638 research outputs found

    Active Stimuli-Responsive Polymer Surfaces and Thin Films: Design, Properties and Applications: Active Stimuli-Responsive Polymer Surfaces and Thin Films: Design, Properties and Applications

    Get PDF
    Design of 2D and 3D micropatterned materials is highly important for printing technology, microfluidics, microanalytics, information storage, microelectronics and biotechnology. Biotechnology deserves particular interest among the diversity of possible applications because its opens perspectives for regeneration of tissues and organs that can considerably improve our life. In fact, biotechnology is in constant need for development of microstructured materials with controlled architecture. Such materials can serve either as scaffolds or as microanalytical platforms, where cells are able to self-organize in a programmed manner. Microstructured materials, for example, allow in vitro investigation of complex cell-cell interactions, interactions between cells and engineered materials. With the help of patterned surfaces it was demonstrated that cell adhesion and viability as well as differentiation of stem cells1 depend of on the character of nano- and micro- structures 2 as well as their size. There are number of methods based on optical lithography, atomic force microscopy, printing techniques, chemical vapor deposition, which have been developed and successfully applied for 2D patterning. While each of these methods provides particular advantages, a general trade-off between spatial resolution, throughput, “biocompatibility of method” and usability of fabricated patterned surfaces exists. For example, AFM-based techniques allow very high nanometer resolution and can be used to place small numbers of functional proteins with nanometer lateral resolution, but are limited to low writing speeds and small pattern sizes. Albeit, the resolution of photolithography is lower, while it is much faster and cheaper. Therefore, it is highly desirable to develop methods for high-resolution patterning at reasonably low cost and high throughput. Although many approaches to fabricate sophisticated surface patterns exist, they are almost entirely limited to producing fixed patterns that cannot be intentionally modified or switched on the fly in physiologic environment. This limits the usability of a patterned surface to a single specific application and new microstructures have to be fabricated for new applications. Therefore, it is desirable to develop methods for design of switchable and rewritable patterns. Next, the high-energy of the ultraviolet radiation, which is typically used for photolithography, can be harmful for biological species. It is also highly important to develop an approach for photopatterning where visible light is used instead of UV light. Therefore, it is very important for biotechnological applications to achieve good resolution at low costs, create surface with switchable and reconfigurable patterns, perform patterning in mild physiologic conditions and avoid use of harmful UV light. 3D patterning is experimentally more complicated than 2D one and the applicability of available techniques is substantially limited. For example, interference photolithography allows fabrication of 3D structures with limited thickness. Two-photon photolithography, which allows nanoscale resolution, is very slow and highly expensive. Assembling of 3D structures by stacking of 2D ones is time consuming and does not allow fabrication of fine hollow structures. At the same time, nature offers an enormous arsenal of ideas for the design of novel materials with superior properties. In particular, self-assembly and self-organization being the driving principles of structure formation in nature attract significant interest as promising concepts for the design of intelligent materials 3. Self-folding films are the examples of biomimetic materials4. Such films mimic movement mechanisms of plants 5-7 and are able to self-organize and form complex 3D structures. The self-folding films consist of two materials with different properties. At least one of these materials, active one, can change its volume. Because of non-equal expansion of the materials, the self-folding films are able to form a tubes, capsules or more complex structure. Similar to origami, the self-folding films provide unique possibilities for the straightforward fabrication of highly complex 3D micro-structures with patterned inner and outer walls that cannot be achieved using other currently available technologies. The self-folded micro-objects can be assembled into sophisticated, hierarchically-organized 3D super-constructs with structural anisotropy and highly complex surface patterns. Till now most of the research in the field of self-folding films was focused on inorganic materials. Due to their rigidity, limited biocompatibility and non-biodegradability, application of inorganic self-folding materials for biomedical purposes is limited. Polymers are more suitable for these purposes. There are many factors, which make polymer-based self-folding films particularly attractive. There is a variety of polymers sensitive to different stimuli that allows design of self-folding films, which are able to fold in response to various external signals. There are many polymers changing their properties in physiological ranges of pH and temperature as well as polymers sensitive to biochemical processes. There is a variety of biocompatible and biodegradable polymers. These properties make self-folding polymer highly attractive for biological applications. Polymers undergo considerable and reversible changes of volume that allows design of systems with reversible folding. Fabrication of 3D structures with the size ranging from hundreds of nanometers to centimeters is possible. In spite of their attractive properties, the polymer-based systems remained almost out of focus – ca 15 papers including own ones were published on this topic (see own review 8, state October 2011). Thereby the development of biomimetic materials based on self-folding polymer films is highly desired and can open new horizons for the design of unique 3D materials with advanced properties for lab-on-chip applications, smart materials for everyday life and regenerative medicine

    Antibacterial Coatings Derived from Novel Chemically Responsive Vesicles

    Get PDF
    In order for a drug, or any material used for the purpose of eliciting a change in an organisms’ physical or chemical state, to be effective it must reach the intended target intact and for a sustained rate over time. Drug delivery systems encapsulate a drug to protect it from degradation, prevent side reactions, increase solubility, improve accumulation rates at target sites, and release drugs at a controlled rate. Controlled and sustained release of drugs is achieved by degradation of the carrier triggered by breaking dynamic chemical bonds caused by changes in the chemical environment such as pH or redox conditions. Slow, first order kinetic release of drugs increase therapeutic efficacy while also reducing side effects and other cytotoxicity issues. Up and coming drug delivery systems include hydrogels and nanocarriers such as vesicles. Hydrogel drug delivery systems are unique three-dimensional networks of crosslinked hydrophilic polymers that contain anywhere from 50-90 wt% of water. Drugs can be loaded via encapsulation during the gelation process or may be covalently bound to the polymer backbone before gelation. Amphiphilic molecules or polymers that self-assemble in aqueous solutions to form supramolecular nanostructures, such as vesicles, can encapsulate hydrophilic drugs in the aqueous interior or hydrophobic drugs in the lipophilic bilayer membrane. This study seeks to embed vesicles into a hydrogel to create a hybrid drug delivery system which may be applied as a coating to medical devices to prevent bacterial adhesion and growth, injected directly to a target site, or as an additive for wound dressings. This hybrid system mitigates burst release from the hydrogel, as well as stabilizes the vesicles to afford a longer shelf life. Vesicles are prepared from a novel supramolecular amphiphile composed of thio-alkyl modified��-cyclodextrin as a macrocyclic host, and an adamantyl-dithiopropionic acid modified poly(ethylene glycol) as a linear guest. This host-guest system forms inclusion complexes that self-assemble to bilayered vesicles, which may encapsulate a payload, in aqueous solutions. These vesicles serve as three-dimensional multivalent junctions to form a hydrogel, which may encapsulate a second payload, through a dynamic disulfide exchange crosslinking reaction. This novel drug delivery system will be capable of dual and selective release of two different encapsulated payloads. A pH sensitive acid labile bond embedded in the crosslinker will cleave under acidic conditions to release the payload enclosed in the hydrogel matrix, while a disulfide bond embedded in the supramolecular amphiphile of the free vesicle can be cleaved in the presence of naturally occurring antioxidant glutathione, GSH, to release the second payload. It has been discovered that vesicles efficaciously form, can encapsulate a payload, and are stable for several weeks, up to a month. Vesicle stability is examined in the presence of both intracellular and extracellular concentrations of GSH, and it is found that vesicles are more stable in extracellular concentrations of GSH. Crosslinking of vesicles is attempted at several molecular weights of linear thiol terminated poly(ethylene glycol) crosslinker, concentrations ratios of crosslinker: vesicle, pHs, and temperatures. It can be concluded that the crosslinking density with the linear crosslinker is not high enough to form a hydrogel. Future studies will include 4-arm crosslinkers which are predicted to increase the number of crosslinking points and hence the crosslinking density

    Mucoadhesive Buccal Films Embedded with 5-Fluorouracil Liposomes Formulation and Characterization

    Get PDF
    In the present work, an attempt was made to design and develop prolonged release liposomes by thin film hydration method. Liposomes were characterized by using encapsulation efficiency, optical microscope for structural confirmation, SEM, Zeta potential, particle size, and Ex vivo drug permeation by using Franz diffusion cell. The results showed liposomal formulation increases the penetration of the 5-Fluorouracil in biological membrane. The liposomes are intended to be formulated as mucoadhesive buccal film of 5-Fluorouracil liposomal using polymers HPMC and SCMC. Different polymer concentrations were used in the formulation. The buccal film was evaluated for weight, thickness, Surface pH, Percentage Moisture Absorption, Percentage Moisture loss, folding endurance, drug content uniformity and Ex-vivo permeation study. The Jss o 5-Fluorouracil from F4 was found 9.4802 mg cm-2 h-1, the result indicates 8.53 times higher than compared to free drug. The study confirms that amount of polymers in buccal film formulation plays an essential role in the physicochemical properties and permeability through Goat buccal skin. The kinetics of the drug permeation through excised buccal tissue of goat was studied to determine the mechanism of drug release from the buccal film. The best polymer composition was selected from the various ratios of the polymers. The polymer ratio was found to be HPMC and SCMC in ratio 4.9:2.5 (F4). The F4 formulation shows satisfactory results in the parameters such as Weight, thickness, Surface pH, percentage moisture absorption and loss, folding endurance, drug content and diffusion studies. Buccal films have potential to control the release over the period of 10 hours. The Buccal film formulation decreases dosing frequency, avoids gastric irritation, reduces cytotoxicity, avoids first pass metabolism and improve bioavailability of the drug. Further work will be carried out in order to determine its efficacy and safety by pharmacokinetic and pharmacodynamics studies in animals

    Responsive nanostructures for controlled alteration of interfacial properties

    Get PDF
    Responsive materials are a class of materials that are capable of “intelligently” changing properties upon exposure to a stimulus. Silk ionomers are introduced as a promising candidate of biopolymers that combine the robust, biocompatible properties of silk fibroin with the responsive properties of poly-l-lysine (PL) and poly-l-glutamic acid (PG). These polypeptides can be assembled using the well-known technique of layer-by-layer processing, allowing for the creation of finely tuned nanoscale multilayers coatings, but their properties remain largely unexplored in the literature. Thus, this research explores the properties of silk ionomer multilayers assembled in different geometries, ranging from planar films to three-dimensional microcapsules with the goal of created responsive systems. These silk ionomers are composed of a silk fibroin backbone with a variable degree of grafting with PG (for anionic species) or PL or PL-block- polyethylene glycol (PEG) (for cationic species). Initially, this research is focused on fundamental properties of the silk ionomer multilayer assemblies, such as stiffness, adhesion, and shearing properties. Elastic modulus of the materials is considered to be one of the most important mechanical parameters, but measurements of stiffness for nanoscale films can be challenging. Thus, we studied the applicability of various contact mechanics models to describe the relationship between force distance curves obtained by atomic force microscopy and the stiffness of various polymeric materials. Beyond considerations of tip size, we also examine the critical regions at which various commonly used indenter geometries are valid. Following this, we employed standard AFM probes and colloidal probes coated with covalently bonded silk ionomers to examine the friction and adhesion between silk ionomers layers. This technique allowed us to compare the interactions between silk ionomers of different chemical composition by using multilayer films containing standard silk ionomers or silk ionomers grafted with polyethylene glycol PEG. This led to the unexpected result that the PEG grafted silk ionomers experienced a higher degree of adhesion and a larger friction coefficient compared to the standard silk ionomers. Next, we move to microscale responsive systems based on silk ionomer multilayers. The first of these studies looks at the effect of assembly pH and chemical composition on the ultimate properties of hollow, spherical microcapsules. This study shows that all compositions and processing conditions yield microcapsules that show a substantial change in elastic modulus, swelling, and permeability, with maximum changes in property values (from acidic pH to basic pH) of around a factor of 6, 1.5, and 5, respectively. In addition, it was discovered that the use of acidic pH assembly inverts the permeability response (i.e. causes a drastic reduction in permeability at higher pH), whilst the use of PEG largely damps any observable trend in permeability, without adversely affecting the swelling or elastic modulus responses. In the second part of these studies, we constructed tri-component photopatterned arrays for the purpose of creating self-rolling films. This study demonstrated that the ultimate geometry of the final rolled shape can be tuned by controlling the thickness of various components, due to the creation of a stress mismatch at high pH conditions. Additionally, it was revealed that pH-driven, semi-reversible delamination of silk ionomers from polystyrene exhibited a change in both magnitude and wavelength with the addition of methanol treated silk fibroin as a top layer. Finally, we showcase examples of biologically compatible systems that incorporate non-polymeric materials in order to generate tunable optical behavior. In one study, we fabricated composite nanocellulose-silk fibroin meshes that contained genetically engineered bacteria that acted as chemically sensitive elements with a fluorescent response. The addition of silk fibroin was found to drastically improve the mechanical properties of the cellulose composite structures, safely contain the bacteria to prevent efflux into the medium, and protect the cells from moderate ultraviolet radiation exposure. The final study concludes with the creation of a self-assembled segmented gold-nickel nanorod array used as a responsive element when anchored into a hydrogen-bonded polymer multilayer. Because of the mild tethering conditions and the magnetic nickel component, the nanorods were able to tilt in response to an external magnetic field. This, in turn, allowed for the creation of a never before reported magnetic-plasmonic system capable of continuously-shifting multiple surface polariton scattering peaks (up to 100 nm shifts) with nearly complete reversibility and rapid (<1 s) response times. Overall, this research develops the understanding of the fundamental properties of several different species of silk ionomers and related polymeric materials. This understanding is then utilized to fabricate pH-responsive systems with drastic changes in modulus, permeability, and geometry. In the end, the research prototypes two types of systems with optical responses and chemical/magnetic stimuli, using materials that are chemically (i.e. silk fibroin-based) or structurally (i.e. multilayers) translatable to future work on silk ionomers. These projects all serve the purpose of advancing the understanding of materials and assembly strategies that will allow for the next generation of bioinspired responsive materials.Ph.D

    Advanced in situ hydrogel assembly for guiding molecular release

    Get PDF
    Since the emergence of hydrogels as carriers for cells, bioactive molecules, and even metallic nanoparticles, there were extensive efforts to control the rate and direction of embedded molecular release, largely by additional chemical modification of gel-forming polymers. However, these approaches often encountered several challenges including the instability of molecular cargos, the extensive labor of synthesis and purification, and the uncontrollability of the molecular release direction. In contrast, many biological systems use their geometry to guide the release of their molecules or signals. Inspired by nature, this study presents unique approaches with advanced in situ formation techniques, which can overcome the problems and control the release direction and rate of the diverse embedded materials in a hydrogel. First, I demonstrated a self-folding, multi-walled poly(ethylene glycol) diacrylate (PEGDA) hydrogel tube. This tubular structure was obtained by in situ self-folding of a bi-layered PEGDA hydrogel patch constructed with gels of significantly different rigidity and expansion ratio. The radiuses of the resulting gel tubes were estimated with bilayer curvature equations and agreed with experimental data. Second, the resulting hydrogel was used to control the release rate and direction of embedded molecules by localizing the molecules in a center of the tube. A finite element method (FEM) based simulation was performed to explain the geometrical effect on controlling the molecular release. Additionally, the bilayered PEGDA hydrogel encapsulating VEGF was implanted on a chicken chorioallantoic membrane (CAM) to evaluate the neovascularization. Due to the spatiotemporal release of VEGF, the gel tubes significantly increased the density and diameters of blood vessels, compared to unfolded hydrogel patches and other ring-shaped hydrogels. Third, I presented a bio patch delivery system with minimal invasive manner by using the self-folding and unfolding technique. I assembled the hydrogel patch with a sacrificial layer that can dissolve in media after a controlled time. This hydrogel patch self-folded into a compact tube shape and delivered via a catheter to a targeted area followed by unfolding to a patch after a particular time. Lastly, I reported an in situ synthesis of metal nanoparticle-hydrogel composite that can sustainably reduce the release rate of embedded metal nanoparticles. The resulting gel composite with antimicrobial property of embedded metallic nanoparticles could control bacterial cell growth in an aqueous media and also inhibit biofilm formation on a polymeric and metallic substrates coated with the gel composite. Overall, this study was conducted for enhancing the efficacy of molecular compounds used for various agricultural products, food additives, sensor devices, and clinical treatments

    Coatings on Mammalian Cells: Interfacing Cells with Their Environment

    Get PDF
    The research community is intent on harnessing increasingly complex biological building blocks. At present, cells represent a highly functional component for integration into higher order systems. In this review, we discuss the current application space for cellular coating technologies and emphasize the relationship between the target application and coating design. We also discuss how the cell and the coating interact in common analytical techniques, and where caution must be exercised in the interpretation of results. Finally, we look ahead at emerging application areas that are ideal for innovation in cellular coatings. In all, cellular coatings leverage the machinery unique to specific cell types, and the opportunities derived from these hybrid assemblies have yet to be fully realized

    Natural-origin materials for tissue engineering and regenerative medicine

    Get PDF
    Recent advances in tissue engineering and regenerative medicine have shown that combining biomaterials, cells, and bioactive molecules are important to promote the regeneration of damaged tissues or as therapeutic systems. Natural origin polymers have been used as matrices in such applications due to their biocompatibility and biodegradability. This article provides an up-to-date review on the most promising natural biopolymers, focused on polysaccharides and proteins, their properties and applications. Membranes, micro/nanoparticles, scaffolds, and hydrogels as biomimetic strategies for tissue engineering and processing are described, along with the use of bioactive molecules and growth factors to improve tissue regeneration potential. Finally, current biomedical applications are also presented.The authors would like to thank to the financial support from the Portuguese Foundation for Science and Technology (FCT) for the fellowship grants of Simone S Silva (SFRH/BPD/112140/2015), Emanuel M Fernandes (SFRH/BPD/96197/2013), Joana-Silva Correira (SFRH/BPD/100590/2014), Sandra Pina (SFRH/BPD/108763/2015), Silvia Vieira (SFRH/BD/102710/2014), “Fundo Social Europeu”- FSE and “ Programa Diferencial de Potencial Humano POPH”, and to the distinction attributed to J.M. Oliveira under the Investigator FCT program (IF/00423/2012). It is also greatly acknowledged the funds provided by FCT through the project EPIDisc (UTAP-EXPL/BBBECT/0050/2014), financed in the Framework of the “International Collaboratory for Emerging Technologies, CoLab”, UT Austin|Portugal Program.info:eu-repo/semantics/publishedVersio

    Poly(N-isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications

    Get PDF
    The innate ability of poly(N-isopropylacrylamide) (PNIPAAm) thermo-responsive hydrogel to copolymerize and to graft synthetic polymers and biomolecules, in conjunction with the highly controlled methods of radical polymerization which are now available, have expedited the widespread number of papers published in the last decade—especially in the biomedical field. Therefore, PNIPAAm-based hydrogels are extensively investigated for applications on the controlled delivery of active molecules, in self-healing materials, tissue engineering, regenerative medicine, or in the smart encapsulation of cells. The most promising polymers for biodegradability enhancement of PNIPAAm hydrogels are probably poly(ethylene glycol) (PEG) and/or poly(e-caprolactone) (PCL), whereas the biocompatibility is mostly achieved with biopolymers. Ultimately, advances in three-dimensional bioprinting technology would contribute to the design of new devices and medical tools with thermal stimuli response needs, fabricated with PNIPAAm hydrogels.Peer ReviewedPostprint (published version
    • …
    corecore