7,478 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    A Computer Aided Detection system for mammographic images implemented on a GRID infrastructure

    Full text link
    The use of an automatic system for the analysis of mammographic images has proven to be very useful to radiologists in the investigation of breast cancer, especially in the framework of mammographic-screening programs. A breast neoplasia is often marked by the presence of microcalcification clusters and massive lesions in the mammogram: hence the need for tools able to recognize such lesions at an early stage. In the framework of the GPCALMA (GRID Platform for Computer Assisted Library for MAmmography) project, the co-working of italian physicists and radiologists built a large distributed database of digitized mammographic images (about 5500 images corresponding to 1650 patients) and developed a CAD (Computer Aided Detection) system, able to make an automatic search of massive lesions and microcalcification clusters. The CAD is implemented in the GPCALMA integrated station, which can be used also for digitization, as archive and to perform statistical analyses. Some GPCALMA integrated stations have already been implemented and are currently on clinical trial in some italian hospitals. The emerging GRID technology can been used to connect the GPCALMA integrated stations operating in different medical centers. The GRID approach will support an effective tele- and co-working between radiologists, cancer specialists and epidemiology experts by allowing remote image analysis and interactive online diagnosis.Comment: 5 pages, 5 figures, to appear in the Proceedings of the 13th IEEE-NPSS Real Time Conference 2003, Montreal, Canada, May 18-23 200

    A modified kohonen self-organizing map (KSOM) clustering for four categorical data

    Get PDF
    The Kohonen Self-Organizing Map (KSOM) is one of the Neural Network unsupervised learning algorithms. This algorithm is used in solving problems in various areas, especially in clustering complex data sets. Despite its advantages, the KSOM algorithm has a few drawbacks; such as overlapped cluster and non-linear separable problems. Therefore, this paper proposes a modified KSOM that inspired from pheromone approach in Ant Colony Optimization. The modification is focusing on the distance calculation amongst objects. The proposed algorithm has been tested on four real categorical data that are obtained from UCI machine learning repository; Iris, Seeds, Glass and Wisconsin Breast Cancer Database. From the results, it shows that the modified KSOM has produced accurate clustering result and all clusters can clearly be identified

    Abnormality Detection in Mammography using Deep Convolutional Neural Networks

    Full text link
    Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature learning and classifier building. In computer-aided mammography, deep CNN classifiers cannot be trained directly on full mammogram images because of the loss of image details from resizing at input layers. Instead, our classifiers are trained on labelled image patches and then adapted to work on full mammogram images for localizing the abnormalities. State-of-the-art deep convolutional neural networks are compared on their performance of classifying the abnormalities. Experimental results indicate that VGGNet receives the best overall accuracy at 92.53\% in classifications. For localizing abnormalities, ResNet is selected for computing class activation maps because it is ready to be deployed without structural change or further training. Our approach demonstrates that deep convolutional neural network classifiers have remarkable localization capabilities despite no supervision on the location of abnormalities is provided.Comment: 6 page

    Genome signatures, self-organizing maps and higher order phylogenies: a parametric analysis

    Get PDF
    Genome signatures are data vectors derived from the compositional statistics of DNA. The self-organizing map (SOM) is a neural network method for the conceptualisation of relationships within complex data, such as genome signatures. The various parameters of the SOM training phase are investigated for their effect on the accuracy of the resulting output map. It is concluded that larger SOMs, as well as taking longer to train, are less sensitive in phylogenetic classification of unknown DNA sequences. However, where a classification can be made, a larger SOM is more accurate. Increasing the number of iterations in the training phase of the SOM only slightly increases accuracy, without improving sensitivity. The optimal length of the DNA sequence k-mer from which the genome signature should be derived is 4 or 5, but shorter values are almost as effective. In general, these results indicate that small, rapidly trained SOMs are generally as good as larger, longer trained ones for the analysis of genome signatures. These results may also be more generally applicable to the use of SOMs for other complex data sets, such as microarray data

    Modular Machine Learning Methods for Computer-Aided Diagnosis of Breast Cancer

    Get PDF
    The purpose of this study was to improve breast cancer diagnosis by reducing the number of benign biopsies performed. To this end, we investigated modular and ensemble systems of machine learning methods for computer-aided diagnosis (CAD) of breast cancer. A modular system partitions the input space into smaller domains, each of which is handled by a local model. An ensemble system uses multiple models for the same cases and combines the models\u27 predictions. Five supervised machine learning techniques (LDA, SVM, BP-ANN, CBR, CART) were trained to predict the biopsy outcome from mammographic findings (BIRADS™) and patient age based on a database of 2258 cases mixed from multiple institutions. The generalization of the models was tested on second set of 2177 cases. Clusters were identified in the database using a priori knowledge and unsupervised learning methods (agglomerative hierarchical clustering followed by K-Means, SOM, AutoClass). The performance of the global models over the clusters was examined and local models were trained for clusters. While some local models were superior to some global models, we were unable to build a modular CAD system that was better than the global BP-ANN model. The ensemble systems based on simplistic combination schemes did not result in significant improvements and more complicated combination schemes were found to be unduly optimistic. One of the most striking results of this dissertation was that CAD systems trained on a mixture of lesion types performed much better on masses than on calcifications. Our study of the institutional effects suggests that models built on cases mixed between institutions may overcome some of the weaknesses of models built on cases from a single institution. It was suggestive that each of the unsupervised methods identified a cluster of younger women with well-circumscribed or obscured, oval-shaped masses that accounted for the majority of the BP-ANN’s recommendations for follow up. From the cluster analysis and the CART models, we determined a simple diagnostic rule that performed comparably to the global BP-ANN. Approximately 98% sensitivity could be maintained while providing approximately 26% specificity. This should be compared to the clinical status quo of 100% sensitivity and 0% specificity on this database of indeterminate cases already referred to biopsy
    corecore