1,914 research outputs found

    Fast and robust anchor calibration in range-based wireless localization

    Get PDF
    In this paper we investigate the anchor calibration problem where we want to find the anchor positions when the anchors are not able to range between each other. This is a problem of practical interest because in many systems, the anchors are not connected in a network but are just simple responders to range requests. The proposed calibration method is designed to be fast and simple using only a single range-capable device. For the estimation of the inter-anchor distances, we propose a Total Least Squares estimator as well as a L1 norm estimator. Real life experiments using publicly available hardware validate the proposed calibration technique and show the robustness of the algorithm to non-line-of-sight measurements

    Practical Accuracy Limits of Radiation-Aware Magneto-Inductive 3D Localization

    Full text link
    The key motivation for the low-frequency magnetic localization approach is that magnetic near-fields are well predictable by a free-space model, which should enable accurate localization. Yet, limited accuracy has been reported for practical systems and it is unclear whether the inaccuracies are caused by field distortion due to nearby conductors, unconsidered radiative propagation, or measurement noise. Hence, we investigate the practical performance limits by means of a calibrated magnetoinductive system which localizes an active single-coil agent with arbitrary orientation, using 4 mW transmit power at 500 kHz. The system uses eight single-coil anchors around a 3m x 3m area in an office room. We base the location estimation on a complex baseband model which comprises both reactive and radiative propagation. The link coefficients, which serve as input data for location estimation, are measured with a multiport network analyzer while the agent is moved with a positioner device. This establishes a reliable ground truth for calibration and evaluation. The system achieves a median position error of 3.2 cm and a 90th percentile of 8.3 cm. After investigating the model error we conjecture that field distortion due to conducting building structures is the main cause of the performance bottleneck. The results are complemented with predictions on the achievable accuracy in more suitable circumstances using the Cram\'er-Rao lower bound.Comment: To appear at the IEEE ICC 2019 Workshops. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    A Low Cost UWB Based Solution for Direct Georeferencing UAV Photogrammetry

    Get PDF
    Thanks to their flexibility and availability at reduced costs, Unmanned Aerial Vehicles (UAVs) have been recently used on a wide range of applications and conditions. Among these, they can play an important role in monitoring critical events (e.g., disaster monitoring) when the presence of humans close to the scene shall be avoided for safety reasons, in precision farming and surveying. Despite the very large number of possible applications, their usage is mainly limited by the availability of the Global Navigation Satellite System (GNSS) in the considered environment: indeed, GNSS is of fundamental importance in order to reduce positioning error derived by the drift of (low-cost) Micro-Electro-Mechanical Systems (MEMS) internal sensors. In order to make the usage of UAVs possible even in critical environments (when GNSS is not available or not reliable, e.g., close to mountains or in city centers, close to high buildings), this paper considers the use of a low cost Ultra Wide-Band (UWB) system as the positioning method. Furthermore, assuming the use of a calibrated camera, UWB positioning is exploited to achieve metric reconstruction on a local coordinate system. Once the georeferenced position of at least three points (e.g., positions of three UWB devices) is known, then georeferencing can be obtained, as well. The proposed approach is validated on a specific case study, the reconstruction of the façade of a university building. Average error on 90 check points distributed over the building façade, obtained by georeferencing by means of the georeferenced positions of four UWB devices at fixed positions, is 0.29 m. For comparison, the average error obtained by using four ground control points is 0.18 m

    LIS: Localization based on an intelligent distributed fuzzy system applied to a WSN

    Get PDF
    The localization of the sensor nodes is a fundamental problem in wireless sensor networks. There are a lot of different kinds of solutions in the literature. Some of them use external devices like GPS, while others use special hardware or implicit parameters in wireless communications. In applications like wildlife localization in a natural environment, where the power available and the weight are big restrictions, the use of hungry energy devices like GPS or hardware that add extra weight like mobile directional antenna is not a good solution. Due to these reasons it would be better to use the localization’s implicit characteristics in communications, such as connectivity, number of hops or RSSI. The measurement related to these parameters are currently integrated in most radio devices. These measurement techniques are based on the beacons’ transmissions between the devices. In the current study, a novel tracking distributed method, called LIS, for localization of the sensor nodes using moving devices in a network of static nodes, which have no additional hardware requirements is proposed. The position is obtained with the combination of two algorithms; one based on a local node using a fuzzy system to obtain a partial solution and the other based on a centralized method which merges all the partial solutions. The centralized algorithm is based on the calculation of the centroid of the partial solutions. Advantages of using fuzzy system versus the classical Centroid Localization (CL) algorithm without fuzzy preprocessing are compared with an ad hoc simulator made for testing localization algorithms. With this simulator, it is demonstrated that the proposed method obtains less localization errors and better accuracy than the centroid algorithm.Junta de Andalucía P07-TIC-0247

    Enabling optimization-based localization for IoT devices

    Get PDF
    In this paper, we propose an embedded optimization approach for the localization of Internet of Things (IoT) devices making use of range measurements from ultra-wideband (UWB) signals. Low-cost, low-power UWB radios provide time-of-arrival measurements with decimeter accuracy over large distances. UWB-based localization methods have been envisioned to enable feedback control in IoT applications, particularly, in GPS-denied environments, and large wireless sensor networks. In this paper, we formulate the localization task as a nonlinear least-squares optimization problem based on two-way time-of-arrival measurements between the IoT device and several UWB radios installed in a 3-D environment. For the practical implementation of large-scale IoT deployments we further assume only approximate knowledge of the UWB radio locations. We solve the resulting optimization problem directly on IoT devices equipped with off-the-shelf microcontrollers using state-of-the-art code generation techniques for plug-and-play deployment of the nonlinear-programming algorithms. This paper further provides practical implementation details to improve the localization accuracy for feedback control in experimental IoT applications. The experimental results finally show that subdecimeter localization accuracy can be achieved using the proposed optimization-based approach, even when the majority of the UWB radio locations are unknown
    corecore