49 research outputs found

    The role of GABAergic modulation in motor function related neuronal network activity

    Get PDF
    At rest, the primary motor cortex (M1) exhibits spontaneous neuronal network oscillations in the beta (15–30 Hz) frequency range, mediated by inhibitory interneuron drive via GABA-A receptors. However, questions remain regarding the neuropharmacological basis of movement related oscillatory phenomena, such as movement related beta desynchronisation (MRBD), post-movement beta rebound (PMBR) and movement related gamma synchronisation (MRGS). To address this, we used magnetoencephalography (MEG) to study the movement related oscillatory changes in M1 cortex of eight healthy participants, following administration of the GABA-A modulator diazepam. Results demonstrate that, contrary to initial hypotheses, neither MRGS nor PMBR appear to be GABA-A dependent, whilst the MRBD is facilitated by increased GABAergic drive. These data demonstrate that while movement-related beta changes appear to be dependent upon spontaneous beta oscillations, they occur independently of one other. Crucially, MRBD is a GABA-A mediated process, offering a possible mechanism by which motor function may be modulated. However, in contrast, the transient increase in synchronous power observed in PMBR and MRGS appears to be generated by a non-GABA-A receptor mediated process; the elucidation of which may offer important insights into motor processes

    Aberrant Neuromagnetic Activation in the Motor Cortex in Children with Acute Migraine: A Magnetoencephalography Study

    Get PDF
    Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF) during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65–150 Hz) oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems

    Non-invasive detection of language-related prefrontal high gamma band activity with beamforming MEG

    Get PDF
    Hashimoto H., Hasegawa Y., Araki T., et al. Non-invasive detection of language-related prefrontal high gamma band activity with beamforming MEG. Scientific Reports 7, 14262 (2017); https://doi.org/10.1038/s41598-017-14452-3.High gamma band (>50 Hz) activity is a key oscillatory phenomenon of brain activation. However, there has not been a non-invasive method established to detect language-related high gamma band activity. We used a 160-channel whole-head magnetoencephalography (MEG) system equipped with superconducting quantum interference device (SQUID) gradiometers to non-invasively investigate neuromagnetic activities during silent reading and verb generation tasks in 15 healthy participants. Individual data were divided into alpha (8-13 Hz), beta (13-25 Hz), low gamma (25-50 Hz), and high gamma (50-100 Hz) bands and analysed with the beamformer method. The time window was consecutively moved. Group analysis was performed to delineate common areas of brain activation. In the verb generation task, transient power increases in the high gamma band appeared in the left middle frontal gyrus (MFG) at the 550-750 ms post-stimulus window. We set a virtual sensor on the left MFG for time-frequency analysis, and high gamma event-related synchronization (ERS) induced by a verb generation task was demonstrated at 650 ms. In contrast, ERS in the high gamma band was not detected in the silent reading task. Thus, our study successfully non-invasively measured language-related prefrontal high gamma band activity

    A Novel Method for Reducing the Effect of Tonic Muscle Activity on the Gamma Band of the Scalp EEG

    Get PDF
    Neural oscillations in the gamma band are of increasing interest, but separating them from myogenic electrical activity has proved difficult. A novel algorithm has been developed to reduce the effect of tonic scalp and neck muscle activity on the gamma band of the EEG. This uses mathematical modelling to fit individual muscle spikes and then subtracts them from the data. The method was applied to the detection of motor associated gamma in two separate groups of eight subjects using different sampling rates. A reproducible increase in high gamma (65–85 Hz) magnitude occurred immediately after the motor action in the left central area (p = 0.02 and p = 0.0002 for the two cohorts with individually optimized algorithm parameters, compared to p = 0.03 and p = 0.16 before correction). Whilst the magnitude of this event-related gamma synchronisation was not reduced by the application of the EMG reduction algorithm, the baseline left central gamma magnitude was significantly reduced by an average of 23 % with a faster sampling rate (p < 0.05). In comparison, at left and right temporo-parietal locations the gamma amplitude was reduced by 60 and 54 % respectively (p < 0.05). The reduction of EMG contamination by fitting and subtraction of individual spikes shows promise as a method of improving the signal to noise ratio of high frequency neural oscillations in scalp EEG

    Decoding the cognitive states of attention and distraction in a real-life setting using EEG.

    Get PDF
    Lapses in attention can have serious consequences in situations such as driving a car, hence there is considerable interest in tracking it using neural measures. However, as most of these studies have been done in highly controlled and artificial laboratory settings, we want to explore whether it is also possible to determine attention and distraction using electroencephalogram (EEG) data collected in a natural setting using machine/deep learning. 24 participants volunteered for the study. Data were collected from pairs of participants simultaneously while they engaged in Tibetan Monastic debate, a practice that is interesting because it is a real-life situation that generates substantial variability in attention states. We found that attention was on average associated with increased left frontal alpha, increased left parietal theta, and decreased central delta compared to distraction. In an attempt to predict attention and distraction, we found that a Long Short Term Memory model classified attention and distraction with maximum accuracy of 95.86% and 95.4% corresponding to delta and theta waves respectively. This study demonstrates that EEG data collected in a real-life setting can be used to predict attention states in participants with good accuracy, opening doors for developing Brain-Computer Interfaces that track attention in real-time using data extracted in daily life settings, rendering them much more usable

    Exploring the Electrophysiological Correlates of the Default-Mode Network with Intracerebral EEG

    Get PDF
    While functional imaging studies allow for a precise spatial characterization of resting state networks, their neural correlates and thereby their fine-scale temporal dynamics remain elusive. A full understanding of the mechanisms at play requires input from electrophysiological studies. Here, we discuss human and non-human primate electrophysiological data that explore the neural correlates of the default-mode network. Beyond the promising findings obtained with non-invasive approaches, emerging evidence suggests that invasive recordings in humans will be crucial in order to elucidate the neural correlates of the brain's default-mode function. In particular, we contend that stereotactic-electroencephalography, which consists of implanting multiple depth electrodes for pre-surgical evaluation in drug-resistant epilepsy, is particularly suited for this endeavor. We support this view by providing rare data from depth recordings in human posterior cingulate cortex and medial prefrontal cortex that show transient neural deactivation during task-engagement

    Corticomuscular interactions during different movement periods in a multi-joint compound movement

    Get PDF
    While much is known about motor control during simple movements, corticomuscular communication profiles during compound movement control remain largely unexplored. Here, we aimed at examining frequency band related interactions between brain and muscles during different movement periods of a bipedal squat (BpS) task utilizing regression corticomuscular coherence (rCMC), as well as partial directed coherence (PDC) analyses. Participants performed 40 squats, divided into three successive movement periods (Eccentric (ECC), Isometric (ISO) and Concentric (CON)) in a standardized manner. EEG was recorded from 32 channels specifically-tailored to cover bilateral sensorimotor areas while bilateral EMG was recorded from four main muscles of BpS. We found both significant CMC and PDC (in beta and gamma bands) during BpS execution, where CMC was significantly elevated during ECC and CON when compared to ISO. Further, the dominant direction of information flow (DIF) was most prominent in EEG-EMG direction for CON and EMG-EEG direction for ECC. Collectively, we provide novel evidence that motor control during BpS is potentially achieved through central motor commands driven by a combination of directed inputs spanning across multiple frequency bands. These results serve as an important step toward a better understanding of brain-muscle relationships during multi joint compound movements.V.V.N was supported by the HSE Basic Research Program and the Russian Academic Excellence Project '5–100'. This study was supported by the Max-Planck Society

    Behavioral and Quantitative Electroencephalogram Alterations During the Whisker Nuisance Task Following Mild Traumatic Brain Injury in Mice

    Get PDF
    Mild traumatic brain injury (mild TBI) has been shown to cause an array of symptoms in individuals lasting up to several years. Several publications have lead researchers to believe that parvalbumin axotomy and its associated changes with gamma oscillations may be the driving force for these symptoms. Several publications have demonstrated alterations in both resting gamma and evoked gamma by way of parvalbumin dysfunction. Our research analyzed resting and evoked gamma obtained by electroencephalograms (EEG) in nine mild TBI mice and six SHAM mice by utilizing a behavioral test known as the Whisker Nuisance Task (WNT). The central fluid percussion model was used to ensure only mild injuries were being produced and has demonstrated as much as 10% of parvalbumin axotomy. Through the use of several statistical analyses, our data revealed no changes in resting state EEG spectra of injured mice, however; higher frequency ranges of gamma revealed a decrease in power during WNT testing at week one. Our data also displayed an increase in WNT scores of injured mice at week one, which persisted at week four. While our resting gamma results revealed data that is inconsistent with previous publications, it is important to note that our evoked gamma is consistent with several other papers. In order to solidify the relationship between evoked gamma and abnormal responses to the WNT, several future experiments will be considered. Experiments such as changing the placement of EEG devices, recording at specific time points rather than a range of 30 minutes, and utilizing cfos staining to determine the level of neuronal activity will help clarify that relationship of evoked gamma and abnormal WNT scores

    Acute effects of alcohol on stimulus-induced gamma oscillations in human primary visual and motor cortices

    Get PDF
    Alcohol is a rich drug affecting both the γ-amino butyric acid (GABA) and glutamatergic neurotransmitter systems. Recent findings from both modeling and pharmacological manipulation have indicated a link between GABAergic activity and oscillations measured in the gamma frequency range (30–80 Hz), but there are no previous reports of alcohol’s modulation of gamma-band activity measured by magnetoencephalography (MEG) or electroencephalography (EEG). In this single-blind, placebo-controlled crossover study, 16 participants completed two study days, on one day of which they consumed a dose of 0.8 g/kg alcohol, and on the other day a placebo. MEG recordings of brain activity were taken before and after beverage consumption, using visual grating and finger abduction paradigms known to induce gamma-band activity in the visual and motor cortices respectively. Time–frequency analyses of beamformer source reconstructions in the visual cortex showed that alcohol increased peak gamma amplitude and decreased peak frequency. For the motor task, alcohol increased gamma amplitude in the motor cortex. These data support the notion that gamma oscillations are dependent, in part, on the balance between excitation and inhibition. Disruption of this balance by alcohol, by increasing GABAergic inhibition at GABAA receptors and decreasing glutamatergic excitation at N-methyl-D-aspartic acid receptors, alters both the amplitude and frequency of gamma oscillations. The findings provide further insight into the neuropharmacological action of alcohol
    corecore