121 research outputs found

    Modeling and Control of Piezoactive Micro and Nano Systems

    Get PDF
    Piezoelectrically-driven (piezoactive) systems such as nanopositioning platforms, scanning probe microscopes, and nanomechanical cantilever probes are advantageous devices enabling molecular-level imaging, manipulation, and characterization in disciplines ranging from materials science to physics and biology. Such emerging applications require precise modeling, control and manipulation of objects, components and subsystems ranging in sizes from few nanometers to micrometers. This dissertation presents a comprehensive modeling and control framework for piezoactive micro and nano systems utilized in various applications. The development of a precise memory-based hysteresis model for feedforward tracking as well as a Lyapunov-based robust-adaptive controller for feedback tracking control of nanopositioning stages are presented first. Although hysteresis is the most degrading factor in feedforward control, it can be effectively compensated through a robust feedback control design. Moreover, an adaptive controller can enhance the performance of closed-loop system that suffers from parametric uncertainties at high-frequency operations. Comparisons with the widely-used PID controller demonstrate the effectiveness of the proposed controller in tracking of high-frequency trajectories. The proposed controller is then implemented in a laser-free Atomic Force Microscopy (AFM) setup for high-speed and low-cost imaging of surfaces with micrometer and nanometer scale variations. It is demonstrated that the developed AFM is able to produce high-quality images at scanning frequencies up to 30 Hz, where a PID controller is unable to present acceptable results. To improve the control performance of piezoactive nanopositioning stages in tracking of time-varying trajectories with frequent stepped discontinuities, which is a common problem in SPM systems, a supervisory switching controller is designed and integrated with the proposed robust adaptive controller. The controller switches between two control modes, one mode tuned for stepped trajectory tracking and the other one tuned for continuous trajectory tracking. Switching conditions and compatibility conditions of the control inputs in switching instances are derived and analyzed. Experimental implementation of the proposed switching controller indicates significant improvements of control performance in tracking of time-varying discontinuous trajectories for which single-mode controllers yield undesirable results. Distributed-parameters modeling and control of rod-type solid-state actuators are then studied to enable accurate tracking control of piezoactive positioning systems in a wide frequency range including several resonant frequencies of system. Using the extended Hamilton\u27s principle, system partial differential equation of motion and its boundary conditions are derived. Standard vibration analysis techniques are utilized to formulate the truncated finite-mode state-space representation of the system. A new state-space controller is then proposed for asymptotic output tracking control of system. Integration of an optimal state-observer and a Lyapunov-based robust controller are presented and discussed to improve the practicability of the proposed framework. Simulation results demonstrate that distributed-parameters modeling and control is inevitable if ultra-high bandwidth tracking is desired. The last part of the dissertation, discusses new developments in modeling and system identification of piezoelectrically-driven Active Probes as advantageous nanomechanical cantilevers in various applications including tapping mode AFM and biomass sensors. Due to the discontinuous cross-section of Active Probes, a general framework is developed and presented for multiple-mode vibration analysis of system. Application in the precise pico-gram scale mass detection is then presented using frequency-shift method. This approach can benefit the characterization of DNA solutions or other biological species for medical applications

    Simulation And Control At the Boundaries Between Humans And Assistive Robots

    Get PDF
    Human-machine interaction has become an important area of research as progress is made in the fields of rehabilitation robotics, powered prostheses, and advanced exercise machines. Adding to the advances in this area, a novel controller for a powered transfemoral prosthesis is introduced that requires limited tuning and explicitly considers energy regeneration. Results from a trial conducted with an individual with an amputation show self-powering operation for the prosthesis while concurrently attaining basic gait fidelity across varied walking speeds. Experience in prosthesis development revealed that, though every effort is made to ensure the safety of the human subject, limited testing of such devices prior to human trials can be completed in the current research environment. Two complementary alternatives are developed to fill that gap. First, the feasibility of implementing impulse-momentum sliding mode control on a robot that can physically replace a human with a transfemoral amputation to emulate weight-bearing for initial prototype walking tests is established. Second, a more general human simulation approach is proposed that can be used in any of the aforementioned human-machine interaction fields. Seeking this general human simulation method, a unique pair of solutions for simulating a Hill muscle-actuated linkage system is formulated. These include using the Lyapunov-based backstepping control method to generate a closed-loop tracking simulation and, motivated by limitations observed in backstepping, an optimal control solver based on differential flatness and sum of squares polynomials in support of receding horizon controlled (e.g. model predictive control) or open-loop simulations. v The backstepping framework provides insight into muscle redundancy resolution. The optimal control framework uses this insight to produce a computationally efficient approach to musculoskeletal system modeling. A simulation of a human arm is evaluated in both structures. Strong tracking performance is achieved in the backstepping case. An exercise optimization application using the optimal control solver showcases the computational benefits of the solver and reveals the feasibility of finding trajectories for human-exercise machine interaction that can isolate a muscle of interest for strengthening

    Theoretical Approaches in Non-Linear Dynamical Systems

    Get PDF
    From Preface: The 15th International Conference „Dynamical Systems - Theory and Applications” (DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding scientists and engineers who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without great effort of the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz University of Technology. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our event was attended by over 180 researchers from 35 countries all over the world, who decided to share the results of their research and experience in different fields related to dynamical systems. This year, the DSTA Conference Proceedings were split into two volumes entitled „Theoretical Approaches in Non-Linear Dynamical Systems” and „Applicable Solutions in Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of Springer Proceedings in Mathematics and Statistics entitled „Control and Stability of Dynamical Systems”, „Mathematical and Numerical Approaches in Dynamical Systems” and „Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will be recommended to special issues of renowned scientific journals.Cover design: Kaźmierczak, MarekTechnical editor: Kaźmierczak, Mare
    corecore