1,818 research outputs found

    Self-adaptive combination of global tabu search and local search for nonlinear equations

    Get PDF
    Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modeling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methodsFundação para a Ciência e a Tecnologia (FCT

    Combined mutation differential evolution to solve systems of nonlinear equations

    Get PDF
    This paper presents a differential evolution heuristic to compute a solution of a system of nonlinear equations through the global optimization of an appropriate merit function. Three different mutation strategies are combined to generate mutant points. Preliminary numerical results show the effectiveness of the presented heuristic.Fundação para a Ciência e a Tecnologia (FCT

    Solving systems of inequalities and equalities by a nonmonotone hybrid tabu search method

    Get PDF
    Series : AIP Conference Proceedings, Vol. 1479This paper presents a derivative-free nonmonotone hybrid tabu search to compute a solution of overdetermined systems of inequalities and equalities through the global optimization of an appropriate merit function. The proposed algorithm combines global and local searches aiming to reduce computational effort. Preliminary numerical results show the effectiveness of the combined heuristic.Fundação para a Ciência e a Tecnologia (FCT

    Nonmonotone hybrid tabu search for Inequalities and equalities: an experimental study

    Get PDF
    The main goal of this paper is to analyze the behavior of nonmonotone hybrid tabu search approaches when solving systems of nonlinear inequalities and equalities through the global optimization of an appropriate merit function. The algorithm combines global and local searches and uses a nonmonotone reduction of the merit function to choose the local search. Relaxing the condition aims to call the local search more often and reduces the overall computational effort. Two variants of a perturbed pattern search method are implemented as local search. An experimental study involving a variety of problems available in the literature is presented.Fundação para a Ciência e a Tecnologia (FCT

    Enhanced parallel Differential Evolution algorithm for problems in computational systems biology

    Get PDF
    [Abstract] Many key problems in computational systems biology and bioinformatics can be formulated and solved using a global optimization framework. The complexity of the underlying mathematical models require the use of efficient solvers in order to obtain satisfactory results in reasonable computation times. Metaheuristics are gaining recognition in this context, with Differential Evolution (DE) as one of the most popular methods. However, for most realistic applications, like those considering parameter estimation in dynamic models, DE still requires excessive computation times. Here we consider this latter class of problems and present several enhancements to DE based on the introduction of additional algorithmic steps and the exploitation of parallelism. In particular, we propose an asynchronous parallel implementation of DE which has been extended with improved heuristics to exploit the specific structure of parameter estimation problems in computational systems biology. The proposed method is evaluated with different types of benchmarks problems: (i) black-box global optimization problems and (ii) calibration of non-linear dynamic models of biological systems, obtaining excellent results both in terms of quality of the solution and regarding speedup and scalability.Ministerio de Economía y Competitividad; DPI2011-28112-C04-03Consejo Superior de Investigaciones Científicas; PIE-201170E018Ministerio de Ciencia e Innovación; TIN2013-42148-PGalicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2013/05

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Particle algorithms for optimization on binary spaces

    Full text link
    We discuss a unified approach to stochastic optimization of pseudo-Boolean objective functions based on particle methods, including the cross-entropy method and simulated annealing as special cases. We point out the need for auxiliary sampling distributions, that is parametric families on binary spaces, which are able to reproduce complex dependency structures, and illustrate their usefulness in our numerical experiments. We provide numerical evidence that particle-driven optimization algorithms based on parametric families yield superior results on strongly multi-modal optimization problems while local search heuristics outperform them on easier problems

    A cloud-based enhanced differential evolution algorithm for parameter estimation problems in computational systems biology

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Cluster Computing. The final authenticated version is available online at: https://doi.org/10.1007/s10586-017-0860-1[Abstract] Metaheuristics are gaining increasing recognition in many research areas, computational systems biology among them. Recent advances in metaheuristics can be helpful in locating the vicinity of the global solution in reasonable computation times, with Differential Evolution (DE) being one of the most popular methods. However, for most realistic applications, DE still requires excessive computation times. With the advent of Cloud Computing effortless access to large number of distributed resources has become more feasible, and new distributed frameworks, like Spark, have been developed to deal with large scale computations on commodity clusters and cloud resources. In this paper we propose a parallel implementation of an enhanced DE using Spark. The proposal drastically reduces the execution time, by means of including a selected local search and exploiting the available distributed resources. The performance of the proposal has been thoroughly assessed using challenging parameter estimation problems from the domain of computational systems biology. Two different platforms have been used for the evaluation, a local cluster and the Microsoft Azure public cloud. Additionally, it has been also compared with other parallel approaches, another cloud-based solution (a MapReduce implementation) and a traditional HPC solution (a MPI implementation)Ministerio de Economía y Competitividad; DPI2014-55276-C5-2-RMinisterio de Economía y Competitividad; TIN2013-42148-PMinisterio de Economía y Competitividad; TIN2016-75845-PXunta de Galicia ; R2016/045Xunta de Galicia; GRC2013/05
    • …
    corecore