46,085 research outputs found

    Self-organized Data Ecologies for Pervasive Situation-Aware Services: the Knowledge Networks Approach

    Get PDF
    Pervasive computing services exploit information about the physical world both to adapt their own behavior in a context-aware way and to deliver to users enhanced means of interaction with their surrounding environment. The technology to acquire digital information about the physical world is increasingly available, making services at risk of being overwhelmed by such growing amounts of data. This calls for novel approaches to represent and automatically organize, aggregate, and prune such growing amounts of data before delivering it to services. In particular, individual data items should form a sort of self-organized ecology in which, by linking and combining with each other into sorts of “knowledge networks”, they can be able to provide to services compact and easy to be managed higher-level knowledge about situations occurring in the environment. In this context, the contribution of this paper is twofold. First, with the help of a simple case study, we motivate the need to evolve from models of “context-awareness” towards models of “situation-awareness” via proper self-organized “knowledge networks” tools, and introduce a general reference architecture for knowledge networks. Second, we describe the design and implementation of a knowledge network toolkit we have developed, and exemplify algorithms for knowledge self-organization integrated within it. Open issues and future research directions are also discussed

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    On the Integration of Adaptive and Interactive Robotic Smart Spaces

    Get PDF
    © 2015 Mauro Dragone et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)Enabling robots to seamlessly operate as part of smart spaces is an important and extended challenge for robotics R&D and a key enabler for a range of advanced robotic applications, such as AmbientAssisted Living (AAL) and home automation. The integration of these technologies is currently being pursued from two largely distinct view-points: On the one hand, people-centred initiatives focus on improving the user’s acceptance by tackling human-robot interaction (HRI) issues, often adopting a social robotic approach, and by giving to the designer and - in a limited degree – to the final user(s), control on personalization and product customisation features. On the other hand, technologically-driven initiatives are building impersonal but intelligent systems that are able to pro-actively and autonomously adapt their operations to fit changing requirements and evolving users’ needs,but which largely ignore and do not leverage human-robot interaction and may thus lead to poor user experience and user acceptance. In order to inform the development of a new generation of smart robotic spaces, this paper analyses and compares different research strands with a view to proposing possible integrated solutions with both advanced HRI and online adaptation capabilities.Peer reviewe

    Interoperable services based on activity monitoring in ambient assisted living environments

    Get PDF
    Ambient Assisted Living (AAL) is considered as the main technological solution that will enable the aged and people in recovery to maintain their independence and a consequent high quality of life for a longer period of time than would otherwise be the case. This goal is achieved by monitoring human’s activities and deploying the appropriate collection of services to set environmental features and satisfy user preferences in a given context. However, both human monitoring and services deployment are particularly hard to accomplish due to the uncertainty and ambiguity characterising human actions, and heterogeneity of hardware devices composed in an AAL system. This research addresses both the aforementioned challenges by introducing 1) an innovative system, based on Self Organising Feature Map (SOFM), for automatically classifying the resting location of a moving object in an indoor environment and 2) a strategy able to generate context-aware based Fuzzy Markup Language (FML) services in order to maximize the users’ comfort and hardware interoperability level. The overall system runs on a distributed embedded platform with a specialised ceiling- mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels, to detect specific events such as potential falls and to deploy the right sequence of fuzzy services modelled through FML for supporting people in that particular context. Experimental results show less than 20% classification error in monitoring human activities and providing the right set of services, showing the robustness of our approach over others in literature with minimal power consumption

    Federated Embedded Systems – a review of the literature in related fields

    Get PDF
    This report is concerned with the vision of smart interconnected objects, a vision that has attracted much attention lately. In this paper, embedded, interconnected, open, and heterogeneous control systems are in focus, formally referred to as Federated Embedded Systems. To place FES into a context, a review of some related research directions is presented. This review includes such concepts as systems of systems, cyber-physical systems, ubiquitous computing, internet of things, and multi-agent systems. Interestingly, the reviewed fields seem to overlap with each other in an increasing number of ways

    A Context-aware and Intelligent Framework for the Secure Mission Critical Systems

    Get PDF
    Recent technological advancements in pervasive systems have shown the poten-tial to address challenges in the military domain. Research developments in mili-tary-based mission-critical systems have refined a lot as in autopilot, sensing true target behavior, battle damage conditions, acquiring and manipulating command control information. However, the application of pervasive systems in the military domain is still evolving. In this paper, an intelligent framework has been pro-posed for mission-critical systems to incorporate advanced heterogeneous com-munication protocols; service-oriented layered structure and context-aware infor-mation manipulation. The proposed framework addresses the limitation of “time-space” constraints in Mission-critical systems that have been improved signifi-cantly. This improvement is courtesy to enhancing situation-aware tactical capa-bilities such as localization, decision significance, strategic span, strategic inten-tions, resource coordination and profiling concerning the situation. A comprehen-sive use case model has been presented for a typical battle-field scenario followed by a comparison of the proposed framework with existing techniques. It is evi-dent from experiments and analyses that the proposed framework provides more effective and seamless interaction with contextual resources to improve tactical capabilities. This is the peer reviewed version of the following article: A Context-aware and Intelligent Framework for the Secure Mission Critical Systems, which has been published in final form in Transactions on Emerging Telecommunications Technologies. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Version
    • 

    corecore