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Abstract

The main goal of this paper is to analyze the behavior of nonmono-
tone hybrid tabu search approaches when solving systems of nonlinear
inequalities and equalities through the global optimization of an appro-
priate merit function. The algorithm combines global and local searches
and uses a nonmonotone reduction of the merit function to choose the
local search. Relaxing the condition aims to call the local search more
often and reduces the overall computational effort. Two variants of a
perturbed pattern search method are implemented as local search. An
experimental study involving a variety of problems available in the lit-
erature is presented.
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1 Introduction

In this paper, we aim at providing an experimental study with nonmonotone
hybrid tabu search (TS) approaches for solving systems of p nonlinear inequal-
ities and equalities with n variables and p ≥ n. The system is considered to
be in the form: {

fi(x) ≤ 0, i = 1, . . . ,m
fi(x) = 0, i = m+ 1, . . . , p

(1)
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where each fi : Ω ⊂ Rn → R and Ω is a closed convex set, herein defined as
the interval [l, u] = {x : −∞ < li ≤ xi ≤ ui < ∞, i = 1, . . . , n}. We assume
that all functions fi(x), i = 1, . . . , p are continuously differentiable.

The TS is commonly known as a metaheuristic for global optimization and
aims at exploring all the search space for global optimal solutions. It has the
ability to guide the search out of local optima and explore new regions. It is an
iterative procedure that maintains a list of the movements most recently made,
avoiding in subsequent iterations the execution of movements that lead to so-
lutions already known to have been visited. The term metaheuristic is used to
describe any approximate method that combines basic heuristic methods and
high level frameworks to explore the search space in an efficient and effective
manner. The hybrid word is used to describe the combination of the TS with
a local search procedure which may be a deterministic search or a random one,
to enhance the exploitation ability of the TS. In the presented algorithm, at
each iteration, the algorithm chooses between the global search and the local
search, i.e., it chooses the search that is most appropriate depending on the
properties of the involved functions in that region of the search space. Finally,
the nonmonotone property of the algorithm is directly related with the condi-
tion that is used to choose the type of search, at each iteration. The choice
depends on the progress of the algorithm and it does not require a sufficient
decrease of merit function values. In the problem (1), a merit function aims
to assess the fitness of the iterates, giving a measure of the progress towards
the solution. When a nonmonotone reduction on the merit function is used
to select a local search, it means that the classical simple decrease is relaxed
and consequently the local search is selected more often. Thus, the exploita-
tion phase in the vicinity of an iterate is privileged in detriment of the global
search. We further remark that the presented algorithm is a derivative-free
framework since neither analytical nor numerical derivatives are required in
both exploration and exploitation phases.

The motivation of this work comes mainly from the detection of feasi-
bility in nonlinear optimization problems. Systems of inequalities have been
extensively studied because of various applications in data analysis, set sepa-
ration problems, computer-aided design problems and image reconstructions.
This type of system appears frequently in bound constrained variational in-
equalities and linear or nonlinear complementarity problems [30]. Classical
methods for solving problem (1) use Newton-type methods [5]. In [25], the
authors propose a method that combines the use of a modified Newton step
and a conventional first-order step, and in [39], a solution of (1) is obtained
by applying successively a Levenberg-Marquardt algorithm to solve smoothed
versions of the problem. Smooth reformulation of (1) have also been proposed
in [19, 45]. Instead of solving the system (1) of m inequalities and p − m
equalities, the authors construct a smooth and equivalent system of increased
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dimension of 2m+(p−m)+1 equalities and p+m+1 variables. A Newton-type
method is then used with monotone and nonmonotone line search strategies to
guarantee convergence, see [19] and [45] respectively. Systems of inequalities
and equalities emerging from nonlinear complementarity problems have been
reformulated as inequality constrained optimization problems and solved by
filter-type methods. The derivative-free filter method proposed in [30] relies
on the generalized pattern search method and on the filter methodology [7].

However, the simplest way to solve (1) is based on the reformulation of the
inequalities into equalities using the following equivalence:{

fi(x) ≤ 0 i = 1, . . . ,m
fi(x) = 0, i = m+ 1, . . . , p

⇔
{

max{0, fi(x)} = 0, i = 1, . . . ,m
fi(x) = 0, i = m+ 1, . . . , p

.

(2)
Since some functions in the equivalent system (2) are nonsmooth, Newton’s
method cannot be directly applied to solve it. In this paper, we present a
derivative-free metaheuristic strategy for solving systems of inequalities and
equalities, with p ≥ n, by solving the equivalent system of equations alone (2).
The most famous techniques to solve nonlinear equations are based on the
Newton’s method [6, 11, 32]. They are computationally expensive since the
Jacobian matrix with analytical first derivatives and the solution of a system
of linear equations may be required at each iteration. Quasi-Newton methods
have less expensive iterations than Newton since they avoid either the neces-
sity of computing derivatives, or the necessity of solving a full linear system
per iteration or both tasks [8, 24]. A common strategy to solve problem (2) is
presented in [28, 38]. The authors use a scheme that transfers the system of
nonlinear equations into an equality constrained optimization problem. A set
of equations from the system is selected to define the objective function and the
remaining ones define the equality constraints of the problem. The methodol-
ogy applied to handle the constraints in [31] uses a line search filter approach.
Recently, in [20], global convergence is proved with an algorithm that uses
a nonmonotone line search filter approach, and in [38], a nonmonotone filter
trust region algorithm is implemented. When solving structured variational
inequalities by alternating direction-type methods, two complementarity prob-
lems are required to be solved at each iteration. Further developments in [23]
held an algorithm that solves an equivalent system of nonlinear equations.
When the derivatives are difficult to calculate or there exist no derivatives for
some equations, methods that do not require derivatives are the most ade-
quate. In [29], the generalized pattern search approach is extended to handle
a system of nonlinear equations. An approach that transforms the system of
nonlinear equations into a multiobjective optimization problem, whose num-
ber of objectives is equal to the number of equations, is presented in [14]. The
therein implemented evolutionary approach to solve the multiobjective prob-
lem uses the sum of the absolute values of the objectives to measure fitness
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and compare solutions.
The problem of solving a nonlinear system of equations can be naturally

formulated as a global optimization problem. Problem (2) is equivalent to

min
x∈Ω⊂Rn

M(x) ≡
m∑
i=1

(max{0, fi(x)})2 +
p∑

i=m+1

fi(x)
2, (3)

in the sense that they have the same solutions. These required solutions are the
global minima, and not just the local minima, of the function M(x), known
as merit function, in the set Ω. Problem (3) is similar to the usual least
squares problem for which many iterative methods have been proposed. They
basically assume that the objective function is twice continuously differen-
tiable. However, the objective M in (3) is only once differentiable even if all
fi, i = 1, . . . , p are twice continuously differentiable. Thus, methods for solving
the least squares problem cannot be directly applied to solve (3).

Besides, when a global solution is required, classical local search methods,
like Newton-type methods, have some disadvantages, compared with global
search methods. The final solution is heavily dependent on the initial approx-
imation of the iterative process and they can be trapped in a local minimum.
Furthermore, most of the methods require differentiable properties of all the
equations in the nonlinear system, such as, for example, the trust-region based
quasi-Newton method presented in [42]. A trust-region Gauss-Newton method
for bound constrained nonlinear least-squares problem has been recently pre-
sented in [27]. The therein developed solver TRESNEI is prepared to solve
systems of nonlinear inequalities and equalities without restrictions on their
dimensions. However, the algorithm requires derivatives of the involved func-
tions. Local optimization techniques guarantee globally only under certain
convexity assumptions. Preventing premature convergence to a local solution,
while trying to compute a global optimum, is to be required when solving
problem (3) [33, 34, 35, 36].

The nonmonotone concept was firstly introduced in 1986 in the Newton’s
method for unconstrained optimization [12]. The concept is related with re-
laxing the usual condition that forces a sufficient decrease of the objective
function, so that convergence to the solution is guaranteed, whatever the ini-
tial approximation. Grippo, Lampariello and Lucidi [13] developed a class of
nonmonotone objective/merit function reduction strategies for unconstrained
optimization. They showed that the usual sufficient reduction required by the
traditional Armijo condition can slow the rate of convergence in the interme-
diate stages of the minimization process, especially when the merit function
has narrow curved valley. They introduced a nonmonotone Armijo condition
that chooses the step size α ∈ (0, 1] such that

M(xk+1) ≡M(xk + αdk) ≤ max
0≤j≤sk

M(xk−j) + µα∇M(xk)Tdk, (4)
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where µ ∈ (0, 1) is a constant, ∇M(xk) represents the gradient of M computed
at xk, dk is the search direction, and

s0 = 0, sk = min{sk−1 + 1, smax}, k ≥ 1 and smax is a nonnegative integer.
(5)

If smax = 0, the above nonmonotone rule is just the condition for sufficient
decrease. Slightly different strategies have been proposed to overcome some
difficulties that the classical nonmonotone strategy has been shown. Instead of
the maximum function value reached over (at most) the last smax+1 iterations,
the alternative is to use the average of the successive merit function values [44].
Although this choice of nonmonotone technique looks particularly efficient, the
calculations seem a little cumbersome. In [15], the line search technique uses a
nonmonotone term which is a convex combination of the previous nonmonotone
term and the current objective function value

M(xk + αdk) ≤ Dk + µα∇M(xk)Tdk,

for Dk =

{
M(xk), if k = 1
ηDk−1 + (1− η)M(xk), if k ≥ 2

(6)

where η ∈ (0, 1). A nonmonotone strategy can be applied within a line search
approach [43] or in a traditional trust region method [15]. Its use is nowadays
generalized. Under mild conditions, global convergence has been guaranteed.
These nonmonotone strategies have been applied in different contexts, for ex-
ample, coupled with Quasi-Newton methods for systems of equations in [8],
for solving complementarity problems [18], integrated into primal-dual interior
point and barrier methods [2, 3] and in a Newton-type method when solving
a smooth reformulation of the system (1) [45].

In this paper, we aim at studying the behavior of a nonmonotone combined
hybrid TS method when computing a solution of the system (1) by converging
to a global minimizer of the merit function (3). The herein presented algorithm
combines global and local searches. With both searches we are prepared to
explore the search space for promising regions and refine the search in the
vicinity of a global solution.

In the herein presented combined algorithm, the global search is based on
the metaheuristic TS. Although TS is computationally successful in solving
combinatorial problems [10] as well as continuous global optimization prob-
lems [4], it may fail to detect promising search directions in the neighborhood
of a global minimum. TS is an iterative procedure that maintains a list of
the movements most recently made – the tabu list – avoiding in subsequent
iterations the execution of movements that lead to solutions already known
to have been visited. Usually, the slow convergence of TS is overcome by in-
corporating a classical local search strategy into the main algorithm. We will
use the Directed Tabu Search (DTS) method of Hedar and Fukushima [16], a
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variant of the tabu search that implements a local search in the final stage of
the process, therein denoted by the intensification search.

The local search phase of the herein proposed combined algorithm relies
on a perturbed pattern search procedure. Some preliminary experiments have
been conducted with the classical coordinate search [21] in an alike nonmono-
tone combined method [35]. The well-known Hooke and Jeeves (HJ) method
[17] has recently been used to hybridized the TS method [36].

However, to increase the exploration feature of the local search procedure,
avoiding to define new iterates solely along the coordinate directions, randomly
perturbed directions are herein added to the chosen set of directions to locate
a point that reduces the merit function value with respect to the current point.
This idea is borrowed from the paper of Ali and Gabere [1], where these per-
turbed directions are integrated into the basic opportunist coordinate search.
Further, we address the issue related with the choice between implementing
the global search or the local search, by means of a nonmonotone F-rule reduc-
tion of the merit function similar to [37]. Here, the main goal is to reduce the
computational effort required to reach a solution with a pre-specified accuracy.

The remainder of the paper proceeds as follows. Section 2 describes the
combined global and local search algorithm and the main idea behind the
nonmonotone condition for the selection between global and local phases. The
experimental study is presented in Section 3 and we conclude the paper in
Section 4.

2 Nonmonotone combined searches

In the presented nonmonotone combined global search and local search (nm–
CGSLS), we aim to combine two alternative phases: the exploration phase,
where a global search is carried out, and the exploitation one, where the search
is refined in the vicinity of a promising region. The idea of combining two
searches has been used in the past to solve nonlinear systems of equations,
where a classical gradient-based Quasi-Newton nonmonotone strategy is used
[8], and to address systems of nonlinear inequalities and equalities [33, 35, 36].

It seems acceptable that if a reduction in the merit function has been ob-
served, a downhill progress is detected and the search is to be refined using a
local search. On the other hand, if the merit function has not been reduced,
a global search is appropriate since the search space is to be explored for a
promising region [33, 34]. However, requiring a reduction in the merit func-
tion may prevent the local search phase of being implemented more often.
Consequently, the global search steps dominate and the iterative process is
computationally demanding in terms of function evaluations. Thus, we ad-
dress this issue by relaxing the condition on the merit function to choose a



Nonmonotone Hybrid Tabu for Inequalities and Equalities 7

local search step. Borrowing the ideas present in nonlinear optimization, a
nonmonotone merit function reduction strategy will be used.

2.1 The nonmonotone F-rule

When analytical or numerical derivatives are not available the second term on
the right of the nonmonotone Armijo condition (4) cannot be used. Since it
has been noticed that the term, that depends on the search direction, decreases
as the corresponding algorithm converges to the solution, a commonly named
forcing function (F-function) has been used instead [37].

Definition 2.1 The function σ : [0,+∞) → [0,+∞) is an F-function if
for any sequence {tk}, limk→∞ σ(tk) = 0 implies limk→∞ tk = 0.

Thus, based on the previous definition, the following nonmonotone F-rule
is implemented in the nm–CGSLS. Let smax be a nonnegative integer. For each
k, let sk be defined as (5). Then, if the nonmonotone decrease

M(xk+1) ≤ max
0≤j≤sk

M(xk−j)− η̄k (7)

is verified, where η̄k → 0 as k → ∞, the region is considered a promising
region and a local search procedure is required to refine the search. In our
algorithm, the F-function σ is replaced by a monotone decreasing sequence of
positive values η̄k+1 = γη̄k, as k → ∞, where η̄0 > 0 and 0 < γ < 1. We
remark that condition (7) is more demanding at the beginning of the iterative
process than at the end of it. This is important since, far from the solution,
the likelihood of detecting a global solution instead of a local one is high when
the merit function has a sufficient decrease, relative to the maximum merit
values of previous iterations, of more than a certain quantity, η̄k.

Similar nonmonotone F-rules for line search with guaranteed convergence
in optimization context are available in the literature [37, 41]. In [40], a non-
monotone trust region procedure using a filter methodology to handle the
equality constraints of an optimization problem is presented. The goal of
the nonmonotone F-rule (7) is to relax the condition that is usually used to
control the decreasing behavior of merit function values along the iterative
process, i.e., the progress towards a minimum of the merit function. Relax-
ing the descent condition on the merit function allows that trial solutions
may be selected even if they do not provide an improvement on the merit
function. As a consequence, trial solutions are accepted more often and a
reduction in the overall computational effort, for instance in the number of
function evaluations, is verified. This is the type of behavior that our algo-
rithm aims to achieve. Relaxing the descent condition on the merit function,
the local search procedure is selected more often and the number of function
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evaluations is reduced. Indeed our previous work has shown that we gain in
efficiency if a nonmonotone merit reduction condition is imposed to select the
local search step [35, 36]. However, the therein used nonmonotone merit re-
duction M(xk+1) ≤ γM max0≤j≤sk M(xk−j), where 0 < γM < 1, is invariant
to the algorithm progress. The Algorithm 1 contains the pseudo-code of the
herein presented nm–CGSLS method.

Algorithm 1 nm–CGSLS algorithm

Require: x0, η∗ > 0, η̄0 = η0 > η∗, 0 < γ < 1, kmax > 0, smax ≥ 0
1: Set k = 0, s0 = 0
2: while M(xk) > η∗ AND k ≤ kmax do
3: if

(
k = 0 AND M(xk) ≥ ηk

)
OR M(xk) > max

1≤j≤sk
M(xk−j)−η̄k then

4: Find an ηk–minimizer xk+1 of M , using a global search procedure
5: else
6: Find an ηk–minimizer xk+1 of M , using a local search procedure
7: end if
8: Set η̄k+1 = γη̄k, ηk+1 = max{η∗, η̄k+1}, sk+1 = min{sk + 1, smax}
9: Set k = k + 1
10: end while

We remark that the solution xk+1, obtained by either the local search pro-
cedure or the global search procedure, is required to be an ηk-approximation,
where the sequence of ηk values decreases towards η∗ > 0: ηk+1 = max{η∗, γηk}
for 0 < γ < 1. This means that at the beginning of the iterative process, far
from the solution of the problem (3), the computational effort to reach a so-
lution could be lower than the effort to reach a solution during the final stage
of the iterative process.

We further note that the algorithm starts with an exploration phase, by
calling the global search procedure, unless the merit function value of the pro-
vided initial approximation, that could be a randomly generated point, falls
below ηk. Finally, if an approximation is found with a merit function value
less or equal to η∗ the algorithm stops. However, if this last condition fails
to be verified, we choose to stop the algorithm when the number of iterations
exceeds kmax.

2.2 Global search procedure

The global search procedure of the Algorithm 1 is based on the DTS heuristic
of Hedar and Fukushima [16]. The DTS method is composed of three main
search procedures: exploration, diversification and intensification. The main
loop of the DTS method consists of the exploration and diversification search
procedures. The exploration search aims to explore the search space Ω and
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uses a direct search method to be able to stabilize the search, in particular in
the vicinity of a local minimum. Cycling is prevented by the standard tabu
list, as well as by other four TS memory elements: the multi-ranked tabu list,
the tabu region, the semi-tabu region and the visited region list (VRL). The
reader is refereed to [16] for details.

The diversification procedure aims to generate new trial points outside the
previously visited regions. The VRL works as a diversification tool and is
used to direct the search towards regions that have not been visited in the
search space. When one of the best obtained trial solutions is within an ηk-
neighborhood of the global minimum of M , at iteration k, or the number of
iterations exceeds a target value – 5n in our implemented algorithm – the
DTS algorithm leaves the exploration and diversification search procedures
and enters the intensification procedure. Here, the DTS algorithm aims to
compute a solution still closer to the global minimum of the merit function
by implementing a local search. In [16], a modified Nelder-Mead method is
used in this final stage of the process. However, since pattern search methods
have better convergence properties [21], the herein implemented variant of the
DTS algorithm allows a maximum of 2n iterations of the below described local
search procedure in its intensification phase.

2.3 Local search procedure

The local search procedure of the Algorithm 1 is a hybrid pattern search
method. It uses a classical generating set method and defines perturbed direc-
tions in the sense of [1]. It will be denoted by perturbed generating set (PGS)
method. We remark that the set of coordinate directions is one example of a
generating set [21]. At each iteration, a pattern search method uses a pattern
of points to search for a minimizer. At least n+1 trial points are provided by
the pattern, where n is the number of variables. Based on the current point,
xj, where j represents the iteration counter in this inner iterative process, each
trial point, denoted by yi, is generated along a search direction (starting from
the current point) with a certain step size ∆j > 0:

yi = xj +∆jdi

where di is a search direction chosen from a finite generating set G for Rn.

Definition 2.2 ([21]) Let G = {d1, . . . , dr} be a set of r ≥ n+ 1 vectors in
Rn. Then the set G generates (or positively spans) Rn if for any vector v ∈ Rn,
there exist λ1, . . . , λr ≥ 0 such that

v =
r∑

i=1

λidi.
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A generating set must contain a minimum of n+1 vectors. A set with r =
n+1 is called a minimal generating set. For n = 2, G = {(1, 0), (0, 1), (−1,−1)}
and G = {(1, 0), (−1,−1), (−1, 1)} are two examples of minimal generating sets
[21]. The most used set with the coordinate directions, defined as the positive
and negative unit coordinate vectors G = {e1, . . . , en,−e1, . . . ,−en} form a
generating set with 2n vectors. The most important property is that at least
one of the directions is a descent direction for M , so long as the current point
is not a stationary point of M .

To avoid the searches solely along the chosen directions of the generating
set, a scheme that adds randomly generated perturbations to the generating set
directions, has been tested in [1]. Using this idea in our local search procedure,
each trial point is defined by

yi = xj +∆jdi + ς∆ju , i = 1, . . . , r

where u is a unit vector with randomly generated components from a uniform
distribution in [−1, 1] and ς is a positive parameter. We use the classical
approach to produce feasible iterates. A trial point that is generated outside
Ω will have a merit function value of +∞ so that it will never be selected.

In this PGS method, two variants are provided: a minimal generating set
yielding n + 1 trial points yi, i = 1, . . . , n + 1 and the generating set defined
by the 2n coordinate directions. In both variants, at each iteration j, the trial
point with the smallest merit function value is chosen, ybest, and compared
with the merit function at the current xj. If this search fails to generate a trial
point that is better than the current point, the iteration is called unsuccessful,
the step size ∆j is reduced by a factor 0 < ξ < 1, in order to refine the
search hereafter, and xj+1 ← xj. The step size is then compared to a specified
stopping tolerance. Since an ηk-approximate solution is required, when the
merit function value falls below ηk, or the step size reaches a sufficiently small
value, defined as (ηk)2, the local search terminates and the current point is
the required xk+1 (see Algorithm 1). If none of these conditions is satisfied,
the iterative process runs for a maximum of 10n iterations. However, if at the
end of each iteration, a simple decrease in M is verified, then the iteration is
successful, ∆j is not changed and xj+1 ← ybest. We note that the search will
never stop after a successful iteration.

3 Experimental study

In this section, we use thirteen problems to test the performance of the nm–
CGSLS algorithm. In four problems, the system has nonsmooth functions,
and in five problems inequalities are also present in the system. There are
two systems of equations that emerge from practical applications and the last
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two problems are examples of nonlinear complementarity problems. Some
examples are known in the literature as being difficult to be solved by Newton-
type methods. For comparative purposes, we run some of the problems by
fsolve from MATLABTM. The trust-region dogleg algorithm in MATLAB
computes a step that is a convex combination of a Cauchy step and a Gauss-
Newton step. The main computational effort with the dogleg is related with
handling matrix-vector products and solving linear systems of equations. The
results of these experiments are obtained in a personal computer with an AMD
Turion 2.20 GHz processor and 3 GB of memory. Due to the stochastic nature
of algorithms based on tabu search, each problem was run 30 times and the
best of the 30 solutions is shown. We tested the nm–CGSLS algorithm with
smax = 3 and smax = 5. The former value seems to give in general better
performance, although the differences are not significant. The values set to
the other parameters of the algorithm are: kmax = 15n, η∗ = 10−6, and η0 = 1
with γ = 0.1. Another set of values, η0 = 10 with γ = 0.01, was tried. The
results shown in this section that correspond to this last set are marked with ‘§’.
We always report the best set of obtained results. Whenever PGS algorithm
is called at the iteration k, we set ∆0 = 1, ξ = 0.1 and ς = 0.15.

Problem 3.1 Consider the problem of finding a solution of two nonlinear
inequalities with two variables [45] in [−10, 10]2:{

x2
1 + x2

2 − 1 ≤ 0
−x2

1 − x2
2 + (0.999)2 ≤ 0.

This and the next two problems will be used to compare the results of the
present study with those obtained by DTS method [16] and CGTSLS method
in [33]. When DTS method is used separately, a solution within a η∗ accuracy is
also required. All methods are allowed to run for a maximum of 15n iterations.
The results are reported in the first part of Table 1. In this table and in all
the remaining ones, ‘k’ stands for the number of iterations, ‘n.f.e.’ is the
number of function evaluations and ‘M ’ gives the merit function value at the
best found solution. We also compare with the results available in [45] where
a smoothing technique is applied to the system (2) so that it can be solved
by a Newton-type method. In the hereinafter tables, ‘-’ means not available.
Even when the number of outer iterations (k in the table) is similar to that of
the monotone CGTSLS algorithm, the overall number of function evaluations
required by nm–CGSLS is smaller than that of CGTSLS. Besides the two
variants of the PGS method in the local search procedure of the nm–CGSLS,
the well-known Hooke and Jeeves (HJ) method [17] has also been used for
comparative purposes. The previous experiments with the HJ local search
available in [36] involve a limited set of five problems with p = n [45]. We use
the notation: ‘PGS’ for the generating set with the 2n coordinate directions
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and ‘PGSm’ for the minimal generating set with n + 1 directions. We also
compare the nonmonotone F-rule (7) with the nonmonotone condition that
comes from the convex combination of merit function values, similar to (6). In
the following tables we will use the notation ‘nm’ to refer to ‘nm–CGSLS’.

Table 1: Comparative results for Problems 3.1–3.3.

Algorithm k n.f.e. M Algorithm k n.f.e. M

Problem 3.1
DTS 30 341 0 CGTSLS 4 271 0
nm+PGS+(7) 3 26 0 in [45] 8 9 -
nm+PGSm+(7) 2 21 0 nm+HJ+(7) 3 32 0
nm+PGSm+(6) 7 55 0 nm+HJ+(6) 3 41 0

Problem 3.2
DTS 75 1712 3.5e-7 CGTSLS 7 1860 3.5e-7
nm+PGS+(7) 4§ 96 5.8e-8 in [45] 4 4 -
nm+PGSm+(7) 8 136 2.0e-8 nm+HJ+(7) 5 230 3.5e-8
nm+PGSm+(6) 7 176 9.2e-7 nm+HJ+(6) 6 393 3.5e-8

Problem 3.3
DTS 45 815 3.8e-7 CGTSLS 7 889 5.3e-7
nm+PGS+(7) 5§ 180 2.5e-8 in [45] 5 5 -
nm+PGSm+(7) 5§ 78 3.1e-7 nm+HJ+(7) 5 151 6.1e-8
nm+PGSm+(6) 8 331 7.3e-7 nm+HJ+(6) 6 1068 5.4e-10

Problem 3.2 Consider the problem of finding a solution of three nonlinear
inequalities and two equalities with five variables [45] in [−10, 10]5:

x1 + x3 − 1.6 ≤ 0
1.333x2 + x4 − 3 ≤ 0
−x3 − x4 + x5 ≤ 0
x2
1 + x2

3 − 1.25 = 0
x1.5
2 + 1.5x4 − 3 = 0.

The results are reported in the second part of Table 1. Both variants of the
proposed nm–CGSLS, PGS and PGSm, outperform DTS and the monotone
version CGTSLS. The nonmonotone F-rule (7) is much more effective in con-
verging to a solution than the nonmonotone rule based on the condition (6).

Problem 3.3 Another problem available in [45], with one nonlinear in-
equality, two equalities with three variables and Ω = [−10, 10]3,

x1 + x2 exp(0.8x3) + exp(1.6) ≤ 0
x2
1 + x2

2 + x2
3 − 5.2675 = 0

x1 + x2 + x3 − 0.2605 = 0.
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The results are listed in the third part of Table 1. The performance of the
tested versions is similar to that of the previous problems.

Problem 3.4 Consider the problem of finding a solution of the nonlinear
system with two variables [20, 31, 38]{

x1 = 0
10x1/(x1 + 0.1) + 2x2

2 = 0

in [−10, 10]2, which has the unique solution (0, 0).

Although it has been noticed in the past that starting from (3, 1) some iterative
processes do not converge, recent techniques have been able to converge to the
optimal solution whatever the initial value. Table 2 reports the results obtained
by nm–CGSLS and the monotone algorithm developed in [34] for nonlinear
equations alone, therein denoted by GTSLS3. For comparative purposes we
list the results from other papers [20, 28, 31, 38]. These last cited papers use
derivatives.

Table 2: Results for Problem 3.4.
Algorithm k n.f.e. M Algorithm k n.f.e. M

x0 = (3, 1)T x0 = (24, 8)T

GTSLS3 5 312 1.5e-8 GTSLS3 5 283 6.1e-8
nm+PGS+(7) 5§ 146 4.4e-7 nm+PGS+(7) 5§ 174 9.6e-8
nm+PGSm+(7) 3§ 131 7.3e-7 nm+PGSm+(7) 5 130 6.9e-7
nm+PGSm+(6) 8 261 5.3e-8 nm+PGSm+(6) 6 249 5.8e-7
nm+HJ+(7) 5 353 1.5e-8 nm+HJ+(7) 7 521 8.2e-11
in [20] 6 10 -‡

in [28] 10 - -†

in [31] 6 8 -† in [31] 13 16 -†

in [38] 6 6 -† in [38] 13 13 -†

† stops with error tolerance ∥f∥ ≤ 1.0e-6; ‡ stops with error tolerance ∥f∥ ≤ 1.0e-5

Problem 3.5 Another nonlinear system with two variables from [20, 31]{
x1 + 3x2

2 = 0
(x1 − 1.0)x2 = 0

which has the unique solution (0, 0) in [−10, 10]2.

It has been reported that Newton iterates converge to a point on the line
Γ = {(1, y) : y ∈ R} if the initial approximation is also a point of the line [20].
Two initial points (1, 0) and (1, 2) have been used to test convergence to the
solution. The results are reported in Table 3.
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Table 3: Results for Problem 3.5.
Algorithm k n.f.e. M Algorithm k n.f.e. M

x0 = (1, 0)T x0 = (1, 2)T

GTSLS3 5 95 8.7e-8 GTSLS3 4 56 9.6e-7
nm+PGS+(7) 5§ 174 7.9e-8 nm+PGS+(7) 5§ 78 5.9e-8
nm+PGSm+(7) 8 99 4.5e-8 nm+PGSm+(7) 5§ 66 8.5e-8
nm+HJ+(7) 5 109 2.0e-7 nm+HJ+(7) 5 91 3.8e-8
in [20] 2 5 -‡ in [20] 6 13 -‡

in [31] - 15 -†

† stops with error tolerance ∥f∥ ≤ 1.0e-6; ‡ stops with error tolerance ∥f∥ ≤ 1.0e-5

Problem 3.6 Starting from (-2,1), the solution (0, 0.1196) of the system{
exp(sin(x3

1)) + x1 − 1 = 0
2x2

1 + 3x2
2 − 4x1x2 + 8(x2 − x1)− 1 = 0

in [−10, 10]2 was obtained after six iterations of the globalized centered Newton
algorithm presented in [11].

Solver fsolve was not able to converge to a solution of the system. The
results obtained with nm–CGSLS+PGS+(7) can be summarized as follows:
after k = 5§ iterations and 94 function evaluations a solution is reached with
M=3.0e-7. The variant nm–CGSLS+PGSm+(7) (with the minimal generating
set) needs k = 5§ and 93 function evaluations to converge to a solution. When
using the HJ method in the local search procedure and condition (7), the
value M=1.5e-12 is reached, after 16 iterations and 1339 function evaluations.
When running the monotone version GTSLS3, six iterations and 405 function
evaluations are needed to obtain a solution with a merit function value of
9.5e-10.

Problem 3.7 Consider the system of ten nonlinear equations:
(3− 5x1)x1 + 1− 2x2 = 0,

(3− 5xi)xi + 1− xi−1 − 2xi+1 = 0, 2 ≤ i ≤ 9
(3− 5x10)x10 + 1− x9 = 0

presented and solved in [26] by a conjugate direction particle swarm optimiza-
tion (CDPSO).

The algorithm in [26] was run 100 times and was regarded as successful if
max fi(x) <1e-6. The paper reports a successful rate (s.r.) of 95% for CDPSO,
while the basic particle swarm optimization algorithm has a s.r. of 81%
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and the Newton’s method got trapped into a local minimum. We run nm–
CGSLS+PGS+(7), using the initial point (−1,−1, . . . ,−1) and Ω = [−2, 2]10,
and obtain the best solution with M=7.4e-7, for k = 5§ and 1920 function
evaluations. We report a s.r. of 57%. The variant nm–CGSLS+PGSm+(7)
requires k = 6§ and n.f.e. = 4265. When running nm–CGSLS+PGS+(6) we
obtain M=9.1e-7 with k = 8 and n.f.e. = 6118. When nm–CGSLS+HJ+(7)
is used, a s.r. of 27% is registered and the value M=2.8e-8 is reached after six
iterations and 6124 function evaluations.

Problem 3.8 Consider the neurophysiology application which consists of
six nonlinear equations of six variables [14]:

x2
1 + x2

3 − 1 = 0
x2
2 + x2

4 − 1 = 0
x5x

3
3 + x6x

3
4 − c1 = 0

x5x
3
1 + x6x

3
2 − c2 = 0

x5x1x
2
3 + x6x

2
4x2 − c3 = 0

x5x
2
1x3 + x6x

2
2x4 − c4 = 0

where the constants ci = 0, i = 1, . . . , 4, although they can be randomly gener-
ated, and Ω = [−10, 10]6.

The evolutionary approach suggested in [14] obtains a large set of Pareto non-
dominated solutions, some of which have fitness larger than one, after 200
generations. Although this problem has been used to show some limitations of
Newton’s method since running time increases exponentially with the initial
intervals, we run fsolve and a solution was obtained after seven iterations and
56 function evaluations, with a merit function value of around 1.0e-10. While
nm–CGSLS+PGS+(7) reaches a merit function value of 9.1e-7 after k = 5§

and 397 function evaluations, nm–CGSLS+PGSm+(7) needs k = 5§ and 455
function evaluations to reach M=3.6e-7, nm–CGSLS+PGS+(6) needs k = 8
and n.f.e. = 1144, nm–CGSLS+PGSm+(6) needs k = 8 and n.f.e. = 1553
and nm–CGSLS+HJ+(7) requires k = 5 and n.f.e. = 544 to reach M=6.5e-8.

Problem 3.9 The following problem is considered to be difficult and repre-
sents an economics modeling application which can be scaled up to an arbitrary
dimension [14]:

(
xj +

n−j−1∑
i=1

xi xi+j

)
xn − cj = 0, 1 ≤ j ≤ n− 1

n−1∑
l=1

xl + 1 = 0

where we set ci = 0, i = 1, . . . , n − 1, although random values can be chosen,
consider the case with n = 20 and Ω = [−10, 10]20.
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The evolutionary approach used to solve this problem in [14] as a multiobjec-
tive optimization problem obtains a set of nondominated solutions, some of
which have sum of objectives (in absolute value) greater than 1.5, after 300
generations. The solver fsolve was able to converge to a solution with merit
function value of 1.0e-10 after four iterations of the trust-region dogleg algo-
rithm, and 105 function evaluations. The nm–CGSLS+PGSm+(7) reaches a
solution with a merit function value of 8.4e-7 after eight iterations and 1476
function evaluations. The nm–CGSLS based on PGS with coordinate direc-
tions uses k = 5§ and n.f.e. = 1395. When the condition (6) is considered, the
statistics are: PGSm needs k = 8 and n.f.e. = 9105 and PGS uses k = 8 and
n.f.e. = 8870. The HJ search requires k = 6 and n.f.e. = 21683 to converge
to a solution with M=3.0e-10.

Problem 3.10 This problem represents a system of nonsmooth nonlinear
equations [29]: {

|x1| − 0.5x1x2 = 0
x2
2 + 2x1 − 2 = 0

which has two solutions.

The generalized pattern search method presented in [29] converges to (0,
√
2)

in 16 iterations and 37 function evaluations, starting from (1,1); and con-
verges to (2,-1) in five iterations and nine function evaluations when the initial
point is (1,0). With Ω = [−10, 10]2, the solution (0,

√
2) is obtained with

nm–CGSLS+PGS+(7) in eight iterations and 102 function evaluations, when
starting from (1,1), and in eight iterations and 110 function evaluations, when
starting from (1,0). On the other hand, nm–CGSLS+PGSm+(7) needs k = 5§

and n.f.e. = 51 with the first initial point, and k = 5§ and n.f.e. = 172 with
the other point. Further, nm–CGSLS+HJ+(7) requires seven iterations and
341 function evaluations, when starting from (1,1), and six iterations and 424
function evaluations, when starting from (1,0).

Problem 3.11 Consider another nonsmooth nonlinear system, with two
variables [14]: {

x2
1 − x2

2 = 0
1− |x1 − x2| = 0

which has more than one solution.

The evolutionary approach in [14] converges to a Pareto curve with a set of
nine nondominated solutions after 300 generations. The least fitness (sum of
the absolute values of the objectives) is around 0.01. We also run fsolve and
after 20 iterations and 23 function evaluations, the point (1, 1), with merit
function value equals to one, is obtained. The solver stopped due to a very
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small direction vector. The output parameter ‘exitflag’ is ‘-2’. After trying
several initial points, the solution (−0.5, 0.5) was finally reached (in three
iterations and 12 function evaluations). With Ω = [−10, 10]2, our proposed
nm–CGSLS+PGSm+(7) converges to the same solution with a merit function
value of 5.6e-8, after k = 5§ and 59 function evaluations. With the variant
based on the generating set of 2n coordinate directions, the solution is reached
after k = 5§ and 97 function evaluations. The version that is based on the HJ
search reaches the solution in four iterations and 68 function evaluations.

Problem 3.12 Consider the following nonlinear complementarity problem
(NCP) [30], which has the three solutions (0, 0.5), (0, 3.5), (

√
2
2
, 0.5): find

(x1, x2) ≥ 0, F (x1, x2) ≥ 0 such that xTF (x) = 0, where

F1(x1, x2) =

{
x2
1 + |x2 − 1| − 1 if x1 ̸= 0

x2 if x1 = 0
,

F2(x1, x2) =

{
x1 − 0.5 if x2 = 0
|x2 − 2| − 1.5 if x2 ̸= 0

.

When running the solver fsolve, the trust-region dogleg algorithm cannot be
applied and the Levenberg-Marquardt algorithm is used instead, since using
the reformulation (2) the overall number of equations is larger than the num-
ber of variables. The algorithm solves a least-squares problem. The results
obtained with two initial points are depicted in Table 4. In [30], a general-
ized pattern search filter method is used to solve an equivalent constrained
optimization problem. The results therein reported are listed in the Table 4.
Finally, the table also reports the best results obtained by the monotone ver-
sion of the combined algorithm, GTSLS3 [34], as well as those of the proposed
nm–CGSLS. Both variants of the PGS outperform the HJ.

Table 4: Results for Problem 3.12.
Algorithm k n.f.e. M Algorithm k n.f.e. M

x0 = (1, 1)T x0 = (2, 2)T

GTSLS3 4 77 1.1e-14 GTSLS3 4 84 3.6e-11
nm+PGS+(7) 4§ 53 9.2e-9 nm+PGS+(7) 4§ 49 9.5e-7
nm+PGSm+(7) 5§ 36 2.3e-7 nm+PGSm+(7) 5§ 61 1.9e-8
nm+PGSm+(6) 8 52 5.1e-7 nm+PGSm+(6) 8 85 9.9e-7
nm+HJ+(7) 4 334 1.1e-14 nm+HJ+(7) 5 146 4.8e-11
in [30] 4 9 - in [30] 12 33 -
fsolve 7 26 3.3e-12 fsolve 6 21 7.0e-8
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Problem 3.13 Another NCP problem is used to analyze the performance
of the proposed algorithm. We aim to find x ∈ R4 such that x ≥ 0, F (x) ≥ 0
and xTF (x) = 0, where

F1(x) = 3x1 + 2x1x2 + 2x2
2 + |x3 − 3|+ 3x4 − 3,

F2(x) = 2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2,
F3(x) = 3x2

1 + x1x2 + 2x2
2 + 2x3 + 9x4 − 9,

F4(x) = x2
1 + 3x2

2 + 2x3 + 3x4 − 3,

which has a solution at (1, 0, 3, 0) [30].

Based on the initial approximation (2, 2, 1, 1), the generalized pattern search
filter method solves an equivalent constrained optimization problem in [30],
using 14 iterations and 55 function evaluations. The Levenberg-Marquardt al-
gorithm from MATLAB converges to (0,0,0,1) in 43 iterations and 259 function
evaluations. The nm–CGSLS+PGS+(7) uses k = 7§ and 1575 function evalua-
tions to reach a solution with M=5.4e-7. When testing nm–CGSLS+HJ+(7),
a solution is obtained in 21 iterations and 9094 function evaluations, with
M=3.2e-11.

The main advantage of the herein presented algorithm comes from the
fact that no derivatives are required, which is useful when solving systems
with nonsmooth functions, such as Problems 3.10 – 3.13, and overdetermined
systems can be easily solved, like those that emerge from Problems 3.12 and
3.13. Furthermore, each iteration of the algorithm is not computationally
expensive since matrices and the solution of systems of linear equations are
not required.

4 Conclusions

The nm–CGSLS algorithm for solving systems of nonlinear inequalities and
equalities has been presented. The nonmonotone perspective of the algorithm
emerges from the condition that is used to choose between the global search
and the local one. A global search aims at exploring the search space for a
region where a global minimizer of the merit function is located. A local search
procedure aims at refining the search around a located global minimizer and
is to be implemented as soon as a promising region is detected. This way,
computational requirements are reduced.

The proposed algorithm is a hybrid tabu search. The global search pro-
cedure is a variant of the DTS method developed in [16]. In its final in-
tensification phase, the PGS procedure is implemented. In the local search
procedure, the nm–CGSTS algorithm implements PGS. The PGS, a hybrid
pattern search, gathers ideas from the classical generating set method, either
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with a minimal set of n+1 directions or with the 2n coordinate directions [21],
as well as from the perturbed direction strategy [1].

An experimental study has been carried out with a variety of problems
collected from the literature. From this study, we may conclude that allowing
a nonmonotone reduction of the merit function to choose a local search proce-
dure, in detriment of a global one, reduces computational requirements. Fur-
ther, the nonmonotone F-rule based on the maximum merit function value of
previous iterations has shown to reduce significantly the function evaluations,
when compared with the rule that uses a convex combination of previous merit
values. The proposal based on the PGS method turns out to be more efficient
than the version based on the classical HJ local search.
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