522 research outputs found

    Self-adaptive fault diagnosis of roller bearings using infrared thermal images

    Get PDF
    Fault diagnosis of roller bearings in rotating machinery is of great significance to identify latent abnormalities and failures in industrial plants. This paper presents a new self-adaptive fault diagnosis system for different conditions of roller bearings using InfraRed Thermography (IRT). In the first stage of the proposed system, 2-Dimensional Discrete Wavelet Transform (2D-DWT) and Shannon entropy are applied respectively to decompose images and seek for the desired decomposition level of the approximation coefficients. After that, the histograms of selected coefficients are used as an input of the feature space selection method by using Genetic Algorithm (GA) and Nearest Neighbor (NN), for the purpose of selecting two salient features that can achieve the highest classification accuracy. The results have demonstrated that the proposed scheme can be employed effectively as an intelligent system for bearing fault diagnosis in rotating machinery

    Advancements in condition monitoring and fault diagnosis of rotating machinery: A comprehensive review of image-based intelligent techniques for induction motors

    Get PDF
    Recently, condition monitoring (CM) and fault detection and diagnosis (FDD) techniques for rotating machinery (RM) have witnessed substantial advancements in recent decades, driven by the increasing demand for enhanced reliability, efficiency, and safety in industrial operations. CM of valuable and high-cost machinery is crucial for performance tracking, reducing maintenance costs, enhancing efficiency and reliability, and minimizing mechanical failures. While various FDD methods for RM have been developed, these predominantly focus on signal processing diagnostics techniques encompassing time, frequency, and time-frequency domains, intelligent diagnostics, image processing, data fusion, data mining, and expert systems. However, there is a noticeable knowledge gap regarding the specific review of image-based CM and FDD. The objective of this research is to address the aforementioned gap in the literature by conducting a comprehensive review of image-based intelligent techniques for CM and fault FDD specifically applied to induction motors (IMs). The focus of the study is to explore the utilization of image-based methods in the context of IMs, providing a thorough examination of the existing literature, methodologies, and applications. Furthermore, the integration of image-based techniques in CM and FDD holds promise for enhanced accuracy, as visual information can provide valuable insights into the physical condition and structural integrity of the IMs, thereby facilitating early FDD and proactive maintenance strategies. The review encompasses the three main faults associated with IMs, namely bearing faults, stator faults, and rotor faults. Furthermore, a thorough assessment is conducted to analyze the benefits and drawbacks associated with each approach, thereby enabling an evaluation of the efficacy of image-based intelligent techniques in the context of CM and FDD. Finally, the paper concludes by highlighting key issues and suggesting potential avenues for future research

    Support matrix machine: A review

    Full text link
    Support vector machine (SVM) is one of the most studied paradigms in the realm of machine learning for classification and regression problems. It relies on vectorized input data. However, a significant portion of the real-world data exists in matrix format, which is given as input to SVM by reshaping the matrices into vectors. The process of reshaping disrupts the spatial correlations inherent in the matrix data. Also, converting matrices into vectors results in input data with a high dimensionality, which introduces significant computational complexity. To overcome these issues in classifying matrix input data, support matrix machine (SMM) is proposed. It represents one of the emerging methodologies tailored for handling matrix input data. The SMM method preserves the structural information of the matrix data by using the spectral elastic net property which is a combination of the nuclear norm and Frobenius norm. This article provides the first in-depth analysis of the development of the SMM model, which can be used as a thorough summary by both novices and experts. We discuss numerous SMM variants, such as robust, sparse, class imbalance, and multi-class classification models. We also analyze the applications of the SMM model and conclude the article by outlining potential future research avenues and possibilities that may motivate academics to advance the SMM algorithm

    Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review

    Get PDF
    This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented

    Information Theory and Its Application in Machine Condition Monitoring

    Get PDF
    Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries

    Maintenance management of tractors and agricultural machinery: Preventive maintenance systems

    Get PDF
    Agricultural machinery maintenance has a crucial role for successful agricultural production.  It aims at guaranteeing the safety of operations and availability of machines and related equipment for cultivation operation.  Moreover, it is one major cost for agriculture operations.  Thus, the increased competition in agricultural production demands maintenance improvement, aiming at the reduction of maintenance expenditures while keeping the safety of operations.  This issue is addressed by the methodology presented in this paper.  So, the aim of this paper was to give brief introduction to various preventive maintenance systems specially condition-based maintenance (CBM) techniques, selection of condition monitoring techniques and understanding of condition monitoring (CM) intervals, advancement in CBM, standardization of CBM system, CBM approach on agricultural machinery, advantages and disadvantages of CBM.  The first step of the methodology consists of concept condition monitoring approach for the equipment preventive maintenance; its purpose is the identification of state-of-the-art in the CM of agricultural machinery, describing the different maintenance strategies, CM techniques and methods.  The second step builds the signal processing procedure for extracting information relevant to targeted failure modes.   Keywords: agricultural machinery, fault detection, fault diagnosis, signal processing, maintenance managemen

    Eigen-spectrograms: an interpretable feature space for bearing fault diagnosis based on artificial intelligence and image processing

    Full text link
    The Intelligent Fault Diagnosis of rotating machinery proposes some captivating challenges in light of the imminent big data era. Although results achieved by artificial intelligence and deep learning constantly improve, this field is characterized by several open issues. Models' interpretation is still buried under the foundations of data driven science, thus requiring attention to the development of new opportunities also for machine learning theories. This study proposes a machine learning diagnosis model, based on intelligent spectrogram recognition, via image processing. The approach is characterized by the introduction of the eigen-spectrograms and randomized linear algebra in fault diagnosis. The eigen-spectrograms hierarchically display inherent structures underlying spectrogram images. Also, different combinations of eigen-spectrograms are expected to describe multiple machine health states. Randomized algebra and eigen-spectrograms enable the construction of a significant feature space, which nonetheless emerges as a viable device to explore models' interpretations. The computational efficiency of randomized approaches further collocates this methodology in the big data perspective and provides new reading keys of well-established statistical learning theories, such as the Support Vector Machine (SVM). The conjunction of randomized algebra and Support Vector Machine for spectrogram recognition shows to be extremely accurate and efficient as compared to state of the art results.Comment: 14 pages, 13 figure

    Fault diagnosis of a rotor-bearing system under variable rotating speeds using two-stage parameter transfer and infrared thermal images

    Get PDF
    Current fault diagnosis methods for rotor-bearing system are mostly based on analyzing the vibration signals collected at steady rotating speeds. In those methods, the data collected under one operating condition cannot be accurately used for diagnosis under a different condition. Moreover, in vibration monitoring, installing the necessary sensors will affect the equipment structure and hence the vibration response itself. The present paper proposes a new method based on two-stage parameter transfer and infrared thermal images for fault diagnosis of rotor-bearing system under variable rotating speeds. The method of parameter transfer enables the use of data (or parameters) acquired under one operating condition (called the source domain) to be extended for use in a different operating condition (called the target domain). First, scaled exponential linear unit (SELU) and modified stochastic gradient descent (MSGD) are used to construct an enhanced convolutional neural network (ECNN). Second, a stacked convolutional auto-encoder (CAE) trained based on unlabeled source-domain thermal images is employed to initialize a source-domain ECNN. Third, model parameters from the pre-trained source-domain ECNN are transferred to the target-domain ECNN to adapt to the characteristics of the target domain. The collected thermal images for a rotor-bearing system under variable speeds are used to test the transfer diagnosis performance of the proposed method. The experimental results demonstrate the performance improvement and the advantages of the proposed method
    corecore