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A b s t r a c t 

The purpose of this study was to improve breast cancer diagnosis by reducing the 

number of benign biopsies performed. To this end, we investigated modular and 

ensemble systems of machine learning methods for computer-aided diagnosis (CAD) of 

breast cancer. A modular system partitions the input space into smaller domains, each of 

which is handled by a local model. An ensemble system uses multiple models for the 

same cases and combines the models' predictions. 

Five supervised machine learning techniques (LDA, SVM, BP-ANN, CBR, 

CART) were trained to predict the biopsy outcome from mammographic findings (BI-

RADS™) and patient age based on a database of 2258 cases mixed from multiple 

institutions. The generalization of the models was tested on second set of 2177 cases. 

Clusters were identified in the database using a priori knowledge and unsupervised 

learning methods (agglomerative hierarchical clustering followed by K-Means, SOM, 

AutoClass). The performance of the global models over the clusters was examined and 

local models were trained for clusters. 

While some local models were superior to some global models, we were unable to 

build a modular CAD system that was better than the global BP-ANN model. The 

ensemble systems based on simplistic combination schemes did not result in significant 

improvements and more complicated combination schemes were found to be unduly 

optimistic. One of the most striking results of this dissertation was that CAD systems 

trained on a mixture of lesion types performed much better on masses than on 

calcifications. Our study of the institutional effects suggests that models built on cases 

mixed between institutions may overcome some of the weaknesses of models built on 
iv 
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cases from a single institution. It was suggestive that each of the unsupervised methods 

identified a cluster of younger women with well-circumscribed or obscured, oval-shaped 

masses that accounted for the majority of the BP-ANN’s recommendations for follow up. 

From the cluster analysis and the CART models, we determined a simple diagnostic rule 

that performed comparably to the global BP-ANN. Approximately 98% sensitivity could 

be maintained while providing approximately 26% specificity. This should be compared 

to the clinical status quo of 100% sensitivity and 0% specificity on this database of 

indeterminate cases already referred to biopsy.
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1 Background

1.1 Breast Cancer and Mammography
Among American women, breast cancer is the most common cancer, excluding

skin cancers, and is the second leading cause of cancer deaths, after lung cancer [1, 2]. It 

is estimated that 203,500 American women will be diagnosed with invasive breast cancer 

(plus an additional 54,300 in situ) and 39,600 will die of breast cancer in 2002 [2].

Women in the United States have about a 1 in 8 lifetime risk of developing invasive 

breast cancer [3, 4]. Mammographic screening has been shown to reduce the mortality of 

breast cancer by as much as 30% [5, 6], However, mammography has a low positive 

predictive value (PPV). Only about 10-34% of the women who undergo biopsies for 

pathological diagnosis of breast cancer are found to have malignancies [7]. Our goal of 

the application of computer-aided diagnosis to mammography is to reduce the false 

positive rate. Avoiding benign biopsies spares women unnecessary discomfort, anxiety, 

and expense. Moreover, the cost of benign biopsies is the major induced cost of 

mammographic screening [8].

The American College of Radiology (ACR) has defined a standard system for the 

reporting of mammographic findings [9]. The ACR Breast Imaging Reporting and Data 

System (BI-RADS™) is a lexicon for the description of mammographic lesions, mostly 

in terms of categorical features [10]. The BI-RADS™ lexicon includes such 

morphological features as the description of the margin of a mass and the distribution of 

calcifications. It has been demonstrated that the BI-RADS™ final assessment rating is an 

indicator of the likelihood of malignancy [11-13] and that different values of the BI­

RADS™ features are associated with different odds of malignancy [11]. Previous work
1
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in our laboratory has established the utility of BI-RADS™ features as inputs to predictive 

computer models [14-18]. While some inter- and intra-observer variability in the use of 

the BI-RADS™ lexicon has been observed [15, 19, 20], BI-RADS™ is an important part 

of mammography standardization and it is expected that more consistency will be seen as 

radiologists gain familiarity with the lexicon. Moreover, our research group has shown 

that a computer model based on radiologists' differing descriptions of lesions can make 

consistent, accurate predictions of malignancy [21]. For this study, mammographic 

lesions were summarized according to the BI-RADS™ lexicon (Section 1.4).

In addition to mammographic findings, patient history descriptors are also related 

to breast cancer status. The single most important risk factor is age. Increasing age is 

associated with increasing risk of breast cancer; a 60 year old white American woman has 

a fourteen fold increase in her chances of developing breast cancer relative to a 30 year 

old white American woman [6]. Previous work in our laboratory has established the 

utility of age [16, 18, 22] as an input for predictive computer models. In agreement with 

the epidemiological data, there is some evidence that age is a particularly valuable input 

in our predictive models [23]. Thus patient age was also used in this study (Section 1.4).

1.2 Computer-Aided Diagnosis
Computer aided diagnosis (CAD) of breast cancer is the application of

computational techniques to the problem of interpreting breast images, usually 

mammograms [24-28]. There are two major topics in breast cancer CAD; detection of 

mammographic lesions and diagnosis of cancer from identified lesions. In the detection 

task, the goal is to assist a radiologist in the identification, and often the localization, of 

lesion-containing regions of mammograms. While CAD for mammographic detection is
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still an active area of research, there are currently three vendors with FDA approved 

commercial systems: R2 Technology (Los Altos, CA), CADx Medical Systems (Laval, 

Quebec), and Howtek (Hudson, NH). In the diagnosis task, the goal is to assist a 

radiologist in determining whether an identified breast lesion is an indication of the 

presence of cancer. This study focused on the diagnosis of breast lesions that were 

identified by radiologists as suspicious enough to warrant biopsy. In other words, these 

cases are generally considered indeterminate and more challenging, and any reduction in 

the number of benign biopsies would represent an improvement over the status quo, in 

which all such cases were referred to biopsy. Currently, there aren’t any FDA approved 

CAD systems to aid in the classification of breast lesions as benign or malignant. It is 

important to keep the legal climate in mind when discussing breast cancer CAD systems. 

The Physician Insurers Association of America reports that breast cancer is the most 

common and second most expensive condition resulting in claims against physicians 

[29].

Breast imaging CAD systems generally have two major components: (I) a feature 

extraction algorithm and (2) a decision algorithm. An image of a lesion in a diagnosis 

task, or potential lesion in a detection task, must be summarized by a set of numerical 

features that serve as the inputs to a decision algorithm. Numerical features can be 

encoded from radiologists’ observations about breast lesions using a lexicon such as BI­

RADS™ [10]. Alternatively, numerical measures, such as texture [30] or morphological 

[31, 32] features, can be calculated directly from the image. The decision algorithms 

used were typically developed in statistics or machine learning, a subfield of artificial

intelligence that is focused on the development of algorithms that enable computers to

3
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learn from experience. Many types of decision algorithms have been employed in breast 

cancer CAD, including linear discriminant analysis [33], genetic algorithms [34, 35], 

rule-based systems [36], neural networks [37-40], and case-based reasoning [18].

1.2.1 Modular and Ensemble Breast Cancer CAD Systems
The focus of this study was to investigate the utility of using combinations of

multiple machine learning algorithms in a modular or ensemble breast cancer CAD 

system to reduce the number of benign biopsies performed. A modular system uses 

multiple classifiers to solve a classification problem by partitioning the input space into 

smaller domains, each of which is handled by a local model [41]. The local models can 

be thought of as experts for a particular kind of case. The idea behind such a “divide- 

and-conquer” approach is to break the problem down into smaller, simpler problems that 

will be easier to solve. An ensemble system uses multiple classifiers to solve a 

classification problem by training multiple models for the same cases and then combining 

models’ predictions [41]. The idea behind such an approach is that “two heads are better 

than one”.

Modular and ensemble systems have been previously applied in breast cancer

CAD. Simple ensembles of classifiers using voting or averaging to combine their

predictions have shown promise in computer-aided detection of breast masses [42-44].

Zheng et al. employed a modular scheme, in which the data were partitioned by a

difficulty measure, for computer-aided detection of breast masses with encouraging

results [45]. Zheng et al. also investigated a  promising ensemble of modular models,

formed by taking the average of the predictions from modular models in which the data

were partitioned using three features [46]. Huo et al. described a modular system, in

4
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larger (a few thousand cases) than those typically used in breast cancer CAD research (a 

few hundred cases) [32,49-51].

1.3.1 Receiver Operating Characteristic Analysis
Receiver Operating Characteristic (ROC) curves can be used to show the trade-off

in sensitivity and specificity achievable by a classifier by varying the threshold on the 

output decision variable [52, 53]. Sensitivity, or the true positive fraction (TPF) or the 

probability of detection (PD), is the fraction of positive cases that were classified correctly 

as positive. The specificity, or one minus the false positive fraction (FPF), is the fraction 

of negative cases that were correctly classified as negative. The false positive fraction is 

also known as the probability of false alarm (PFA).

An ROC curve is generated by applying a threshold to the output of a 

classification scheme and then plotting the (FPF, TPF) pairs for each threshold. The 

performance of classification methods can be evaluated by directly comparing their ROC 

curves or by comparing indices calculated from their curves. In particular, the area under 

the ROC curve (AUC) is often used as a measure of classifier performance. Notice that 

the values for AUC range from 0.5 for chance to 1.0 for a perfect classifier. In evaluating 

models for diagnosing breast cancer, all sensitivities are not of equal interest. Only 

techniques that perform with very high sensitivity would be clinically acceptable since 

missing a cancer (false negative) is generally considered much worse that an unnecessary 

benign biopsy (false positive). Thus, the partial area under the curve (partial AUC) for 

the 90-100% sensitivity range is sometimes computed instead of the area under the full 

curve [54-56]. Notice that the partial AUC was normalized by dividing by the constant

6
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(1 - TPF0), where TPF0 = 0.9. Thus, the chance value is 0.05 while the value for a perfect 

system is 1.0.

Throughout this dissertation, the ROC curves were calculated non-parametrically 

(except as described in the error surface analysis Section 1.3.2). When semi-parametric 

fits were used, the area under the ROC curve was denoted Az and the partial area index 

was denoted partial AUC index. P-values and standard deviations on the AUC and 

partial AUC (trapezoid rule) were estimated by bootstrap sampling on the decision 

variable with 10,000 samples [57] (except as described in the error surface analysis 

Section 1.3.2). Non-parametric ROC analysis was performed using custom software 

written by members of our laboratory (“droc” and “bsp” programs, Brian Harrawood).

Results are also sometimes shown in terms of particular operating points. We 

chose to look at the specificity at 98% sensitivity. This sensitivity point was chosen in 

analogy with “probably benign breast lesions”, which are a group of lesions that some 

advocate should be managed by short-term follow up rather than biopsy because the 

frequency of cancer among them is low (< 2%), the cancers are generally identified 

during the follow-up surveillance, and the cancers initially considered probably benign 

are still identified at an early stage [58-61]. This means that some radiologists would 

consider it acceptable to delay the diagnosis of a small percentage of breast cancers, thus 

the focus on 98% sensitivity. Notice that additional work would be required to determine 

if delaying the diagnosis of the 2% of malignancies misclassified by a CAD system 

would result in little change in outcome for the patient as is argued for probably benign 

lesions.

7
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1.3.2 Perceptron Error Surface Analysis

1.3.2.1 Background
In recent years, many breast cancer CAD studies have focused on the use of

artificial neural network (ANN) models. ANN models have been developed to predict 

malignancy among suspicious breast lesions based upon mammographic and history 

findings [14, 37-40]. Most networks for CAD are based on classic feed-forward, error- 

back-propagation paradigms, which are trained to minimize mean squared error (MSE) 

using a gradient descent technique. For a general discussion of such ANNs, please see 

Section 3.4. In “weight space,” the ANN modifies a vector of weights, descending down 

a multi-dimensional error surface in search of the global minimum in MSE. Once 

trained, however, these ANNs are often evaluated according to other more clinically 

relevant measures of performance from receiver operating characteristic (ROC) analysis. 

Such measures include the ROC area index (Az) and the partial area index corresponding 

to the portion of the ROC curve in the high sensitivity range of 0.9 to 1.0 [54-56]. More 

information on the Az and partial AUC index measures is provided in the overview of 

ROC analysis in Section 1.3.1.

The relationship between these three performance measures is not well defined, 

but there is a generally unstated assumption that a classifier trained to optimize MSE will 

also tend to optimize other measures such as Azand partial AUC index. The validity of 

that assumption was questioned in recent studies. In one study, Kupinski et al. compared 

the performance of neural network models trained in the conventional manner {i.e., 

minimize mean squared error) versus those trained by a niched Pareto multi-objective 

genetic algorithm (NP-GA) that simultaneously maximized sensitivity and specificity

8
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[62]. Using simulated XOR (exclusive or) data, they found that the ROC curve generated 

by NP-GA training was superior to that resulting from conventional training for both a 

perceptron (logistic discriminant) and an artificial neural network. Kupinski et al. also 

compared the performance of a conventionally trained perceptron to a NP-GA trained 

perceptron for the task of breast mass detection [35]. They found that while there was no 

significant difference between the models in terms of Az, the NP-GA trained perceptron 

was significantly better in terms of the partial AUC index. In other words, the weights 

identified by minimizing the mean squared error were inferior to those identified by the 

NP-GA in terms of the model’s performance at high sensitivities.

A related study demonstrated that different feature selection techniques might be 

preferred when partial AUC index is considered instead of Az. Sahiner et al. compared 

the performance of linear discriminant analysis classifiers using features selected by a 

linear discriminant analysis technique versus a genetic algorithm [34], The former 

provided better Az but the latter had better partial AUC index.

All of the above studies examined the behavior of either linear or logistic 

discriminants. Although highly simplified compared to ANNs, these techniques are 

important for several reasons. First, their simplicity allows easy analysis of the relatively 

few parameters. For example, previous work at this institution presented a typical ANN 

for breast cancer CAD with 16 inputs and 10 hidden nodes, characterized by 180 weight 

parameters [23]. In comparison, the highly simplified perceptrons in this study were 

characterized by only four weights.

Secondly, several authors have reviewed recent studies where ANNs were applied

to CAD problems, and suggested that a logistic model (such as a perceptron) would have

9
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likely provided similar performance while avoiding over-fitting problems [63,64].

Indeed, many recent studies in the field of CAD have been based upon linear 

discriminant models [32, 65-67]. Any lessons learned from optimizing perceptrons 

would thus likely be useful to the field of CAD research.

The simple architecture of perceptrons was crucial to this study, which 

investigated the underlying behavior of these models by studying the error surfaces 

formed as a function of the parametric weights. In particular, the goal was to compare 

error surfaces resulting from measuring performance with MSE versus Az and partial 

AUC index.

1.3.2.2 Methods

1.3.2.2.1 Data Set
The data set for the error surface analysis consisted of 500 cases of non-palpable

breast lesions from patients who had undergone excisional biopsy at Duke University

Medical Center between 1991 and 1996 (see data collection form in Appendix 1). In

other words, the data set consisted of a consecutive sample of actual clinical cases. Of

these 500 lesions, 65% were found to be benign as a result of histopathologic diagnosis.

The relatively low prevalence of disease in this data set is consistent with the literature

concerning this diagnostic task [7,68]. It is expected that models built on a clinically

representative case mix will be better prepared to classify previously unseen clinical

cases. The method of encoding the lesion descriptors has been previously described [23],

and will only be summarized here. Expert radiologists retrospectively reviewed the

patient films and recorded ten mammographic findings according to the Breast Imaging

and Reporting Data System (BI-RADS™) lexicon [10], as well as other patient history
10
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data including the age. These findings were encoded into numeric values and used as 

input features in order to predict the known biopsy outcome of benign vs. malignant.

Please note that this preliminary study above was based on 500 cases from Duke 

University. This should be contrasted with the description of the much larger data set 

used throughout the remainder of the dissertation (Section 1.4).

1.3.2.2.2 Network Architecture
Even with the simplified architecture of a perceptron, it was still important to

reduce the dimensionality of the input features in order to permit visualization and 

analysis. The number of inputs was therefore pruned to the three most important ones, 

based upon previous work in identifying the most important input findings for this 

diagnostic problem [23, 69]. The BI-RADS™ findings used were mass margin and 

calcification morphology. In addition, a single patient history variable, age, was used.

All features were scaled to the range of 0 to I . This 3-input perceptron is shown in 

Figure l - l . The perceptron had one weight per input (W l, W2, and W3) and a bias term 

(W4). The dot product of input vector and the weight vector is passed through a 

nonlinear activation function to produce the output. The inputs were the two BI-RADS™ 

findings, calcification morphology (weight W l) and mass margin (weight W2), and 

patient age (weight W3). The outputs of the perceptron range from 0, which indicates a 

benign lesion, to 1, which indicates a malignant lesion. Perceptron learning parameters 

were empirically optimized to minimize MSE: learning rate and momentum of 0.05 and 

1000 iterations, with each iteration defined as a complete presentation of all training 

cases with weight adjustment after each case.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



as “error surfaces.” Notice that plotting the error surface is not an optimization 

technique, but instead is used to show general trends in the data. For a perceptron with 

only two weights, the error surface may be readily plotted in the “z” or third dimension. 

In the current study, however, two-dimensional slices of the error surface were plotted 

instead of attempting to visualize the four-dimensional error surface. In a slice, two of 

the weights were varied to produce the surface, while the other two weights were held 

constant. Figure 1-2 shows an example of an error surface slice. For simplicity, in the 

remainder of the error surface plots, the performance function was plotted as intensity as 

in Figure 1-3.

MSE

i  r  
0.45 0.50 0.55 0.60

MSE

Figure 1-2. A MSE surface in weight space. The MSE is a function of the perceptron 
weights (W l, W2, W3, and W4). W l and W4 were held constant.
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To generate these slices, a grid search through weight space was performed. The 

perceptron with each combination of weights was applied to the data set. The MSE,

ROC area (Az), or partial area index (partial AUC index) of each perceptron is indicated 

by intensity. More information on the Az and partial AUC index measures is provided in 

the overview of ROC analysis in Section 1.3.1. Note that while lower values for MSE 

indicate better performance, higher values for the performance measures Az and partial 

AUC index indicate better performance.

The ROC analysis was performed using LABROC4 software and the statistical 

comparisons were performed using CLABROC software, both provided by Charles Metz, 

Univ. of Chicago. Note that Metz provided our group with private versions of the 

software that he modified to calculate the partial AUC index as well as the Az. The 

software finds a maximum likelihood estimate of the area from a fit to the data. The 

estimates of significance include the contribution from correlation of the input data. 

Notice that this differs from non-parametric ROC calculations used throughout the rest of 

the dissertation. Please contrast this with the description provided in the overview of 

ROC analysis in Section 1.3.1.

The grid search over the weights was done in the vicinity of weights identified as

optimal by training a perceptron to minimize the MSE of the data set. In other words, the

training was used only to narrow down the reasonable range of weights over which the

grid search was performed. With learning rate and momentum of 0.05 and 1000

iterations, the final weights were W l = 1.65, W2 = 2.22, W3 = 2.56, and W4 = -3.21. In

order to simplify the visualization further, the bias weight W4 was always fixed at that

‘central’ value. Each 2-D slice was generated by varying two of the feature weights

14
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while the bias and one remaining feature weight were held constant at the aforementioned 

‘central’ values. The three combinations resulted in an “exploded box” showing the 

three-dimensional relationship between the three weights W l, W2, and W3. Each weight 

was varied approximately over the range of the central value +/- 150% of the central 

value. Wl was varied from —1.00 to 5.00. W2 was varied from —2.00 to 5.95. W3 was 

varied from -3.00 to 6.90.

1.3.2.3 Results

1.3.2.3.1 MSE vs. Az

Figure 1-3 shows three two-dimensional slices through the MSE surface and 

Figure 1-4 shows three two-dimensional slices through the Az surface. Note that 

improved performance corresponds to minimizing MSE (darker grayscale value) but 

maximizing Az(brighter grayscale value). MSE is expected to range between 0 (perfect) 

and 0.5 (chance behavior), while Az ranges between 0.5 (chance) and 1 (perfect). While 

the MSE and Az surfaces are clearly not the same, the minimum observed on the MSE 

surface is in the same general location in weight space as the maximum observed on the 

Az surface. The best solution corresponding to the global minimum on the MSE surface, 

i.e. the central weights (Wl = 1.65, W2 = 2.22, W3 = 2.56, and W4 = -3.21), has MSE of 

0.41 and Az of 0.80 ± 0.02. The best solution corresponding to the global maximum on 

the Az surface (Wl = 1.65, W2 = 1.90, W3 = 2.40, W4 = -3.21) has MSE of 0.41 and Az 

of 0.80 ± 0.02. The difference in the Az between the solutions was not statistically 

significant (two tail p = 0.14).
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Figure 1-3. The MSE surface in weight space. The MSE is a function of the perceptron 
weights (W l, W2, W3, and W4). The MSE is shown as intensity. Darker gray indicates 
better performance. The slices through MSE surface are (A) W3 vs. W2 (B) W3 vs. W l 
(C) W l vs. W2. The subplots are arranged such that folding them into a box provides a 
way to visualize three of the weight dimensions.
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Figure 1-4. The Az surface in weight space. The Az is a function of the perceptron 
weights (W l, W2, W3, and W4). The Az is shown as intensity. Lighter gray indicates 
better performance. The slices through the Az surface are (A) W3 vs. W2 (B) W3 vs. W l 
(C) W l vs. W2.

1.3.2.3.2 MSE vs. partial AUC index
Figure 1-3 shows three two-dimensional slices through the MSE surface and

Figure 1-5 shows three two-dimensional slices through the partial AUC index surface.

There is less correspondence in the general appearance of the contours between the MSE

and partial AUC index surfaces than was observed between MSE and Az surfaces. The
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solution on the MSE surface, i.e. the central weights (Wl = 1.65, W2 = 2.22, W3 = 2.56, 

and W4 = -3.21) does not correspond to the best solution corresponding to a global 

maximum in the partial AUC index surface (Wl = 3.35, W2 = 2.22, W3 = 5.70, and W4 

= -3.21). The solution on the MSE surface has MSE of 0.41 and partial AUC index of 

0.24 ± 0.05. The solution on the partial AUC index surface has MSE of 0.58 and partial 

AUC index of 0.30 ± 0.04. The difference in partial AUC index between the solutions 

was statistically significant (two tail p = 0.006).

This same trend may be demonstrated by comparing a particular operating point, 

such as the specificity for 95% sensitivity. The best MSE solution resulted in a 

specificity of 25% while the best specificity solution resulted in a specificity of 31%. 

This difference in specificity at 95% sensitivity was again statistically significant (p = 

0 .002).

The difference in the solutions on the MSE and partial AUC index surfaces is 

illustrated by comparing the histograms of the outputs of the corresponding perceptrons 

(Figure 1-6). Since the partial AUC index measure describes the high sensitivity region 

of the ROC curve, the outputs of the perceptron with the highest partial AUC index tend 

to be higher than the outputs of the perceptron with the lowest MSE.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-2 -1 0 1 2 3 4 5 6 2
W l

Figure 1-5. The partial AUC index surface in weight space. The partial AUC index is a 
function of the perceptron weights (W l, W2, W3, and W4). The partial AUC index is 
shown as intensity. Lighter gray indicates better performance. The slices through the 
partial AUC index surface are (A) W3 vs. W2 (B) W3 vs. W l (C) W l vs. W2.
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Figure 1-6. Histograms of the outputs of the perceptron for the weights that correspond 
to (A) the minimal MSE and (B) the maximal partial AUC index.
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1.3.2.4 Discussion
The three metrics of performance studied here are important for different reasons.

The MSE is the metric that many models including perceptrons and ANNs attempt to 

optimize directly, while the Az and partial AUC index have greater clinical significance. 

Consider the histograms (Figure 1-6) of network outputs of benign cases and malignant 

cases, where the network output of “0” indicates a benign lesion and “ 1” indicates a 

malignant lesion. MSE is a measure of the how close the distribution of benign cases is to 

a network output of “0” and how close the distribution of malignant cases is to “ 1”. The 

area under the ROC curve is a measure of the overlap of the distributions. A training 

scheme that minimizes MSE, and so pulls the distributions to the edges, can also reduce 

the overlap of the distribution, and so increases Az. It should be noted, however, that the 

MSE can decrease without an accompanying change in Az, because each increment in Az 

can only result from the reversal of position for an adjacent pair of benign and malignant 

cases in the histogram. While a full convergence to MSE = 0 will also result in Az = 1, 

the latter can be achieved with any arbitrary MSE, as long as the two distributions do not 

overlap at all. In the current study, it was observed that the weights that minimized MSE 

also maximized Az.

In recent years, the sensitivity of breast cancer CAD techniques has been 

particularly emphasized, since there is a considerably greater cost in missing or delaying 

the diagnosis of an actual cancer (false negative) compared to referring a benign lesion 

for an unnecessary biopsy (false positive). For a range of sensitivities (e.g., TPF0 from 

0.9 to 1), the partial AUC index can be thought of as an average specificity [56]. Unlike 

MSE and Az, partial AUC index is not symmetric in the sense that false negative and
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false positive cases do not contribute to the measure in the same way. In this work, the 

solution on the partial AUC index surface was found to not correspond well with the 

MSE solution. It should be noted that the differences in the weights that optimize MSE 

vs. partial AUC index may be due in part to biases inherent to the reduced amount of data 

that is associated with the high sensitivity region of the ROC curve.

If it is thought that Az is a suitable measure of performance of CAD systems for 

breast cancer, then this work can be interpreted as a reassurance that classifiers trained to 

minimize MSE may also maximize the measure of interest. This provides some 

justification for avoiding the task of attempting to directly optimize model performance 

according to Az. Note that optimizing for Az by gradient descent techniques is not 

straightforward since Az is not a continuous function.

However, if partial AUC index corresponding to a given high level of sensitivity 

is a better measure of the quality of CAD systems for breast cancer, then this work 

demonstrates that a classifier trained to minimize MSE may provide an inferior solution. 

Alternative methods of identifying good weights for a perceptron or multilayer network 

should be considered, such as evolutionary computing techniques that employ stochastic 

optimization.

1.3.2.5 Conclusion
In this dissertation, CAD models were evaluated using the ROC measures AUC

and partial AUC. However, it should be noted that the CAD models were trained to

optimize other performance measures. The perceptron example described above

demonstrates that one should not assume that models trained to optimize non-ROC

performance measures provide optimal solutions in terms of ROC performance measures.
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Please note that the error surface analysis employed semi-parametric fits to the 

ROC curve while the results shown in later chapters are all based on non-parametric 

versions of the ROC curves. Please also note that the error surface analysis was based on 

500 cases from Duke University. This should be contrasted with the description of the 

data set used throughout the remainder of the dissertation (Section 1.4).

1.3.3 Sampling
Two kinds of data sampling [70] were used in this study: bootstrap sampling [57] 

and k-fold cross-validation. As described in Section 1.3.1, bootstrap sampling was used 

to perform statistical tests on the ROC metrics. Cross-validation was used to the address 

the issue of model generalization.

Bootstrap sampling refers to sampling from the data many times (e.g., 10000) with 

replacement. Bootstrap sampling was performed on the model outputs in order to 

estimate the standard deviation on ROC metrics such as the AUC. Notice that this is 

"different from sampling on the model inputs in which a new model would have been built 

for each sample.

In k-fold cross-validation, the data are split into “k” non-overlapping sets. A model 

is trained on k-1 of the sets and tested on the held-out k th set. This is usually repeated 

until each of the k-sets has served as the held out set and the performance reported is the 

average performance over the k-sets. A special case o f k-fold cross-validation is k — N, 

where N is the number of cases. In k = N, also called leave-one-out or round-robin 

sampling, a model is trained on N-l cases and tested on the N th cases and this is repeated 

until all the cases have been held out once. Although there are actually N separate
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models, the model outputs on the held-out cases were treated as if they came from a 

single model for purposes of ROC analysis.

Cross-validation was used in two ways in this study. First, the data set was 

randomly partitioned into two halves (Section 1.4). The first half was used for cluster 

analysis and model building. The second half was reserved for final validation of the 

results observed on the first half (Section 7). Second, in training models (Sections 3 and 

5), round-robin sampling was used on the training half of the data. Notice that in the 

cluster analysis (Section 2) no additional sampling was performed; all of the cases in the 

training set were used.

Round-robin sampling alone is insufficient as the results can still be prone to bias.

In particular, if the round-robin results are used to guide the selection of the parameters 

for a model (as they were in this study), then the round-robin results reported may be 

optimistic and performance may be lower when the model is tested on an independent 

evaluation set. This is why we chose to further verify our results using a held-out 

evaluation set. This is a more rigorous approach to the role of sampling in model 

evaluation than is frequently taken in the field of breast cancer computer-aided diagnosis.

1.4 Data Set
The data consisted of 4435 breast lesions pooled from three independent data sets 

(Duke, UPenn, DDSM). It is important to note that this represented the culmination of a 

decade-long data collection effort involving many members o f the research group 

including faculty, students, and staff. This effort began prior to this dissertation project 

but was successfully concluded here. Each of the three component data sets were already
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among the largest known for this type of data, so the pooled data set is likely to be the 

largest available for some time.

For each lesion, the benign or malignant status from pathologic diagnosis was 

known. The overall malignancy fraction was 43%. The data were randomly partitioned 

into two sets. The training data set consisted of 2258 cases and the evaluation set 

consisted of 2177 cases. The training set was used for cluster analysis (Section 2) and for 

model building (Sections 3,4 , 5, 6). The evaluation set was used for final model 

validation (Section 7). The breakdown of the cases by training/evaluation set, institution, 

and malignancy is shown in Table 1-1 and Table 1-2 (see also Sections 2.2 and 7.1).

The first data set consisted of 1468 non-palpable, mammographically suspicious 

breast lesions that underwent biopsy (core or excisional) at Duke University Medical 

Center from 1990 to 2000 (see data collection form in Appendix 1). A total of 1530 

cases were collected over several discontinuous time periods, but were collected 

consecutively within each time period. Of the 1530 cases, 61 were removed because it 

was not certain that they were non-palpable, leaving 1468 cases. Expert mammographers 

described each case using the Breast Imaging and Reporting Data System (BI-RADS™) 

lexicon [10]. The cases collected from 1990 to 1996 were read retrospectively and the 

cases collected from 1996 to 2000 were read prospectively. Each of the cases was read 

by one of 7 readers. When a lesion could be described by multiple descriptors (e.g., 

pleomorphic and punctate), the mammographers were requested to report the descriptor 

that was most suspicious for malignancy (e.g., pleomorphic).
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Table 1-1. Institutional composition of the training and evaluation sets.

Training Set Evaluation Set Total
Duke 751 (33%) 717 (33%) 1468 (33%)
UPenn 501 (22%) 487 (22%) 988 (22%)
DDSM 1006 (45%) 973 (45%) 1979 (45%)
Total 2258(100%) 2177 (100%) 4435 (100%)

Table 1-2. Biopsy outcome composition o f the training and evaluation sets.

Training Set Evaluation Set Total
Benign 1276 (57%) 1273 (58%) 2549 (57%)
Malignant 982 (43%) 904 (42%) 1886 (43%)
Total 2258 (100%) 2177(100%) 4435(100%)

The second data set consisted of 988 mammographically suspicious breast lesions 

that underwent excisional biopsy at the University of Pennsylvania Medical Center from 

1990 to 1997. The data collection procedures have been previously described [71]; in 

particular, we presume that the lesions in this data set were non-palpable, based upon the 

description of a data set of which this cases are a subset [12]. Each of the cases was read 

by one of 11 expert mammographers who described each case using the BI-RADS™ 

lexicon [10]. When a lesion could be described by multiple descriptors (e.g., 

pleomorphic and punctate), the mammographers were requested to report the descriptor 

that was most suspicious for malignancy (e.g., pleomorphic).

The third data set consisted of 1979 biopsy-proven breast lesions from the Digital

Database for Screening Mammography (see Appendix B) [72]. The DDSM contains

screening mammograms obtained from 1988 to 1999 at Massachusetts General Hospital,

Wake Forest University School of Medicine, Sacred Heart Hospital, and Washington

University in St. Louis School of Medicine. The details of the case selection process

were not clearly spelled out by Heath et al. [72], but since screening mammograms were

used, presumably the lesions were non-palpable. A lesion was defined as any object
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recorded in a “*.overlay” file that had a “pathology” value. From benign volumes 1-14 

and cancer volumes 1-15, there were 3693 overlay files from which 4029 lesions were 

extracted. Cases with a pathology value of “unproven” (37) or “benign, no call back”

(72) were removed, leaving 3920 cases. Only the mediolateral oblique (MLO) views 

were used, resulting in 2001 cases. Two cases were identified as duplicates and were 

removed, leaving 1999 cases. The patient age information was extracted from the 

corresponding “*.ics” files. Twenty cases were removed due to problems with the age 

value (e.g., age = -1005 or the same patient in a single study was reported to be different 

ages), leaving 1979 cases. Expert mammographers described each case using the BI­

RADS™ lexicon [10]. Lesions that were described by multiple descriptors were encoded 

for our purposes using the descriptor that was most suspicious for malignancy (according 

to Table 1-3).

Specifically, the six BI-RADS™ features collected describe the mass margin, 

mass shape, calcification morphology, calcification distribution, associated, and special 

findings. In addition to the BI-RADS™ findings, the patient age was also collected 

resulting in a total of seven input findings describing each case. For cluster analysis and 

model building, missing values were encoded as zero. Over 4435 cases (1468 Duke, 988 

UPenn, 1979 DDSM) and 7 features, a total of 31,045 values were collected. Of those 

31,045 values, only 113 were missing (< 0.4%).

Each BI-RADS™ feature was encoded using uniformly scaled rank ordered

categories. For example, when a mass is present for a case, the mass margin can take on

one of five values: well circumscribed (1), microlobulated (2), obscured (3), ill-defined

(4), or spiculated (5). The encoding of the BI-RADS™ findings (on the original scale) is
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shown in Table 1-3. Histograms of the features are shown in Appendix 3 (see also 

Section 2.2.3 with regards to patient age).

It is important to note that to the lesions in this database were non-palpable, to the 

best of our knowledge. In routine clinical practice, palpable lesions are usually not 

considered appropriate for short-term follow-up imaging. Thus, any CAD 

recommendations for follow-up made for the cases in this database do not represent ones 

that would have been discounted by the clinician purely on the basis of palpability.
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0 -  no mass 0 -  no mass 0 -  no calcifications 0 -  no calcifications 0 - none 0 -  none

1 -  well 
circumscribed

1 - round I -  milk of calcium like 1 - diffuse 1 -  skin lesion 1- intramam. 
lymph node
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breast tissue

3 - obscured 3-
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7 - coarse 7 -  nipple 
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8 -  large rod-like 8 -  axillary 
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distortion

10 - dystrophic

11 - punctate

12 - indistinct
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14 -  fine branching
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1.5 Summary
In Section I we provided an overview of breast cancer and mammography (Section 

1.1) and the role that computer-aided diagnosis can play (Section 1.2). In particular, the 

purpose of this study was to investigate modular and ensemble CAD systems for 

reducing the number of benign biopsies performed (Section 1.2.1). We described the 

importance of ROC analysis (Section 1.3.1) and sampling (Section 1.3.3) in evaluating 

breast cancer CAD systems. In this study, considerable attention was paid to the issue of 

model generalization; thus, the data were partitioned into training and evaluation halves 

and round-robin sampling was used in building models on the training half. Moreover, 

we presented a case study of the relationship between performance metrics from ROC 

analysis and one commonly used in developing breast cancer CAD systems (Section

1.3.2). Finally, we supplied a detailed description of the data set used for the remainder 

of this dissertation (Section 1.4). It is worth noting that the database used in this study 

was very large and was comprised of cases mixed from multiple institutions. In Section 

2, we explore methods of partitioning the data into groups, which is needed for 

developing a modular CAD system.
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2 Cluster Analysis to Identify Groups in Breast Cancer CAD Database

2.1 Overview and Motivation
Some groups of interest are known to exist in this kind of data set, notably the

groups of benign and malignant lesions. In fact, our primary goal is to develop methods 

to aid in predicting whether lesions are members of the benign group or the malignant 

group. In machine learning [73-75], this is referred to as a supervised learning task; we 

wish to learn how to predict something we generally don’t know (malignancy status) 

from something we do know (lesion description, patient age) based on a set of labeled 

examples. A related problem is the unsupervised learning task in which we wish to learn 

something from a set of unlabeled examples. Generally the goal of unsupervised learning 

is cluster analysis, i.e., to answer the question, what groups or clusters naturally exist in 

the data?

Why look for clusters when one is ultimately trying to solve a supervised

problem? There are three motivations behind cluster analysis of a breast cancer

computer-aided diagnosis database. First, cluster analysis can reveal trends in the data

that were previously unknown (or under-appreciated) that may be valuable. In particular,

the performance of a general model for predicting malignancy status can be evaluated in

terms of its performance across the clusters, which represent subsets of patients defined

by certain values of the input features. Second, cluster analysis can be used to directly

predict the malignancy status. After groups are identified in the data, the prediction for a

new case could be based on the biopsy outcome of the cases in the cluster to which the

new case belongs (compare to Case-Based Reasoning, Section 3.5). Third, cluster

analysis could serve as the first stage of a “divide-and-conquer” approach to breast cancer
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CAD. To foreshadow, the third goal provided the greatest motivation for this work, 

though ultimately it was the first that netted the most interesting results.

The idea behind “divide-and-conquer” modular approaches is to break the problem 

down into smaller, simpler problems that will be easier to solve. A modular system uses 

multiple classifiers to solve a classification problem by partitioning the input space into 

smaller domains, each of which is handled by a local model [41]. The local models can 

be thought of as experts for a particular kind of case. Such approaches may be justified 

in light of recent results in this field (Section 1.2.1).

2.2 A priori Subsets
Modular breast cancer CAD systems based on a priori partitions of the data have

shown promise in other studies [42-48]. Also, we already have significant knowledge 

about this problem. Thus, we first examined clusters based on a priori partitions of the 

data. Such a priori partitions can take advantage of the wealth of clinical knowledge or 

intuitively meaningful groupings of cases, but may be excessively biased if the 

knowledge is incomplete or incorrect.

In this data set, there are three a priori partitions of particular interest: institution 

(Section 2.2.1), lesion type (Section 2.2.2), and patient age (Section 2.2.3). In Section 4 

we describe the performance of global CAD models over these partitions and in Section 5 

we describe local models for these partitions that form modular systems.

2.2.1 Institution
Since the data were pooled from multiple institutions, we were interested in what

differences exist in those sources of data (see Section 1.4). A significant concern in

breast cancer CAD research is whether a model built on data from one institution will
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generalize well to data from another institution, thus eliminating the need for separate 

models for each institution.

Table 2-1 and Table 2-2 show the breakdown of the 2258 training cases by 

institution and biopsy outcome (see Section 1.4). Notice that 45% of the cases were from 

the DDSM set [72] and that the DDSM set was apparently designed to have 

approximately 50% prevalence, so it had a higher fraction of malignant cases than would 

be seen in a random sample of cases at this clinical decision point.

Table 2-1. Institutional composition of the training set.

Duke 751 (33%)
UPenn 501 (22%)
DDSM 1006 (45%)
Total 2258 (100%)

Table 2-2. Biopsy outcome and institutional composition of the training set. The 
fraction of cases that were benign vs. malignant was clearly dependent on the institution 
from which the cases were collected (p < 0.01, Chi-square test for independence).

Benign Malignant Total
Duke 491 (65%) 260 (35%) 751 (100%)
UPenn 301 (60%) 200 (40%) 501 (100%)
DDSM 484 (48%) 522 (52%) 1006(100%)
Total 1276 (57%) 982 (43%) 2258 (100%)

2.2.2 Lesion
Most breast biopsies are performed on lesions that present mammographically as 

either a mass or a cluster of microcalcifications [11]. CAD systems for detection 

generally perform better on calcifications than on masses, as shown in two recent review 

articles [25,76] and a recent study of the ImageChecker® System from R2 Technology, 

Inc. (Sunnyvale, CA) [77]. CAD systems for diagnosis that are based on features 

automatically extracted from the images are typically designed for either masses or

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



calcifications alone. We are unaware of any previous attempts to compare the 

performance on masses and calcifications within a single study. Given the differences in 

databases and CAD (diagnosis) techniques, it is not possible to directly compare the 

published performances on masses and calcifications in the literature. However, it is 

suggestive that classification studies on masses [47, 78] report performances that are 

better than those reported in studies on calcifications [31,79]. CAD systems for 

diagnosis that are based on findings extracted by radiologists are often trained and 

evaluated over heterogeneous data sets including both masses and calcifications and the 

performances on masses and calcifications are not reported separately [14, 18, 37, 80]. 

Thus, the broad, a priori subsets of masses and calcifications are of particular interest.

We defined a “mass” to be any lesion for which Mass Margin > 0, Associated 

Findings = 0, and Special Findings = 0 (see feature encoding described in Table 1-3). 

Notice that this definition includes calcified masses. We defined a “calcification” as any 

lesion for which Calcification Morphology > 0, Mass Margin = 0, Associate Findings =

0, and Special Findings = 0.

Table 2-3 and Table 2-4 show the breakdown of the training set by lesion type, 

institution, and biopsy outcome (Section 1.4). Notice that the larger percentage of masses 

(50%) than calcifications (41%) over all was mostly due to the larger percentage of the 

masses in the DDSM set [72] as compared to the Duke and UPenn sets. Notice that the 

percent of the cases that were malignant (43%) was the same for masses and 

calcifications. In other words, the positive predictive value for the masses and 

calcifications was the same.
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Table 2-3. Breakdown of the training set by lesion type and institution. The fraction of 
masses vs. calcifications was dependent on the institution from which the cases were 
collected (p < 0.01, Chi-square test for independence).

Duke UPenn DDSM Total
Mass 326 (43%) 250 (50%) 551 (55%) 1127(50%)
Calcification 306(41%) 236 (47%) 389 (39%) 931 (41%)
Other 119(16%) 15 (3%) 66 (7%) 200 (9%)
Total 751 (100%) 501 (100%) 1006(100%) 2258(100%)

Table 2-4. Breakdown of the training set by lesion type and biopsy outcome. The 
fraction of cases that were benign vs. malignant was not dependent on whether the lesion 
was a mass or cluster of microcalcifications (p = 0.88, Chi-square test for independence).

Benign Malignant Total
Mass 638 (57%) 489 (43%) 1127(100%)
Calcification 531 (57%) 400 (43%) 931 (100%)
Other 107 (54%) 93 (47%) 200 (100%)
Total 1276 (57%) 982 (43%) 2258 (100%)

2.2.3 Patient Age
As discussed in Section 1.1, age is known to be an important risk factor. Thus, 

we investigated a priori subsets defined by patient age.
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Figure 2-1. Distribution of patient age in the training set.
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2.3 Cluster Profiling Methods to Aid in Interpreting Clusters
After clusters have been identified in a data set the natural next question is, what

do they mean? The value of clusters in data analysis depends on our ability to summarize 

them and relate them to outcomes of interest. One approach that we have taken to this 

task to report a “profile” of each cluster. By a profile we mean a short description of 

what a “typical” case in the cluster is like. The profile consists of information about the 

typical values of the input features (BI-RADS™ and patient age). The biopsy outcome 

was not provided to the unsupervised machine learning techniques used to identify 

clusters. We also related the malignancy status of the lesions to the clusters (e.g., 

compute the malignancy fraction for each cluster). Cluster profiles can be used to check 

that the clusters are consistent with what is already known and to extend our 

understanding of the data set and related clinical problem. The risk of any profiling 

technique is that in order to simplify the description of the clusters some information will 

be lost. It is difficult to know a priori what information will be important in interpreting 

the clusters. For this reason, it may be valuable to profile clusters by a variety of 

methods.

2.3.1 Mode
An obvious approach to developing cluster profiles is to compute summary 

statistics of the input features such as the mode or mean. The advantage of this approach 

is that there are a variety of summary statistics that are familiar and easy to calculate. 

One potential disadvantage is that such a simple implementation provides a statistic for 

each input feature, which might itself still be overwhelming if there is a large number of 

features. This was not a problem in this study as there were only seven features (see
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Section 1.4). Another potential disadvantage is that computing summary statistics for 

each feature may ignore informative interactions between features.

We computed the mode for the BI-RADS™ features and the mean for the 

patients’ age for each cluster. Since each of the BI-RADS™ features naturally includes 

“not present” as a value encoded as zero (Table 1-3), it is appropriate to introduce feature 

selection by eliminating features with mode of zero from the profile. Notice that one 

weakness of computing the mode is that it does not tell us how strongly a particular 

feature value dominated the others.

2.3.2 Constraint Satisfaction Neural Network
A Constraint Satisfaction Neural Network (CSNN) was also used to determine the

profiles of the clusters [17, 81]. Custom software in the C language (written by Georgia

D. Tourassi) was used to implement the CSNN and has been previously described by

Tourassi, Markey, Lo, and Floyd [17]. Briefly, the CSNN is a Hopfield-type network of

neurons arranged in a non-hierarchical way (Figure 2-2). There are symmetric,

bidirectional weights between all pairs of neurons but there are no reflexive weights. The

CSNN operates as a nonlinear, dynamic system that tries to reach a globally stable state

by adjusting the activation levels of the neurons under the constraints imposed by the a

priori fixed weight values. The Lypaponov energy function was used as a measure of the

network stability. It was found that 1000 iterations were sufficient to achieve stability.

The weights were predetermined using autoassociative back-propagation neural networks

(auto-BP). In keeping with our previous work [17], the auto-BP networks were trained

with a learning rate of 1.0 for 100 iterations and the root mean squared training error was

approximately 0.1 (network outputs between 0 and 1).
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For each cluster, a CSNN was used to generate a profile. Each category of the 

categorical BI-RADS™ features corresponded to a binary variable and associated neuron. 

For example, the mass margin with its five non-zero categories was represented by five 

separate neurons. Patient age was translated into a discrete variable with five levels (< 40 

years, 40-50, 50-60,60-70, > 70 years) [17]. An additional neuron was used to signify 

cluster membership. The activation level of the neuron indicating cluster membership 

was set and the other neurons were allowed to evolve until the network reached a stable 

state. The feature neurons that were activated defined the profile of the cluster (example 

shown in Figure 2-3). A profile is a list of feature values that succinctly summarizes the 

cluster and defines a “typical” case (e.g., mass margin is well circumscribed, mass shape 

is round, and patient age is between 50 and 60 years). Notice that unlike common 

summary statistics, such as the cluster centroid, the CSNN profile implicitly includes 

feature selection; only features deemed relevant to the network for describing a cluster 

are included.

weight

Figure 2-2. Schematic of the constraint satisfaction neural network (CSNN). Notice that 
the neurons are fully interconnected with no reflexive weights.

neu
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2.4 Unsupervised Learning Methods for Cluster Analysis
Machine learning is a subfield of artificial intelligence that is focused on the

development of algorithms that enable computers to learn from experience. One way of

conceptualizing the differences among machine learning algorithms is in terms of the

way feedback is given regarding the method’s performance. Techniques are described as

supervised learning, reinforcement learning, or unsupervised learning [73, 75]. In

supervised learning, the system is provided with examples and the correct response to

those examples. An example of a supervised learning system is a classifier that modifies

its internal parameters such that its predictions converge toward the known responses.

Supervised learning techniques are appropriate when one has many examples of correct

and incorrect pairings of inputs and outputs available for training. In reinforcement

learning, the system is provided with examples and is given evaluation about its
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performance, but is not told the correct responses. Reinforcement learning methods are 

commonly used in “real time” learning environments such as in the training of an 

autonomous robot. In unsupervised learning, the system is provided with examples but is 

not given any information about the correct responses. Unsupervised approaches are 

used to answer the question, “What natural groupings exist in the examples given?”

Three unsupervised learning methods were used to identify clusters, or groups, in 

the breast cancer CAD database: agglomerative hierarchical clustering followed by K- 

Means (Section 2.4.1), Self-Organizing Map (Section 2.4.2), and AutoClass (Section

2.4.3).

2.4.1 Agglomerative Hierarchical Clustering and K-Means
Distance-based clustering is based on the assumption that similar cases are cases

that are close to each other in the input feature space. Hierarchical or non-hierarchical 

methods can be used to group cases that are near each other into mutually exclusive 

clusters. Agglomerative hierarchical clustering begins with all cases as separate clusters 

and merges the closest clusters until some criterion is satisfied [82-84]. One weakness of 

agglomerative hierarchical clustering is that it can suffer from “chaining”; that is, which 

clusters are merged at step k depends on which ones were merged at step k-1 [84]. Non- 

hierarchical methods, such as K-Means [85, 86], assign and reassign cases to clusters 

until some criterion is satisfied. Notice that non-hierarchical methods require the user to 

specify initial clusters. Non-hierarchical methods perform poorly when random initial 

partitions are used but perform much better when an agglomerative hierarchical method 

is used to determine the initial clusters [84]. We used agglomerative hierarchical

clustering to determine initial clusters for K-Means.
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squares and exits when there is no further improvement in that criterion. The clusters 

from agglomerative hierarchical clustering were refined using K-Means by using the 

means of the clusters from hierarchical clustering as the initial centroids for K-Means.

2.4.1.2 Results
Figure 2-4 shows a plot of the distance between merged clusters versus the 

number of clusters from the agglomerative hierarchical clustering algorithm. We are 

interested in the smallest number of clusters for which very dissimilar clusters have not 

been wrongfully merged. Based on Figure 2-4, a cutoff of 220 was selected. However, 

220 is far more clusters than was desired. Given that we are interested in clusters that 

could be used in the future for building submodels, it is preferable that the minimum 

number of cases per cluster be around 100 on average. An examination of the 220 

clusters revealed that most of them (194) were very small (less than 20 case) and several 

were singletons (83) (Figure 2-5). Thus, only the means of the 26 clusters with at least 

20 cases were initially used as starting centroids for K-Means. The K-Means algorithm 

failed to converge and indicated that there was an empty cluster. The centroid 

corresponding to the smallest cluster used from hierarchical clustering was removed and 

K-Means was applied again. This was repeated until the algorithm converged. In the 

end, the 10 largest clusters from hierarchical clustering were used as the starting centroids 

for K-Means.

Table 2-8 shows the summary information for the final 10 clusters that were 

identified by agglomerative hierarchical clustering and refined by K-Means. The percent 

of the cases that were malignant was quite different between the clusters and is also

different from the value for the entire data set. Recall that this analysis was performed in
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an unsupervised fashion and that the clustering algorithms did not have access to the 

biopsy outcome for the cases. Table 2-8 also shows the mode profiles (Section 2.3.1) and 

the Constraint Satisfaction Neural Network profiles (CSNN, Section 2.3.2) for the 

clusters.

In examining the cluster profiles, several interesting results are apparent. First, 

some clusters appear to focus on recognized subtypes such as calcifications (A, B, C), 

masses (D, E, F), and architectural distortions (J). By inspection, we can also recognize 

that one of the smaller clusters (I) contains focal asymmetric densities and the other two 

(G, H) contain calcified masses. Moreover, the recognized subtypes are stratified across 

clusters by their mammographic descriptors and patient age. For example, while clusters 

A, B, and C all clearly include calcification cases, the women with lesions in cluster C 

are typically older than those clustered to A or B. Likewise, the distribution of the 

calcifications for lesions in cluster A was generally different than for lesions in clusters B 

and C.
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Figure 2-4. Distance between merged clusters as a function of the number of clusters in 
agglomerative hierarchical clustering. A cutoff of 220 was chosen for further analysis.
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Table 2-8. The summary characteristics of the final 10 clusters that were identified by 
hierarchical clustering and refined by k-means. Notice that the percent of the cases that 
were malignant was quite different between the clusters and is also different from the 
value for the entire data set. Mode profiles (Section 2.3.1) and CSNN profiles (Section 
2.3.2) are shown, except for the clusters with less than ~100 cases.

Cluster Number 
of Cases

Percent
Malignant

Mode profile CSNN Profile

A 101 51% segmented, pleomorphic
calcifications
mean age = 48 years

segmented, pleomorphic
calcifications
40 £  age < 50

B 489 35% clustered, pleomorphic 
calcifications 
mean age = 48

clustered, pleomorphic 
calcifications 
40 £ age < 50

C 360 50% clustered, pleomorphic 
calcifications 
mean age = 69

clustered, pleomorphic 
calcifications 
60 £ age < 70

D 261 24% well-circumscribed, oval 
mass
mean age = 61

well-circumscribed, round 
mass
60 £ age < 70

E 426 19% obscured, oval mass 
mean age = 43

obscured, oval mass 
40 £ age < 50

F 398 78% ill-defined, irregular 
mass
mean age = 69

ill-defined, lobulated mass 
age a  70

G 34 79% - -

H 27 48% - -

I 66 27% - -

J 96 69% architectural distortion 
mean age = 58

architectural distortion 
40 £ age < 50

All 2258 43% - -

2.4.2 Self-Organizing Map
A self-organizing map relates similar cases (input vectors) to the same region of a

map of neurons [88]. The distance between a case and a neuron is a measure of their 

similarity. After the most similar neuron is determined, that neuron and its neighbors are 

adjusted to have feature values closer to the matching case. The process is repeated until
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a stop criterion is satisfied. A cluster of cases is defined as the subset of cases that map to 

the same neuron.

2.4.2.1 Methods
The SOM was computed using the SOM toolbox in MATLAB® (The MathWorks 

Inc., Natick, MA). The basic SOM consisted of 16 neurons arranged in a single layer in a 

2-D square grid of 4 by 4 neurons. For each case, the Euclidean distance between the 

case and each neuron was calculated based on the seven input features (see description of 

data set in Section 1.4). For input to the SOM, each feature was scaled by subtracting the 

mean and dividing by the standard deviation, resulting in each scaled feature having 

mean zero and standard deviation of one. After the most similar neuron was determined 

the neurons in its neighborhood were identified. The neighborhood of a neuron was 

defined as all the neurons within a given link distance of the matched neuron. The link 

distance is the number of links that must be taken to get from one neuron to another. All 

the neurons in the neighborhood were adjusted to have feature values closer to the current 

case. The amount that the neuron weights were adjusted was controlled by the learning 

rate. In the first phase, a relatively fast learning rate (0.9) that decreased over time (to 

0.02) was used and the link distance threshold was varied from the maximum value to a 

specified low value (1.0). In the second phase, a slow learning rate (0.02), which further 

decreased over time, and a specified low link distance threshold (1.0) were used. The 

learning rates and distance threshold values used were the default values for the SOM 

toolbox.
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2.4.2.2 Results
Figure 2-6 illustrates the arrangement of the neurons in the self-organizing map 

(SOM). The set of cases that were mapped to a neuron defined a cluster. Figure 2-6 

shows the number of cases that were mapped to each neuron, i.e., the number of cases in 

each cluster. The fraction of the cases in each cluster that were malignant is also shown 

in Figure 2-6 (bottom number in italics). The malignancy fraction is not shown for the 

clusters with fewer than 10 cases (#5, 12, and 15), on the assumption that no meaningful 

conclusions can be drawn from such a small number of cases. Recall that the SOM was 

not provided with the biopsy outcome information. The differences in the malignancy 

fraction are a reflection of differences in the BI-RADS™ features and patient age 

between the clusters. The overall malignancy fraction was 43%.

227
13 14

378 l— 3
15

59
16

38% 39% 68%

313
9 10

29 L—
11

95 L— . 12
52% 31% 69%

5 6 7 8
8 L- 301 89 L— 194 L~
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l
68 L- 91

2 3
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4
212 *—

25% 14% 45% 83%

Figure 2-6. Index of the neurons in the 4 x 4 map. Each neuron defined a cluster. The 
number of cases that were mapped to each neuron, i.e., the number of cases in each 
cluster (normal type), and the fraction of the cases in each cluster that were malignant 
(italics) is shown. Malignancy fraction data not shown for the clusters with very few 
cases. Over all, 43% of the cases were malignant.
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Figure 2-7, Figure 2-8, Figure 2-9, and Figure 2-10 show the effects that changing 

the SOM architecture have on the clusters identified. Alternative architectures allow one 

to vary the number of neurons as well as their topological layout, thus potentially 

allowing for variations in the complexity of the model. One alternative to a 4 x 4 SOM is 

a smaller but still square 3 x 3  SOM. In Figure 2-7, the clusters of the 3 x 3  and 4 x 4  

SOMs are compared using a bubble plot. For each case, the neuron it mapped to was 

determined for each SOM. The number of cases for each pair of clusters between the two 

SOMs was plotted; the size of the circle indicates the number of cases. The more large 

bubbles that are present in such a plot, the more the SOMs agreed on the clustering of the 

cases. Similarly, Figure 2-8 shows the comparison with a 5 x 5 SOM. Linear trends (i.e., 

bubbles lining up along the diagonals) indicate that the same cases are being mapped to 

the same region (e.g., upper right-hand area) in the two SOMs. In addition to square 

topologies, other layouts were also investigated which utilized approximately the same 

number of neurons. Figure 2-9 shows the comparison to a 2 x 8 SOM and Figure 2-10 

shows the comparison to a three-dimensional SOM of 2 x 3 x 3 neurons. Mote that these 

two SOMs had approximately the same number of neurons as the 4 x 4  square SOM.
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Figure 2-7. (a) The index of the neurons in the 3 x 3 map. (b) Comparison of the clusters 
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Figure 2-8. (a) Index of the neurons in the 5 x 5 map. (b) Comparison of the clusters 
identified by the 5 x 5 and 4 x 4  SOMs.
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Figure 2-9. (a) Index of the neurons in the 2 x 8 map. (b) Comparison of the clusters 
identified by the 2 x 8 and 4 x 4  SOMs.
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Figure 2-10. (a) Index of the neurons in the 2 x 3 x 3 map. (b) Comparison of the 
clusters identified by the 2 x 3 x 3 and 4 x 4  SOMs.

The SOM can be used to generate a malignancy prediction [89]. For each case, 

the prediction was the fraction of the cases that were malignant in the cluster that the case 

was mapped to by the SOM. Notice that using this approach limits the number of 

operating points on the non-parametric ROC curve to the number of clusters with unique 

malignancy fractions minus one (Figure 2-11). The performance of the back-propagation 

artificial neural network (BP-ANN, Section 3.4) is shown for comparison. The 

performance at the highest sensitivities was comparable. In particular, at 98% sensitivity 

the SOM operates with 0.26 ± 0.03 specificity and the BP-ANN operates with 0.25 ±  

0.03 specificity (p = 0.93).
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Figure 2-11. ROC curves for the SOM and BP-ANN. For each case, the prediction from 
the SOM was the fraction of the cases in the cluster it belonged to that were malignant. 
For the clusters with less than 50 cases, the over all malignancy fraction (0.43) was used.

For the 4 x 4 SOM, the cluster profiles generated by the constraint satisfaction 

neural network (CSNN, see Section 2.3.2) are shown in Figure 2-12. Each cell in the 

table represents the feature categories that were dominant or most strongly associated 

with the cases matching that cluster. Profiles were not computed for the clusters with 

very few cases. The mass cases are distributed over neurons #2, 3 ,4 ,6 , 7, and 8. The 

profiles of neurons #9, 13, 14, and 16 indicate that those clusters contain 

microcalcifications. Neuron # l ’s profile indicates that that cluster is comprised of focal 

asymmetric densities. Note that the profile for neuron #10 includes only the age variable.
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The profile for neuron #11 reveals that the lesions in that cluster are architectural 

distortions.

An alternative approach to generating cluster profiles is to compute summary 

statistics such as the feature mode (or mean for real-valued features such as age). Figure 

2-13 shows the mode profiles (see Section 2.3.1) of the clusters identified by the 4 x 4 

SOM. For the most part, there is considerable agreement between the CSNN and mode 

profiles. Most of the differences correspond to adjacent categories in the features (Table 

1-3) where the CSNN has selected the second most prevalent value for the profile. 

However, using multiple methods to summarize the clusters may be beneficial. For 

example, the CSNN profile of neuron #16 (Figure 2-12) doesn’t include any mass 

features yet the feature mode profile (Figure 2-13) shows that the mass features are 

usually non-zero. In fact, inspection of the cases in the cluster defined by neuron #16 

reveals that they are calcified masses. Conversely, the CSNN profile for neuron #10 

(Figure 2-12) includes only the age variable while the mode profile’s (Figure 2-13) 

inclusion of values for the calcification variables may be misleading for this small cluster 

(N = 29) where there is little dominance by any single value.
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Figure 2-12. CSNN profiles (Section 2.3.2) for the clusters identified by the 4 x 4 SOM. 
A cluster “profile” provides a description o f a “typical” case in the cluster. Profiles were 
not computed for neurons #5, 12, and 15, which had very few cases mapped to them.
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Figure 2-13. Mode profiles (Section 2.3.1) for the clusters identified by the 4 x 4 SOM. 
A cluster “profile” provides a description o f a “typical” case in the cluster. Profiles were 
not computed for neurons #5, 12, and 15, which had very few cases mapped to them.
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2.4.2.3 Discussion
Neurons #5, #12, and #15 (Figure 2-6) correspond to clusters with very few cases.

Inspection of the cases mapped to these clusters revealed that the cases are rare for this 

database. They included cases with findings that were seen with a very low prevalence in 

the set (e.g., special finding of intramammary lymph node) or reflected incomplete or 

inconsistent data (e.g., the calcification morphology was described but calcification 

distribution feature was not reported). Together these three clusters comprise only 0.5% 

of the cases. Therefore, no further analysis was performed on these clusters.

Considerable variability was seen in the fraction of the cases that were malignant 

from cluster to cluster. Several clusters had malignancy fractions that were notably 

different from the fraction of the entire data set (43%). One of the major goals of 

computer-aided diagnosis of breast cancer is to identify very likely benign cases as 

candidates for follow-up in lieu of biopsy, in order to reduce the number of benign 

biopsies. Therefore, the clusters with very low malignancy fractions (e.g., neuron #6 

with 6% malignant) are dominated by such very likely benign lesions and may be of 

particular interest for further studies. It is possible to use the clusters and their 

malignancy tractions directly as a tool for predicting biopsy outcome [89]. For each case, 

the prediction was the fraction of the cases that were malignant in the cluster that the case 

was mapped to by the SOM (Figure 2-11). For very high sensitivities, this prediction 

scheme (98% sensitivity, 0.26 ± 0.03 specificity) was competitive with the back- 

propagation artificial neural network (98% sensitivity, 0.25 ± 0.03 specificity, p = 0.93). 

The SOM prediction method in conjunction with the CSNN profiling method has the 

potential advantage that physicians may understand the intuition behind it better than they
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do the BP-ANN, which is often seen as a “black box”. The SOM prediction method, 

similar to a case-based reasoning system, predicts the probability of malignancy of a new 

case by reporting the fraction of similar cases that were found to be malignant [18]. The 

SOM prediction method could also potentially be used in an ensemble of classifiers. If 

the outputs of two classifiers are not strongly correlated, it is possible that they could be 

combined to produce a classifier that is better than either of its component classifiers.

The effects of the changing the SOM architecture were investigated (Figure 2-7, 

Figure 2-8, Figure 2-9, and Figure 2-10). As indicated by the presence of large circles in 

the bubble plots, the SOMs with similar architectures showed substantial agreement in 

clustering the data. Moreover, the presence of linear trends in Figure 2-8, Figure 2-9, and 

Figure 2-10 suggest that similar SOM architectures result in similar geometric 

relationships between clusters. These data argue that the clustering is relatively 

insensitive to the SOM architecture for this problem.

Figure 2-12 lists the CSNN profiles (Section 2.3.2) for the clusters identified with 

the SOM. The successful separation of a priori known, coarse lesion types (masses, 

clustered microcalcifications, focal asymmetric densities, and architectural distortions) 

provided some quality assurance of the clustering. Clusters were further identified within 

the general group of mass lesions, reflecting different combinations of the mass margin, 

mass shape, and patient age variables. The cluster profiles that included calcification 

features showed stratification of the general group of calcification lesions only by patient 

age and not any of the calcification findings. Notice that while some features may not be 

considered useful by the CSNN for profiling individual clusters, it is possible that they
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could be useful to other summarizing techniques or to methods designed to describe the 

differences between clusters.

An alternative approach to characterizing the clusters is to calculate summary 

statistics for each o f the features. Figure 2-13 shows the mode (Section 2.3.1) for each of 

the BI-RADS™ features and the mean of the patient age for each cluster. In general, 

there is good agreement in the cluster descriptions obtained from the mode and CSNN 

profiles. However, they are not identical. The most notable differences are for neurons 

#10 and #16, which show the advantages and disadvantages respectively of the fact that 

the CSNN method inherently includes feature selection.

It may be easier to interpret a CSNN profile, with typically only a few dominant 

features per cluster, than to interpret as many summary values as there are input findings. 

Note as well that the CSNN takes into the account interdependencies between the 

features, while the summary statistics were based on each feature independently. CSNN 

profiles or summary statistics can be used to quickly sort through the results of a 

clustering technique, but additional characterization may be appropriate for clusters of 

particular interest.

2.4.3 AutoClass
AutoClass is a public-domain classification program (http://ic-

www.arc.nasa.gov/ic/projects/bayes-group/autoclass/) based on the Bayesian solution to 

the finite mixture problem [90,91]. Mixture models are based on the idea that the cases 

available are a sample from a mixture of distributions [82]. The probability that a case 

belongs to a certain group is estimated based on estimates of the parameters of the
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individual distributions in the mixture. With AutoClass, each case is not assigned to a 

class; a probability of membership for each class is returned.

AutoClass approaches the classification problem by breaking it into two parts: (1) 

determining the classification parameters for a given number of classes and (2) 

determining the number of classes. The posterior distribution of the classification 

parameters (class parameters of distributions in the mixture, class probabilities) is the 

product of the prior distribution of the parameters and the likelihood function, divided by 

a normalizing constant. The prior distribution describes our prior knowledge about the 

classification parameters, which for our purposes is an uninformative prior reflecting our 

lack of knowledge. The likelihood function describes the likelihood of observing a case 

(vector of features) given the number of classes, the class probabilities, and the class 

parameters. The normalizing constant is the integral of the non-normalized posterior 

distribution. Once the posterior distribution of the classification parameters is determined 

for all possible numbers of classes, the classification parameters are integrated out to give 

a posterior distribution for the number of classes.

2.4.3.1 Methods
The 2258 training cases were used on the original scale (Section 1.4). The six BI­

RADS ™ features were modeled as coming from a multinomial distribution. In other 

words, the ordering of the feature categories (Table 1-3) was not used. The patient age 

was modeled using a normal distribution. The patient age was defined to have a 

minimum value of zero and a relative error of 5%.

AutoClass is a statistically-based clustering method, unlike agglomerative

hierarchical clustering followed by K-Means (Section 2.4.1) and the SOM (Section
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2.4.2). One consequence of this is that instead of a hard clustering, each case is assigned 

a probability of being in a certain cluster, such that the probabilities across all clusters 

summed to 100%. For this analysis, a case was considered to belong to the cluster for 

which its cluster membership probability was highest.

2.4.3.2 Results
AutoClass identified 5 clusters in the data (Table 2-9). Notice that the percent of 

the cases that were malignant varied notably between the clusters, even though the biopsy 

outcome was not provided to AutoClass. As with agglomerative hierarchical clustering 

followed by K-Means (Section 2.4.1) and the SOM (Section 2.4.2), the clusters focused 

on recognized subtypes such as calcifications (a), masses ((3,y), and calcified masses (e). 

An interesting difference is that AutoClass did not stratify the calcifications across 

multiple clusters. The mode profile for cluster 5 indicated zero for all of the BI-RADS™ 

features (no findings). Upon inspection of cluster 6, it was seen that 59 / 141 = 42% of 

the cases had Associated Findings, 53 / 141 = 38% of the cases had Special Findings, and 

6 /141 = 4% of the cases had both Associated and Special Findings. In other words, only 

16% of the cases in cluster 5 had neither Associated nor Special Findings.

While AutoClass provides the probability of cluster membership for the most

likely cluster for each case, little variability was seen for this problem (Figure 2-14). In

fact, 2079 / 2248 = 92% of the cases were assigned to their most probable cluster with a

probability greater than 95%. However, even with such a limited range the probability of

cluster membership may be informative. In particular, a threshold on the probability of

cluster membership could be applied such that a case would only be considered a member

of the cluster if the cluster membership probability was greater than 95%. For cluster p,
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this would result in a smaller cluster more homogeneous in malignancy ((3', N = 544,

14% malignant). This suggests that in a cluster of mostly benign masses, some malignant 

masses were recognized as being less probable members of the cluster. Notice that since 

the average age of the cases in (3 with probability less than or equal to 95% (62 years) 

was higher than that of the cases in (3 with probability greater than 95% (51 years) that 

the average age would be reduced from 54 years for 3 to 51 years for |3' (Figure 2-15). In 

other words, the less probable members of cluster {3 were more frequently malignant 

lesions in older women as compared to the more probable members of cluster p.

Table 2-9. Summary characteristics of the five clusters identified by AutoClass. The 
mode profiles are shown (Section 2.3.1).

Cluster N Percent Malignant Mode Profile
a 961 43% clustered, pleomorphic calcifications 

mean age = 56 years
P 685 21% well-circumscribed, oval mass 

mean age = 54 years
Y 395 81% spiculated, irregular mass 

mean age = 63 years
5 141 43% no findings 

mean age = 57 years
£ 76 63% clustered, pleomorphic calcifications 

ill-defined, irregular mass 
mean age = 57
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Figure 2-14. Distribution of the number of cases assigned to their most probable cluster 
with specified probability. Notice that the vast majority of cases were assigned to their 
most probable cluster with very high probability.
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Figure 2-15. Age distribution for the cases in cluster (3 according to whether the 
probability of cluster membership was above or below 95%.

2.5 Comparison of Clustering Methods
Figure 2-16 shows a comparison of the clusters identified by the SOM (Section

2.4.2) and agglomerative hierarchical clustering followed by K-Means (Section 2.4.1).

Notice that the clusters identified by agglomerative hierarchical clustering followed by
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K-Means were manually sorted, so the linear trend in the plot should not be over­

interpreted. The presence of large bubbles in the plot indicates that there is some 

agreement between the two clustering methods. This is not unexpected since the same 

measure of similarity (Euclidean distance) was used by both clustering methods.

Figure 2-17 shows a comparison of the clusters identified by the SOM (Section

2.4.2) and AutoClass (Section 2.4.3). The presence of large bubbles in the plot indicates 

that there is some agreement between the two clustering methods. The vertical pattern 

reflects the fact that fewer clusters were identified by AutoClass than were identified by 

the SOM.

Of particular interest is the fact that all three clustering methods identified a 

cluster of usually benign masses (Table 2-10). We will revisit these clusters in the 

analysis of the performance of global (Section 4) and local (Section 5) models across 

clusters. Notice that identification of a cluster with few malignancies is valuable from 

the point of view of using the clustering directly for identifying likely benign lesions to 

spare biopsy. However, such an extreme in the percentage of cases that are malignant is 

not a goal for the purpose of using cluster analysis as a front-end for a modular system. 

There were 260 cases (6% malignant) that were in cluster E and 6 and p.

Notice that the unsupervised methods for cluster analysis were all performed on 

the entire training set without providing the biopsy outcome. By comparison, the 

supervised methods for classification in the upcoming Section 3 were all performed using 

round-robin sampling (Section 1.3.3) with the biopsy outcome provided.
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Figure 2-16. Comparison of the clusters identified by the SOM (Section 2.4.2) and 
agglomerative hierarchical clustering followed by K-Means (Section 2.4.1). The bubble 
indicating the number of cases in the intersection of clusters 6 and E is highlighted.
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Figure 2-17. Comparison of the clusters identified by the SOM (Section 2.4.2) and 
AutoClass (Section 2.4.3). The bubble indicating the number of cases intersection of 
clusters 6 and 3 is highlighted.

Table 2-10. Agglomerative hierarchical clustering followed by K-Means (Section 2.4.1), 
SOM (Section 2.4.2), and AutoClass (Section 2.4.3) all identified a large cluster of 
usually benign masses.

Method Cluster N Percent
Malignant

Mode Profile CSNN Profile

Aggl. 
Hierch,+ 
K-Means

E 426 19% obscured, oval mass 
mean age = 43

obscured, oval mass 
40 s  age < 50

SOM 6 301 6% well-circumscribed, 
oval mass 
mean age = 42

obscured, oval mass 
40 £ age < 50

AutoClass 3 685 21% well-circumscribed, 
oval mass
mean age = 54 years ,
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3 Global Models: Machine Learning Methods for Predicting Biopsy 
Outcome using the Training Set

3.1 Overview and Motivation
Several machine learning [73-75] methods were considered for the task of

predicting the malignancy status from the Bl-RADS™ features and patient age. These 

methods are all supervised learning techniques, as opposed to the unsupervised methods 

used for cluster analysis in Section 2. Thus, the biopsy outcome was provided to these 

methods while it had not been provided to the cluster analysis methods.

Why try several methods instead of just picking one? The problem is that there 

isn’t a classification algorithm that is always superior to the alternative algorithms for all 

problems [74]. The nature of the problem {e.g., how many training data are available) 

can suggest that certain approaches may be more fruitful than others, but there is no 

guarantee that any particular method will be the best. For this reason, we chose to 

investigate several methods for this task: Linear Discriminant Analysis (LDA), Support 

Vector Machines (SVM), Back-Propagation Artificial Neural Network (BP-ANN), Case- 

Based Reasoning (CBR), and Classification And Regression Trees (CART). However, a 

more detailed analysis was performed for BP-ANN and CBR since those models have 

been extensively applied to databases of BI-RADS™ features in our lab [14, 16, 18, 21, 

23,71,92, 93].

An important characteristic of a classification algorithm is what kind of decision 

boundaries it can represent. In particular, some methods can only produce models with 

linear decision boundaries while others can produce models with either linear or non­

linear decision boundaries. Linear decision boundaries can be thought of as those that are
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generalizations of a line in the input feature space. LDA and SVM are linear models 

while BP-ANN, CBR, and CART are non-linear models.

3.2 Linear Discriminant Analysis
Linear Discriminant Analysis (LDA) is a classifier that forms a discriminant score

( z, Equation 3-1) as a weighted ( wf) sum of the input variables ( x, )[74, 84]. The 

weights are determined by maximizing the ratio of the between-group sum of squares to 

the within-group sum of squares (Equation 3-2). The weights ( w) that are the solution to 

this optimization problem are determined from the means of the input variables for the 

two classes (m6emgn,mma,,.S(Ianf) and the covariance matrix (S) of the input variables.

Notice that the same covariance matrix is assumed for both classes.

Equation 3-1

LDA can be applied in a stepwise manner to perform feature selection. The 

selection is based on Wilks’ Lambda statistic (Equation 3-4), which is the ratio of the 

within-group sum of squares to the total sum of squares. In other words, the measure 

selects for features that minimize the within-group sum of squares (homogeneity) and 

maximizes the between-group sum of squares (separation). Notice that only a few of the

Equation 3-2

Equation 3-3

w = ( n w gn malignant
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possible combinations of features are considered and that this approach doesn’t take into 

consideration relationships between variables that aren’t in the model yet. Lack of 

inclusion of a feature in the model does not mean that the feature is unimportant; an 

important feature that is redundant with one already in the model would not be selected.

Equation 3-4

( ^ 7  f^’benign')~ ^malignant
^    jSbenign jGmatignant

(^ y  ** ftmalignant)~ f t  benign)” (Z y  ftbenign)~  ^  j  ftmalignant)  ~
j £  benign JSmalignant jGbenign j  Emalignant

LDA is a popular model in breast cancer CAD [32, 65, 66] and has been 

previously applied to portions of this BI-RADS ™ database [92]. Briefly, Markey et al.

[92] used LDA to predict the biopsy outcome for 1453 cases from Duke University 

Medical Center with round-robin performance of Az = 0.80 ± 0.01 and partial AUC index 

= 0.28 ±0.03.

3.2.1 Methods
LDA was implemented in SAS/STAT® (SAS Institute Inc., Cary, NC; “discrim” 

procedure). The LDA model predicted the biopsy outcome based on the seven input 

features. The 2258 training cases (see Section 1.4) were used to build the LDA model in 

a round-robin (leave-one-out) manner (see Section 1.3.3). The features were rescaled to 

0 to 1 (by subtracting the minimum value and dividing by the maximum minus the 

minimum). The biopsy outcomes were provided as the model targets (supervised 

learning).

The SAS software was also used to perform stepwise LDA (“stepdisc” procedure,

general description in Sharma 1996 [84]). The stepwise analysis iteratively adds or
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removes variables from the model. In other words, nested models are considered in 

which a larger model is compared to a simpler model that can be obtained by setting 

some of the parameters in the larger model to zero. The initial model was the null model. 

In each iteration Wilks’ Lambda (Equation 3-4) was computed for individually adding 

one of the variables not currently in the model. The variable with the smallest Wilks’ 

Lambda was added, provided the probability from the F-test was above the cutoff. In 

each iteration Wilks’ Lambda was computed for individually removing the variables 

currently in the model. The variable with the largest Wilks’ Lambda was added, 

provided the probability from the F-test was below the cutoff. The cutoff on the 

probability of the F-ratio was 0.05.

3.2.2 Results
The ROC curve for the global LDA models is shown in Figure 3-3 and the AUC 

and partial AUC values are shown in Table 3-1 (see Section 1.3.1 on ROC analysis). The 

results for the other global models are shown in the same figure and table and are 

compared in Section 3.7.

The stepwise LDA selected these variables in this order of decreasing 

significance: Age, Mass Margin, Calcification Morphology, Calcification Distribution, 

Associated Findings, and Mass Shape. The only feature not selected was Special 

Findings. Thus, redundant features are probably not a major problem with this data set.

3.3 Support Vector Machines
Support Vector Machines (SVM) is a supervised machine learning technique that

identifies separating hyperplanes in kernel-induced feature spaces [94]. Our discussion

of SVM follows that of Duda et al. [74] and Cristianni et al [94].
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Instead of operating in the space of the original input features (x), a kernel 

( K(.rpjc,) -  (<p(x,) • cp(x2))) is applied to map the input features to some higher 

dimensional space ( y -  q>(x)). Selection o f  the appropriate kernel function typically 

requires considerable knowledge about the problem. Without such prior knowledge, a 

variety of common kernels (e.g., dot-product, Gaussian) can be investigated by trial and 

error. When the simple dot-product kernel is used, the method operates in the original 

input feature space (e.g., y = x). The kernel selection dictates whether or not the SVM is 

a linear or non-linear classifier. It is important to recognize that using the dot-product 

kernel, as was done in this study, limits the SVM model to finding linear decision 

boundaries.

Ideally, the hyperplane identified is the one with maximal distance from the

nearest training cases (“maximal margin”). A larger margin is expected to correspond to

better classifier generalization. The training cases closest to the hyperplane are the most 

difficult to classify and are referred to as “support vectors”. In training a SVM, the goal

Y

is to maximize Equation 3-5 subject to the constraints that ^  z,a( =0  and a , aO . The a,
i-i

are the weights (in the dual formulation) and the z, indicate to which class (±1 , benign or 

malignant) each case belongs. A variety of algorithms have been applied to solving this 

optimization problem.

Equation 3-5
Y  ̂ Y

L(a) = £  a t. ' j  Y ,a iakZM y j * y*)
i - t  ~  yjfc-l
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(Figure 3-1) [97-99]. The features describing a case are the inputs to the neurons at the 

front end of the network, and the class ification or prediction for the case comes out of the 

neurons at the back end of the network. The output of each neuron in a BP-ANN was the 

result of an activation function (y  « I /(I + e~x) ) applied to a weighted sum of the inputs 

to the neuron. The weights are the parameters adjusted as the network learns a given 

task. The ANN is feed-forward in the sense that each neuron in one layer feeds into each 

neuron in the next layer.

Mass Margin 
Mass Shape 
Calcification Dist. 
Calcification Morph. 
Assocd. Find. 
Special Find.
Age

o
Figure 3-1. Illustration of the global BP-ANN. Only a small subset of the weights ( w) 
are drawn; each node in the input layer is connected to each node in the hidden layer and 
each node in the hidden layer is connected to the output node. Bias terms are included 
and can be thought of as an extra neuron in each of the input and hidden layers whose 
input is always one.

The BP-ANN was trained to minimize the mean of the sum-of-squares error 

( M SE ) using the back-propagation algorithm [97-99]. The MSE (Equation 3-6) is the 

squared difference between the network output (y £ £  (0 ,1)) and network target

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



( rf G {0,1}), averaged over all of the cases ( /V, indexed by i)* Some of the limitations of 

the sum-of-squares error for computer-aided diagnosis are discussed in Section 1.3.2.

Equation 3*6

MSE = —------------
N

The back-propagation algorithm details how the error (Equation 3-6) should be 

propagated back through the network to adjust the weights (our description follows that 

of Mitchell [73]). At iteration n, the change in the weight (Aw") from node i to node j

depends on the change at iteration n - 1 scaled by the momentum (a )  and the product of 

the learning rate ( 77), the error term (<5y), and the input ( xtf) from node i to node j

(Equation 3-7). Separate learning rates ( 77) can be used for the different layers in the 

network. The error term (<5y) depends on which layer the node j  is in and is derived by

taking the derivative of the error function with respect to the weights. For each node k  in 

the output layer, 8k was computed from the network target ( t k) and the node output (y t ) 

as shown in Equation 3-8. For each node j  in the hidden layer, <5y was computed from 

the node output (y y), wjk, and wjk as shown in Equation 3-9.

Equation 3-7

A w " =  TldjX' j  +  ctAvv"*1

Equation 3*8
8k = yk( \ - y kW k - y k)

Equation 3*9

dj = yj(l-yj)wjA
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BP-ANN’s are popular models in breast cancer CAD (some recent examples: [42, 

46,50, 100, 101]); in fact, LDA and BP-ANN are arguably the two most popular models 

in breast cancer CAD. BP-ANN’s have been previously applied to portions of this BI­

RADS™ database [14, 16,21,23, 71,92], Briefly, Markey et al. [92] used a BP-ANN to 

predict the biopsy outcome for 1453 cases from Duke University Medical Center with 

round-robin performance of Az = 0.82 ± 0.01 and partial AUC index = 0.34 ± 0.03.

Given the popularity of BP-ANN’s and our laboratory’s extensive experience with them, 

we treated the global BP-ANN model as our “gold standard” to which other models 

should be compared.

3.4.1 Methods
The BP-ANN had a single hidden layer and one output node indicating

malignancy. Each neuron in the network used a logistic activation function

(y = 1/(1 + e~x) ). The BP-ANN was trained to minimize the sum-of-squares error using

the back-propagation algorithm [97-99]. A binary variable indicating benign or

malignant was used as the network targets. The target values were clipped to 0.1 and 0.9

to ensure that the network weights remained finite (sigmoid units can’t produce 0  or I).

The network weights were updated after the presentation of each case (stochastic gradient

descent), which can help alleviate the problem of local minima. A momentum ( a )  term

was used, which can also help the network escape local minima. The 2258 training cases

(see Section 1.4) were presented to the network in a round-robin (leave-one-out) manner

(see Section 1.3.3). Network training ended when the average testing error on the left-out

cases began to increase (early-stopping) in order to avoid over-training. The network

parameters were empirically optimized (learning rate (rj), momentum (a ) , and number
75
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3.5 Case-Based Reasoning
Case-Based Reasoning (CBR) is a machine learning technique in which past

experience (cases) are used to generate solutions to the current problem [102]. In order to 

implement a CBR system there are two major design choices. First, how will the 

appropriate previous cases be identified? Second, how will the solutions to the previous 

cases be integrated to form a solution for the current problem?

The CBR system for breast cancer CAD based on portions of this BI-RADS™ 

database has been previously described [18, 93], Briefly, Floyd et al. [18] used a CBR to 

predict biopsy outcome for 500 cases from Duke University Medical Center with round- 

robin performance of AUC = 0.83 and non-normalized partial AUC = 0.045.

3.5.1 Methods
The breast cancer CAD CBR system used a simple distance metric in the input 

feature space as the measure of similarity between the current case and the cases in the 

database. Based on previous experience, the Euclidean distance was used (Anya O. 

Bilska-Wolak, personal communication). The measure of similarity between cases / and 

j  is shown in Equation 3-10, where k  indexes the input features (x ). The threshold on 

the distance measure was empirically optimized. By the threshold on the distance 

measure, we mean the cutoff on the similarity measure such that two cases are considered 

similar or not similar {e.g., if D s  0.31, then the two cases are similar). Over the range of 

thresholds considered, the one that maximized the partial AUC was selected (see Section

1.3.1 on ROC analysis). The CBR inputs were rescaled to 0 to 1 (by subtracting the 

minimum value and dividing by the maximum minus the minimum). It should be noted
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that only a limited number of CBR models were considered and we do not claim that the 

one selected is globally optimal.

Equation 3-10

The breast cancer CAD CBR system predicted the malignancy status of the 

current case as the fraction of the similar cases in the database that were malignant.

Notice that this prediction can be viewed as an estimate of the a posteriori probability of 

malignancy, which is a monotonic function of the likelihood ratio. Also, the simple CAD 

CBR scheme used here can be thought of as a form of k-nearest-neighbor classification

The CBR predictions of malignancy status were computed in a round-robin 

(leave-one-out) manner (see Section 1.3.3). The CBR analysis was performed using 

custom CBR software written in MATLAB® (The MathWorks Inc., Natick, MA) by 

members of our laboratory (Anya O. Bilska-Wolak).

3.5.2 Results
The general CBR had seven input features and used Euclidean distance as the 

similarity measure with a threshold of 0.31. The ROC curve is shown in Figure 3-3 and 

the AUC and partial AUC values are shown in Table 3-1 (see Section 1.3.1 on ROC 

analysis).

3.6 Classification And Regression Trees
Decision tree models classify data using a series of if-then rules depicted in a tree

representation [73,74]. There are a variety of algorithms for learning the tree from a data

[74].
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set (e.g., ID3, C4.5, CART). The basis of these algorithms is the recursive partitioning of 

the data into more homogenous subsets. Classification And Regression Trees (CART) is 

one such algorithm that learns binary decision tree representations [103, 104]. In order to 

make a prediction for a test case, the if-then rules of a CART tree are followed to 

determine to which leaf the case maps. The model output is the fraction of the training 

cases at the leaf that were malignant.

CART uses the deviance, or likelihood statistic, to select the binary split on the 

input findings that increases the homogeneity of the resulting subsets [104]. The 

deviance ( D) for each node in the tree was computed as the sum for all the cases at the 

node of the squared differences of the biopsy outcome (y, G {0 ,1}) from the mean biopsy 

outcome ( pi) of the cases at the node (Equation 3-11). Notice that the deviance was zero 

if the cases at the node were homogeneous in biopsy outcome and that it increased as the 

heterogeneity of the node increased. All possible ways to split the cases at the node into 

two subsets based on the input features were considered. The split into right and left 

subsets that maximized the change in the deviance (Equation 3-12) was selected. The 

procedure was recursively repeated on the newly created right and left subsets.

Equation 3-11

d -2 (y,-/*)1
i

Equation 3-12
AD = D — Dl — Dr

While decision trees have not been previously applied to a BI-RADS™ database, 

they have been used on other breast cancer CAD databases. Kegelmeyer et al. [105] used
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CART for detecting masses in mammograms based on texture features. They reported a 

performance of 100% sensitivity and 82% specificity for 2-fold cross-validation on 85 

cases. Kuo et al. [106] used C5.0 for classifying masses as benign or malignant based on 

texture features computed from ultrasound images. They reported a performance o f 93% 

sensitivity and 97% specificity for training on 153 cases and testing on 90 cases.

3.6.1 Methods
The CART implementation in S-PLUS® (Insightful Corp., Seattle, WA) was used 

(“tree” function). The data were not rescaled; they were used on the original scale as 

described in Table 1-3. However, the BI-RADS™ features were treated as factor 

variables so the ordering of the values for each BI-RADS™ feature wasn’t used. The 

data were recursively partitioned until they couldn’t be separated further without 

producing sets of less than 25 cases. The CART model was trained in a round-robin 

(leave-one-out) manner (see Section 1.3.3). However, in order to display a single 

decision tree, a model was also built on all o f the training cases.

3.6.2 Results
While the ROC performance measures were computed from the round-robin 

CART outputs, a CART model was also built on all of the training cases in order to have 

a single tree to display (Figure 3-2). Some of the decision rules have been indicated on 

the tree. For example, the first branch says, “if the Mass Margin is 0, I, 2, or 3, follow 

the left branch”, i.e., all values but “spiculated”, which corresponds to the highest risk of 

malignancy (see Table 1-3 for the encoding of the BI-RADS™ features). Notice the 

relationship between the labeled decision rules and those of the mass-specific local
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CART model (Figure 5-3), which will be described later in Section 5.2,2, as well as to the 

profiles for clusters E, 6 , and (3 (Table 2-10). There is a recurring theme of identifying 

lesions in younger women with relatively benign-seeming mass margins (especially well- 

circumscribed or obscured).

The ROC curve for the global CART model is shown in Figure 3-3 and the AUC 

and partial AUC values are shown in Table 3-1 (see Section 1.3.1 on ROC analysis).

Mass Margin > 0 ,1 ,2 ,3

Calc. M orph.a 0 ,1 ,2 ,4 , 7 ,8 ,9 , to, 11,12

M ass Margin 3  1 , 3

Age < 58.5

Figure 3-2. Global CART model trained on all of the training cases.

3.7 Summary
The ROC curves for the five global models are shown in Figure 3-3 (AUC) and

Figure 3-4 (partial AUC). The results in terms of the AUC and partial AUC metrics are

summarized in Table 3-1 and the statistical comparisons between all combinations of the

five models are shown in Table 3-2 (AUC) and Table 3-3 (partial AUC). Recall that

LDA and SVM are linear models while BP-ANN, CBR, and CART are capable of
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representing non-linear decision boundaries. Table 3-4 shows the performance of the 

global models for a threshold selected to give approximately 98% sensitivity. Notice that 

in general the non-linear models were superior to the linear models in the high sensitivity 

region (Figure 3-4 and Table 3-4). The five models were comparable when examined 

over the entire ROC curves (Figure 3-3).

LDA was comparable or superior to SVM, the other linear model considered.

LDA was comparable or inferior to the non-linear models of CBR and CART and was 

inferior to the non-linear model BP-ANN.

SVM was comparable or inferior to LDA and CBR and was inferior to BP-ANN 

and CART. Over all, SVM was the worst of the global models investigated.

The BP-ANN, a non-linear model, was superior to both linear models considered 

(LDA, SVM). BP-ANN was superior to the non-linear model CART and was superior or 

comparable to the non-linear model CBR. Over all, BP-ANN was the best of the global 

models considered. However, it should be noted that greater effort was expended in 

optimizing the BP-ANN model than any of the other models.

The non-linear model CBR was superior or comparable to the linear models of 

LDA and SVM. The relative merit of the CBR and CART models was dependent on 

whether the entire ROC curve (CART better) or only the high sensitivity region (CBR 

better) was considered. Given the importance of maintaining high sensitivity for cancer 

diagnosis, the CBR was one of the better models but perhaps not as good as the BP-ANN, 

depending on the particular operating point considered. However, more time was spent 

optimizing the BP-ANN than the CBR.
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The non-linear model CART was superior or comparable to the linear models of 

LDA and SVM. As mentioned above, the relative merit of the CBR and CART models 

was dependent on whether the entire ROC curve (CART better) or only the high 

sensitivity region (CBR better) was considered. Given the importance of maintaining 

high sensitivity for cancer diagnosis, CART was inferior to the other non-linear models 

of BP-ANN and CBR.

In Section 3, we investigated the performance of five global models across the 

entire training set. We observed that the non-linear global models (BP-ANN, CBR, 

CART) were consistently better than the linear global models (LDA, SVM). In our 

previous work with smaller data sets we had not been able to demonstrate the superiority 

of non-linear models over linear models for this task. Over all, the most promising 

models were found to be the BP-ANN and the CBR. In Section 4, we examine the 

performance of the global models (particularly BP-ANN and CBR) across the clusters in 

the training data that were described in Section 2.

Table 3-1. ROC performance of the round-robin results of the global models on the 
training data set. Non-parametric estimates of the ROC metrics are plus or minus the 
standard deviation estimated by bootstrap sampling on the model outputs (see Section 
1.3.1).

Model AUC partial AUC
LDA 0.780 ±0.010 0.261 ±0.023
SVM 0.778 ±0.010 0.237 ±0.021
BP-ANN 0.820 ±0.009 0.347 ±0.022
CBR 0.788 ±0.009 0.324 ±0.019
CART 0.804 ±0.009 0.286 ± 0 .0 2 1
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Figure 3-3. ROC curves of the round-robin trained global models on the training set.
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Figure 3-4. Close up of the high sensitivity region of the ROC curves for the round- 
robin trained global models on the training data. Notice that the non-linear models (BP- 
ANN, CBR, CART) were generally superior to the linear models (LDA, SVM) in this 
region.

Table 3-2. Comparison of the global models in terms of AUC for round-robin training 
on the 2258 training cases. Values shown are two-tailed p-values computed by bootstrap 
sampling on the decision variable (Section 1.3.1). Cells corresponding to symmetric 
comparisons are grayed out.

LDA SVM ANN CBR CART
LDA '. ' V-.
SVM 0.39 '-‘■s■. t * '\ ' : j ~ ■

ANN <0.01 <0.01
CBR 0.24 0 . 1 2 <0.01
CART <0.01 <0.01 <0.01 0.02 .. . ■■■ . . .  . . .
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Table 3-3. Comparison of the global models in terms of partial AUC for round-robin 
training on the 2258 training cases. Values shown are two-tailed p-values computed by 
bootstrap sampling on the decision variable (Section 1.3.1). Cells corresponding to 
symmetric comparisons are grayed out.

LDA SVM ANN CBR CART
LDA '-£ ?  | i  S .

SVM <0.01 .•

ANN <0.01 <0.01 i> ; ; r  ?* YXz-a

CBR <0.01 <0.01 0.14 . , , . . .^ 1  j* . t i

CART 0.23 0.02 <0.01 0.01

Table 3-4. Performance of the global models for a threshold selected to give 
approximately 98% sensitivity. TP is the number of true positive classifications out of 
the 1276 actual positives. TN is the number of true negative classifications out of the 982 
actual negatives. Notice that the non-linear models (BP-ANN, CBR, CART) performed 
with approximately twice the specificity and TN as the linear models (LDA, SVM) at this 
operating point.

Threshold TP Sensitivity TN Specificity
LDA 0.1735 963 98.1% 179 14.0%
SVM 0.3685 964 98.2% 133 10.4%
ANN 0.1842 965 98.3% 303 23.8%
CBR 0.1333 964 98.2% 327 25.6%
CART 0.0698 963 98.1% 294 23.0%
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4 Performance of Global Models on Clusters

4.1 Overview and Motivation
There are two motivations behind investigating the performance of a global model

over the different partitions of the data into clusters that were described in Section 2.

First, the performance over the clusters provides insight into the behavior of the global 

model. This insight could affect the ultimate clinical implementation of the model. For 

example, if a global model performs too poorly on a subset of cases, then one may choose 

to not apply the model to similar cases in a clinical setting. Similarly, identification of 

subsets on which the model performs poorly can drive the direction of future model 

development. Second, in order to assess the performance of a modular system in which 

separate models are used for each cluster the performance of the global model on the 

clusters is needed for comparison.

While five global models were considered in Section 3, we primarily focused on 

the performance of the global BP-ANN (Section 3.4) in this section. BP-ANN models 

have been used extensively on related BI-RADS™ databases and the global BP-ANN 

was arguably the best of the models we investigated. The global BP-ANN was 

significantly better in terms of the AUC than the other four global models (LDA, SVM, 

CBR, CART), significantly better than LDA, SVM, and CART in terms of the partial 

AUC, and not significantly different from CBR in terms of the partial AUC (Section 3.7).

Throughout this section, when we refer to the performance of the global model on a 

subset or cluster we mean the performance computed from the round-robin (Section

1.3.3) outputs. In other words, the round-robin outputs of the global model for the cases
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in the subset or cluster were used to compute the performance metric (e.g., generate an 

ROC curve).

4.2 A priori Subsets
We investigated the performance of global models (Section 3) over the three a

priori partitions discussed previously: institution (Section 2.2.1), lesion type (Section

2.2.2), and patient age (Section 2.2.3).

4.2.1 Institution
When the performance of the global BP-ANN trained on the cases mixed between

the institutions (Section 3.4) was compared on the institution subsets (Section 2.2.1),

none of the differences in AUC or partial AUC were significant (unpaired z-test, Table

4-1 and Table 4-2). Likewise, when the performance of the global CBR built on the

cases mixed between the institutions (Section 3.5) was compared on the institution

subsets, none of the differences in AUC or partial AUC were significant (Table 4-3 and

Table 4-4). Thus, despite differences in cases collected at different institutions, CAD

models trained on cases mixed between institutions may perform equally well on the

different institutions in terms of the AUC and partial AUC.

However, the actual clinical implementation of a CAD model such as a BP-ANN

would likely involve applying a threshold to the continuous model outputs in order to

obtain a binary biopsy vs. follow up recommendation. Thus, the performance for a

specific threshold intended to provide high sensitivity is more relevant than the AUC and

partial AUC metrics. However, it should be recognized that the high sensitivity provided

by a threshold is dependent on a small fraction of the cancers in the database (e.g., the

threshold for 98% sensitivity with 100 malignancies is defined by the model outputs of
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the 2 missed cancers). Consequently, a threshold selected to give a certain level of 

sensitivity on one data set may not provide the same sensitivity when applied to another 

data set.

We have previously shown that a BP-ANN threshold selected to give 98% 

sensitivity on cases from one institution (Duke) may not generalize to cases from another 

institution (UPenn) [71]. We show similar discrepancies in training and testing on 

different institutions in this dissertation (Section 5.2.1, Table 5-3). By comparison, in 

Table 4-5 we show that a threshold selected on the round-robin outputs from the mixed 

training set (Section 1.4) is appropriate for the three institution subsets in the training set.

In particular, the 2258 training cases were used to train a BP-ANN in a round- 

robin fashion. A threshold (0.1842) was determined that gave approximately 98% 

sensitivity on the round-robin outputs of all of the training cases, resulting in 

approximately 24% specificity. The round-robin outputs from the global model were 

then split out according to the institution subset to which each case belonged. The same 

threshold (0.1842) was applied to the three subsets of the round-robin outputs. The same 

threshold gave approximately 97-98% sensitivity and 23-24% specificity on each of the 

subsets (Table 4-5).
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Table 4-1. ROC performance on the institution subsets for the global BP-ANN, round- 
robin trained on the training set of cases mixed between the institutions. The standard 
deviations were estimated by bootstrap sampling on the network outputs (see Section 
1.3.1). In terms of the AUC, the performance was best on the Duke subset. In terms of 
the partial AUC, the performance was best on either the Duke or DDSM subsets. 
However, the pair-wise differences between the institution subsets were not significant 
(Table 4-2).

AUC partial AUC
Duke 0.821 ±0.016 0.354 ±0.042
UPenn 0.819 ±0.019 0.291 ±0.052
DDSM 0.808 ±0.013 0.355 ±0.029

Table 4-2. Statistical comparison of the AUC and partial AUC (unpaired z-test) for the 
global BP-ANN on the institution subsets (Table 4-1). The pair-wise differences between 
the institution subsets were not significant, indicating that the BP-ANN trained on the 
multi-institution set provides similar performance across the different institutions.

AUC partial AUC
Duke vs. UPenn p = 0.94 p = 0.35
Duke vs. DDSM p = 0.53 p = 0.98
UPenn vs. DDSM p = 0.63 p = 0.28

Table 4-3. ROC performance on the institution subsets for the global CBR, round-robin 
predictions based on the training set of cases mixed between the institutions. The 
standard deviations were estimated by bootstrap sampling on the network outputs (see 
Section 1.3.1). In terms of the AUC, the performance was best on the Duke subset. In 
terms of the partial AUC, the performance was best on the DDSM subset. However, the 
pair-wise differences between the institution subsets were not significant (Table 4-4).

AUC partial AUC
Duke 0.792 ±0.017 0.339 ±0.033
UPenn 0.769 ±0.021 0.271 ±0.043
DDSM 0.785 ±0.014 0.342 ±0.027

Table 4-4. Statistical comparison of the AUC and partial AUC (unpaired z-test) for the 
global CBR on the institution subsets (Table 4-3). The pair-wise differences between the 
institution subsets were not significant, indicating that the CBR trained on the multi­
institution set provides similar performance across the different institutions.

AUC partial AUC
Duke vs. UPenn p = 0.40 p = 0 .2 1

Duke vs. DDSM p =0.75 p = 0.94
UPenn vs. DDSM p =0.53 p =0.16
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Table 4-5. Generalization of threshold selected to give approximately 98% sensitivity on 
the global BP-ANN (Section 3.4) round-robin outputs to the institution subsets (Section 
2.2.1) in the training set (Section 1.4).

Train Test Threshold Sensitivity Specificity
Mixed Train Mixed Train 0.1842 965/982 = 98.3% 303 /1276 = 23.8%
Mixed Train Mixed Train: 

Duke
0.1842 256/260 = 98.5% 122 / 491 = 24.9%

Mixed Train Mixed Train: 
UPenn

0.1842 193 / 200 = 96.5% 69 / 301 = 22.9%

Mixed Train Mixed Train: 
DDSM

0.1842 516/522 = 98.9% 112 / 484 = 23.1%

4.2.2 Lesion
Global models (Section 3) trained on database containing a mixture of lesion 

types (Section 1.4) performed better on masses than calcifications. The difference in 

performance on masses and calcifications (Section 2.2.2) for the global LDA (Section

3.2) was significant (unpaired z-test, p < 0 .01) in terms of both the AUC and the partial 

AUC (Table 4-6). Similarly, the difference in performance on masses and calcifications 

for the global BP-ANN (Section 3.4) was significant (p < 0.01, Table 4-7). The 

performance of the global CBR model (Section 3.5) was also significantly (p < 0.01) 

better on masses than on calcifications (Table 4-8). Likewise, the performance of the 

global CART model (Section 3.6) was significantly (p <0.01) better on masses than on 

calcifications (Table 4-9). This is consistent with our previous comparisons of the mass 

and calcification subsets using a related dataset of cases collected at Duke [92,93, 107].

Notice that the global BP-ANN model performed significantly better than the 

global CBR model on calcifications both in terms of AUC (p < 0.01) and partial AUC (p 

< 0.01). By comparison, the difference between the global BP-ANN and global CBR 

was not significant in terms of the partial AUC (Table 3-3).
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Another way to study the difference in performance on masses and calcifications 

is to examine the effect of applying a threshold. For the global BP-ANN, a threshold of 

0.1842 provided 98.3% sensitivity and 23.8% specificity on the entire set. That same 

threshold provided 97.3% sensitivity and 41.1% specificity on the masses but 99.8% 

sensitivity and 3.4% specificity on the calcifications. Clearly, the BP-ANN model was 

more specific for masses than for calcifications.

Table 4-6. ROC performance on the mass and calcification subsets for the global LDA, 
round-robin built on the training set of cases that included masses, calcifications, and 
other lesions. The standard deviations were estimated by bootstrap sampling on the 
network outputs (see Section 1.3.1).

AUC partial AUC
Mass 0.862 ± 0 . 0 1 1 0.468 ±0.038
Calcification 0 . 6 6 6  ±0.018 0.138 ±0.023

Table 4-7. ROC performance on the mass and calcification subsets for the global BP- 
ANN, round-robin trained on the training set of cases that included masses, calcifications, 
and other lesions. The standard deviations were estimated by bootstrap sampling on the 
network outputs (see Section 1.3.1).

AUC partial AUC
Mass 0.885 ±0.010 0.483 ±0.036
Calcification 0.725 ±0.017 0.183 ±0.029

Table 4-8. ROC performance on the mass and calcification subsets for the global CBR, 
round-robin built on the training set of cases that included masses, calcifications, and 
other lesions. The standard deviations were estimated by bootstrap sampling on the 
network outputs (see Section 1.3.1).

AUC partial AUC
Mass 0.876 ±0.010 0.463 ±0.039
Calcification 0.641 ±0.018 0.119 ±0.021
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Table 4-9. ROC performance on the mass and calcification subsets for the global 
CART, round-robin built on the training set of cases that included masses, calcifications, 
and other lesions. The standard deviations were estimated by bootstrap sampling on the 
network outputs (see Section 1.3.1).

AUC partial AUC
Mass 0.869 ±0.011 0.415 ±0.041
Calcification 0.719 ±0.017 0.119 ±0.028

4.2.3 Patient Age
The performance of the global BP-ANN (Section 3.4) was significantly (unpaired

z-test, p < 0.01) better in terms of both AUC and partial AUC (Table 4-10) on the 

younger women as compared to the older women (Section 2.2.3). However, when the 

BP-ANN was later evaluated on the evaluation set (Section 1.4), the opposite trend was 

observed for AUC and no significant difference was observed for the partial AUC 

(Section 7.5.3). The apparent difference in performance on the age subsets was 

presumably due to sampling effects (Section 7.7.2).

Table 4-10. ROC performance on the subsets of younger and older women for the global 
BP-ANN, round-robin built on the training set of cases that included women of many 
ages. The standard deviations were estimated by bootstrap sampling on the network 
outputs (see Section 1.3.1).

AUC partial AUC
Age s  55 0.826 ±0.013 0.361 ±0.042
Age > 55 0.775 ±0.014 0.198 ±0.028

4.3 Unsupervised Learning Methods for Cluster Analysis
We investigated the performance of global models (Section 3) on the clusters

identified in the data by the three unsupervised learning methods previously described: 

agglomerative hierarchical clustering followed by K-Means (Section 2.4.1), Self- 

Organizing Map (Section 2.4.2), and AutoClass (Section 2.4.3).
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mistakenly referred to follow up (11/17 = 65%) and the majority of the benign lesions 

that the BP-ANN would have correctly spared biopsy (218/303 = 72%) were in cluster E.

Notice that cluster E had the lowest percent of the cases that were malignant 

(19%) of the clusters identified by agglomerative hierarchical clustering followed by K- 

Means (Section 2.4.1). As described in Section 2 on cluster analysis, the SOM (Section

2.4.2) and AutoClass (Section 2.4.3) both identified a related cluster of frequently benign 

masses (Table 2-10).

Table 4-11. Performance of the global LDA (Section 3.2) and global BP-ANN (Section 
3.4) models over the clusters identified by agglomerative hierarchical clustering followed 
by K-Means (Section 2.4.1).

Cluster N Percent
Malignant

LDA AUC LDA
partial
AUC

BP-ANN
AUC

BP-ANN
partial
AUC

A 1 0 1 51% 0.6664 0.2998 0.7402 0.3179
B 489 35% 0.6331 0.1343 0.6775 0.1557
C 360 50% 0.6895 0 . 1 0 1 2 0.7155 0.1244
D 261 24% 0.6700 0.0812 0.6809 0.2618
E 426 19% 0.8361 0.2777 0.8514 0.3196
F 398 78% 0.6892 0.1547 0.7613 0 .2 0 0 1

G 34 79% 0.8148 0.1429 0.8148 0.1799
H 27 48% 0.7418 0.2802 0.7473 0.3022
I 6 6 27% 0.6829 0.1968 0.6840 0.0556
J 96 69% 0.6773 0.1737 0.6348 0 .1 0 2 0

All 2258 43% 0.7802 0.2592 0.8204 0.3456
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Table 4-12. For each cluster identified by agglomerative hierarchical clustering followed 
by K-Means (Section 2.4.1), the number of true negative classifications and the number 
of false negative classifications from the global BP-ANN (Section 3.4) are shown. There 
were 1276 actual negatives and 982 actual positives

Cluster N Percent
Malignant

True Negatives False Negatives

A 101 51% 2 0

B 489 35% 16 1

C 360 50% I 0

D 261 24% 51 3
E 426 19% 218 11

F 398 78% 0 0

G 34 79% 0 0

H 27 48% 0 0

I 6 6 27% 14 2

J 96 69% 1 0

4.3.2 Self-Organizing Map
Recall that the Self-Organizing Map (SOM) was used to identify 16 clusters in the

training data (Section 2.4.2). Table 4-13 lists how the global BP-ANN (Section 3.4)

performed in terms of the AUC and partial AUC on the subsets identified by the SOM.

In terms of partial AUC, the best performance was seen on cluster #4, though the

performance on several clusters was similar. Cluster #4 was a group of older women

with ill-defined, irregular or lobulated masses (Figure 2-12 and Figure 2-13).

Table 4-14 lists how the global BP-ANN performed in terms of the BP-ANN’s

recommendations for follow up instead of biopsy on the subsets identified by the SOM.

A threshold was applied to the BP-ANN outputs such that the overall sensitivity was

approximately 98% (965/982) with resulting specificity of approximately 24%

(303/1276). In other words, 320 cases (303 actual negatives and 17 actual positives) fell

below the threshold. These 320 cases that the BP-ANN would have recommended for

follow up are shown in Table 4-14 according to which SOM cluster they belonged.
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Notice that there is considerable variability in the performance on the clusters. 

Interestingly, the majority of the cancers that the BP-ANN would have incorrectly 

referred to follow up (11/17 = 65%) and the majority of the benign lesions that the BP- 

ANN would have correctly spared biopsy (242/303 = 80%) were in the cluster defined by 

neuron #6 .

Notice that cluster # 6  had the lowest percentage of the cases that were malignant 

(6 %) of the clusters identified by the SOM. Agglomerative hierarchical clustering 

followed by K-Means (Section 2.4.1) and AutoClass (Section 2.4.3) both identified a 

related cluster (Table 2-10).

Table 4-13. Performance of the global BP-ANN (Section 3.4) over the clusters identified 
by the SOM (Section 2.4.2). AUC and partial AUC is not shown for clusters with less 
than 10 cases (#5, #12, #15).

Cluster N Percent
Malignant

BP-ANN AUC BP-ANN partial 
AUC

1 6 8 25% 0.6789 0.0533
2 91 14% 0.6203 0.0572
3 190 45% 0.6790 0.0566
4 2 1 2 83% 0.7395 0.2579
5 8 - - -

6 301 6 % 0.7064 0.1422
7 89 24% 0.6576 0.1954
8 194 71% 0.7292 0.1048
9 313 52% 0.7261 0.1714
1 0 29 31% - -

11 95 69% 0.6243 0.0920
1 2 1 - - -

13 227 38% 0.7118 0.2266
14 378 39% 0.6928 0.1708
15 3 - - -

16 59 6 8 % 0.8053 0.2105
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Table 4-14. For each cluster identified by the SOM (Section 2.4.2), the number of true 
negative classifications and the number of false negative classifications from the global 
BP-ANN (Section 3.4) are shown. There were 1276 actual negatives and 982 actual 
positives.

Cluster N Percent
Malignant

True Negatives False Negatives

I 6 8 25% 15 2

2 91 14% 26 3
3 190 45% 0 0

4 2 1 2 83% 0 0

5 8 - 0 0

6 301 6 % 242 11

7 89 24% 0 0

8 194 71% 0 0

9 313 52% 0 0

1 0 29 31% 4 0

11 95 69% 1 0

1 2 1 - 0 0

13 227 38% 2 0

14 378 39% 13 1

15 3 - 0 0

16 59 6 8 % 0 0

4.3.3 AutoClass
Recall that AutoClass was used to identify S clusters in the training data (Section

2.4.3). The ROC performance of the global BP-ANN (Section 3.4) on the clusters

identified by AutoClass (Section 2.4.3) is shown in Table 4-15. In terms of the AUC and

partial AUC, the global BP-ANN performed best on clusters e  and {5, though the

performance on clusters y and 8  was fairly close. The cluster profiles (Section 2.3)

indicated that cluster e  was a cluster of calcified masses (Table 2-9) and cluster {3 was a

cluster of well-circumscribed masses (Table 2-9).

Table 4-16 lists how the global BP-ANN performed in terms of the BP-ANN’s

recommendations for follow up instead of biopsy on the subsets identified by AutoClass.
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A threshold was applied to the BP-ANN outputs such that the overall sensitivity was 

approximately 98% (965/982) with resulting specificity of approximately 24% 

(303/1276). In other words, 320 cases (303 actual negatives and 17 actual positives) fell 

below the threshold. These 320 cases that the BP-ANN would have recommended for 

follow up are shown in Table 4-16 according to which AutoClass cluster they belonged. 

Notice that there is considerable variability in the performance on the clusters. 

Interestingly, the majority of the cancers that the BP-ANN would have incorrectly 

referred to follow up (13/17 = 77%) and the majority of the benign lesions that the BP- 

ANN would have correctly spared biopsy (265/303 = 88%) were in cluster p.

Notice that cluster (3 had the lowest PPV (21%) of the clusters identified by 

AutoClass. The SOM (Section 2.4.2) and agglomerative hierarchical clustering followed 

by K-Means (Section 2.4.1) both identified a related cluster (Table 2-10).

Table 4-15. Performance of the global BP-ANN (Section 3.4) on the clusters identified 
by AutoClass (Section 2.4.3) in terms of the AUC and partial AUC (Section 1.3.1).

Cluster N Percent
Malignant

BP-ANN AUC BP-ANN partial AUC

a 961 43% 0.7204 0.1692
P 685 21% 0.7977 0.3261
Y 395 81% 0.7708 0.2685
5 141 43% 0.7335 0.2922
e 76 63% 0.8519 0.3527
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Table 4-16. For each cluster identified by AutoClass (Section 2.4.3), the number of true 
negative classifications and the number of false negative classifications from the global 
BP-ANN (Section 3.4) are shown. There were 1276 actual negatives and 982 actual 
positives

Cluster N Percent
Malignant

True Negatives False Negatives

a 961 43% 17 2
P 685 21% 265 13
Y 395 81% 0 0
5 141 43% 20 2
E 76 63% 1 0

4.4 Summary
We investigated the performance of global models over the three a priori partitions 

discussed previously: institution (Section 2.2.1), lesion type (Section 2.2.2), and patient 

age (Section 2.2.3). The study of the institutional effects suggests that models built on 

cases mixed between institutions may overcome some of the weaknesses of models built 

on cases from a single institution (Section 4.2.1). However, further cross-institutional 

studies of breast cancer CAD systems are needed. We found that CAD systems trained 

on a mixture of lesion types performed much better on masses than on calcifications 

(Section 4.2.2). We observed that the global BP-ANN performed better on the subset of 

younger women than on the subset of older women (Section 4.2.3). However, the age 

trend was reversed on the evaluation cases (Section 7.5.3) and we suspect that it was due 

to sampling effects (Section 7.7.2).

We investigated the performance of global models over the clusters identified by the 

three unsupervised learning techniques previously described: agglomerative hierarchical 

clustering followed by K-Means (Section 2.4.1), SOM (Section 2.4.2), and AutoClass 

(Section 2.4.3). Each method identified a single cluster that accounted for the majority of

1 0 0
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the cases that the BP-ANN would have recommended for follow up. The profiles of 

clusters identified indicated younger women with well-circumscribed or obscured, oval 

shaped masses (Table 2-10). Recall that the identification of likely benign cases that 

could be spared biopsy is the goal of such computer-aided diagnosis schemes. This 

suggests that cluster analysis and profiling techniques could be used to provide the 

physician with an alternative description of what the BP-ANN does for certain types of 

cases. In other words, the common feature descriptors of the related clusters identified by 

all of the clustering techniques may provide a way of justifying or explaining the 

behavior of the BP-ANN in recommending these cases for follow up. It also suggests the 

investigation of rule-based methods to identify relatively simple diagnostic criteria based 

upon those cluster profiles, such as the features that describe a very likely benign mass 

listed above, which might be applied to these cases to aid the radiologists in their decision 

making process (see Section 5.2.2).

In Section 4, we examined the performance of the global models (Section 3) 

developed on all the training cases over the clusters identified using a priori knowledge 

(Section 2.2) and unsupervised learning (Section 2.4). In Section 5, we will discuss the 

use of local models trained specifically for the different clusters in the data.
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5 Modular Systems: Local Models for Predicting Biopsy Outcome 
using the Clusters Identified in the Training Set 

5.1 Overview and Motivation
As discussed in Section 2.1, one of the motivations behind performing cluster

analysis was the fact that it could serve as the first stage for a modular, “divide-and- 

conquer” approach. A modular system uses multiple classifiers to solve a classification 

problem by partitioning the input space into smaller domains, each of which is handled 

by a local model [41], The idea behind such a “divide-and-conquer” approach is to break 

the problem down into smaller, simpler problems that will be easier to solve. Modular 

systems based on a priori subsets have shown promise in breast cancer CAD [45-48]. 

Thus, in this section we investigated the utility of building “local” models specifically for 

each of the clusters identified. The performance of each of those local models was 

compared to the performance of the global model. In particular, we routinely compared 

to the global BP-ANN (Section 3.4) since we have used BP-ANN models extensively in 

our laboratory [14, 16, 21, 23,71, 92] and the overall performance of the global BP-ANN 

was generally better than that of the other global models (Section 3.7).

5.2 A priori Subsets
We investigated the performance of local models built specifically for the three a

priori partitions discussed previously: institution (Section 2.2.1), lesion type (Section

2.2.2), and patient age (Section 2.2.3). We compared the performance of the local 

models for the subsets to the performance o f the global model on the subsets (Section

4.2).
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5.2.1 Institution
In the same manner as described for the global BP-ANN (Section 3.4), a BP-ANN 

was round-robin trained on the Duke subset of the training set (Section 2.2.1). In other 

words, the same program and criteria for parameter selection were used, but the Duke- 

specific BP-ANN was trained in a round-robin fashion on only the Duke cases while the 

global BP-ANN had been trained on a combination of Duke, UPenn, and DDSM cases. 

The Duke-specific BP-ANN had seven input nodes, a single hidden layer of 8  nodes, and 

a single output node. The first layer learning rate was 0.7, the second layer learning rate 

was 0.1, the momentum constant was 0.1, and the network was trained for 290 iterations. 

Likewise, a BP-ANN was built for the UPenn subset. The UPenn-specific BP-ANN had 

seven input nodes, a single hidden layer of 14 nodes, and a single output node. The first 

layer learning rate was 0 . 1, the second layer learning rate was 0 .1 , the momentum 

constant was 0.1, and the network was trained for 760 iterations. Finally, a BP-ANN was 

built for the DDSM subset. The DDSM-specific BP-ANN had seven input nodes, a 

single hidden layer of 38 nodes, and a single output node. The first layer learning rate 

was 0.5, the second layer learning rate was 0.1, the momentum constant was 0.1, and the 

network was trained for 610 iterations. The AUC and partial AUC for the institution- 

specific BP-ANNs on the institution subsets are shown in Table 5-1, which should be 

compared to the results of the global BP-ANN shown in Table 4-1. For example, the 

global BP-ANN on the Duke subset performed with AUC = 0.821 ± 0.016 and partial 

AUC = 0.354 ± 0.042. None of the differences in AUC or partial AUC were significantly 

different between the global and local models for Duke (p = 0.10, p = 0.83), UPenn (p = 

0.22, p = 0.87), and DDSM (p = 0.44, p = 0.18). In other words, there was no advantage

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in terms of AUC or partial AUC in building institution-specific models rather than using 

the global model trained on the cases mixed between the institutions.

Table 5-1. ROC performance of the institution-specific local models trained in a round- 
robin fashion on the institution subsets in the training data. Standard deviations were 
computed by bootstrap sampling on the decision variable (Section 1.3.1).

Institution AUC partial AUC
Duke 0.808 ±0.016 0.360 ±0.038
UPenn 0.808 ± 0 .0 2 0 0.286 ±0.052
DDSM 0.803 ±0.014 0.344 ±0.030

On the other hand, our cross-institutional analysis demonstrated that it might be 

inadvisable to simply train a model on cases from one institution and apply it to cases 

from another institution (see also Lo, Markey, Baker, and Floyd [71]). Using the network 

parameters determined from round-robin training as described above, an institution- 

specific BP-ANN was trained on the training cases from one institution and tested on the 

training cases from another institution. Table 5-2 summarizes the cross-institutional 

performance in terms of the AUC and partial AUC. For each institution subset, we 

compared the performance of a model trained on one institution (e.g., Duke) and tested 

on the current institution (e.g., UPenn) to a model trained on another institution (e.g., 

DDSM) and tested on the current institution (e.g., UPenn). The differences in the AUC 

(p = 0.42) and partial AUC (p = 0.62) were not significant when the BP-ANN was trained 

on Duke vs. DDSM cases and tested on the UPenn cases. The differences in the AUC (p 

= 0.02) and partial AUC (p < 0.01) were significant when the BP-ANN was trained on 

UPenn vs. DDSM cases and tested on the Duke cases. The differences in the AUC (p = 

0.03) and partial AUC (p < 0.01) were significant when the BP-ANN was trained on 

Duke vs. UPenn cases and tested on the DDSM cases. Thus, significant differences in
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the AUC and partial AUC were seen based on which institution was used to train and 

what institution was used to test the BP-ANN. More over, a threshold selected to give 

approximately 98% sensitivity on the round-robin outputs for the training institution 

often did not generalize when applied to the outputs on the testing institutions (Table 

5-3). For example, a threshold on the local model trained on Duke cases selected to give 

98% sensitivity on the Duke cases performed with only 95% sensitivity when the same 

model and threshold were applied to the UPenn cases. Such a drop in sensitivity would 

be clinically unacceptable. Recall that the results with the global BP-ANN suggested that 

a threshold might generalize for a BP-ANN trained on a mixture of cases from different 

institutions (Table 4-5).

Table 5-2. ROC performance for BP-ANN trained on cases from one institution and 
tested on cases from another institution (using training data, Section 1.4). Statistical 
comparisons were made for using the same institution data as the testing set and changing 
which institution data were used as the training set.

Train Test AUC AUC p partial AUC partial AUC p
UPenn Duke 0.7471 p = 0.02 0.1069 p  < 0.01
DDSM Duke 0.7795 0.2895
Duke UPenn 0.7903 p = 0.42 0.2618 p = 0.62
DDSM UPenn 0.7976 0.2535
Duke DDSM 0.7950 p = 0.03 0.3419 p < 0.01
UPenn DDSM 0.7669 0.2751

Table 5-3. Sensitivity and specificity obtained when a threshold was applied to the BP- 
ANN output for a network trained on cases from one institution and tested on cases from 
another institution (using training data, Section 1.4). The threshold was selected to give 
approximately 98% sensitivity on the round-robin outputs on the training institution.

Train Test Threshold Sensitivity Specificity
Duke UPenn 0.1769 94.5% 27.8%
Duke DDSM 0.1769 98.5% 28.1%
UPenn Duke 0.0875 90.8% 2 2 .8 %
UPenn DDSM 0.0875 98.9% 9.7%
DDSM Duke 0.2542 95.0% 32.6%
DDSM UPenn 0.2542 94.0% 29.2%

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2.2 Lesion
Since we observed a very consistent trend that global models performed better on 

masses than on calcifications (Section 4.2.2), particular attention was paid to building 

local models for partitions based on lesion type. Local BP-ANN, local CBR, and local 

CART models were built specifically for the mass and calcification lesions (Section 

2.2.2).

For the mass cases, five input findings were used (Mass Margin, Mass Shape, 

Calcification Distribution, Calcification Morphology, and patient age) since the other two 

features were zero by definition (Associated Findings and Special Findings). For the 

calcification cases, three input findings were used (Calcification Distribution, 

Calcification Morphology, and patient age) since the other four were zero by definition 

(Mass Margin, Mass Shape, Associated Findings, and Special Findings). See Section 1.4 

for a description of the available features.

In the same manner as described for the global BP-ANN (Section 3.4), local BP- 

ANNs were round-robin trained on the mass and calcification lesion subsets of the 

training set. The mass-specific BP-ANN had five input nodes, a single hidden layer of 4 

nodes, and a single output node. The first layer learning rate was 0.8, the second layer 

learning rate was 0 .1 , the momentum constant was 0 .1 , and the network was trained for 

60 iterations. The calcification-specific BP-ANN had three input nodes, a single hidden 

layer of 38 nodes, and a single output node. The first layer learning rate was 0.1, the 

second layer learning rate was 0 .1 , the momentum constant was 0 . 1, and the network was 

trained for 280 iterations. The ROC performance of the local BP-ANNs is summarized
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in Table 5-4 (compare to global BP-ANN in Table 4-7). The differences in performance 

between the global BP-ANN and local BP-ANN on the masses were not significant in 

terms of either the AUC (p = 0.20) or the partial AUC (p = 1.00). The differences in 

performance between the global BP-ANN and local BP-ANN on the calcifications were 

not significant in terms of either the AUC (p = 0.11) or the partial AUC (p = 0.74). Thus, 

no advantage in performance was seen for building a modular BP-ANN system for 

masses and calcifications.

Table 5-4. ROC performance of the local BP-ANNs on the mass and calcification 
subsets for which they were specifically trained. The standard deviations were estimated 
by bootstrap sampling on the network outputs (see Section 1.3.1).

AUC partial AUC
Mass 0.882 ± 0 . 0 1 0 0.484 ±0.010
Calcification 0.731 ±0.017 0.179 ±0.031

In the same manner as described for the global CBR (Section 3.5), local CBRs 

were round-robin built on the mass and calcification lesion subsets of the training set.

The mass-specific CBR used a threshold of 0.31 on the Euclidean distance. The 

calcification-specific CBR used a threshold of 0.09 on the Euclidean distance. The ROC 

performance of the local CBRs is summarized in Table 5-5 (compare to global CBR in 

Table 4-8) and the ROC curves are shown in Figure 5-1 and Figure 5-2. The difference 

in performance between the global CBR and local CBR on the masses was not significant 

in terms of the AUC (p = 0.10), but the local CBR performed significantly better than 

global CBR on masses in terms of the partial AUC (p < 0.01). The local CBR performed 

significantly better than the global CBR on the calcifications in terms of both the AUC (p 

= 0.01) and the partial AUC (p = 0.04). Interestingly, the correlation between the global
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CBR and local CBR outputs on the calcification cases was only 0.54, which was much 

lower than what was seen with the BP-ANN models (0.96). Thus, there was an 

advantage in performance for building a modular CBR system for masses and 

calcifications. This would be an important finding if we were committed to using a CBR 

system (e.g., because physicians may find CBR more intuitive than BP-ANN). However, 

the performance gains from the local CBR models did not bring them above the levels 

achieved by the global BP-ANN model. For the masses, the global ANN was borderline 

significantly better than the local CBR in AUC (p = 0.05) and there was no significant 

difference in terms of the partial AUC (p = 0.64). For calcifications, the global BP-ANN 

had a significantly better (p < 0.01) AUC than the local CBR and there was no significant 

difference in terms of the partial AUC (p = 0.69).

Table 5-5. ROC performance of the local CBRs on the mass and calcification subsets for 
which they were specifically trained. The standard deviations were estimated by 
bootstrap sampling on the network outputs (see Section 1.3.1).

AUC partial AUC
Mass 0.878 ±0.010 0.477 ±0.040
Calcification 0.685 ±0.018 0.175 ±0.026
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Figure 5-1. ROC curves for the global CBR and local CBRs on the mass and 
calcification subsets.
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Figure 5-2. Close up of the high sensitivity regions of the ROC curves for the global 
CBR and local CBRs for the mass and calcification subsets.

In the same manner as described for the global CART (Section 3.6), local CARTs

were round-robin trained on the mass and calcification lesion subsets of the training set.

The ROC performance of the local CARTs is summarized in Table 5-6 (compare to the

global CART in Table 4-9). The differences in performance between the global CART

and local CART on the masses were not significant in terms of either the AUC (p = 0.75)

or the partial AUC (p = 0.71). The local CART performed significantly worse than the

global CART on the calcifications in terms of the AUC (p < 0.01), which was an

interesting example of a local model not only not helping but actually making things

worse. The difference in performance between the global CART and local CART on the

calcifications was not significant in terms of the partial AUC (p = 0.15). Thus, no
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advantage in performance was seen for building a modular CART system for masses and 

calcifications.

Table 5-6. ROC performance of the local CARTs on the mass and calcification subsets 
for which they were specifically trained. The standard deviations were estimated by 
bootstrap sampling on the network outputs (see Section 1.3.1).

AUC partial AUC
Mass 0.870 ±0.011 0.407 ±0.047
Calcification 0.696 ±0.018 0.087 ±0.019

Figure 5-3 shows the mass-specific local CART model (trained on all the mass 

cases in the training set). Notice the relationship between the mass-specific local CART 

model and the global CART model (Figure 3-2) and the profiles o f clusters E, 6 , and (5 

(Table 2-10). There is a consistent theme o f grouping usually benign masses with well- 

circumscribed or obscured mass margin and patient age < 59 years.

The cluster analysis and CART models inspired us to test a very simple rule: if 

the Mass Margin was well-circumscribed or obscured and the age was less than 59 years 

and there were no calcifications, associated findings, or special findings, then don’t 

biopsy, otherwise do biopsy. On the 2258 training cases, this rule gave 961 / 982 = 98% 

sensitivity and 336 /1276 = 26% specificity. In other words, this rule performed 

comparably to the global BP-ANN with a threshold of 0.1842 (965 / 982 = 98% 

sensitivity, 303 / 1276 = 24% specificity).

There are several potential advantages of a simple rule over more complicated 

models. First, such a rule would be trivial to implement. Second, its simplicity makes it 

more understandable and thus clinicians may more readily accept it. Third, the 

transparency of the rule allows for more direct comparisons to clinically accepted criteria

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and guidelines. Comparison with current clinical criteria is an important area for future 

work.

Mass M argin * 1,3

Figure 5-3. Local CART model for masses trained on all of the mass cases in the 
training set. Compare to the global CART model (Figure 3-2) and the profiles of clusters 
E, 6 , and (3 (Table 2-10).

5.2.3 Patient Age
In the same manner as described for the global BP-ANN (Section 3.4), local BP-

ANNs were round-robin trained on the subsets of younger (age s  55) and older (age >  55) 

women in the training set. The younger-specific BP-ANN had 7 input nodes, a single 

hidden layer of 27 nodes, and a single output node. The first layer learning rate was 0.1, 

the second layer learning rate was 0 . 1 , the momentum constant was 0 .1 , and the network 

was trained for 760 iterations. The older-specific BP-ANN had 7 input nodes, a single
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hidden layer of 4 nodes, and a single output node. The first layer learning rate was 0.1, 

the second layer learning rate was 0 .1 , the momentum constant was 0 .1 , and the network 

was trained for 800 iterations. The ROC performance of the local BP-ANNs is 

summarized in Table 5-7 (compare to global BP-ANN in Table 4-10). The differences in 

performance between the global BP-ANN and local BP-ANN on the younger women 

were not significant in terms of either the AUC (p = 0.07) or the partial AUC (p = 0.08). 

The difference in performance between the global BP-ANN and local BP-ANN on the 

older women was not significant in terms of the partial AUC (p =0.43) and the global BP- 

ANN was actually significantly better (p = 0.01) in terms of the AUC. Thus, no 

advantage in performance was seen for building a modular BP-ANN system for younger 

and older women. It is possible that a different choice of the age threshold (55 years) 

would give different results. Recall that there was concern that the observed difference 

between the older and younger women was an artifact of sampling (Section 4.2.3, Section

7.5.3, Section 7.7.2).

Table 5-7. ROC performance of the local BP-ANN models on the subsets of younger 
and older women in the training set.

AUC partial AUC
Age £  55 0.818 ±0.013 0.323 ±0.050
Age >  55 0.761 ±0.014 0.185 ±0.029

5.3 Unsupervised Learning Methods for Cluster Analysis
In the previous section (Section 5.2), we evaluated local models built for the

subsets defined by a priori partitions of the data. In a similar fashion, in this section we 

investigated the performance of local models built specifically for the clusters identified 

in the data by the three unsupervised learning methods previously described:
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agglomerative hierarchical clustering followed by K-Means (Section 2.4.1), Self- 

Organizing Map (Section 2.4.2), and AutoClass (Section 2.4.3). We compared the 

performance of the cluster-specific local models to the global model on the clusters 

(Section 4.3).

5.3.1 Agglomerative Hierarchical Clustering and K-Means
Recall that we used agglomerative hierarchical clustering followed by K-Means

(Section 2.4.1) to identify 10 clusters in the training data. In the same manner as

described for the global LDA (Section 3.2), local LDAs were round-robin trained on the

7 clusters identified by agglomerative hierarchical clustering followed by K-Means

(Section 2.4.1) that had approximately 100 or more cases (clusters A, B, C, D, E, F, and

J). Likewise, local BP-ANNs were trained in the same manner as the global BP-ANN

(Section 3.4). Table 5-8 shows the features and Table 5-9 shows the network parameters

that were used in training each of the local models. For some clusters, some of the seven

available features (Section 1.4) were always zero; thus, only the features that had a

maximum non-zero value for the cluster were used.

The ROC performance (Section 1.3.1) of the local LDA models is shown in Table

5-10. Most of the differences between the global LDA and local LDA were not

significant in terms of either the AUC or the partial AUC: cluster A (p = 0.30, p = 0.72),

B (p = 0.11, p = 0.12), C (p = 0.06, p < 0 .0 1 ), D (p = 0.86, p = 0.36), E (p = 0.65, p =

0.26), F  (p = 0.02, p = 0.48), and J (p = 0.01, p = 0.01). Notice that the global LDA was

actually significantly better than the local LDA in terms of AUC and partial AUC for

clusters C and J. The local LDA is significantly better than the global LDA in terms of

the AUC, but not the partial AUC, for cluster F (the cluster profiles (Table 2-8) indicate

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



that cluster F contains ill-defined, irregular or lobulated masses in older women). Thus, 

there was some performance benefit to building a modular LDA system using the clusters 

identified by agglomerative hierarchical clustering followed by K-Means. However, as 

shown in Figure 5-4, the improvement of the local LDA over the global LDA for cluster 

F was over the sensitivity range of 0.2 to 0.8, which is not clinically useful. Moreover, 

the local LDA was still significantly worse than the global BP-ANN (Section 3.4) in 

terms of the AUC (p < 0.01) and no different in terms of the partial AUC (p = 0.06) for 

cluster F.

The ROC performance (Section 1.3.1) of the local BP-ANN models is shown in 

Table 5-10. Most of the differences between the global BP-ANN (Table 4-11) and local 

BP-ANN were not significant in terms of either the AUC or the partial AUC: cluster A (p 

= 0.01, p = 0.61), B (p = 0.36, p = 0.22), C (p = 0.87, p = 0.97), D (p = 0.64, p = 0.12), E 

(p = 0.08, p = 0.09), F (p = 0.95, p = 0.79), and J (p = 0.29, p = 0.68). Notice that it is 

possible for the local model to not only fail to improve on the global model, but to 

actually be significantly worse than the global model. In particular, the local BP-ANN 

was actually significantly worse than the global BP-ANN for cluster A in terms of the 

AUC. Thus, there was no performance advantage in building a modular BP-ANN system 

using the clusters identified by agglomerative hierarchical clustering followed by K- 

Means.
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Table 5-8. Indication of the features used to build the local LDA and local BP-ANN 
models for the clusters identified by agglomerative hierarchical clustering followed by K- 
Means (Section 2.4.1).

Cluster Mass
Margin

Mass
Shape

Calc.
Dist.

Calc.
M orph.

Assocd.
Findings

Special
Findings

Age

A X X X
B X X X X X X
C X X X X X X
D X X X X X X X
E X X X X X
F X X X X X
J X X X X X X X

Table 5-9. Network parameters used in training the local BP-ANNs for the clusters 
identified by agglomerative hierarchical clustering followed by K-Means (Section 2.4.1).

Cluster l s‘ layer 
learning rate

2 nd layer 
learning rate

momentum # hidden 
nodes

iterations

A 0 . 2 0 .1 0 .1 2 650
B 0 .1 0.4 0 . 2 4 230
C 0.4 0.4 0.5 4 380
D 0.4 0.4 0 .1 12 1070
E 0 .1 0 .2 0 .1 8 490
F 0.5 0.3 0 .1 10 590
J 0 . 2 0.5 0.4 6 50

Table 5-10. ROC performance of the local LDAs and local RP-ANNs round-robin 
trained on the clusters identified by agglomerative hierarchical clustering followed by K- 
Means (Section 2.4.1).

Cluster N Percent
Malignant

LDA AUC LDA
partial
AUC

BP-ANN
AUC

BP-ANN
partial
AUC

A 10 1 51% 0.7202 0.2425 0.6907 0.3014
B 489 35% 0.6782 J).1839 0.6627 0.1883
C 360 50% 0.6738 0.0718 0.7172 0.1234
D 261 24% 0.6676 0.1908 0.6978 0.3472
E 426 19% 0.8320 0.2417 0.8372 0.2460
F 398 78% 0.7344 0.1323 0.7618 0.1921
J 96 69% 0.5787 0.0424 0.5889 0.0838
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Figure 5-4. ROC curves for the global LDA (Section 3.2) and local LDA model for 
cluster F identified by agglomerative hierarchical clustering followed by K-Means 
(Section 2.4.1).

5.3.2 Self-Organizing Map
Recall that the Self-Organizing Map (SOM) was used to identify 16 clusters in the

training data (Section 2.4.2). In the same manner as described for the global BP-ANN 

(Section 3.4), local BP-ANNs were round-robin trained on 7 clusters identified by the 

SOM (Section 2.4.2) that had approximately 200 or more cases (clusters # 3 ,4 ,6 , 8 ,9 , 13, 

and 14). Table 5-11 shows the features and Table 5-12 shows the network parameters 

that were used in training each of the local BP-ANNs. Of the seven available features 

(Section 1.4), the only features used were those that were non-zero for most of the cases 

in the cluster. Consequently, the models for clusters # 3 ,4 ,6 , and 8  used only mass
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findings and patient age while the models for clusters #9, 13, and 14 used only 

calcification findings and patient age.

The performance of the local BP-ANNS over the clusters identified by the SOM 

is shown in Table 5-13 (compare to the global BP-ANN in Table 4-13). The differences 

between the global BP-ANN and local BP-ANN were generally not significant in terms 

of either the AUC or the partial AUC: cluster #3 (p = 0.15, p = 0.37), #4 (p < 0.01, p = 

0.92), # 6  (p <0.01, p = 0.40), # 8  (p = 0.85, p = 0.28), #9 (p = 0.64, p = 0.35), #13 (p = 

0.21, p = 0.21), and #14 (p = 0.41, p = 0.30). Notice that the AUC was actually 

significantly lower for the local BP-ANN than the global BP-ANN for clusters #4 and #6 . 

Thus, there was no benefit to building a modular BP-ANN system for the clusters 

identified by the SOM in terms of the AUC or partial AUC.

Table 5-11. Indication of the features used in training the local BP-ANNs for the clusters 
identified by the SOM (Section 2.4.2).

Cluster Mass
Margin

Mass
Shape

Calc.
Dist.

Calc.
Morph.

Assocd.
Findings

Special
Findings

Age

3 X X X
4 X X X
6 X X X
8 X X X
9 X X X
13 X X X
14 X X X
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Table 5-12. Network parameters used in training the local BP-ANNs for the clusters 
identified by the SOM (Section 2.4.2).

Cluster 1st layer 
learning rate

2nd layer 
learning rate

momentum # hidden 
nodes

iterations

3 0.1 0.1 0.1 15 130
4 0.4 0.1 0.1 14 680
6 0.8 0.1 0.1 15 50
8 0.3 0.1 0.1 10 710
9 0.4 0.1 0.1 3 360
13 0.6 0.1 0.1 2 410
14 0.2 0.1 0.1 32 580

Table 5-13. Performance of the local BP-ANNs round-robin trained on the clusters 
identified by the SOM (Section 2.4.2).

Cluster N Percent
Malignant

AUC partial AUC

3 190 45% 0.6449 0.1137
4 212 83% 0.6829 0.2556
6 301 6% 0.5646 0.0812
8 194 71% 0.7333 0.1651
9 313 52% 0.7220 0.1428
13 227 38% 0.6856 0.2721
14 378 39% 0.6864 0.1813

5.3.3 AutoClass
Recall that AutoClass was used to identify 5 clusters in the training data (Section

2.4.3). In the same manner as described for the global BP-ANN (Section 3.4), local BP-

ANNs were round-robin trained on 4 clusters identified by AutoClass (Section 2.4.3) that

had at least 100 or more cases (clusters a , (3, y, and 5). Table 5-14 shows the features and

Table 5-15 shows the network parameters that were used in training each of the local BP-

ANNs. For each of the seven available features (Section 1.4), a feature was not used if it

was non-zero for only a few of the cases in the cluster.

The performance of the local BP-ANNS over the clusters identified by AutoClass

is shown in Table 5-16 (compare to the global BP-ANN in Table 4-15). None of the
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differences between the global BP-ANN and local BP-ANN in the AUC or partial AUC 

were significant: a  (p = 0.96, p = 0.45), P (p = 0.73, p = 0.10), y (p = 0.13, p = 0.97), and 

6  (p = 0.86, p = 0.87). Thus, there was no benefit to building a modular BP-ANN system 

for the clusters identified by AutoClass in terms of the AUC or partial AUC.

Table 5-14. Indication of the features used in training the local BP-ANNs for the clusters 
identified by AutoClass (Section 2.4.3).

Cluster Mass
Margin

Mass
Shape

Calc.
Dist.

Calc.
M orph.

Assocd.
Findings

Special
Findings

Age

a X X X X X
P X X X
Y X X X X
5 X X X X

Table 5-15. Network parameters used in training the local BP-ANNs for the clusters 
identified by AutoClass (Section 2.4.3).

Cluster Is* layer 
learning rate

2 layer 
learning rate

momentum # hidden 
nodes

iterations

a 0 .1 0 .1 0 .1 17 370
P 0 .1 0 .1 0 .1 3 90
Y 0 .1 0 .1 0 .1 8 1240
& 0 . 2 0 .1 0 .1 3 2 0 0

Table 5-16. Performance of the local BP-ANNs round-robin trained on the clusters 
identified by AutoClass (Section 2.4.3).

Cluster N Percent
Malignant

AUC partial AUC

a 961 43% 0.7201 0.1544
P 685 2 1 % 0.7957 0.2872
Y 395 81% 0.7588 0.2681
5 141 43% 0.7296 0.3107

5.4 Summary
In this section, we considered modular systems in which multiple classifiers were

used to build a breast cancer CAD system by partitioning the input space into smaller

domains, each of which was handled by a local model [41]. We investigated local
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models built specifically for the subsets defined by the three a priori partitions discussed 

previously: institution (Section 2.2.1), lesion type (Section 2.2.2), and patient age 

(Section 2.2.3). We also investigated the performance of local models built specifically 

for the clusters identified by the three unsupervised learning techniques previously 

described: agglomerative hierarchical clustering followed by K-Means (Section 2.4.1), 

SOM (Section 2.4.2), and AutoClass (Section 2.4.3). The local models used for each 

cluster were of the same variety as the global models described in Section 3. The 

performances of the local models were compared to the global models on the clusters 

(Section 4). Since we have used BP-ANN models extensively in our laboratory [14, 16, 

21, 23, 71,92] and the overall performance of the global BP-ANN was generally better 

than that of the other global models (Section 3.7), we used the global BP-ANN model as 

a “gold standard” to compare against.

Our study of local models for the institution subsets (Section 5.2.1) revealed

several interesting trends (see also Lo, Markey, Baker, and Floyd [71]). We observed

significant differences in the AUC and partial AUC index when comparing the

performance on institution A of a BP-ANN trained on cases from institution B to one

trained on cases from institution C (Table 5-2). Moreover, we observed that a threshold

selected for a BP-ANN trained on cases from one institution did not generalize when that

BP-ANN was applied to cases from another institution (Table 5-3). Thus, simply training

a model on cases from one institution and applying it to cases at another institution is

inadvisable. On the other hand, we observed that there was no benefit in terms of the

AUC or partial AUC index in using a BP-ANN specifically trained for the cases at an

institution rather than the global BP-ANN trained on cases mixed between the
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institutions. Also, recall that in Section 4.2.1, we showed that a threshold for the global 

BP-ANN that was selected using the cases mixed between institutions seemed to 

generalize to each institution separately. Thus, from the investigation of local models for 

the institution subsets, we concluded that mixing cases from multiple institutions might 

be helpful in overcoming the differences that exist between data sets collected at different 

institutions, but more work is needed on this important issue.

No benefit was seen for building a modular BP-ANN or modular CART system 

based on partitioning the data by lesion type (Section 5.2.2). The local CBR model was 

better than the global CBR model on calcifications, but it was still inferior to the global 

BP-ANN. The local CART model for masses (Figure 5-3) showed interesting 

connections to the global CART model (Figure 3-2) and to the profiles for clusters E, 6, 

and (3 (Table 2-10). The cluster profiles indicated younger women with well- 

circumscribed or obscured, oval shaped masses. Based on the cluster profiles and the 

CART models, a simple rule was devised which performed comparably on the entire 

training set to the global BP-ANN. Additional work is needed to study the relationship of 

this rule to current clinical practice and existing guidelines in the literature.

There was no advantage in building a modular BP-ANN for the data partitioned 

into subsets of older and younger women (Section 5.2.3). It should also be noted that the 

utility of partitioning based on age was called into question by other results (Section

4.2.3, Section 7.5.3, Section 7.7.2).

For partitions determined by agglomerative hierarchical clustering followed by K-

Means (Section 5.3.1), SOM (Section 5.3.2), or AutoClass (Section 5.3.3), no benefit was

seen for using a modular BP-ANN over the global BP-ANN. For cluster F determined by
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agglomerative hierarchical clustering followed by K-Means, a local LDA model was 

superior to the global LDA model. However, it was still inferior to the global BP-ANN 

on cluster F.

In conclusion, the modular systems considered here did not prove advantageous. 

Local models built for subsets determined by a priori knowledge or unsupervised 

learning did not result in significant improvements over the global BP-ANN. Other 

possible partitions or models could potentially provide significant performance gains. 

However, this seems unlikely and further work in this area is not expected to be fruitful.
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6 Ensemble Systems: Combine Predictions of Multiple Models for 
Same Cases

6.1 Overview and Motivation
In Section 5, we investigated modular systems in which multiple classifiers were

used by partitioning the input space into smaller domains, each of which was handled by 

a local model [41]. In this section, we describe ensemble systems, in which the same 

cases were used to train multiple models, whose predictions were then combined [41]. In 

other words, instead of building a separate model for some subset of cases, multiple 

models were built over a set of cases. That set can be the entire training set (Section 6.2) 

or just the cases in some cluster of interest (Section 6.3, Section 6.4). Simple ensembles 

of classifiers using voting or averaging to combine their predictions have shown promise 

in breast cancer CAD [42-44,46].

We considered three approaches to combining classifiers and evaluating an 

ensemble system. (1) Compute a simple function of the continuous classifier outputs 

{e.g., mean) and evaluate in terms of the AUC and partial AUC (Section 1.3.1). (2) 

Compute a simple function of the continuous classifier outputs {e.g., mean) and evaluate 

in terms of the specificity at a fixed sensitivity {e.g., 98%). (3) Apply a threshold to the 

continuous outputs of each classifier and then use a simple voting mechanism {e.g., 

logical “and”) to combine their binary predictions. Notice that simple combinations of 

the continuous model outputs involve assuming that the models produce outputs on 

comparable scales {e.g., 0 to 1).
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6.2 All Cases in Training Set
Of the global models considered, the global BP-ANN (Section 3.4) and global CBR

(Section 3.5) were arguably the best since the global BP-ANN and global CBR showed 

the highest partial AUC values over all training cases (Table 3-1). In this section, 

ensembles of the global BP-ANN and global CBR models over all of the 2258 training 

cases were considered.

The round-robin outputs of the global BP-ANN and global CBR models were 

combined for each case. ROC analysis was performed on the vector resulting from 

applying a function (.e.g., min) to each pair of outputs (global BP-ANN, global CBR) for 

each case. While a variety of possible combination functions could be imagined, only a 

few were investigated here. Since all of the cases in this set were biopsied, a higher 

model output can be viewed as a more conservative prediction than a lower model output. 

Thus, we selected the “minimum” function as an example of a liberal combination and 

the “maximum” function as an example of a conservative combination. The “mean” 

function was used to give a middle-of-the-road combination that weighted the two input 

models equally. Table 6-1 shows the AUC and partial AUC performance results for 

combining the global BP-ANN and global CBR by taking the minimum, maximum, or 

mean of their outputs. By these measures, there were no advantages in combining these 

models in these ways since none of the ensemble systems outperformed the better of the 

two input models, the global BP-ANN. Table 6-2 shows the performance results in terms 

of the specificity for thresholds selected to give approximately 98% sensitivity. The 

mean or maximum combination methods appear to provide slightly better, specificity at 

98% sensitivity, consistent with a general shift of the distribution of cases toward the
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higher end of the model outputs (i.e., higher likelihood of cancer) with the very likely 

benign cases still being assigned low values (e.g., the maximum of two small outputs is 

still small). However, the mean(global BP-ANN, global CBR) ensemble model failed to 

significantly (p = 0.65) improve the specificity over that of the global CBR, which had 

the highest specificity of the two input models.

Using the “or” function to combine binary outputs can be viewed as a conservative 

combination analogous to using the “maximum” function to combine the continuous 

outputs. Using the “or” function, a biopsy would be recommended if either input model 

recommended biopsy. The “and” function provides a more liberal combination scheme; 

a biopsy would be recommended only if both input models recommended biopsy. Table

6-3 shows the performance results in terms o f sensitivity and specificity for “and” and 

“or” combinations of the binary votes of the classifier outputs. The binary votes were 

determined by applying thresholds to the global ANN (0.1842) and global CBR (0.1333) 

outputs that gave approximately 98% sensitivity. Keep in mind that the application of a 

threshold results in a single operating point and so ROC analysis is no longer possible. 

As expected, the “and” ensemble shows better specificity than the “or” ensemble or the 

input models, while the “or” ensemble shows better sensitivity than the “and” ensemble 

or the input models. Since the resulting ensemble models have boih a different 

specificity and sensitivity than the input global models it is difficult to compare them. 

The “and” ensemble would spare 11% ((363-327)/327) more benign biopsies than the 

global CBR, but at the expense of delaying the diagnosis of 22% ((22-18)/l8) more 

cancers. The tradeoffs in sensitivity and specificity are such that the “and” ensemble is
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unlikely to be significantly better than the global CBR model in either a statistical or 

clinical sense.

It is worth noting that “oracle” calculations can be used to determine an 

upperbound on ensembles of the global BP-ANN and global CBR. For example, an 

oracle for combining binary votes from BP-ANN and CBR (using the thresholds for 98% 

sensitivity described above) would output the correct answer if either of the models was 

correct. Such an oracle would perform with 98.7% sensitivity and 28.5% specificity 

(compare to Table 6-3).

Table 6-1. ROC performance metrics of ensembles of the global BP-ANN and global 
CBR models formed by taking minimum, maximum, or mean of their outputs. Notice 
that none of the ensemble systems outperformed the global BP-ANN (first row).

Model AUC partial AUC
global BP-ANN 0.8204 0.3456
global CBR 0.7875 0.3234
max(global BP-ANN, global CBR) 0.8072 0.3330
min(global BP-ANN, global CBR) 0.8109 0.3333
mean(global BP-ANN, global CBR) 0.8127 0.3366

Table 6-2. Performance in terms of the specificity at approximately 98% sensitivity of 
the ensembles of the global BP-ANN and global CBR models formed by taking 
minimum, maximum, or mean of their outputs. Notice that mean(global BP-ANN, global 
CBR) ensemble model failed to significantly (p = 0.65) improve the specificity over that 
of the global CBR (second row).

Model Threshold Sensitivity Specificity
global BP-ANN 0.1842 965 /982  = 98.3% 303 /  1276 = 23.7%

global CBR 0.1333 964 /982  = 98.2% 327/1276 = 25.6%

max(global BP-ANN, 
global CBR)

0.2189 963 /982  = 98.1% 341/1276 = 26.7%

min(global BP-ANN, 
global CBR)

0.1250 963/982  = 98.1% 315/1276 = 24.7%

mean(global BP-ANN, 
global CBR)

0.1772 964/982  = 98.2% 346/1276 = 27.1%
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Table 6-3. Thresholds were applied to the global BP-ANN and global CBR models to 
give approximately 98% sensitivity. The resulting binary votes were combined by 
logical “or” and “and” functions.

Model Sensitivity Specificity
global BP-ANN 965 / 982 = 98.3% 303/ 1276=23.7%
global CBR 964 / 982 = 98.2% 327/ 1276 = 25.6%
OR(global BP-ANN, global CBR) 969 / 982 = 98.7% 267 / 1276 = 20.9%
AND(global BP-ANN, global CBR) 960 /  982 = 97.8% 363 / 1276 = 28.5%

6.3 A priori Subsets
In the previous Section 6.2, ensemble systems were built over the whole training

set. In this section, we investigated ensemble methods for subsets defined by a priori 

partitions. While three a priori partitions were discussed previously (institution (Section 

2.2.1), lesion type (Section 2.2.2), and patient age (Section 2.2.3)), we focused on the 

subsets defined by lesion type to investigate the potential of ensemble CAD systems. We 

compared the performance of the ensemble models to the performance of the global 

model on the lesion subsets (Section 4.2).

6.3.1 Lesion
As described in Section 2.2.2, the two major types of breast lesions are masses 

and calcifications. We investigated use of ensemble CAD systems for the subsets of 

mass and calcifications in the training data. In the following subsections, the round-robin 

continuous outputs of the global or local BP-ANN and CBR models were combined.

6.3.1.1 Mass
Ensembles of the global BP-ANN (Section 3.4) and global CBR (Section 3.5)

models over the subset of mass lesions (Section 2.2.2) in the training data (Section 1.4)

were investigated. Table 6-4 shows the AUC and partial AUC performance results for

combining the global BP-ANN and global CBR by taking the minimum, maximum, or
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mean of their outputs on the mass cases. By these measures, there were no advantages in 

combining these models in these ways, since none of the ensembles outperformed the 

best input model, the global BP-ANN.

Table 6-4. ROC performance metrics of ensembles of the global BP-ANN and global 
CBR models formed by taking minimum, maximum, or mean of their outputs on the 
mass cases. Notice that none of the ensemble systems outperformed the global BP-ANN 
(first row).

Model AUC partial AUC
global BP-ANN 0.8848 0.4818
global CBR 0.8758 0.4617
max(global BP-ANN, global CBR) 0.8821 0.4811
min(global BP-ANN, global CBR) 0.8807 0.4617
mean(global BP-ANN, global CBR) 0.8828 0.4786

6.3.1.2 Calcifications
Ensembles of the global BP-ANN (Section 3.4) and global CBR (Section 3.5)

models over the subset of calcification lesions (Section 2.2.2) in the training data (Section

1.4) were investigated. Table 6-5 shows the AUC and partial AUC performance results

for combining the global BP-ANN and global CBR by taking the minimum, maximum,

or mean of their outputs on the calcification cases. By these measures, there were no

advantages in combining these models in these ways, since none of the ensembles

outperformed the best input model, the global BP-ANN.

Recall that in Section 5 “local” models specific for different subsets or clusters of

the data were built. Since the local CBR model was significantly better than the global

CBR model on the calcification cases (Section 5.2.2), ensembles of the local CBR and

local BP-ANN were also considered. Table 6-6 shows the AUC and partial AUC

performance results for combining the local, calcification-specific BP-ANN and the local,

calcification-specific CBR by taking the minimum, maximum, or mean of their outputs
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on the calcification cases. While the mean(local BP-ANN, local CBR) ensemble looks 

like an improvement in the partial AUC over the local BP-ANN and local CBR models, it 

was not significantly (p = 0.93) different from the global BP-ANN model on calcification 

lesions. Thus, there were no advantages in combining these models in these ways, since 

none of the ensembles outperformed the best input model, the local BP-ANN.

Table 6-5. ROC performance metrics of ensembles of the global BP-ANN and global 
CBR models formed by taking minimum, maximum, or mean of their outputs on the 
calcification cases. Notice that none of the ensemble systems outperformed the global 
BP-ANN (first row).

Model AUC partial AUC
global BP-ANN 0.7251 0.1811
global CBR 0.6413 0.1173
max(global BP-ANN, global CBR) 0.7010 0.1483
min(global BP-ANN, global CBR) 0.7102 0.1710
mean(global BP-ANN, global CBR) 0.7114 0.1688

Table 6-6. ROC performance metrics of ensembles of the local BP-ANN and local CBR 
models formed by taking minimum, maximum, or mean of their outputs on the 
calcification cases. The mean(local BP-ANN, local CBR) ensemble was not significantly 
(p = 0.93) different in partial AUC from the global BP-ANN model on calcification 
lesions.

Model AUC partial AUC
local BP-ANN 0.7305 0.1765
local CBR 0.6840 0.1747
max(local BP-ANN, local CBR) 0.7053 0.1729
min(local BP-ANN, local CBR) 0.7165 0.1752
mean(local BP-ANN, local CBR) 0.7096 0.1821

6.4 Unsupervised Learning Methods for Cluster Analysis
In the previous Section 6.3, we built ensemble models for subsets of the data

defined by a priori knowledge. In this section we discuss ensemble models for subsets of 

the data identified by unsupervised learning. While we partitioned the data using three 

unsupervised learning methods (agglomerative hierarchical clustering followed by K-
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Means (Section 2.4.1), Self-Organizing Map (Section 2.4.2), and AutoClass (Section

2.4.3), we focused on a single cluster identified by the SOM in order to investigate 

ensemble CAD systems. We compared the performance of the ensemble models to the 

global model on the cluster (Section 4.3).

Recall that the Self-Organizing Map (SOM) was used to identify 16 clusters in the 

training data (Section 2.4.2). Cluster #13 identified by the SOM (Section 2.4.2) was 

selected as the example cluster to on which to test ensemble approaches. Cluster #13 was 

chosen because the local BP-ANN was better than the global BP-ANN in terms of the 

partial AUC (Section 5.3.2), thought not significantly so (p = 0.21). Recall that there 

were 227 cases in the cluster and that the profiles (Section 2.3) of cluster #13 indicated 

that a typical case was a woman in her 50’s with clustered, pleomorphic calcifications 

(Figure 2-12 and Figure 2-13). Since in general our models perform poorly on 

calcification lesions (Section 4.2.2 and Section 5.2.2), we were particularly interested in 

the possibility of getting any improvement on a cluster of calcification cases.

In addition to the global BP-ANN (Section 3.4) and local BP-ANN (Section 5.3.2)

models, local LDA and local SVM models were built in the same manner described for

the global LDA (Section 3.2) and global SVM (Section 3.3) models. Since the SVM

outputs weren’t on the same scale as the BP-ANN and LDA outputs, the SVM outputs

were linearly rescaled to between zero and one. Table 6-7 shows the AUC and partial

AUC performance results for the base models. For simplicity, we focused on combining

the two most promising local models, the local BP-ANN and local SVM. We studied the

effects of combining them by taking the minimum, maximum, or mean of their outputs.

However, the most promising ensemble, min(local BP-ANN, local SVM), was not
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significantly better the global BP-ANN in terms of the AUC (p = 0.25) or the partial 

AUC (p = 0.19).

Table 6-7. ROC performance metrics of ensembles of the local BP-ANN and local SVM 
models formed by taking minimum, maximum, or mean of their outputs on the cases in 
cluster #13 identified by the SOM.

Model AUC partial AUC
global BP-ANN 0.7118 0.2266
local BP-ANN 0.6856 0.2721
local LDA 0.7000 0.2182
local SVM 0.7377 0.1707
min(local BP-ANN, local SVM) 0.7417 0.2726
max(local BP-ANN, local SVM) 0.6682 0.1633
mean(local BP-ANN, local SVM) 0.6747 0.2532

Given the disappointing performance of the simple combination functions (Table

6-7), we hypothesized that a more sophisticated combination function might be required. 

Thus, we also investigated using a perceptron and a BP-ANN with a hidden layer to 

combine the local BP-ANN and local SVM outputs. Notice that this approach entailed 

doing a “round-robin of the round-robin” (Section 1.3.3). That is, a BP-ANN or 

perceptron model was trained in a round-robin fashion to combine the round-robin 

outputs of other models. The purpose of employing round-robin sampling was to avoid 

training and testing on the same cases since that makes it difficult to gauge the potential 

for generalization of the model. Four ensemble models were considered. (1) A 

perceptron to combine the local BP-ANN and local SVM round-robin outputs. (2) A 

perceptron to combine the local BP-ANN and local SVM round-robin outputs and the 

three input features (Calcification Morphology, Calcification Distribution, and Age). (3) 

A BP-ANN with a hidden layer to combine the local BP-ANN and local SVM round- 

robin outputs. (4) A BP-ANN with a hidden layer to combine the local BP-ANN and
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local SVM round-robin outputs and the three input features (Calcification Morphology, 

Calcification Distribution, and Age). The input features were included in some 

ensembles because it was hypothesized that patterns in the input features could be 

valuable in determining how to combine the model outputs. Table 6-8 summarizes the 

network parameters used for these four ensemble models.

Notice that ensembles (2) and (4) required unusually high numbers of iterations to 

train, by an order of magnitude. A minimum in the MSE on the held-out cases (“testing 

MSE”) was not observed for the perceptron for ensemble (2); the training was arbitrarily 

cut off. When the learning rate was increased, a minimum was observed, but that 

perceptron did not achieve as low of testing MSE as the one selected. If the training was 

arbitrarily cutoff at 100 iterations (a value more consistent with the other ensembles), the 

performance was more similar to that of ensemble (I). A minimum in the testing MSE 

was observed for ensemble (4), but many more iterations than usual were required to 

reach that point. If the training was arbitrarily cutoff at 100 iterations, the performance 

was more similar to that of ensemble (3).

Table 6-8. The network parameters for the four neural network-based ensemble models. 
(1) perceptron(local BP-ANN, local SVM), (2) perceptron(local BP-ANN, local SVM, 
input features), (3) BP-ANN(local BP-ANN, local SVM), (4) BP-ANN(local BP-ANN, 
local SVM, input features).

Ensemble 1st layer
learning
rate

2nd layer 
learning 
rate

momentum # hidden 
nodes

iterations

(1) perceptron 0.1 0.1 0.1 - 50
(2) perceptron 0.1 0.1 0.1 - 3080
(3) BP-ANN 0.1 0.1 0.1 6 140
(4) BP-ANN 0.9 0.1 0.1 8 3440
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Table 6-9 shows the AUC and partial AUC performance results for the four

neural network-based ensemble methods. The round-robin performance results for

forming an ensemble by training a BP-ANN on the feature inputs and the round-robin

outputs of the local BP-ANN and local SVM were extremely good. In particular,

ensemble (4) performed with AUC = 0.9192 and partial AUC = 0.4579 as compared to

the local BP-ANN model performance of AUC = 0.6856 and partial AUC = 0.2721.

These performances on a cluster of calcification cases were unprecedented. Since we

suspected that these results were optimistic due to the “round-robin of the round-robin”

sampling performed, we tested the generalization of ensemble (4) to the evaluation set

(Section 1.4) that had been set aside to allow for independent testing to resolve exactly

this sort of generalization issue. Our concern was the “round-robin of the round-robin”

resulted in a lack of independence between the training and testing cases. In order to test

the generalization, a single model was required and round-robin sampling actually

produces N separate models. Thus, train-on-all local BP-ANN and local SVM models

using the parameters determined from the round-robin training were built on the training

data. In other words, a single BP-ANN (and likewise a single SVM model) was built by

training without round-robin sampling, but using the same model parameters selected

from round-robin training (e.g., the number of hidden nodes). Those train-on-all outputs

and the feature inputs were used to build a train-on-all BP-ANN using the parameters

determined from the round-robin training. In other words, a single BP-ANN ensemble

model was built by training on all the training case inputs and outputs, but using the

network parameters determined from round-robin training. The cases in the evaluation

set (Section 1.4) that mapped to cluster #13 were then passed through the ensemble (4)
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system. The resulting performance was AUC =0.7476 and partial AUC = 0.1891, which 

was much lower than the optimistic results from the ‘round-robin of the round-robin’ on 

the training cases (Table 6-9). Moreover, the performance of the ensemble (4) system on 

the evaluation set was not significantly different from that of the global BP-ANN on the 

evaluation set in terms of either the AUC (0.7153, p = 0.26) or the partial AUC (0.2687, 

p = 0.34). Thus, round-robin training of ensemble models based on both feature inputs 

and round-robin local model outputs seems inadvisable. While the number of weights in 

the combination BP-ANN of the ensemble (4) system was not excessive (57 weights) and 

the number of inputs was small (3 input features + 2 model outputs), the small number of 

cases (227) may also have contributed to the overtraining.

Multi-stage CAD systems are common in the literature (e.g., [42, 108, 109]). For 

example, a CAD system might extract features, select among the extracted features, and 

merge the selected features with a machine learning technique. Each stage often involves 

parameter optimization, which requires some form of sampling, such as round-robin 

sampling. Particular care must be taken with regard to sampling and evaluation in multi­

stage CAD systems. The optimistic results that were presented in this section should be 

taken as a general cautionary tale and not as strange behavior exhibited only by this 

particular combination of methods for this particular task.
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Table 6-9. The ROC performance of the four neural network-based ensemble models. 
(I) perceptron(local BP-ANN, local SVM), (2) perceptron(local BP-ANN, local SVM, 
input features), (3) BP-ANN(local BP-ANN, local SVM), (4) BP-ANN(local BP-ANN, 
local SVM, input features).

Ensemble AUC partial AUC
global BP-ANN 0.7118 0.2266
(1) perceptron 0.6617 0.2345
(2) perceptron 0.7134 0.1606
(3) BP-ANN 0.6604 0.2362
(4) BP-ANN 0.9192 0.4579

6.5 Summary
In this section, we considered ensemble systems, in which the same cases were 

used to train multiple models, whose predictions were then combined in a two-stage 

classifier [41]. The models used were the same types as the models described in Sections 

3 and 5.

For the global BP-ANN (Section 3.4) and global CBR (Section 3.5), simple 

combinations (min, max, mean) of the continuous round-robin model outputs were 

considered and evaluated in terms of the AUC, partial AUC, and the specificity at 98% 

sensitivity. Thresholds were also applied to the continuous model outputs to give binary 

predictions which were combined by logical “and” and “or” functions. No improvement 

in performance was seen over all the training cases or over the mass and calcification 

subsets (Sections 6.2 and 6.3).

Combining the outputs of a local BP-ANN and local CBR on calcifications by 

taking the mean showed some promise, but was not significantly better than using the 

global BP-ANN (Section 6.3.1.2). Likewise, combining the outputs of the local BP-ANN 

and local SVM on SOM cluster #13 by taking the minimum showed some promise, but

was not significantly better than using the global BP-ANN (Section 6.4).
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Our efforts to combine the outputs of the local BP-ANN and local SVM on SOM 

cluster #13 using a BP-ANN model tell an important cautionary tale (Section 6.4). 

Round-robin training of a BP-ANN to combine the input features and the round-robin 

outputs of the local BP-ANN and local SVM appeared to be extremely successful, but 

failed to generalize when tested on the evaluation set. This training approach appears to 

be fundamentally flawed and should be avoided.

In conclusion, the ensemble methods considered here did not prove advantageous. 

The simplistic combination schemes did not result in significant improvements and more 

complicated combination schemes were found to be unduly optimistic. However, it 

should be noted that there isn’t any way to know a priori what models should be 

combined or how they should be combined. Thus, additional work in this area could be 

beneficial and may be warranted. For example, resampling techniques such as boosting 

could be investigated [110-112].
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7 Evaluation
As discussed in Section 1.3, evaluation of the breast cancer CAD systems was 

critical. A major concern is the ability of CAD systems to generalize. That is, to perform 

on a similar but previously unseen data set in approximately the same way as it 

performed on the data set used to construct it. In order to address this issue, the data were 

randomly partitioned into two halves (Sections 1.3.3 and 1.4). In Sections 2, 3 ,4 , 5, and 

6 we described the results of unsupervised and supervised learning techniques applied to 

the training half of the data set. The cluster analysis (Section 2) was performed on the 

entire training half while the predictive models (Sections 3,4, 5, and 6) were trained 

using round-robin sampling. In this section, we describe the generalization tests 

performed with the evaluation half of the data set. By using round-robin sampling on the 

training half and performing a final verification using the evaluation set, we are assessing 

the system using three portions of the data in a training-testing-validation strategy.

Testing for generalization on a held-out evaluation set is still important even if 

round-robin sampling was used in training. The results from round-robin sampling may 

be biased because, for example, the results from round-robin training were considered in 

choosing the model parameters (e.g., the number of hidden nodes in a BP-ANN). 

Although round-robin sampling is very efficient for using all cases for training and 

testing without direct overlap, each case contributes indirectly to the choice of model 

parameters, and thus there is not a truly independent test set. The problems that we 

encountered with the “round-robin of the round-robin” in Section 6.4 illustrate the 

importance of testing for generalization on a held-out evaluation set.
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A superior form of the training-testing-vaiidation strategy would entail resampling 

the cases into the training, testing, and validation portions. That is, we would need to 

repeat the random partitioning of data into “ training” and “evaluation” sets and optimize 

the models each time using round-robin sampling on the “training” set and then validate 

the round-robin results by testing on the held-out “evaluation” set. While this approach 

would be ideal, we did not pursue it due to the computational time that would be 

required.

Notice that in the previous section we were looking for an improvement over our 

“gold standard” model and so we hoped to see significant differences in the comparisons 

we performed. On the other hand, in this section we are testing for generalization and so 

we hope to see failures to demonstrate a significant difference, which would indicate that 

the results from the training set would apply to a similar but new data set.

7.1 Evaluation Data Set
As described in Section 1.4, the data were randomly partitioned into training and

evaluation sets. Approximately the same percentage of the cases was malignant in the 

evaluation set (42%) as was in the training set (43%, Table 1-2). The same distribution 

of cases from the three institutions was observed in the training and evaluation sets: Duke 

(33%), UPenn (22%), and DDSM (45%, Table 1-1). The same distribution of lesion 

types was seen with the evaluation set as was observed with the training set (rightmost 

column of Table 2-3): masses (1079 / 2177 =  50%), calcifications (896 / 2177 = 41%), 

and other lesions (202 / 2177 = 9%). See Section 2.2.2 for definitions of the lesion types. 

While the percent of women in the evaluation set who were older than 55 years (1053 /
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2177 = 48%) was lower than that observed in the training set (50%, Table 2-6), the 

difference was not significant (p = 0.33, Chi-square test for independence).

7.2 Map Evaluation Cases to SOM Clusters in Training Set
After performing cluster analysis (Section 2), one may wish to identify to which of

the clusters a new case would belong. One simple method was used to map the 

evaluation cases to the SOM clusters (Section 2.4.2). The evaluation data were 

normalized in the same manner as the training data. The centroids (means) of the clusters 

in the training data were computed. Each evaluation case was mapped to the cluster for 

which the Euclidean distance from the case to the cluster centroid was smallest. The 

distribution of evaluation cases across the SOM clusters was similar to what was seen 

with the training cases (Table 7-1). The percent of the cases that were malignant in each 

cluster was similar for the training and evaluation sets. This provided some reassurance 

that the partition into training and evaluation sets was fair and that the clustering 

technique was robust, given that the clustering results were not considered in the original 

random split of the data into training and evaluation sets.
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Table 7-1. Distribution of the training and evaluation cases across the clusters identified 
by the SOM (Section 2.4.2).

Training Evaluation
Cluster N Percent

Malignant
N Percent

Malignant
1 68 26% 69 30%
2 91 14% 130 8%
3 190 45% 129 43%
4 212 83% 201 86%
5 8 - 9 -

6 301 6% 237 8%
7 89 24% 127 22%
8 194 71% 207 65%
9 313 52% 238 45%
10 29 31% 69 28%
11 95 69% 99 83%
12 1 - 0 -

13 227 38% 276 38%
14 378 39% 324 32%
15 3 - 5 -

16 59 68% 57 70%

7.3 Generalization of Global Models to Evaluation Set
In Section 3, five global models were considered for the training set. The

generalization of the two most promising (Section 3.7) models, BP-ANN (Section 3.4) 

and CBR (Section 3.5), was tested using the evaluation set (Sections 1.4 and 7.1).

A global BP-ANN (Section 3.4) was trained on all the training cases, using the 

network parameters determined from the round-robin training, and applied to the 

evaluation set. The performance on the training set refers to the analysis of the round- 

robin model outputs. There was no significant difference (unpaired z-test) in the 

performance of the global BP-ANN on the training and evaluation sets (Table 7-2) in 

terms of the AUC (p = 0.35) or the partial AUC (p = 0.29). The generalization of a 

threshold selected to give 98% sensitivity on the training set is shown in Table 7-3. The
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Table 7-2. Generalization of the global BP-ANN and global CBR models to the 
evaluation set in terms of the AUC and partial AUC. Standard deviations were estimated 
by bootstrap sampling (Section 1.3.1). While both models showed good generalization in 
terms of the AUC, the difference in the partial AUC between the training and evaluation 
sets was borderline significant (p = 0.05) for CBR.

Training Evaluation
Model AUC partial AUC AUC partial AUC
BP-ANN 0.820 ± 0.009 0.347 ±0.022 0.832 ±0.009 0.312 ±0.025
CBR 0.788 ±0.009 0.324 ±0.019 0.798 ±0.010 0.263 ±0.025

Table 7-3. Generalization on the evaluation set of threshold selected to give 98% 
sensitivity on the training set for the global BP-ANN and global CBR. The thresholds 
selected on the training set generalized slightly better for the BP-ANN than the CBR.

Training Evaluation

Model Threshold Sensitivity Specificity Sensitivity Specificity
BP-ANN 0.1842 965 / 982 = 

98.3%
303 / 1276 = 
23.4%

884/904 = 
97.8%

296 /1273 = 
23.3%

CBR 0.1333 964 / 982 = 
98.2%

327 / 1276 = 
25.6%

873 / 904 = 
96.6%

316/ 1273 = 
24.8%

7.4 Generalization of Rule-Based Method to the Evaluation Set
In Section 5.2.2, a simple classification rule was proposed based on the cluster

profiles and the CART models: if the Mass Margin was well-circumscribed or obscured 

and the age was less than 59 years and there were no calcifications, associated findings, 

or special findings, then don’t biopsy, otherwise do biopsy. On the training set, this rule 

gave 961 / 982 = 98% sensitivity and 336 / 1276 = 26% specificity. On the evaluation 

set, this rule gave 886 / 904 = 98% sensitivity and 339 /1273 = 27% specificity. Thus, 

the rule generalized well to the evaluation set and performed comparably to the global 

BP-ANN (Table 7-3).
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7.5 Global BP-ANN Performance on the A Priori Subsets in Evaluation 
Set
In Section 4.2, we investigated the performance of the round-robin trained, global 

BP-ANN on the a priori subsets (Section 2.2) in the training data. In this section, we 

examined the performance of the global BP-ANN trained on the training data and tested 

on the evaluation data over the a priori subsets (institution, lesion type, patient age). We 

checked to see if the same trends were observed on the evaluation cases as had been seen 

on the training cases (e.g., better performance on masses than calcifications). The global 

BP-ANN performance on the training set (round-robin outputs) and evaluation set was 

compared in terms of the AUC and partial AUC.

7.5.1 Institution
The difference in the global BP-ANN performance on the institution subsets in

the training (Table 4-1) and evaluation (Table 7-4) sets was not significant for Duke 

(AUC p = 0.36, partial AUC p = 0.82) or UPenn (AUC p = 0.36, partial AUC p = 0.51). 

The difference in AUC was not significant (p = 0.64) for DDSM. However, the partial 

AUC for the DDSM subset was significantly (p = 0.04) lower on the evaluation set 

(0.261 ± 0.036) than on the training set (0.355 ± 0.029). Thus, there are some potentially 

important differences between the randomly sampled training and evaluation sets even 

for this very large database.

We compared the performance of the global BP-ANN across the institution 

subsets in the evaluation set. As with the training set, the global BP-ANN performance is 

relatively constant across the institution subsets in the evaluation set (Table 7-4). 

However, there is one exception. The difference in the partial AUC for the Duke and
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DDSM subsets was borderline significant (p = 0.049, Table 7-5). In other words, for the 

global BP-ANN trained on a the mixed institution training set, the difference in 

performance on the Duke and DDSM subsets in the evaluation was borderline significant 

in the high sensitivity region. Thus, the issue of cross-institutional analysis continues to 

warrant further study.

Table 7-4. ROC performance on the institution subsets for the global BP-ANN, trained 
on the training set and tested on the evaluation set. The standard deviations were 
estimated by bootstrap sampling on the network outputs (Section 1.3.1).

AUC partial AUC
Duke 0.841 ±0.015 0.367 ±0.040
UPenn 0.843 ±0.018 0.339 ±0.052
DDSM 0.817 ±0.014 0.261 ±0.036

Table 7-5. Statistical comparisons of the performance of the global BP-ANN on the 
institution subsets in the evaluation set.

AUC partial AUC
Duke vs. UPenn p = 0.93 p = 0.67
Duke vs. DDSM p = 0.24 p  = 0.05
UPenn vs. DDSM p = 0.25 p = 0.22

7.5.2 Lesion
The differences in the global BP-ANN performance on the masses in the training 

and evaluation sets were not significant (AUC p = 0.57, partial AUC p = 0.56).

Likewise, the differences in the global BP-ANN performance on the calcifications in the 

training and evaluation sets were not significant (AUC p = 0.57, partial AUC p = 0.36). 

As on the training set, the global BP-ANN performance on the masses was significantly 

(p < 0.01) better than that on calcifications (Table 7-6) in the evaluation set.
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Table 7-6. ROC performance on the mass and calcification subsets for the global BP- 
ANN trained on the training set and tested on the evaluation set (both were mixes of 
cases that included mass, calcifications, and other lesions). The standard deviations were 
estimated by bootstrap sampling on the network outputs (Section 1.3.1).

AUC partial AUC
Mass 0.893 ±0.010 0.448 ±0.015
Calcification 0.711 ±0.018 0.147 ±0.027

7.5.3 Patient Age
The difference in the global BP-ANN performance on the subset of younger

women in the training and evaluation set was not significant (AUC p = 0.09, partial AUC 

p = 0.12). However, the difference in the global BP-ANN performance on the subset of 

older women in the training and evaluation set was significant in AUC (p < 0.01) though 

the difference in partial AUC was not significant (p = 0.11).

The comparison of the global BP-ANN on the younger and older women was 

very different for the training (Section 4.2.3) and evaluation sets (Table 7-7). On the 

training set the model performed better on the younger women than on the older women 

(AUC p < 0.01, partial AUC p < 0.01) while on the evaluation set the model performed 

somewhat better on the older women than on the younger women (AUC p = 0.04, partial 

AUC = 0.97). These confounding results on the age subsets are apparently due to 

sampling effects (Section 7.7.2). Thus, there are some potentially important differences 

introduced by sampling even for this very large database.

Table 7-7. ROC performance on the subsets of younger and older women for the global 
BP-ANN trained on the training set and tested on the evaluation set. The standard 
deviations were estimated by bootstrap sampling on the network outputs (Section 1.3.1).

AUC partial AUC
Age s  55 0.792 ±0.015 0.270 ±0.040
Age > 55 0.832 ±0.012 0.268 ±0.033
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7.6 Global BP-ANN Performance on the SOM Clusters in Evaluation 
Set
As described in Section 7.3, the global BP-ANN was trained on the training set and 

tested on the evaluation set and a threshold (0.1842) was applied that had given 

approximately 98% sensitivity on the training set. On the evaluation set, the overall 

sensitivity was also approximately 98% (884 / 904) and the specificity was approximately 

23% (296 / 1273). In other words, 316 evaluation cases (296 actual negatives and 20 

actual positives) fell below the threshold. As described in Section 7.2, each of the 

evaluation cases was mapped to a cluster in the training set identified by the SOM. Table

7-8 shows the distribution of BP-ANN’s true negative and false negative classifications 

across the clusters in the evaluation set. As was seen on the training set (Table 4-14, 

Section 4.3.2), the majority o f the cancers in the evaluation set that the BP-ANN would 

have incorrectly referred to follow up (14 / 20 = 70%) and the majority of the benign 

lesions in the evaluation set that the BP-ANN would have correctly spared biopsy (198 / 

296 = 67%) were in SOM cluster #6.
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Table 7-8. The global BP-ANN (Sections 3.4 and 7.3) was applied to the evaluation set 
(Sections 1.4 and 7.1). A threshold of 0.1842, which gave approximately 98% sensitivity 
on the training set, was applied. The distributions of the true negatives and false 
negatives across the clusters identified by the SOM (Sections 2.4.2 and 7.2) are shown. 
There were 1273 actual negatives and 904 actual positives.

Cluster N Percent
Malignant

True Negatives False Negatives

I 69 30% 19 4
2 130 8% 64 2
3 129 43% 0 0
4 201 86% 0 0
5 9 - I 0
6 237 8% 198 14
7 127 22% 4 0
8 207 65% 0 0
9 238 45% 0 0
10 69 28% 2 0
11 99 83% 0 0
12 0 - 0 0
13 276 38% 0 0
14 324 32% 8 0
15 5 - 0 0
16 57 70% 0 0

7.7 Resampling Effects on Global BP-ANN Model
Previously we described how even the creation of an independent evaluation set for

validation may still be biased by the specific cases sampled into the training vs. 

evaluation sets. For example, if more cases of type “A” and less of type “B” happened to 

be selected for the training set, then the resulting model may fail to generalize to the 

evaluation set containing more “B” and less “A” cases. Some form of cross-validation or 

bootstrap sampling would be necessary to resolve this concern, but doing so would be 

prohibitively expensive.
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7.7.1 Resampling Effects: Overall BP-ANN Performance
In this section, we present a preliminary study of the effect of using different

random splits of the data into training and evaluation sets (Section 1.4). For each training 

set, the BP-ANN was trained in a round-robin manner using the network parameters 

determined from the primary split used throughout the dissertation (Section 3.4). A BP- 

ANN was trained on all the training cases using the same network parameters and tested 

on the evaluation cases for each split of the data. Table 7-9 shows the variation in the 

ROC performance (Section 1.3.1) of the BP-ANN across the splits of the data into 

training and evaluation sets. The row labeled “primary” shows the results for the split of 

the data used throughout the dissertation. The variability in performance due to sampling 

is more pronounced for the partial AUC (standard deviation -0.020, -5%  error) than the 

AUC (standard deviation -0.005, -0.5% percent error). This is not unexpected since the 

partial AUC is based on a smaller fraction of the cases, but is unfortunate since this 

measure is more clinically relevant than the AUC. Notice that the AUC values for the 

primary split are around 60-80% of a standard deviation from the estimated mean while 

the partial AUC values for the primary split are around 110-150% of a standard deviation 

from the estimated mean. Over all, the primary split does not appear to be an outlier in 

terms of the over all performance relative to that seen on the other random splits. 

However, the observed variability in performance due to sampling despite the large size 

of the data set implies that caution should be taken in interpreting any small differences 

reported in this dissertation, particularly in the partial AUC.
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Table 7-9. Performance of the global BP-ANN for several random splits of the data into 
training and evaluation sets.

Percent Malignant AUC partial AUC
Train. Eval. Train. Eval. Train. Eval.

Primary 43% 42% 0.8204 0.8315 0.3456 0.3098
SI 43% 42% 0.8130 0.8343 0.2824 0.3594
S2 42% 43% 0.8238 0.8196 0.3212 0.3298
S3 41% 44% 0.8170 0.8353 0.3231 0.3263
S4 44% 41% 0.8156 0.8211 0.2825 0.3407
S5 42% 43% 0.8233 0.8269 0.3037 0.3423
S6 43% 42% 0.8158 0.8283 0.2881 0.3449
S7 42% 43% 0.8165 0.8258 0.3046 0.3051
S8 42% 43% 0.8146 0.8294 0.3123 0.3454
S9 44% 41% 0.8152 0.8270 0.3327 0.3091
S10 42% 43% 0.8242 0.8270 0.3394 0.3114

Mean 43% 42% 0.8181 0.8278 0.3123 0.3295
Stdev. 1% 1% 0.0040 0.0048 0.0223 0.0185

7.7.2 Resampling Effects: BP-ANN Performance on Age Subsets
As described in Section 7.5.3, the comparison of the global BP-ANN on the

younger and older women was very different for the training (Section 4.2.3) and

evaluation sets (Table 7-7). In this section, we investigated the role that sampling into

training and evaluation sets played in this phenomenon. The same resampling into

training and evaluation sets and BP-ANN models were used as were discussed in

previous Section 7.7.1.

We found that the there was no statistically significant difference (unpaired z-test, p

= 0.76) between the mean AUC across the resamples for the younger age subset (0.8121

± 0.0135) and the older age subset (0.8092 ±. 0.0131). Likewise, there was no statistically

significant difference (unpaired z-test, p = 0.16) between the mean partial AUC across

the resamples for the younger age subset (0.2988 ± 0.0480) and the older age subset

(0.2252 ±. 0.0217). Thus, the apparent differences we had observed between the older
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and younger women were apparently artifacts of which cases were sampled into the 

training and evaluation sets.

7.8 Summary
In this section, we described the generalization tests performed with the evaluation 

half of the data set. By using round-robin sampling on the training half and performing a 

final verification using the evaluation set, we assessed the system using three independent 

portions of the data in a training-testing-validation strategy. This approach can help 

overcome the bias inherent in using round-robin sampling alone.

Over all, the global BP-ANN and global CBR models generalized well to the

evaluation set (Section 7.3). Our conclusions regarding generalization were mixed for

the comparison of the performance of the global BP-ANN across clusters in the training

and evaluation sets. Certain trends were were clearly apparent with both the training and

evaluation sets: (a) better performance on masses than calcifications (Section 7.5.2), (b)

similar size and malignancy fraction of the clusters identified by the SOM (Section 7.2),

and (c) similar behavior of the global BP-ANN in focusing on a particular cluster (#6) in

terms of the correct and incorrect recommendations for follow up (Section 7.6). Other

conclusions from working with the training data were somewhat weakened by the

analysis of the evaluation cases. The cross-institutional studies (Section 7.5.1) suggest

that sampling may still be affecting our ability to discern institutional effects, even with a

large data set. In particular, one borderline significant difference in the partial AUC was

observed between two institution subsets in the evaluation set that was not seen in the

training set. The apparent trend with the age subsets observed on the training cases was

reversed on the evaluation cases (Section 7.5.3). Resampling experiments with the BP-
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8 Summary, Conclusions, and Future Work
The purpose of this study was to investigate modular and ensemble systems of

machine learning methods for computer-aided diagnosis (CAD) of breast cancer. The 

CAD methods were developed to reduce the number of benign biopsies. In this section, 

we summarize the major results of the dissertation.

In Section I, we provided an overview of breast cancer and mammography (Section

l.l) , the role that computer-aided diagnosis can play (Section 1.2), and modular and

ensemble breast cancer CAD systems performed (Section 1.2.1). While mammography

is valuable for early detection of breast cancer, it has a high false-positive rate. A CAD

system for referring benign lesions to short-term follow-up instead of biopsy could spare

women discomfort, anxiety, and expense and potentially improve the cost-effectiveness

of mammographic screening programs. Evaluation of CAD systems is critical since the

consequences of a delayed diagnosis of cancer can be dire. We described the importance

of ROC analysis (Section 1.3.1) and sampling (Section 1.3.3) in evaluating breast cancer

CAD systems. In this study, considerable attention was paid to the issue of model

generalization; thus, the data were partitioned into training and evaluation halves and

furthermore round-robin sampling was used in building models on the training half. We

presented a case study of the relationship between performance metrics from ROC

analysis and one commonly used in developing breast cancer CAD systems (Section

1.3.2). From this case study we concluded that predictive models that minimize the mean

squared error may also maximize the area (AUC) under the ROC curve, but may not

maximize the partial area (partial AUC) under the high sensitivity region of the ROC

curve. The partial AUC is more clinically relevant than the AUC since a breast cancer
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CAD system must maintain high sensitivity (i.e., delaying the diagnosis of breast cancer 

is generally worse than a benign biopsy). Finally, we supplied a detailed description of 

the data set used for the remainder of this dissertation (Section 1.4). It is worth noting 

that the database used in this study was very large and was comprised of cases mixed 

from multiple institutions (Duke, UPenn, DDSM). The database was randomly split into 

two halves: 22S8 cases for training and 2177 cases for evaluation. Each breast lesion 

underwent biopsy and was described by six mammographic findings (BI-RADS™) and 

patient age.

In Section 2, we described the clusters that could be identified in the training set 

using a priori knowledge (Section 2.2) or unsupervised learning techniques (Section 2.4). 

Subsets defined by institution (Section 2.2.1), lesion type (Section 2.2.2), and patient age 

(Section 2.2.3) were considered. Three unsupervised learning techniques were used: 

agglomerative hierarchical clustering followed by K-Means (Section 2.4.1), Self- 

Organizing Map (Section 2.4.2), and AutoClass (Section 2.4.3). Some agreement was 

seen between the clusters identified by the three unsupervised learning methods. Of 

particular interest, all three identified a cluster of mostly benign masses. Using profiling 

techniques (Section 2.3), we described a typical case in these clusters as a younger 

woman with a well-circumscribed or obscured, oval-shaped mass (clusters E, 6, and (3).

In Section 3, we investigated five supervised machine learning models for predicting

biopsy outcome from mammographic findings and patient age using the training set:

linear discriminant analysis (LDA, Section 3.2), support vector machines (SVM, Section

3.3), back-propagation artificial neural networks (BP-ANN, Section 3.4), case-based

reasoning (CBR, Section 3.5), and classification and regression trees (CART, Section
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3.6). Each of these “global” models was built in a round-robin fashion on the training 

set. We found that the non-linear models (BP-ANN, CBR, CART) were generally 

superior to the linear models (LDA, S VM) for this task. In our previous work with 

smaller data sets we had not been able to demonstrate the superiority of non-linear 

models over linear models for this task. The global BP-ANN and global CBR models 

were considered the most promising since they showed the highest partial AUC values 

over all training cases (Table 3-1). For the BP-ANN, the AUC = 0.820 ± 0.009 and the 

partial AUC = 0.347 ± 0.022. For the CBR, the AUC = 0.788 ± 0.009 and the partial 

AUC = 0.324 * 0.019.

In Section 4, we examined the performance of the global models (Section 3) over the

clusters identified using a priori knowledge (Section 2.2) and unsupervised learning

(Section 2.4). The global models were trained in a round-robin fashion over the entire

training set and then evaluated in terms of their performance on the clusters of cases.

One of the most striking results of this dissertation was that CAD systems trained on a

mixture of lesion types performed much better on masses than on calcifications (Section

4.2.2). The study of the institutional effects suggests that models built on cases mixed

between institutions may overcome some of the weaknesses of models built on cases

from a single institution (Section 4.2.1, Section 5.2.1). There were no significant

differences in the AUC or partial AUC of the global BP-ANN in pair-wise comparisons

on the institution subsets (Table 4-1, Table 4-2) and the same threshold on the BP-ANN

gave approximately 98% sensitivity and 23% specificity on all three of the institution

subsets (Table 4-5). While we observed that there was no benefit in terms o f the AUC or

partial AUC index in using a BP-ANN specifically trained for the cases at an institution

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



rather than the global BP-ANN trained on cases mixed between the institutions, we also 

found that a BP-ANN trained on cases from one institution did not always perform the 

same way (AUC, partial AUC, sensitivity and specificity for a fixed threshold) when 

tested on cases from another institution (Section 5.2.1). Thus, further cross-institutional 

studies of breast cancer CAD systems are still needed. Another very interesting result is 

that each of the unsupervised methods identified a cluster that accounted for the majority 

of the BP-ANN’s recommendations for follow up (clusters E, 6, and p, Section 4.4). In 

other words, each clustering technique identified a cluster that contained the majority of 

the benign cases that would have been correctly referred to follow-up and the majority of 

the malignant cases that would have been incorrectly referred to follow-up.

In Section 5, we developed modular CAD systems by building local models

specifically for each of the clusters identified using a priori knowledge (Section 2.2) and

unsupervised learning (Section 2.4). Each “local” model was trained in a round-robin

fashion only on the cases in a cluster identified in the training data. While some local

models were superior to some global models, we were unable to build a modular CAD

system that was better than the global BP-ANN model, which was considered to be a

“gold standard” since we have used BP-ANN models extensively in our laboratory and

the overall performance of the global BP-ANN was generally better than that of the other

global models (Section 3.7). We consider it unlikely that additional work with similar

modular systems would prove fruitful. However, the cluster analysis and local models

also lead us to an unexpected, interesting result. We developed a simple diagnostic rule

from the local CART model for masses and the profiles of the mass clusters identified by

the unsupervised learning methods (clusters E, 6, and (3): if the Mass Margin was well-
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circumscribed or obscured and the age was less than 59 years and there were no 

calcifications, associated findings, or special findings, then don’t biopsy, otherwise do 

biopsy. On the 2258 training cases, this rule gave 961 / 982 = 98% sensitivity and 336 / 

1276 = 26% specificity. In other words, this rule performed comparably to the global 

BP-ANN with a threshold of 0.1842 (965 / 982 = 98% sensitivity, 303 / 1276 = 24% 

specificity). There are several potential advantages of a simple rule over more 

complicated models. First, such a rule would be trivial to implement. Second, its 

simplicity makes it more understandable and thus clinicians may more readily accept it. 

Third, the transparency of the rule allows for more direct comparisons to clinically 

accepted criteria and guidelines. Comparison with current clinical criteria is an important 

area for future work.

In Section 6, we investigated ensemble CAD systems in which the same cases 

were used to train multiple models, whose predictions were then combined. Simple 

combinations (min, max, mean) of the continuous round-robin model outputs were 

considered and evaluated in terms of the AUC, partial AUC, and the specificity at 98% 

sensitivity. Thresholds were also applied to the continuous model outputs to give binary 

predictions which were combined by logical “and” and “or” functions. However, these 

simplistic combination schemes did not result in significant improvements. We also 

investigated using a perceptron and a BP-ANN with a hidden layer to combine 

continuous model outputs and feature inputs. These more complicated combination 

schemes using “round-robin of round-robin” sampling were found to be unduly 

optimistic. However, it should be noted that there isn’t any way to know a priori what

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



models should be combined or how they should be combined. Thus, additional work in 

this area could be beneficial and may be warranted.

In Section 7, we tested the generalization of the results observed on the training half

of the data to the evaluation half of the data. A major concern is the ability of CAD

systems to perform on a new data set in approximately the same way as it performed on

the data set used to construct it {i.e., to generalize). In order to address this issue, the data

were randomly partitioned into two halves for training and evaluation (Sections 1.3.3 and

1.4). In Sections 2, 3,4, 5, and 6 we described the results of unsupervised and supervised

learning techniques applied to the training set and in Section 7 we tested the

generalization of the results to the evaluation set. Over all, the global BP-ANN and

global CBR models generalized well to the evaluation set (Section 7.3). However,

resampling experiments (Section 7.7) with the BP-ANN suggested that the error on the

AUC due to random fluctuations between the training and evaluation sets may be

approximately 0.005 and the error on the partial AUC may be approximately 0.02. In

particular, studies with the age (Section 7.5.3, Section 7.7.2) and institution (Section

7.5.1) subsets suggested that sampling might still have affected our ability to discern

some effects, even with such a large data set, since differences were seen between the

training and evaluation set results. For example, the partial AUC of the global BP-ANN

on the DDSM subset was significantly lower for the evaluation set than for the training

set. The better performance on masses than calcifications seen with the training set was

readily apparent on the evaluation set (Section 7.5.2). In particular, the global BP-ANN

performed significantly better on the masses than on the calcifications in the evaluation

set in terms of both the AUC and the partial AUC. The correlation of a particular cluster
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with the BP-ANN recommendations for follow up was also confirmed with the 

evaluation set (Section 7.6; clusters E, 6, and (3). The simple classification rule based on 

the cluster profiles and the CART models (Section 5.2.2) generalized well to the 

evaluation set and performed comparably to the global BP-ANN (Section 7.4).

In conclusion, a comprehensive study was undertaken to use machine learning 

techniques for the computer-aided diagnosis of breast cancer. In particular, the goal was 

to increase the specificity of mammography-induced breast biopsy. This is a timely and 

significant problem in biomedical engineering. One the largest data sets of its type was 

assembled from three independent institutions. A wide variety of modeling techniques 

were evaluated, individually and in tandem with each other. The data were likewise 

analyzed as a global whole and in terms of subsets. The overall intent was to engineer 

modular and ensemble systems using this large data set and the rich variety of tools 

available. Somewhat to our surprise, these systems tended to match but not exceed the 

performance of a classic feed-forward, back-propagation artificial neural network. As a 

result of this endeavor, however, we clearly identified both the potential promises and 

problems inherent in the use of a large, heterogeneous data set, e.g., issues such as 

generalization across institutions and important difference between subtypes of cases 

such as masses vs. calcifications. We hope that these discoveries will move computer- 

aided diagnosis of breast cancer closer to eventual clinical implementation.
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Appendix 1: Duke Data Collection Form
Breast Biopsy • BIRADS Data

PATIENT INFORMATION 
P atien t Name Film Date
Hx Number Bx Date
Attending JAB /  ER /  MSS /  PW /  R\ Right vs Left

Imaging Workup
Magnification Views 
Focal Compression 
O ther Special Views 
US exam ____ 13 MHz?

MAMMOGRAPHIC FINDINGS 
Ca++ Distribution Ca++ Number

no calcifications
diffuse
regional
segmental
linear
clustered

no calcifications 
< 5
S to  10 
> 10

Physical Exam
Parenchyma Density 6

non-palpable 
palpable lesion

fatty  breast
small amount of parenchyma 
moderate amount of parenchym 
dense breasts

Mass Size
in mm

Mass Margin
no mass
well circumscribed
microlobulated
obscured
ill-defined
spiculated

Location  o'clock (1-12)

Ca++ Description
no calcifications 
milk of calcium-like 
eggshell or rim 
skin
vascular
spherical or lucent-centered 
suture
coarse (“popcorn") 
large rod-like 
round 
dystrophic 
punctate
indistinct (“flake-shaped") 
pleomorphic 
fine branching

subareolar
central

iSJaxillary tail

anterior
middle
posterior

Mass  Shape
0 no mass 0
1 round 1
2 oval 2
3 lobulated 3
4 irregular _4̂

Mass Density 
no mass 
fat-containing 
low density 
isodense 

_4jhigh density

a

10
11
12
13
14

A ssociated  Findings
1 skin lesion
2 hematoma
3 p ost surgical scar
4 trabecular thickening
5 skin thickening
6 skin retraction
7 nipple retraction

~~8~ axillary adenopathy
9 architectural distortion

Special Cases

Date o f Priors .

no change 
new lesion 
qualitative change 
quantitative change

ijn eed le  loc 
T jn e ed le  core

“Gut* Assessm ent

intramam lymph node 
asymmetric b reast tissue 
focal asymmetric density 
tubular density or 

solitary dilated duct

 (mm) Prior Mass Size

Prior Ca++ Number 
<5 5 to  10 >10 

I | interval increase in Ca++

_l_ benign
2_ likely benign

_3_ indeterminate
_4_ likely malignant
_S_ malignant

rev 6/21/00

A ttend ing’s Clinical Recommendatior 
(use all available info) 

i_ negative -  no findings 
_  benign finding - negative 
!_ probably benign finding

 -  suggest short f/u
1 3 | suspicious abnormality 

-  consider biopsy 
| 4 | highly suggestive of cancer
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Appendix 2: DDSM Sample Files

Example I

DDSM Case 1828 OVERLAY file

TOT AL_ABNORM ALITIES 1 
ABNORMALITY 1
LESIONJTYPE MASS SHAPE ASYMMETRIC_BREAST_TISSUE MARGINS
ILL_DEFINED
ASSESSMENT 4
SUBTLETY 4
PATHOLOGY MALIGNANT 
TOTAL_OUTLINES I 
ABNORMALITY 2
LESIONJTYPE CALCIFICATION TYPE FINE_LINEAR_BRANCHING 
DISTRIBUTION LINEAR 
ASSESSMENT 4 
SUBTLETY 4
PATHOLOGY MALIGNANT 
TOTAL OUTLINES 1

DDSM Case 1828 ICS file

ics_version 1.0 
filename A-1828-1 
DATE_OF_STUDY 17 12 1996 
PATIENT_AGE 64 
FILM
FILMJTYPE REGULAR 
DENSITY 2
DATE_DIGITIZED 4 2 1999 
DIGITIZER HOWTEK 43.5 
SEQUENCE
LEFT_CC LINES 6871 PIXELS_PER_LINE 3886 BITS_PER_PIXEL 12 
RESOLUTION 43.5 OVERLAY
LEFT_MLO LINES 6601 PIXELS_PER_LINE 3676 BITS_PER_PIXEL 12 
RESOLUTION 43.5 OVERLAY
RIGHTjCC LINES 6196 PIXELS_PER_LINE 3556 BITS_PER_PIXEL 12 
RESOLUTION 43.5 NONjOVERLAY
RIGHT_MLO LINES 6586 PIXELS_PER_LINE 3466 BITS_PER_PIXEL 12 
RESOLUTION 43.5 NON OVERLAY
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The OVERLAY and ICS files are shown above for the mediolateral oblique 

(MLO) view of the left breast of case 1828 in cancer volume 11 in the Digital Database 

for Screening Mammography (DDSM). Since there were two “PATHOLOGY” values in 

the OVERLAY file, it was parsed as two lesions or cases for this study. Notice that the 

Mass Shape value of “asymmetric breast tissue” was translated into “Mass Shape = No 

Mass = 0” and “Special Findings = asymmetric breast tissue = 2”. The patient age was 

parsed from the ICS file. The encodings of these cases as specified by Table 1-3 are 

shown below.

ID 4412 4082
Biopsy Outcome 1 1
Calcification
Distribution

0 4

Calcification
Morphology

0 14

Mass Margin 4 0
Mass Shape 0 0
Associated Findings 0 0
Special Findings 2 0
Age 64 64

Example 2

DDSM Case 3125 OVERLAY file

TOTAL_ABNORMALITIES 1 
ABNORMALITY 1
LESION_TYPE CALCIFICATION TYPE PUNCTATE-PLEOMORPHIC
DISTRIBUTION CLUSTERED
ASSESSMENT 4
SUBTLETY 2
PATHOLOGY BENIGN
TOTAL_OUTLINES 1

DDSM Case 3125 ICS file 

ics_version 1.0
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filename B-3125-1 
DATE_OF_STUDY 15 1 1997 
PATIENT_AGE 61 
FILM
FILM_TYPE REGULAR 
DENSITY 3
DATE_DIGITIZED 4 3 1998 
DIGITIZER LUMISYS LASER 
SEQUENCE
LEFT_CC LINES 4688 PIXELS_PER_LINE 2712 BITS_PER_PDCEL 12 
RESOLUTION 50 OVERLAY
LEFT_MLO LINES 4704 PIXELS_PER_LINE 2640 BITS_PER_PIXEL 12 
RESOLUTION 50 OVERLAY
RIGHT_CC LINES 4768 PIXELS_PER_LINE 2640 BITS_PER_PIXEL 12 
RESOLUTION 50 NON_OVERLAY
RIGHT_MLO LINES 4720 PIXELS_PER_LINE 2672 BITS_PER_PIXEL 12 
RESOLUTION 50 NON_OVERLAY

The OVERLAY and ICS files are shown above for the mediolateral oblique 

(MLO) view of the left breast of case 3125 in benign volume 1 in the Digital Database 

for Screening Mammography (DDSM). Since there was one “PATHOLOGY” value in 

the OVERLAY file, it was parsed as one lesion or case for this study. Notice that there 

was more than one value for Calcification Morphology, punctate-pleomorphic, so the one 

more suspicious for malignancy, pleomorphic, was used. The patient age was parsed 

from the ICS file. The encoding of this case as specified by Table 1-3 is shown below.

ID 3093
Biopsy Outcome 0
Calcification
Distribution

5

Calcification
Morphology

13

Mass Margin 0
Mass Shape 0
Associated Findings 0
Special Findings 0
Age 61
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Appendix 3: Feature Histograms
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Figure A3 • 1. Distribution of the Calcification Distribution in the training set.
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Figure A3 - 2. Distribution of the Calcification Distribution in the evaluation set.
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Figure A3 - 3. Distribution of the Calcification Morphology in the training set.
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Figure A3 - 4. Distribution of the Calcification Morphology in the evaluation set.
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Figure A3 - 5. Distribution of the Mass Margin in the training set.
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Figure A3 - 6. Distribution of the Mass Margin in the evaluation set.
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Figure A3 - 7. Distribution of the Mass Shape in the training set.
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Figure A3 • 8. Distribution of the Mass Shape in the evaluation set.
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Figure A3 - 9. Distribution of the Associated Findings in the training set.
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Figure A3 « 10. Distribution of the Associated Findings in the evaluation set.
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Figure A3 -11. Distribution of the Special Findings in the training set.

1400

>- 800

» 600

□  Benign 
■  Malignant

I 2 3
Special Findings

Figure A3 - 12. Distribution of the Special Findings in the evaluation set.
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Figure A3 -13. Distribution of Patient Age in the training set.
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