis and the line joining 

between a footstep start point and mid-point were utilized to identify a foot (i.e., 

RF or LF), which is detailed in Figure 4.8. The LF is characterized by a negative 

angle, and the RF is characterized by a positive angel. Algorithm 4.1 in the 

appendix provides a comprehensive set of coding instructions for stage1 of the 

segmentation code. 

 

Figure 4.7. Individual step cropping procedure. 

 

Figure 4.8. LF/RF identification procedure. 
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4.3.2.1.2 Extracting Footstep Main Three Segments 

After extracting a footstep, it is segmented into three main parts. Based on [140, 

141], the heel segment represents the first 30% of the footstep; the MF segment 

represents the next 21%; and, finally, the forefoot (metatarsal-toe) segment is the 

remaining 48%. 

The segmentation algorithm is illustrated in Figure 4.9, as well as algorithm 4.2 

in the appendix. A footstep is divided along the tangent line (baseline) of the lateral 

foot using the mentioned percentages. The tangent line is plotted such that its start 

and end match the footstep start and end points (pixels), which were determined 

in the previous stage. The segmentation process was performed according to the 

following steps. 

1. Plot tangent line (baseline) to the footstep between the start and end point 

of the foot. 

2. Plot two perpendicular lines to the baseline at the start and end points of 

the footstep. 

3. Plot another two lines parallel to the perpendicular lines at distances d1 

(heel line) and d2 (MF line), respectively, from the footstep start point, such 

that, 

 𝑑1 = (30/100)𝐿   (4.1) 

 and 𝑑2 = (52/100)𝐿  , (4.2) 

where L is the length of the baseline. 

4. Plot a horizontal line from the center of the first pixel of each row. 

5. Find the intersection points between the horizontal lines and two 

perpendicular lines (MF line and heel line). The intersection points indicate 

the exact location of the three main segments.  
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6. Crop the heel, MF, and forefoot segments from the intersection points 

located on the parallel lines. 

 

Figure 4.9. Geometric interpretation for cropping three main segments. 
 

4.3.2.1.3 Splitting the Heel 

Figure 4.10 highlights that the heel segment is bisected into two equal regions, 

namely medial heel (HM) and lateral heel (HL). Bisection is performed along the 

centerline of the heel segment, drawn from the center point and parallel to the 

baseline. Detailed coding of the process is shown in algorithm 4.3 in the appendix. 

 

Figure 4.10. Heel segmentation into MH and LH. 
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4.3.2.1.4 Toes-Metatarsal Isolation. 

The proposed method for isolating the toes-metatarsal segments involves 

identifying the group of low-pressure pixels (i.e., valley) located between the toes 

and metatarsal. This group of pixels is detected using a threshold value, as 

illustrated in Figure 4.11, as well as algorithm 4.4 in the appendix. The pixels are 

then replaced by zeros. Cropping coordinates for segment extraction are 

determined by the location of these zeros. Cropping is performed on the original 

image before thresholding.  

 

Figure 4.11. Proposed toes-metatarsal isolation method. 

4.3.2.1.5 Toes and Metatarsal Segmentation. 

Figure 4.12 shows that the extracted metatarsal segment is divided into three 

equal parts (M1, M2, and M3) through vertical trisection. The toe segment consists 

of five toes (T1, T2, T3, T4, and T5), each extracted and cropped using the 

algorithm detailed in Figure 4.13 and algorithm 4.5 in the appendix. The algorithm 

involves capturing the coordinates of the pixel indicating the peak pressure within 

each toe, and then cropping this pixel and its neighboring pixels to extract a toe. 



 

76 

 

Figure 4.12. Metatarsal segmentation. 

 

Figure 4.13. Toes segmentation. 

4.3.2.1.6 Temporal Signals Generation 

The developed algorithm extracts and stores the temporal signals for four footstep 

segments (i.e., heel, midfoot, metatarsal, and toes), in addition to the temporal 

signal for the entire footstep. This task is accomplished by applying the temporal 

extraction method discussed earlier in Figure 4.4 after extracting each segment. 

Figure 4.14 illustrates a sample of a generated temporal signals for one footstep, 

indicating the contribution of each segment to the overall footstep signal. 
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Figure 4.14. Temporal signals for main foot segments generated by the 
developed algorithm. 

4.3.2.2 DMD Modes 𝚽 Interpretation for Plantar 

Pressure Variation Analysis 

DMD dynamic modes are characteristic eigenvectors whose direction does not 

change following transformation. These modes describe how each element of the 

timeseries measurement vector yk  are dynamically related. The magnitude of a 

DMD mode (i.e., absolute value) provides a measure of mode 

participation/influence in the system dynamics. DMDmode magnitude provides a 

quantitative measure for determining dominant modes (i.e., more represented in 

the decomposition).  

The proposed algorithm utilizes DMD modes magnitude to model change in 

plantar pressure variation when comparing a specific patient’s baseline visit (visit 

1 or V1) with their successive visits. When applying algorithm 3.1 on a timeseries 

signal for a specific foot segment, the 30 highest magnitude DMD modes were 

selected and evaluated for importance. Figure 4.15 details an overview of the 

developed method. Dominant DMD modes represent components (i.e., vectors) 

with greatest influence on step-to-step plantar pressure variation. In other words, 

a change in DMD mode characteristics indicates a change in walking behavior.  
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4.3.2.3 DMD Eigenvalues 𝛌𝐢 Interpretation for Plantar 

Pressure Variation Analysis 

DMD discrete eigenvalues describe the growth/decay and oscillatory 

characteristics of the corresponding DMD dynamic mode. DMD eigenvalues can be 

realized by the complex-cartesian coordinate plane, as indicated in Figures 3.23, 

3.24, and 3.25. DMD eigenvalues are in the vicinity of the unitary circle. DMD 

modes corresponding to eigenvalues inside the unit circle are decaying modes; 

modes corresponding to eigenvalues outside the unit circle are flourishing modes; 

and those corresponding to eigenvalues on the circle are stable, oscillatory modes. 

In addition to modeling plantar pressure variability using DMD modes, DMD 

eigenvalues were utilized to characterize plantar pressure variations during 

successive patient visits. This method was based on extracting and comparing the 

30 dominant DMD eigenvalues, and then plotting them and their centroid (i.e., 

average) on the complex plane. Dominant eigenvalues were defined as DMD 

eigenvalues corresponding to the 30 DMD modes of highest amplitude. Figure 4.16 

provides an overview of the developed, DMD eigenvalues-based method.   

 

Figure 4.15. Plantar pressure variation characterization employing DMD modes 
magnitude. 
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Figure 4.16. Plantar pressure variation characterization employing DMD 
eigenvalues. 

4.4 Results and Discussion 

This section presents the outcomes of employing the developed DMD-based 

approaches that were discussed as part of the methodology (see Section 4.3). The 

dataset comprises footstep plantar pressure measurements from 17 patients, each 

of whom were evaluated at several visits. The objective was to utilize DMD to 

characterize variations in plantar pressure among consecutive visits, and then 

compare them with the partient’s baseline visit (i.e., first visit). 

 

4.4.1 Applying DMD Modes Magnitude-Based 

Technique 

For study participants, first technique was applied to capture changes in plantar 

pressure variation in the heel, metatarsal, and big toe segments (see Section 

4.3.2.2). Dominant DMD modes' magnitude deviation from the baseline signal 

obtained during a patient's initial visit (V1) served as a defining characteristic of 

the severity of change in walking behavior. Descriptive results are listed in Table 

4.2.  



 

80 

4.4.1.1 Heel Signals Analysis 

Figure 4.17 provides a sample of constructed temporal heel signals for one 

participant. Figure 4.18 lists resulting DMD modes magnitude comparison for all 

available visits for two randomly selected participants. The magnitude of the most 

dominant DMD modes (i.e, first 15 modes) for LF greatly decreased as visits 

progressed. When compared with LF, the magnitude of DMD modes RF signals had 

a lower reduction as visits progressed. The second patient (Patient 2) had a very 

slight change in RF DMD modes magnitude between visits.  

 

Figure 4.17. Samples of heel timeseries signals.  

 

Figure 4.18. Samples of heel DMD modes magnitude comparison for various 
visits. 
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4.4.1.2 Metatarsal Signals Analysis 

Figures 4.19 and 4.20 visualized metatarsal temporal signals and resulted DMD 

modes from available visits for the same group of participants selected for heel 

analysis. Figure 13 indicates that LF modes magnitude had a similar trend for heel 

segment, while the RF modes had less variation between visits.  

 

Figure 4.19. Samples of metatarsal timeseries signals.  

 

Figure 4.20. Metatarsal DMD modes magnitude comparison for various visits.  
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4.4.1.3 Big toe (BT) Signals Analysis 

Figures 4.21 and 4.22 visualize BT temporal signals and resulted DMD modes from 

available visits for participants selected for heel and metatarsal analysis. Patient 1 

RF had a greater reduction in DMD modes magnitude among visit progression 

when compared with LF DMD modes magnitude. Conversely, patient 2 RF had a 

slightly higher DMD modes magnitude. 

 

Figure 4.21. Samples of BT timeseries signals. 

 

Figure 4.22. Samples of heel DMD modes magnitude comparison for various 
visits. 
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4.4.2 Applying DMD Eigenvalues-Based Technique 

As previously discussed in the methodology section (see Section 4.3.2.3), this 

method is based on evaluating the centroid of 30 DMD eigenvalues corresponding 

to the most dominant DMD modes. The method was applied on timeseries signals 

of the extracted segments for available patients in the dataset. Figures 4.23, 4.24, 

and 4.25 demonstrate DMD eigenvalue results for two randomly selected patients.  

 

Figure 4.23. Heel DMD eigenvalue comparison for various visits. 
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Figure 4.24. Metatarsal DMD eigenvalue comparison for various visits. 

 

Figure 4.25. Big toe DMD eigenvalue comparison for various available visits. 

4.4.3 Detailed Results and Discussion 

Table 4.2 provides detailed results for DMD modes amplitude and eigenvalue 

variation per second and last visits for 17 patients. Percent change was calculated 



 

85 

using V1 data as the baseline. Plantar pressure variation change per visit was 

calculated using the following formula: 

 %𝐶ℎ𝑎𝑛𝑔𝑒 =
∑ 𝑋𝑖−∑ 𝑋𝑖𝑉1𝑉𝑘

∑ 𝑋𝑖𝑉1

∗ 100  , (4.3) 

where 𝑋𝑖 is the DMD modes magnitude/eigenvalue for a specific visit 𝑉. K is the 

visit number, such that k > 1, and 𝑉1 indicates the first visit (i.e., baseline).  

Results presented in Table 4.2 and Table 4.3 show that as chemotherapy 

treatment progressed, the strength of dominant DMD modes for both LF and RF 

reduced. In other words, the effect of the most dominant DMD modes on foot 

dynamics weakened in comparison to the less dominant modes, as indicated by 

the reduction in their magnitude values. When compared to baseline modes 

obtained from V1, V2 reduction ranged between approximately 1% and 16% for 

both LF and RF; V2 demonstrated the least drop. The majority of participants’ 

subsequent visits had a larger inclination in DMD modes' amplitude, attaining 

least strength on the most recent visit. Overall reductions varied between 1% and 

22% for RF and between 12% and 36% for LF. For the examined foot segments, 

most patients demonstrated greater percentage decrease in LF than in RF. The 

average and standard deviation of the change in DMD modes magnitude from V2 

to the most recent visit is shown in Table 4.4.  

Results presented in Table 4.2 confirmed that the dominant DMD-eigenvalues 

shifted toward the unit circle, resulting in an increase in oscillation period and a 

decrease in decay over the course of chemotherapy treatment. The attested lower 

decay rate and longer oscillation periods indicates increased mode dynamics with 

less amplitude. This change in the DMD modes characteristics is due to increased 

walking instability as a result of chemotherapy treatment. A change in eigenvalues 

(e.g., between 2% and 34.8% for the LF and between 5% and 21% for the RF) was 

found during V2. The most significant changes were associated with the last visit. 

Eigenvalues varied between 10% and 61% for RF and between 20% and 169% for 
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LF. The LF demonstrated higher change in eigenvalues than that of RF for most 

participants. The average and standard deviation of the change in dominant DMD 

eigenvalues are shown in Table 4.5.  

Table 4.2  

Percentage Change in Plantar Pressure Variability  

Captured by Employed DMD-based Schemes 
  Heel Metatarsal BT 

  
Mode Mag. DMD eig. Mode Mag. DMD eig. Mode Mag. DMD eig. 

  
LF RF LF RF LF RF LF RF LF RF LF RF 

CIP 

05 

V2 -13 -5.2 9.2 21.1 -4.5 0.2 3.6 10.2 -2 -13 1.7 12 

V5 -25 -18.6 16.6 41.8 -20.5 -8.5 35.8 9 -18 -25 30 39 

CIP 

06 

V2 -9 0.6 10.5 14 -0.4 -4 13.5 1 -12.3 -4 2 4.5 

V6 -17 -16.5 18.5 30 -12 -14 22 14 -11.5 -13 12 9 

CIP 

08 

V2 -4.5 -12 10.4 19.8 -6.5 -3.8 21.7 13.5 -7 -11.2 18 16 

V3 -16.5 -29 30.6 60.9 -30 -11 26 21 -22 -19 30 22 

CIP 

09 

V2 -6.3 -3.2 34.8 19.8 -7.2 -6 18 23 -15 -6.8 48 5.5 

V4 -6.3 -5.3 41.7 33 -9.2 -10.2 27 25 -16.8 -8.8 54 17.3 

CIP 

012 

V2 -11 -11 9.7 8.2 -11 -5.5 16.2 6.2 -10 -12.5 10 12.9 

V3 -19.2 -12.8 27 29.3 -17 -12 12 27 -18 -17 21.4 18.3 

CIP 

013 

V2 -5.7 -1.2 2 1.5 -11.4 -2.5 1.2 3 -16.1 -2.6 10 1 

V4 -34 -4.6 31 8 -18.3 -5 8 4 -17.1 -4.8 13 3.3 

CIP 

016 

V2 -3.5 -3 7.2 20 -4 -1.6 10 9 -4 -14 4 8 

V6 -19.2 -40 32 22.3 -22 -8.2 26.3 23.2 -9.5 -17.8 36 23 

CIP 

017 

V2 -3 -1.6 4 6 -4 -1 3.3 6.5 -4 -4.7 3 5 

V3 -3.6 -3.8 2.5 5.5 -5.2 -2.5 2.5 7.2 -5 -5.5 4.5 2 

CIP 

023 

V2 -2.2 -5.5 2.7 4 -8.1 -0.5 6 2.6 -2.5 -10.2 7 9 

V5 -3.3 -5.5 16 14.4 -8 -0.6 14 14 -2.6 -10.2 13 18.4 

CIP 

024 

V3 -0.8 -4.6 22 25 -4.7 -2 15.7 27.4 -7 -11 22.2 26 

V4 -4.7 -9 32 25 -15. -15.6 25.5 24 -8.5 -17.5 26 31 
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CIP 

025 

V2 -5.2 -4 18 8.9 -6.8 -6.4 10 7 -2.8 -3.84 4 9.6 

V6 -15 -10.6 32 22 -15.2 -14 22 23 -14 -13 36.4 23 

CIP 

026 

V2 -6.2 -1.8 3 4.3 -8 -6 2.5 11 -3 -5 7 8.2 

V5 -12 -17 19.2 27.8 -22.5 -15 44.7 20.2 -16.32 -12.2 32.5 21 

CIP 

028 

V2 -5.6 -6.7 4.5 1.6 -1.6 -3.33 3.4 11 -4.4 -5.5 11.6 8 

V6 -18.8 -15 34 18 -17 -12.21 15 15 -15.6 -11 19.6 18.6 

CIP 

029 

V2 -5.6 -4.5 -1.5 12.8 -6.5 -5 13.6 2.4 -6.8 -5.3 5.5 10.8 

V5 -13 -9.2 14.4 15 -12.4 -13 19.6 18.8 -20 -10.2 15.5 16 

CIP 

030 

V2 -7.2 -2 3.5 2 -3.4 -1.2 3 7 -3.4 -2.8 0.8 2.1 

 
V6 -13.2 -9.3 32 11.7 -11 -7.6 21.6 13 -10.6 -9.2 28 14 

CIP 

031 

V3 -5.3 -6.7 5 2 -5.6 -6.7 3.5 10 -5.6 -5.6 12.6 6 

V6 -22.4 -16.2 32 17 -22.4 -15.3 16 15 -16 -11.2 20 19.6 

CIP 

032 

V2 -9 -1.2 14.5 

 

6 -1 -4 8.5 8 -2.2 -5.6 8 9 

V6 -17 -16 22 15 -16.3 -12.3 20 15 -16 -13 21 20 

 

Table 4.3  

Overall Percent Change in Dominant DMD Modes and Eigenvalues  

Per Patient Among Visits 
 

 
DMD mag. Eigenvalues DMD mag. Eigenvalues 

CIP 

05 

AVG -12.7 18.4 -11.1 21.1 

STD 7.6 12.3 7.4 11.5 

CIP 

06 

AVG -8.8 12.1 -7.8 11.5 

STD 5.6 5.2 4.6 7.1 

CIP 

08 

AVG -14.4 22.8 -14.3 25.5 

STD 9.3 7.1 7.9 16.1 

CIP 

09 

AVG -10.4 36.5 -7 20.5 

STD 4.6 12.4 2.3 7.6 

CIP 

012 

AVG -14.4 16.1 -11.8 17 

STD 3.8 6.3 3.4 8.8 

CIP 

013 

AVG -15.5 12.1 -4 3.4 

STD 7.7 9.8 1.5 2.2 

CIP 

016 

AVG -11.2 27.2 -13.8 20.5 

STD 6.5 11 12 6.6 

CIP 

017 

AVG -4.1 3.3 -3.2 5.4 

STD 0.8 0.7 1.6 1.7 

CIP AVG -6.7 9.2 -6.3 12.6 
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023 STD 3.1 5 3.6 5.5 

CIP 

024 

AVG -6.8 23.9 -10 26.4 

STD 4.4 4.9 5.5 2.3 

CIP 

025 

AVG -10.1 21.7 -9.3 19.2 

STD 3.3 8.9 2.7 5.8 

CIP 

026 

AVG -10.6 20.5 -9.8 17.2 

STD 5.4 13.5 4.4 6.4 

CIP 

028 

AVG -10.9 17 -9.4 11.9 

STD 4.7 7.9 3.1 4.7 

CIP 

029 

AVG -10.7 11.7 -9.3 12.4 

STD 3.9 5.8 3.3 4.3 

CIP 

030 

AVG -8.6 15.4 -5.8 9.3 

STD 3 9.3 2.9 4.9 

CIP 

031 

AVG -11.9 15.4 -10.3 12.5 

STD 7.2 6.7 4.8 4.3 

CIP 

032 

AVG -9 15.2 -8.1 12.5 

STD 5.7 4.6 4.2 4.8 

 

Table 4.4  

Percent Change in Dominant DMD Modes’ Magnitude  

For All Patients 
  

Heel meta BT 
  

LF RF LF RF LF RF 

Second visit AVG -6.1 -4.3 -5.5 -3.5 -6.4 -7.2 

STD 3 3.2 3.1 2.2 4.3 3.7 

Last visit AVG -15.3 -13.5 -15.2 -10.3 -14 -12.8 

STD 7.8 8.5 8.3 4.3 5.1 5 

Table 4.5  

Percent Change in Dominant DMD Eigenvalues  

For All Patients 
  

Heel Meta BT 
  

LF RF LF RF LF RF 

Second visit AVG 8.4 10.3 6.4 3.8 10.32 9.24 

STD 8.7 7.2 3.7 2.5 11.6 6 

Last visit AVG 36 24.5 22.1 17.6 24.7 18 

STD 10.5 13.7 10.8 7 12.1 9.1 

4.4.4 Conclusion 

The impact of neurotoxic chemotherapy treatment on plantar pressure variation 

among female uterine cancer patient footfall was investigated. Heel, metatarsal, 

and big toe areas of a visit-to-visit, foot plantar pressure variation was modeled 

and analyzed. Data was gathered from patients walking on a 20-ft high-resolution 
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Tekscan Strideway mat scan system. An innovative image processing-based 

segmentation technique was used to quickly and accurately extract studied 

footstep areas. Plantar pressure fluctuation between baseline and successive visits 

was successfully modeled and quantified using a DMD modeling technique. The 

magnitude of dominant DMD modes (i.e., eigenvectors) and DMD eigenvalues was 

utilized to quantify variation. Results demonstrated that the instability in walking 

behavior grew as chemotherapy treatment progressed. As a result of treatment, 

the dominating frequency domain DMD components had higher oscillation 

periods and lost strength. Findings support the hypothesis that the developed 

CIPN from chemotherapy treatment increases variability of plantar pressure and 

instability in walking behavior. Overall, the implementation of DMD in this study 

provides a promising approach for analyzing complex data sets and could have 

important applications in the field of rehabilitation for improving the quality of life 

for cancer patients undergoing chemotherapy treatment. 
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Chapter 5 Conclusion  

5.1 Conclusion 

The exponential growth of available experimental, simulation, and historical data 

from modern systems (e.g., medical and wireless networks) has created a 

persistent need for effective data mining and analysis techniques. Such systems 

can be characterized as high-dimensional, nonlinear dynamical schemes that 

exhibit rich multiscale phenomena in both space and time. The primary objective 

of this work was to characterize, identify, and predict the behavior of a system. 

Characterization and identification required finding patterns in the data, and 

prediction entailed predicting system dynamics. The field of data-driven modeling 

and analysis of complex systems is rapidly advancing and holds massive potential 

for revolutionizing the engineering, biological, and physical sciences. Modeling 

techniques generate low-dimensional representations of the system using 

extracted measurements, and then subsequently evaluate spatial-temporal 

structures in the data to characterize the system. These techniques enable 

modeling of complex systems without requiring knowledge of the dynamic 

equations governing the system's operation. 

This dissertation proposed the implementation of DMD, which is a fully data-

driven technique for characterizing dynamical systems from extracted 

measurements. Contextual application was in the fields of wireless 

communication and CIPN identification for cancer patients. DMD employes SVD to 

reduce high-dimensional measurements collected from a system and compute 

eigenvalues/eigenvectors of a linear approximated model. By estimating the 

underlying dynamics within a system, DMD provides a powerful tool for system 

characterization without requiring knowledge of the governing dynamical 

equations.  
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Three novel techniques based on DMD were developed for wireless 

coexistence analysis, with potential applications in wireless communication. The 

DMD-BW technique identified signals by evaluating the values of the resulting 

DMD modes’ frequency spectrum bandwidth. A DMDA technique was based on 

evaluating a template features matrix obtained for a specific signal class, and then 

classifying signals under evaluation according to the values of the resulting 

projected DMD mode amplitude. The DMDF technique classified signals based on 

evaluating the slope of the DMD modes oscillation frequency trend. These 

techniques can differentiate various wireless technologies, including GSM and LTE 

signals in the cellular domain, IEEE802.11n, ac, and ax in the Wi-Fi domain, as well 

as Bluetooth and Zigbee. By capturing embedded periodic features transmitted 

within the signal, the proposed DMD-based technique identifies the time domain 

signature of a signal. Additionally, a DMD-based scheme was developed to capture 

the pattern of plantar pressure variability as it changes proportional to the 

development of neuropathy as a result of the effects of neurotoxic chemotherapy 

treatment. The developed technique modeled gait pressure variations across steps 

at three plantar regions to characterize the development of CIPN in patients with 

uterine cancer. The technique utilized magnitude of dominant DMD modes (i.e., 

eigenvectors) and DMD eigenvalues for quantifying variation. 

When compared with various similar techniques implemented in the literature 

(i.e., ML-, DL-, and statistical-based methods), results showed that DMD-based 

methods had lower complexity and achieved higher performance with the 

advantages of fast data processing, minimal required data preprocessing, and 

minimal required signal observation time intervals. 

The novel DMD-based algorithms differentiated and classified wireless signals 

with high accuracy by employing short observation intervals (e.g., four-time slots 

or packets), which enabled them to be implemented in real-time to identify 

various operating wireless technologies coexisting in heterogeneous networks. 

The DMDF scheme outperformed all compared techniques, as it is a direct 
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identification scheme (i.e., no training required). This technique achieved the 

highest accuracy—greater than 90% for most cases—and the shortest time 

required—less than one second-to identify a signal. Also, plantar pressure 

fluctuation between baseline and successive visits was successfully modeled and 

quantified using a DMD modeling technique. Results demonstrated that walking 

behavior instability grew as chemotherapy treatment progressed. As a result of 

treatment, the dominating frequency domain DMD components had higher 

oscillation periods (reduced decay rate) and lost strength. Findings support the 

hypothesis that CIPN as a result of chemotherapy treatment increases variability 

of plantar pressure and instability in walking behavior.  

5.2 Future Work 

The study in this dissertation provides a promising method to further research for 

developing innovative techniques to identify and characterize complex signals. 

The findings have important implications in the field of wireless identification, as 

further investigation can be conducted to evaluate the scalability of the developed 

algorithms for tracking additional wireless networks with more diverse 

coexistence scenarios. Moreover, this study provides a foundation for ongoing 

research related to plantar pressure analysis for CIPN identification. In particular, 

future investigations can explore the unique patterns of plantar pressure 

variability in the transfer of weight from step to step, which may be used for 

individual identification. Additional work can also be utilized to evaluate the level 

of asymmetry between the left and right foot, which could serve as a parameter to 

identify the advancement of neuropathy. 
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Appendix  

Footstep segmentation Code 

Algorithm 4.1: Footstep extraction and identification 

Input: Data tensor T  
Output: Steps_start_end, LF_num , RF_num  
Convert 3D input data tensor to 2D matrix: 
1: Footsteps=sum(T,3); 
Average footstep length in pixels: 
2: footlength=52; 
Column wise summation for Footsteps matrix: 
3: Cols_sum=sum(Footsteps,1); 
Find the start and end location for each footstep: 
4: while(i>1) do 
5:    if Cols_sum(i)>0 do 
6:        step_xs=i; 
7:        step_xe=abs(step_xs-footlength)+1; 
8:        steps=[steps;step_xs step_xe]; 
9:        i=step_xe; 
10:    end if 
11:      i=i-1; 
12: end while 
Identifying and numbering LF and RF footsteps: 
 Select a test footstep: 
13: test_step = 4; 
14: foot_step=  
    Footsteps (:,Steps_start_end(test_step,2):Steps_start_end(test_step,1)); 
Plot the identification line: 
15: x1=round((size(foot_step,2)/2));  
16: x2=size(foot_step,2); 
17: C1=foot_step(:,x1); 
18: C2=foot_step(:,x2); 
19: for i=size(C1,1):-1:1 do 
20:    if C1(i)>0 do 
21:        y1=i; 
22:        break 
23:    end if 
24: end for 
25: for ii=size(C2,1):-1:1 do 
26:    if C2(ii)>0 do 
27:        y2=ii; 
28:        break 
29:    end if 
30: end for 
calculate the angle of the identification line:  
31: angle=atan((y2-y1)/(x2-x1))*180/pi; 
32: if angle>0 do 
33:    RF_num=2:2:size(Steps_start_end,1); 
34:    LF_num=1:2:size(Steps_start_end,1); 
35: else 
36:    LF_num=2:2:size(Steps_start_end,1); 
37:    RF_num=1:2:size(Steps_start_end,1); 
38: end if 
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Algorithm 4.2: Extracting main three segments of a footstep 
Input: footstep 
Output:  
1: Calculate and plot footstep tangent baseline: 
2: x1=find(footstep(end,:)>0); 
3: x2=size(footstep,2); 
4: C1=footstep(:,x1); 
5: C2=footstep(:,x2); 
6: for i=size(C1,1):-1:1 do 
7:     if C1(i)>0 do 
8:         y1=i; 
9:         break 
10:     end if 
11: end for 
12: for ii=size(C2,1):-1:1 do 
13:     if C2(ii)>0 do 
14:         y2=ii; 
15:         break 
16:     end if 
17: end for 
18: coefficients = polyfit([x1, x2], [y1, y2], 1); 
19: m = coefficients (1)+0.001; 
20: c = coefficients (2); 
21: angle_baseline=abs(atan((y2-y1)/(x2-x1))*180/pi); 
22: plot(foot_step) 
23: hold on 
24: plot ([x1, x2], [y1, y2]) 
Calculate and plot the footstep start line: 
25: mp=-1/m; %perpendicular slope 
26: l2_x = size(footstep,2); 
27: l2_y = size(footstep,1)/2; 
28: l3_x = l2_x-4; 
29: l3_y = mp * (l3_x - l2_x) + l2_y; 
30: l4_x = l2_x+12; 
31: l4_y = mp * (l4_x - l2_x) + l2_y; 
32: plot([l3_x, l4_x], [l3_y, l4_y], 'm', 'LineWidth', 1.5); 
Calculate and plot the footstep end line: 
33: sum_foot_col=sum(footstep,1); 
34: e2_x=find(sum_foot_col>0); 
35: [e2_y,~]=find(footstep(:,e2_x)>0); 
36: e3_x = e2_x-4; 
37: e3_y = mp * (e3_x - e2_x) + e2_y; 
38: e4_x = e2_x+12; 
39: e4_y = mp * (e4_x - e2_x) + e2_y; 
40: plot([e3_x, e4_x], [e3_y, e4_y], 'm', 'LineWidth', 1.5); 
Calculate and plot the Heel line: 
41: heel_x=(-0.31/cos(angle*pi/180))*(xs_i-xe_i)+xs_i; 
42: heel_y=m*heel_x+c+5; 
43: m_heel=-1/m; 
44: x11 = 20; 
45: y11 = m_heel * (x11 - heel_x) + heel_y; 
46: plot([x11, heel_x], [y11, heel_y], 'y', 'LineWidth', 1.5); 
Heel line intersections coordinates with lines parallel to baeline tangent: 
47: x1=[1 size(footstep,2)]; 
48: Initiate heel_int=[] 
49: for i=1:size(footstep,1) do 
50:     y1=[i i]; 
51:     [xi_heel,yi_heel] = polyxpoly(x1,y1,[x11  heel_x],[y11 heel_y]); 
52:     heel_int=[heel_int;[xi_heel yi_heel]]; 
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Algorithm 4.3: Heel Segmentation 
Input: heel_segment, baseline slope m 
Output: up_heel_segment, low_heel_segment 
Plot Heel bisection line: 
1: cc=round((size(heel_segment,1)/2)-m*(size(heel_segment,2)/2)); 
2: x=1:size(heel_segment,2); 
3: y=round(m*x+cc); 
4: y(y>size(heel_segment,1))=size(heel_segment,1);y(y<0)=0; 
5: plot(x,y,'r','LineWidth',2) 
Crop upper Heel segment: 
6: up_heel_segment=zeros(size(heel_segment,1),size(heel_segment,2)); 
7: for i=1:length(y) do 
8: up_heel_segment(1:y(i),i)= heel_segment(1:y(i),i); 
9: end for 
Crop lower Heel segment: 
10: low_heel_segment=zeros(size(heel_segment,1),size(heel_segment,2)); 
11: for i=1:length(y) 
12: low_heel_segment(y(i)+1:end,i)= heel_segment(y(i)+1:end,i); 
13: end 

 

53: end for 
Calculate and plot the Midfoot line: 
54: midfoot_x=(-0.21/cos(angle*pi/180))*(xs_i-xe_i)+heel_x; 
55: midfoot_y=m*midfoot_x+c; 
56: m_midfoot=-1/m; 
57: x12 = 10; 
58: y12 = m_midfoot * (x12 - midfoot_x) + midfoot_y; 
59: plot([x12, midfoot_x], [y12, midfoot_y], 'y', 'LineWidth', 1.5); 
60: Midfoot line intersections coordinates with lines parallel to baseline tangent: 
61: Initiate midfoot=[]; 
62: for i=1:size(footstep,1) do 
63:     y1=[i i]; 
64:    [xi_midfoot,yi_midfoot] = polyxpoly(x1,y1,[x12  midfoot_x],[y12 midfoot_y]); 
65:     midfoot_int=[midfoot_int;[xi_midfoot yi_midfoot]]; 
66: end for 
Heel segment cropping 
67: heel_segment= zeros(size(footstep,1), size(footstep,2)); 
68: for i=1:size(heel_int,1) do  
69: heel_segment(heel_int_round(i,2),heel_int_round(i,1):end)= 
footstep(heel_int_round(i,2), heel_int_round(i,1):end); 
70: end for 
Midfoot segment cropping 
71: mf_size_x=round((0.21/cos(angle*pi/180))*(xs_i-xe_i)); 
72: midfoot_segment= zeros(size(footstep,1), size(footstep,2)); 
73: for i=1:size(midfoot_int,1) do 
74:midfoot_segment(midfoot_int_round(i,2), 
midfoot_int_round(i,1):midfoot_int_round(i,1)+mf_size_x) 
=footstep(midfoot_int_round(i,2), midfoot_int_round(i,1):midfoot_int_round(i,1)+mf_size_x); 
75: end for 
Metatarsal+Toe segments cropping 
76: metatarsal_segment= zeros(size(footstep,1), size(footstep,2)); 
77: for i=1:size(midfoot_int,1) do 
78:   metatarsal_segment(midfoot_int(i,2), midfoot_int(i,1)) 
=footstep(midfoot_int(i,2), 1:midfoot_int(i,1)); 
79: end for 
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Algorithm 4.4: Metatarsal-toes isolation 
Input: metatarsal_segment 
Output: toe_segment, meta_segment 
1: Threshold=100; 
2: y_met_end=[1 1]; 
3: while(length(y_met_end) > length(unique(y_met_end))) do 
4: isolate=metatarsal_segment; 
5: isolate(isolate<threshold) = 0;  
6: X_start=round(0.4*size(isolate,2)); 
7: [val,idx_max] = max(isolate(:,X_start:end),[],2); 
8: X_max=idx_max+X_start-1; 
9: Y_max=1:size(isolate,1); 
10: Initiate met_end=[]; 
11: for i=1:size(isolate,1) do 
12:    R=isolate(i,:); 
13:    for j=X_max(i):-1:1 do 
14:        if R(j)==0 do 
15:            px=j; 
16:            py=i; 
17:            break 
18:        end if 
19:    end for 
20:    met_end=[met_end;[px py]]; 
21: end for 
22: met_end=met_end(:,1); 
23: y_met_end=met_end(:,2); 
24: Threshold=Threshold+100; 
25: end while 
Apply isolation coordinates on main area: 
26: figure 
27: imagesc(metatarsal_segment)  
28: scatter(x_met_end,y_met_end,'w','filled'); 
Toes cropping: 
29: toe_segment= zeros(size(metatarsal_segment,1), size(metatarsal_segment,2)); 
30: for i=1:size(metatarsal_segment,1) 
31: toe_segment(y_met_end(i),1:x_met_end(i))= 
metatarsal_segment(y_met_end(i), 1:x_met_end(i)); 
32: end for 
33: toe_segment=toe_segment(:,1:12); 
Metatarsal cropping: 
34: meta_segment= zeros(size(metatarsal_segment,1), size(metatarsal_segment,2)); 
35: for i=1:size(metatarsal_segment,1) do 
36: meta_segment(y_met_end(i),x_met_end(i):end) 
     =metatarsal_segment(y_met_end(i), x_met_end(i):end); 
37: end for 

 

Algorithm 4.5: Toes cropping 
Input: toe_segment 
Output: T 
1: max_toe_row=max(toe_segment,[],2); 
2: [peaks_toe,row_peaks_toe]=findpeaks(max_toe_row); 
project peak coordinates: 
3: Initiate peak_toe_loc=[]; 
4: for m=1:size(peaks_toe,1) do 
5:     [row,col]=find(toe_segment==peaks_toe(m)); 
6:    if(size(row,1)>1) || (size(col,1)>1) do 
        col=col(2); row=row(2); 
      end if 
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7:    peak_toe_loc=[peak_toe_loc;row col]; 
8: end for 
Big toe extraction 
9: toe_num=1; 
10: for i=1:length(toe_num) do  
11: T_loc=peak_toe_loc(toe_num,:); 
12: T_row=T_loc(1); T_col=T_loc(2);%peak pixel location 
First level neighboring pixels to the peak: 
13: T_RP_row=T_row ; T_RP_col=T_col+1; 
14: T_LP_row=T_row ; T_LP_col=T_col-1; 
15: T_UP_row=T_row-1; T_UP_col=T_col; 
16:T_DP_row=T_row+1; T_DP_col=T_col; 
17: T_R_UP_row=T_row-1;T_R_UP_col=T_col+1; 
18: T_L_UP_row=T_row-1;T_L_UP_col=T_col-1; 
19: T_R_DP_row=T_row+1;T_R_DP_col=T_col+1; 
20: T_L_DP_row=T_row+1;T_L_DP_col=T_col-1; 
Second level neighboring pixels to the peak: 
21: T_UP2_row=T_row-2; T_UP2_col=T_col;  
22: T_DP2_row=T_row+2; T_DP2_col=T_col;  
23: T_R_UP2_row=T_row-2;T_R_UP2_col=T_col+1; 
24: T_L_UP2_row=T_row-2;T_L_UP2_col=T_col-1; 
25: T_R_DP2_row=T_row+2;T_R_DP2_col=T_col+1; 
26: T_L_DP2_row=T_row+2;T_L_DP2_col=T_col-1; 
27: T_RP2_row=T_row ; T_RP2_col=T_col+2;  
28: T_LP2_row=T_row ; T_LP2_col=T_col-2;  
Third level neighboring pixels to the peak: 
29: T_R_UP3_row=T_row-1;T_R_UP3_col=T_col+2; 
30: T_R_UP4_row=T_row-2;T_R_UP4_col=T_col+2; 
31: T_L_UP3_row=T_row-1;T_L_UP3_col=T_col-2; 
32: T_L_UP4_row=T_row-2;T_L_UP4_col=T_col-2; 
33: T_R_DP3_row=T_row+1;T_R_DP3_col=T_col+2; 
34: T_R_DP4_row=T_row+2;T_R_DP4_col=T_col+2; 
35: T_L_DP3_row=T_row+1;T_L_DP3_col=T_col-2; 
36: T_L_DP4_row=T_row+2;T_L_DP4_col=T_col-2; 
37: T=[toe_segment(T_L_UP4_row,T_L_UP4_col) toe_segment(T_L_UP2_row,T_L_UP2_col) 
toe_segment(T_UP2_row,T_UP2_col) toe_segment(T_R_UP2_row,T_R_UP2_col) 
toe_segment(T_R_UP4_row,T_R_UP4_col)..... 
    ;toe_segment(T_L_UP3_row,T_L_UP3_col) toe_segment(T_L_UP_row,T_L_UP_col) 
toe_segment(T_UP_row,T_UP_col) toe_segment(T_R_UP_row,T_R_UP_col) 
toe_segment(T_R_UP3_row,T_R_UP3_col)..... 
    ;toe_segment(T_LP2_row,T_LP2_col) toe_segment(T_LP_row,T_LP_col) 
toe_segment(T_row,T_col) toe_segment(T_RP_row,T_RP_col) 
toe_segment(T_RP2_row,T_RP2_col)...... 
    ;toe_segment(T_L_DP3_row,T_L_DP3_col) toe_segment(T_L_DP_row,T_L_DP_col) 
toe_segment(T_DP_row,T_DP_col) toe_segment(T_R_DP_row,T_R_DP_col) 
toe_segment(T_R_DP3_row,T_R_DP3_col)..... 
    ;toe_segment(T_L_DP4_row,T_L_DP4_col) toe_segment(T_L_DP2_row,T_L_DP2_col) 
toe_segment(T_DP2_row,T_DP2_col) toe_segment(T_R_DP2_row,T_R_DP2_col) 
toe_segment(T_R_DP4_row,T_R_DP4_col)]; 
38: end for 
Repeat for all toes   

 


