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Tuesday, July 5, 2022

P0 UB5.132
Welcome and Opening

Chair:A. Vande Wouwer,M. Kinnaert 11.20-11.30

P1 UB5.132
Plenary 1 : Ilya Kolmanovsky

Perspectives, Challenges and Opportunities in
Control of Systems with Constraints
Chair: Emanuele Garone 11.30-12.30

TuP01 UB5.132
System Theory 1

Chair: Wim Michiels 14:00-15:40

TuP01-1 14:00-14:20

Learning stability guarantees for data-driven
constrained switching linear systems
Adrien Banse UCLouvain

Zheming Wang UCLouvain

Raphaël Jungers UCLouvain

TuP01-2 14:20-14:40

Stochastic Similarity Relations for Continuous
State POMDPs
Maico H. W. Engelaar Eindhoven University of

Technology

Sofie Haesaert Eindhoven University of Technology

Mircea Lazar Eindhoven University of Technology

TuP01-3 14.40-15.00

Controller-design for time-delay systems using
TDS CONTROL
Pieter Appeltans KU Leuven

Haik Silm KU Leuven

Wim Michiels KU Leuven

TuP01-4 15.00-15.20

(γ,δ)-Conformance: A Notion of System Com-
parison
Armin Pirastehzad University of Groningen

Arjan van der Schaft University of Groningen

Bart Besselink University of Groningen

TuP01-5 15.20-15.40

Impulse-controllability of system classes of
switched DAEs
Paul Wijnbergen University of Groningen

Stephan Trenn University of Groningen

TuP02 UB5.230
System Identification 1

Chair: John Lataire 14:00-15:40

TuP02-1 14:00-14:20

A square root filter for windowed recursive lin-
ear least squares regression
Ralf Peeters Maastricht University

Joël Karel Maastricht University

Pietro Bonizzi Maastricht University

TuP02-2 14:20-14.40

Learning separable decompositions of MIMO
nonlinear systems
Koen Tiels Eindhoven University of Technology

Maciej Filinski Wroclaw University of Science and

Technology

Pawel Wachel Wroclaw University of Science and

Technology

TuP02-3 14.40-15.00

Data-driven modelling of unsteady fluid dy-
namics
Joshua A. Foster Vrije Universiteit Brussel

Jan Decuyper Vrije Universiteit Brussel

Tim De Troyer Vrije Universiteit Brussel

Mark C. Runacres

TuP02-4 15.00-15.20

Nonlinear System Identification Based on
Linear Parameter-Varying Approximations by
Gaussian Process in the Frequency Domain
Sadegh Ebrahimkhani Vrije Universiteit Brussel,

Pleinlaan 2, Brussels, Belgium

John Lataire Vrije Universiteit Brussel, Pleinlaan 2,

Brussels, Belgium

TuP02-5 15.20-15.40

Visualization of MIMO Uncertainty Structures
for Robust Control
Paul Tacx Eindhoven University of Technology

Tom Oomen Eindhoven University of Technology

TuP03 UB4.132
Energy 1

Chair: Luis Daniel Couto 14:00-15.40
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TuP03-1 14:00-14:20

Development of physics based control-oriented
models for the heat exhaust in fusion power
plants
Jesse Koenders DIFFER

Matthijs van Berkel DIFFER

Gijs Derks DIFFER

Holger Reimerdes, Egbert Westerhof

TuP03-2 14:20-14.40

On designing MPC controller with obstacle
avoidance for a Parallel SCARA robot
Taranjitsingh Singh Flanders Make

Christophe Lauwerys Flanders Make

Quentin Docquier Flanders Make

Branimir Mrak

TuP03-3 14.40-15.00

A consensus approach to balancing the capaci-
tor voltage for modular multilevel converters
Victor Daniel Reyes Dreke Eindhoven University of

Technology

Mircea Lazar Eindhoven University of Technology

TuP03-4 15.00-15.20

Detection and Isolation of Small Faults in
Lithium-Ion Batteries via the Asymptotic Lo-
cal Approach
Luis D. Couto Universite libre de Bruxelles

John M. Reniers University of Oxford

David A. Howey University of Oxford

Michel Kinnaert

TuP03-5 15.20-15.40

Charge and Balance of a String of Li-ion Cells
An Explicit Reference Governor approach
Alejandro Goldar Davila Université libre de Bruxelles

Emanuele Garone Université libre de Bruxelles

TuP04 UB4.136
Robotics 1

Chair: Matthias Pezzutto 14:00-15:40

TuP04-1 14:00-14:20

Point-to-point trajectory generation and con-
trol for vibration reduction of swinging products
Robbert van der Kruk Eindhoven University of

Technology

TuP04-2 14:20-14.40

Collision-free Source Seeking Control of Unicy-
cle Robot under Uncertain Environment
Tinghua Li University of Groningen

Bayu Jayawardhana University of Groningen

TuP04-3 14.40-15.00

A Hybrid-System Formalism to Verify Proper-
ties of Robot Swarms
Guillermo Legarda Herranz Université libre de

Bruxelles

Emanuele Garone Université libre de Bruxelles

Mauro Birattari Université libre de Bruxelles

TuP04-4 15.00-15:20

Safe human-robot collaboration in mixed teams
Elise Verhees Eindhoven University of Technology

René van de Molengraft Eindhoven University of

Technology

Michel Reniers Eindhoven University of Technology

Elena Torta

TuP04-5 15.20-15.40

Trajectory optimization of a high speed pick and
place unit using soft switching multiple model
predictive control
Babak Mehdizadeh Gavgani Ghent University

Arash Farnam Ghent University

Foeke Vanbecelaere Ghent University

Jeroen D. M. De Kooning, Guillaume Crevecoeur

TuP05 UB2.147
Koopman Operator - Deep Learning

Chair: Maarten Schoukens 14:00-15:40

TuP05-1 14:00-14:20

Deep Learning-based Identification of Koopman
Models with Inputs
Lucian Cristian Iacob Eindhoven University of

Technology

Gerben Izaak Beintema Eindhoven University of

Technology

Maarten Schoukens Eindhoven University of

Technology

Roland Tóth

TuP05-2 14:20-14.40

Constructing a Lyapunov function for nonlin-
ear systems via the Koopman operator approach
Christian Mugisho Zagabe University of Namur

Alexandre Mauroy University of Namur
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TuP05-3 14.40-15.00

Continuous-time system identification by deep
subspace encoders
Gerben I. Beintema Eindhoven University of

Technology

Roland Tóth TU/e and SZTAKI

Maarten Schoukens Eindhoven University of

Technology

TuP05-4 15.00-15.20

Learning-Based Model-Augmentation of Non-
linear Approximative Models using the Sub-
Space Encoder
Chris Verhoek Eindhoven University of Technology

Gerben Beintema Eindhoven University of Technology

Sofie Haesaert Eindhoven University of Technology

Maarten Schoukens and Roland Tóth

TuP05-5 15.20-15.40

Learning-based augmentation of mechatronic
system models by deep subspace encoders
András Retzler KU Leuven

Gerben Izaak Beintema Eindhoven University of

Technology

Maarten Schoukens Eindhoven University of

Technology

Roland Tóth, Jan Swevers, Zsolt Kollár

TuP06 UB4.151
State Observers 1

Chair: Mihaela Sbarciog 14:00-15.40

TuP06-1 14:00-14:20

Sensor Data Fusion as an Alternative for Mon-
itoring Oxychlorides in Electrochlorination Ap-
plications
E.A. Ross Wageningen University and Research

R.M. Wagterveld Wetsus

M. Mayer EasyMeasure

J.D. Stigter, B. Højris, Y. Li, K.J. Keesman

TuP06-2 14:20-14.40

Observability-Based Optimal Sensor Placement
in Hydraulic Fluid Transport Networks
Caspar Geelen Wageningen University

Doekle Yntema Wetsus

Jaap Molenaar Wageningen University

Karel Keesman

TuP06-3 14.40-15.00

Joint Parameter and State Estimation: A Su-
pervisory Multi-Observer Approach
Tomas Meijer Eindhoven University of Technology

Victor Dolk Eindhoven University of Technology

Michelle Chong Eindhoven University of Technology

Romain Postoyan, Bram de Jager, Dragan Nešić, Mau-

rice Heemels

TuP06-4 15.00-15.20

Event-Based Estimation for POMDPs: Ap-
plication to Remote Estimation in Precision
Farming
R.M. Beumer Eindhoven University of Technology

M.J.G. van de Molengraft Eindhoven University of

Technology

D.J. Antunes Eindhoven University of Technology

TuP06-5 15.20-15.40

A Multiple Observer Approach to Cyber-Attack
Detection
Twan Keijzer Delft University of Technology

Riccardo M.G. Ferrari Delft University of Technology

TuP07 UA4.222
Optimization 1

Chair: Jan Swevers 14:00-15.40

TuP07-1 14:00-14:20

Exploiting Symbolic Linearization to Imple-
ment the Sequential Convex Quadratic Pro-
gramming Method
Alejandro Astudillo MECO Research Team - KU

Leuven

Joris Gillis MECO Research Team - KU Leuven

Moritz Diehl University of Freiburg

Wilm Decré, Goele Pipeleers, Jan Swevers

TuP07-2 14:20-14.40

Multiway data regression using a spline-type
tensor decomposition
Raphaël Widdershoven KU Leuven

Lieven De Lathauwer KU Leuven

Nithin Govindarajan KU Leuven

Nico Vervliet, Martijn Boussé

TuP07-3 14.40-15.00

Online Unit Commitment Problem Solving us-
ing Dynamic Programming
Wim Van Roy KU Leuven

Joris Gillis KU Leuven

Goele Pipeleers KU Leuven

Jan Swevers
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TuP07-4 15.00-15.20

An adaptive restart heavy-ball projected primal-
dual method for solving constrained linear
quadratic optimal control problems
Y.J.J. Heuts Eindhoven University of Technology

G.P. Padilla Eindhoven University of Technology

M.C.F. Donkers Eindhoven University of Technology

TuP07-5 15.20-15.40

E-Drive Specification Using Multi-fidelity Scal-
able Models
Olaf Borsboom Eindhoven University of Technology

Mauro Salazar Eindhoven University of Technology

Theo Hofman Eindhoven University of Technology

TuE01 UB5.132
Med. Bio Sys. 1

Chair: Simon Van Mourik 16.10-18.10

TuE01-1 16.10-16.30

A modular elementary flux mode reduction pro-
cedure for dynamic metabolic modelling
Maxime Maton University of Mons (FPMs)

Philippe Bogaerts University of Brussels

Alain Vande Wouwer University of Mons (FPMs)

TuE01-2 16.30-16.50

A general ODE-based model to describe pest
populations dynamics
Nicolas Bono Rossello Université Libre de Bruxelles

Luca Rossini Università degli Studi della Tuscia

Stefano Speranza Università degli Studi della Tuscia

Emanuele Garone

TuE01-3 16.50-17.10

Control by state feedback of an age-dependent
epidemiological model
Candy Sonveaux University of Namur

Joseph J. Winkin University of Namur

TuE01-4 17.10-17.30

Global Sensitivity Analysis of a Microkinetic
Model of the Oxygen Evolution Reaction
Bart van den Boorn 1DIFFER - Dutch Institute for

Fundamental Energy Research

Anja Bieberle-Hutter

Matthijs van Berkel

TuE01-5 17.30-17.50

The Effect of Vaccination and Human Be-
haviour in Epidemic Models
Kathinka Frieswijk University of Groningen

Lorenzo Zino University of Groningen

Ming Cao University of Groningen

TuE01-6 17.50-18.10

Optimising Photosynthetic Induction to control
supplemental greenhouse lighting
Dominique Joubert Wagenignen University &

Research

J.D. Stigter Wagenignen University & Research

TuE02 UB5.230
Data Driven Techniques

Chair: John Lataire 16.10-18.10

TuE02-1 16.10-16.30

Data-driven distributionally robust control of
partially observable jump linear systems
Mathijs Schuurmans KU Leuven

Panagiotis Patrinos KU Leuven

TuE02-2 16.30-16.50

Spatio-temporal decoupling for system identi-
fication using SVD and recurrent neural net-
works
Carlos Jose Gonzalez Rojas TUe

Leyla Ozkan TUe

Mateus Dias Ribeiro German Aerospace Center

TuE02-3 16.50-17.10

Data-based batch process model using principle
component analysis and Gaussian process re-
gression
Maarten Vlaswinkel Eindhoven University of

Technology

Bram de Jager Eindhoven University of Technology

Frank Willems Eindhoven University of Technology

TuE02-4 17.10-17.30

Data-driven tuning of rational feedforward con-
trollers for noncommutative MIMO systems
Maurice Poot Eindhoven University of Technology

Jim Portegies Eindhoven University of Technology

Tom Oomen Eindhoven University of Technology

TuE02-5 17.30-17.50

Data-driven distributionally robust MPC for
constrained stochastic systems
Peter Coppens KU Leuven

Panagiotis Patrinos KU Leuven
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TuE02-6 17.50-18.10

Data–driven rate–based integral predictive con-
trol with estimated prediction matrices
P. C. N. Verheijen Eindhoven University of

Technology

G. R. Goncalves da Silva

M. Lazar

TuE03 UB4.132
Process Control

Chair: Laurent Dewasme 16.10-18.10

TuE03-1 16.10-16.30

Control of Simulated Moving Bed Chromato-
graphic Processes
Valentin P. Chernev University of Mons

Alain Vande Wouwer University of Mons

Achim Kienle Otto von Guericke University,

Magdeburg

Lino de Oliveira Santos

TuE03-2 16.30-16.50

Improving hoist ergonomics by retrofitting au-
tomatic controllers
Joram Meskens Flanders Make

Abdellatif Bey-Temsamani Flanders Make

Bruno Depraetere Flanders Make

TuE03-3 16.50-17.10

Determination of Residence Time Distribution
in Continuous Manufacturing line using data
driven modeling
Pau Lapiedra Carrasquer KU Leuven

Carlos Andre Munoz KU Leuven

Satyajeet S. Bhonsale KU Leuven

Liang Li, Jan F.M. Van Impe

TuE03-4 17.10-17.30

Crystallization kinetics inference using Gaus-
sian process regression
Michiel Busschaert KU Leuven

Steffen Waldherr KU Leuven

TuE03-5 17.30-17.50

A simulation-based method for design space ex-
ploration
Nick Paape Eindhoven University of Technology

Joost van Eekelen Eindhoven University of Technology

Michel Reniers Eindhoven University of Technology

TuE03-6 17.50-18.10

Real-time passenger-centric timetable schedul-
ing for railway networks: A distributed control
method
Xiaoyu Liu Delft University of Technology

Azita Dabiri

Bart De Schutter

TuE04 UB4.136
Learning-Based Control 1

Chair: Tom Oomen 16.10-18.30

TuE04-1 16.10-16.30

Learning constitutive laws in engineering sys-
tems
Sarvin Moradi Eindhoven University of Technology

Nick Jaensson Eindhoven University of Technology

Roland Toth Eindhoven University of Technology

Maarten Schoukens

TuE04-2 16.30-16.50

Total Energy Shaping with Neural Intercon-
nection and Damping Assignment - Passivity
Based Control
Santiago Sanchez-Escalonilla Plaza University of

Groningen

Rodolfo Reyes-Baez University of Groningen

Bayu Jayawardhana University of Groningen

TuE04-3 16.50-17.10

On feedforward control using physics-guided
neural networks: Training cost regularization
and optimized training
Max Bolderman Eindhoven University of Technology

Mircea Lazar Eindhoven University of Technology

Hans Butler Eindhoven University of Technology

TuE04-4 17.10-17.30

Neural networks for motion feedforward:
control-relevant training and non-causality
Leontine Aarnoudse Eindhoven University of

Technology

Johan Kon Eindhoven University of Technology

Wataru Ohnishi The University of Tokyo

Maurice Poot, Paul Tacx, Nard Strijbosch, Tom Oomen

TuE04-5 17.30-17.50

Bridging Dynamic Neural Networks and Opti-
mal Control
Edward Kikken Flanders Make

Bruno Depraetere Flanders Make

Jeroen Willems Flanders Make
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TuE04-6 17.50-18.10

Combined MPC and reinforcement learning
controller for traffic signal control in urban
traffic networks
Dingshan Sun Delft University of Technology

Anahita Jamshidnejad

Bart De Schutter

TuE04-7 18.10-18.30

Learning-based Model Matching for Fault De-
tection and Isolation of Nonlinear Systems
Farhad Ghanipoor Eindhoven University of

Technology

Carlos Murguia Eindhoven University of Technology

Nathan van de Wouw Eindhoven University of

Technology

Peyman Mohajerin Esfahani

TuE05 UB2.147
System Theory 2

Chair: Joseph Winkin 16.10-18.10

TuE05-1 16.10-16.30

Consistency of behavioural assume-guarantee
contracts
Brayan M. Shali University of Groningen

Arjan van der Schaft University of Groningen

Bart Besselink University of Groningen

TuE05-2 16.30-16.50

H infinity distributed synchronising controller
for Euler-Lagrangian multi-agents under com-
munication time-delay
Arash Farnam Ghent University

Babak Mehdizadeh Gavgani Ghent University

Guillaume Crevecoeur Ghent University

TuE05-3 16.50-17.10

Extended differential balancing for nonlinear
systems
Arijit Sarkar University of Groningen, The

Netherlands

Jacquelien M.A. Scherpen University of Groningen,

The Netherlands

TuE05-4 17.10-17.30

Multirate Performance Quantification using
Time-Lifting and Local Polynomial Modeling
Max van Haren Eindhoven University of Technology

Lennart Blanken Eindhoven University of Technology

and Sioux Technologies

Tom Oomen Eindhoven University of Technology and

Delft University of Technology

TuE05-5 17.30-17.50

Least-squares globally optimal misfit modelling
for SISO systems
Sibren Lagauw KU Leuven

Bart De Moor KU Leuven

TuE05-6 17.50-18.10

Globally optimal least-squares misfit identifica-
tion of multidimensional autonomous systems
Lukas Vanpoucke KU Leuven

Bart De Moor KU Leuven

TuE06 UB4.151
Vehicles 1

Chair: Alain Vande Wouwer 16.10-18.30

TuE06-1 16.10-16.30

S-drone: a novel aerial robotic swarm hardware
SINAN OGUZ ULB

Mary Katherine Heinrich ULB

Michael Allwright ULB

TuE06-2 16.30-16.50

Distributed MPC for mapping mission with
multiple UAVs
Dora Novak Université Paris-Saclay

Alain Vande Wouwer University of Mons

Sihem Tebbani Université Paris-Saclay

TuE06-3 16.50-17.10

Implementation and Tests of an INDI Control
Strategy with the Parrot Mambo Minidrone
Delansnay Gilles University of Mons

Vande Wouwer Alain University of Mons

TuE06-4 17.10-17.30

Multi-stage Optimal Motion Planning for
Drone Racing
Mathias Bos KU Leuven

Wilm Decré KU Leuven

Jan Swevers KU Leuven

Goele Pipeleers

TuE06-5 17.30-17.50

MPC-based Imitation Learning for Au-
tonomous Vehicles Lane Keeping from Human
Demonstrations
Flavia Sofia Acerbo KU Leuven

Jan Swevers

Tinne Tuytelaars

Tong Duy Son
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TuE06-6 17.50-18.10

Building avehicle digital twin for ADAS testing
and control
Ludovico Ruga Siemens Digital Industries Software

Tong Duy Son Siemens Digital Industries Software

Theo geluk Siemens Digital Industries Software

TuE06-7 18.10-18.30

Implementation of collision avoidance for
multi-UAVs system
Oscar Fabian Archila University of Mons/BTU

Alain Vande Wouwer University of Mons

Johannes Schiffer BTU Cottbus-Senftenberg

TuE07 UA4.222
Electromechanical Applications 1

Chair: Michel Kinnaert 16.10-18.30

TuE07-1 16.10-16.30

Modelling of a Primary Flight Electromechani-
cal Actuator considering Temperature and Pro-
duction Variability
Benjamin Wauthion Université Libre de Bruxelles

Michel Kinnaert Université Libre de Bruxelles

Paul Alexandre Société Anonyme Belge de

Construction Aéronautique

TuE07-2 16.30-16.50

Control systems in Gravitational Wave detec-
tors: A survey of the design challenges
Mathyn van Dael Eindhoven University of Technology,

Nikhef

Gert Witvoet Eindhoven University of Technology,

TNO

Bas Swinkels Nikhef

Tom Oomen

TuE07-3 16.50-17.10

Tool interoperability for efficient model-based
system design
Sander Thuijsman Eindhoven University of

Technology

TuE07-4 17.10-17.30

Hardware-in-the-loop testing for the Swalmen
tunnel using automatically generated PLC code
Lars Moormann Eindhoven University Eindhoven

Asia van de Mortel-Fronczak Eindhoven University

Eindhoven

Wan Fokkink Vrije Universiteit Amsterdam

Koos Rooda

TuE07-5 17.30-17.50

Non-collocated vibration suppression using de-
layed feedback
Haik Silm KU Leuven

Wim Michiels KU Leuven

Tomas Vyhlidal Czech Technical University in Prague

TuE07-6 17.50-18.10

A first hands-on mechatronics project for engi-
neering students using active magnetic bearings
Laurens Jacobs KU Leuven

Jan Swevers KU Leuven

Goele Pipeleers KU Leuven

TuE07-7 18.10-18.30

Model based control of soft robots aiming for
trajectory tracking
Mahboubeh Keyvanara Eindhoven University of

Technology

Arman Goshtasbi University of Twente

Irene Kuling Eindhoven University of Technology

Wednesday, July 6, 2022

WeP01 UB5.132
Optimal Control 1

Chair: Emanuele Garone 9:00 - 11:00

WeP01-1 9:00-9:20

Hybrid Control Implementation Analysis based
on the finite set model predictive control design
Shafaq Gul Ghent University, Member of Flanders

Make

Frederik De Belie Ghent University, Member of

Flanders Make

WeP01-2 9:20-9:40

Design Methods for Sampled-Data Systems
Luuk Spin Eindhoven University of Technology

Tijs Donkers Eindhoven University of Technology

WeP01-3 9:40-10:00

On the steady-state behavior of finite–control–
set MPC with an application to high-precision
switched amplifiers
Duo Xu Eindhoven University of Technology

Mircea Lazar Eindhoven University of Technology

WeP01-4 10:00-10:20

Data-driven distributionally robust iterative
risk-constrained model predictive control
Alireza Zolanvari University of Groningen

Ashish Cherukuri University of Groningen
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WeP01-5 10:20-10:40

Optimal Control and Design of Magnetic
Spring-assisted Systems
Branimir Mrak Flanders Make

Jeroen Willems Flanders Make

Edward Kikken Flanders Make

WeP01-6 10:40-11:00

Identifying bang-bang type MPC using Support
Vector Machines
Tony Dang Flanders Make

Frederik Debrouwere Flanders Make

Erik Hostens Flanders Make

WeP02 UB5.230
Interconnected Systems

Chair: Guilherme A. Pimentel 9:00 - 11:00

WeP02-1 9:00-9:20

Modelling Framework and Partitioning of
Large-Scale Systems
Alessandro Riccardi Delft University of Technology

Luca Laurenti Delft University of Technology

Bart De Schutter Delft University of Technology

WeP02-2 9:20-9:40

Private Computation of Polynomials over Net-
works
Teimour Hosseinalizadeh University of Groningen

Fatih Turkmen University of Groningen

Nima Monshizadeh University of Groningen

WeP02-3 9:40-10:00

Abstracted Reduction of Interconnected Struc-
tural Models
Luuk Poort Eindhoven University of Technology

Rob Fey Eindhoven University of Technology

Bart Besselink University of Groningen

Nathan van de Wouw

WeP02-4 10:00-10:20

A priori error bounds for model reduction of in-
terconnected systems
Lars Janssen Eindhoven University of Technology

Rob Fey Eindhoven University of Technology

Bart Besselink University of Groningen

Nathan van de Wouw

WeP02-5 10:20-10:40

Modelling of networks of memristords
Anne-Men Huijzer University of Groningen

Bart Besselink University of Groningen

Arjan van der Schaft University of Groningen

WeP02-6 10:40-11:00

Handling sensor and process noise in dynamic
network identification
Stefanie Fonken Eindhoven University of Technology

Karthik Ramaswamy Eindhoven University of

Technology

Paul Van den Hof Eindhoven University of Technology

WeP03 UB4.132
Nonlinear Control

Chair: Marcel Heertjes 9:00 - 11:00

WeP03-1 9:00-9:20

Nonlinear feedforward control for a class of
tasks: A Gaussian Process approach applied to
a printer
Max van Meer Eindhoven University of Technology

Maurice Poot Eindhoven University of Technology

Jim Portegies Eindhoven University of Technology

WeP03-2 9:20-9:40

Virtual systems in nonlinear control design
Rodolfo Reyes-Baez University of Groningen

Bayu Jayawardhana University of Groningen

WeP03-3 9:40-10:00

Analysis of Sampled-Data Hybrid Integrator-
Gain-Based Control Systems
Bardia Sharif Eindhoven University of Technology

Marcel Heertjes Eindhoven University of Technology

Henk Nijmeijer Eindhoven University of Technology

Maurice Heemels

WeP03-4 10:00-10:20

Adaptive control without knowing what to adapt
to
Rian Beck Flanders Make

Sudarsan Kumar Venkatesan Flanders Make

Bruno Depraetere Flanders Make

WeP03-5 10:20-10:40

Multi-layered simulation relations for linear
stochastic systems
B.C. van Huijgevoort Eindhoven University of

Technology

Sofie Haesaert Eindhoven University of Technology

WeP03-6 10:40-11:00

Implicit Fixed-Time ISS Safe CBFs
Ming Li TU/e

Zhiyong Sun Eindhoven University of Technology
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WeP04 UB4.136
Learning-Based Control 2

Chair: Jan Swevers 9:00 - 11:00

WeP04-1 9:00-9:20

Learning-based Control for High-efficient PPC
Engines with Gaussian Process
Wang Pan Eindhoven University of Technology

Frank Willems Eindhoven University of Technology

WeP04-2 9:20-9:40

Feedforward Control in the Presence of Input
Nonlinearities: A Learning-based Approach
Jilles van Hulst Eindhoven University of Technology

Maurice Poot Eindhoven University of Technology

Jim Portegies Eindhoven University of Technology

Tom Oomen,Dragan Kostic and Kai Wa Yan

WeP04-3 9:40-10:00

MPC Informed Control via Neural Networks
Muhammed Bahadir Saltik University of Groningen

Bayu Jayawardhana University of Groningen

Ashish Cherukuri University of Groningen

WeP04-4 10:00-10:20

Iterative Learning Control based on Estimation
and Control with Set-membership Uncertainty:
ECOset-ILC.
Daniele Ronzani KU Leuven

Joris Gillis KU Leuven

Goele Pipeleers KU Leuven

Jan Swevers

WeP04-5 10:20-10:40

Reduction in calibration effort of diesel engine
transient control by using LSTM-based method-
ology
Prasoon Garg Eindhoven University of Technology

Emilia Silvas Eindhoven University of Technology

Frank Willems Eindhoven University of Technology

WeP04-6 10:40-11:00

Safe Learning-Based Model Predictive Control
Filippo Airaldi Delft University of Technology

Bart De Schutter Delft University of Technology

Azita Dabiri Delft University of Technology

WeP05 UB2.147
Robotics 2

Chair: Bayu Jayawardhana 9:00 - 11:00

WeP05-1 9:00-9:20

Optimal motion planning sped up with LogSum-
Exp for obstacle avoidance
Joris Gillis KU Leuven

Jan Swevers KU Leuven

Goele Pipeleers KU Leuven

WeP05-2 9:20-9:40

An adaptive MPC scheme for systems with
variable topologies
Tony Dang Flanders Make

Taranjitsingh Singh Flanders Make

Frederik Debrouwere Flanders Make

WeP05-3 9:40-10:00

Reformulating Collision Avoidance Constraints
for Multi-DOF Robotic Planning
Dries Dirckx KU Leuven

Jan Swevers KU Leuven

Wilm Decré KU Leuven

Goele Pipeleers

WeP05-4 10:00-10:20

Learning from demonstration for leader-
follower robotic configurations
Busra Sen Eindhoven University of Technology

Elena Torta Eindhoven University of Technology

M.J.G. van de Molengraft Eindhoven University of

Technology

Marco Alonso, Henry Stoutjesdijk

WeP05-5 10:20-10:40

Exploiting Plant Dynamics in Robotic Fruit Lo-
calization
Jordy Senden Eindhoven University of Technology

Lars Janssen Eindhoven University of Technology

Robbert van der Kruk Eindhoven University of

Technology

Herman Bruyninckx, René van de Molengraft

WeP05-6 10:40-11:00

Remote Control of a Two-Wheeled Robot: Evi-
dences from Experiments over Wi-Fi
Matthias Pezzutto University of Padova

Emanuele Garone Université Libre de Bruxelles

WeP06 UB4.151
Vehicles 2

Chair: Maarten Steinbuch 9:00 - 11:00

12



Book of Abstracts 41st Benelux Meeting on Systems and Control

WeP06-1 9:00-9:20

Simulation-aided Verification of SLAM Algo-
rithms
Anoosh Anjaneya Hegde Siemens Digital Industries

Software

Michael Phillips Siemens Digital Industries Software

Herman Van der Auweraer Siemens Digital Industries

Software

Tong Duy Son

WeP06-2 9:20-9:40

Hybrid Vehicle Models for Control of Evasive
Maneuvers
Leila Gharavi Delft University of Technology

Bart De Schutter Delft University of Technology

Simone Baldi Southeast University

WeP06-3 9:40-10:00

Traffic control for AGVs on a grid layout
Karlijn Fransen Eindhoven University of Technology

Joost van Eekelen Eindhoven University of Technology

Michel Reniers Eindhoven University of Technology

WeP06-4 10:00-10:20

A Closed-Form Solution to Control Allocation
in the Framework of Constrained Navigation of
Autonomous Ships
Xavier Jordens Université libre de Bruxelles

Emanuele Garone Université libre de Bruxelles

WeP06-5 10:20-10:40

Motion planning and control for autonomous
vehicles in lane merging scenarios
M.E. Geurts Eindhoven, University of Technology

E. Silvas Eindhoven, University of Technology

A. Katriniok Ford Research & Innovation Center

W.P.M.H. Heemels

WeP06-6 10:40-11:00

Safety Shell: Reducing performance-limits in
autonomous vehicles
Caspar Hanselaar Eindhoven University of Technology

Emilia Silvas Eindhoven University of Technology /

TNO

Andrei Terechko NXP Semiconductors N.V.

Maurice Heemels

WeP07 UA4.222
Optimization 2

Chair: Wilm Decré 9:00 - 11:00

WeP07-1 9:00-9:20

An online optimization approach to the random
coordinate descent algorithm in open multi-
agent systems
Charles Monnoyer de Galland UCLouvain

Renato Vizuete Université Paris-Saclay

Julien M. Hendrickx UCLouvain

Paolo Frasca, Elena Panteley

WeP07-2 9:20-9:40

Towards Memory-Optimal Traversal of Expres-
sion Graphs of Atomic Operations in CasADi
Alejandro Astudillo MECO Research Team - KU

Leuven

Joris Gillis MECO Research Team - KU Leuven

Goele Pipeleers MECO Research Team - KU Leuven

Wilm Decré, Jan Swevers

WeP07-3 9:40-10:00

Extension of the Performance Estimation
framework via a novel approach for convex in-
terpolation
Anne Rubbens UCLouvain

Julien Hendrickx UCLouvain

WeP07-4 10:00-10:20

Towards Performance Estimation Problems on
Quadratic Functions
N. Bousselmi Université catholique de Louvain

J. Hendrickx Université catholique de Louvain

F. Glineur Université catholique de Louvain

WeP07-5 10:20-10:40

Advances in Feasible SQP Methods for NMPC
David Kiessling KU Leuven

Jan Swevers KU Leuven

Moritz Diehl University of Freiburg

Joris Gillis

WeP07-6 10:40-11:00

Performance Estimation Problem for Decen-
tralized Optimization Methods
Sebastien Colla UCLouvain

Julien M. Hendrickx UCLouvain

P2 UB5.132
Plenary lecture 2: David Howey

Data-driven battery health diagnosis in real-
world applications
Chair:Michel Kinnaert 11:30-12:30

13



Book of Abstracts 41st Benelux Meeting on Systems and Control

MC1 UB5.132
Mini-course 1: Mouhacine Benosman

A hybrid approach to control: classical control
theory meets machine learning theory
Chair:Laurent Dewasme 14:00-15:30

WeE01 UB5.132
Optimal Control 2

Chair: Bojana Rosic 16:00 - 18:00

WeE01-1 16:00-16:20

On designing distributed consensus protocol for
multi- Energy Storage Unit (ESU) system in a
microgrid
Taranjitsingh Singh Flanders Make

Tony Dang Flanders Make

Frederik Debrouwere Flanders Make

WeE01-2 16:20-16:40

Industrial DC grids using MPC tweaked to be
charge sustaining
Bruno Depraetere Flanders Make

Taranjitsingh Singh Flanders Make

Jeroen Willems Flanders Make

WeE01-3 16:40-17:00

Computing an FIR controller using an efficient
iterative scheme
R. Haasjes University of Twente

A.P. Berkhoff 1. University of Twente & 2.TNO

B. Rośıc University of Twente

WeE01-4 17:00-17:20

Disturbance estimation to avoid the model mis-
match effects in Model Predictive Control
Alvaro Florez KU Leuven

Jan Swevers KU Leuven

WeE01-5 17:20-17:40

Offset-free model predictive control of the elec-
tron density profile in a tokamak
T.O.S.J. Bosman DIFFER

M. van Berkel DIFFER

M.R. de Baar DIFFER

WeE01-6 17:20-18:00

Detecting floor surface changes using SNIS
Bastiaan Vandewal KU Leuven

Goele Pipeleers KU Leuven

Jan Swevers KU Leuven

WeE02 UB5.230
System Identification 2

Chair: Wouter Hakvoort 16:00 - 18:00

WeE02-1 16:00-16:20

A short review of finite-sample error analysis
of linear system identification for control
Shengling Shi Delft University of Technology

Bart De Schutter Delft University of Technology

WeE02-2 16:20-16:40

Parameter estimation of multiple poles by
subspace-based methods
Prabhu Vijayan KU Leuven

Mariya Ishteva KU Leuven

Ivan Markovsky VUB

Prabhu Vijayan

WeE02-3 16:40-17:00

Spectral network identification with generalized
diffusive coupling
Marvyn Gulina University of Namur

Alexandre Mauroy University of Namur

WeE02-4 17:00-17:20

Sparse Learning In System Identification: De-
biasing And Infinite-Dimensional Algorithms
M. Tolga Akan Eindhoven University of Technology

Mingzhou Yin ETH Zurich

Andrea Iannelli ETH Zurich

Mohammad Khosravi, ETH Zurich, Department of In-

formation Technology and Electrical Engineering, khos-

ravm@control.ee.ethz.ch

WeE02-5 17:20-17:40

Parameter estimation under periodic distur-
bances using the Maximum Likelihood algo-
rithm
D.M.E. Kruijver University of Twente

W.B.J. Hakvoort University of Twente

M.A. Beijen DEMCON Advanced Mechatronics

WeE02-6 17:40-18:00

Identifying a highly nonlinear MIMO Volterra
system including Bayesian confidence bounds
in seconds on a laptop
Eva Memmel Delft University of Technology

Clara Menzen Delft University of Technology

Kim Batselier Delft University of Technology
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WeE03 UB4.132
Med. Bio. Sys. 2

Chair: Karel Keesman 16:00 - 18:00

WeE03-1 16:00-16:20

Towards advanced model based control of bio-
processes
Satyajeet S. Bhonsale KU Leuven

Wannes Mores KU Leuven

Jan F.M. Van Impe KU Leuven

WeE03-2 16:20-16:40

Assessment of microbial food safety risks due
to climate change
Lydia Katsini KU Leuven

Satyajeet Bhonsale KU Leuven

Carlos Andre Munoz Lopez KU Leuven

Styliani Roufou, Sholeem Griffin, Vasilis Valdramidis,

Simen Akkermans, Monika Polanska, Jan F.M. Van

Impe

WeE03-3 16:40-17:00

Experimental modeling of a beer fermentation
process
Jesús M. Zamudio Lara Université de Mons

Laurent Dewasme Université de Mons

Héctor Hernández Escoto Universidad de Guanajuato

Alain Vande Wouwer

WeE03-4 17:00-17:20

Towards large-scale observer design for Mag-
netic Resonance Thermometry in hyperthermia
cancer treatments
Sven Nouwens TU eindhoven

Maarten Paulides TU eindhoven

Bram de Jager TU eindhoven

Maurice Heemels

WeE03-5 17:20-17:40

Patient-ventilator asynchrony detection in me-
chanical ventilation
Lars van de Kamp Eindhoven University of

Technology

Joey Reinders Demcon Advanced Mechatronics

Bram Hunnekens Demcon Advanced Mechatronics

Nathan van de Wouw, Tom Oomen

WeE03-6 17:40-18:00

Dynamic model development for prediction of
intracellular trehalose accumulation in baker’s
yeast
Antoine Huet ULB

Mihaela Sbarciog ULB

Philippe Bogaerts ULB

WeE04 UB4.136
Learning-Based Control 3

Chair: Bayu Jayawardhana 16:00 - 18:00

WeE04-1 16:00-16:20

Reinforcement learning for optimal control of
linear systems with constraints via piecewise
affine/quadratic approximation
Kanghui He Delft University of Technology

Ton van den Boom Delft University of Technology

Bart De Schutter Delft University of Technology

WeE04-2 16:20-16:40

Physics-Guided Neural Networks for Feedfor-
ward Control: An Orthogonal Projection-Based
Approach
Johan Kon Eindhoven University of Technology

Marcel Heertjes Eindhoven University of Technology

Tom Oomen Eindhoven University of Technology

Dennis Bruijnen, Jeroen van de Wijdeven

WeE04-3 16:40-17:00

Simple Learning Control for Smooth Dog
Clutch Engagements
Jeroen Willems Flanders Make

Stijn Goossens Dana Incorporated

Bruno Depraetere Flanders Make

Sorin Bengea

WeE04-4 17:00-17:20

Integrated optimization-based and learning-
based control for PWA systems
Caio Fabio Oliveira da Silva Delft University of

Technology

Azita Dabiri Delft University of Technology

Bart De Schutter Delft University of Technology

WeE04-5 17:20-17:40

Flexible learning with prior knowledge: itera-
tive learning control with sampled-data charac-
terized basis functions
Masahiro Mae The University of Tokyo

Max van Haren

Wataru Ohnishi

Tom Oomen, Hiroshi Fujimoto
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WeE04-6 17:40-18:00

A Privacy Preserving Federated Learning
Framework
Haleh Hayati Eindhoven University of Technology

Carlos Murguia

WeE05 UB2.147
Game Theory

Chair: Matthias Pezzutto 16:00 - 18:00

WeE05-1 16:00-16:20

Learning MPC for Interaction-Aware Au-
tonomous Driving
Evens Brecht KU Leuven

Mathijs Schuurmans KU Leuven

Panagiotis Patrinos KU Leuven

WeE05-2 16:20-16:40

Stochastic stability of perturbed best-response
dynamics for networked coordination games
Bo Jin University of Groningen

Ming Cao University of Groningen

WeE05-3 16:40-17:00

A passivity approach for consensus-based and
rigid formation
Ningbo Li University of Groningen

Jacquelien Scherpen University of Groningen

A.J. van der Schaft University of Groningen

Zhiyong Sun

WeE05-4 17:00-17:20

Using dynamic norms to facilitate innovation
diffusion in networks
Lorenzo Zino University of Groningen

Mengbin Ye Curtin University

Ming Cao University of Groningen

WeE05-5 17:20-17:40

Aggregating distributed energy resources for
grid flexibility services A distributed game the-
oretic approach
Xiupeng Chen University of Groningen

Jacquelien M. A. Scherpen University of Groningen

Nima Monshizadeh University of Groningen

WeE05-6 17:40-18:00

Inverse Learning for Linear-quadratic Zero-
sum Differential Games
Emin Martirosyan University of Groningen

Ming Cao University of Groningen

WeE06 UB4.151
Vehicles 3

Chair: Maarten Steinbuch 16:00 - 18:00

WeE06-1 16:00-16:20

Stochastic barrier functions for safety verifica-
tion of autonomous vehicles and human agents
Frederik Baymler Mathiesen Delft University of

Technology

Luca Laurenti Delft University of Technology

Simeon Calvert Delft University of Technology

WeE06-2 16:20-16:40

Sim2real for Autonomous Vehicle Control us-
ing Executable Digital Twin
Jean Pierre Allamaa Siemens Digital Industries

Software and KU Leuven

Tong Duy Son Siemens Digital Industries Software

Panagiotis Patrinos KU Leuven

Herman Van der Auweraer

WeE06-3 16:40-17:00

Are we there yet? An Overview of Open Chal-
lenges in Trajectory Prediction for Autonomous
Driving
M. Muñoz Sánchez Eindhoven University of

Technology

E. SilvasEindhoven University of Technology and TNO

J. Elfring Eindhoven University of Technology and

TomTom

R. van de Molengraft

WeE06-4 17:00-17:20

Link manipulation of mixed-vehicle cyclic pla-
toon: A stability perspective
W. Jeong Gyeongsang National University

Y. Kim Gyeongsang National University

A. Vande Wouwer University of Mons

WeE06-5 17:20-17:40

Autonomous Driving of Articulated Vehicles at
Distribution Centre
Viral Gosar Eindhoven University of Technology

Mohsen Alirezaei

I.J.M. Besselink

WeE06-6 17:40-18:00

The effect of varying demand on Breassś para-
dox in traffic networks
Jasper Verbree University of Groningen

A.K. Cherukuri University of Groningen
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WeE07 UA4.222
Optimization 3

Chair: Guilherme A. Pimentel 16:00 - 18:00

WeE07-1 16:00-16:20

Joint design and operation of an electric au-
tonomous mobility-on-demand system
Fabio Paparella Eindhoven University of Technology

Theo Hofman Eindhoven University of Technology

Mauro Salazar Eindhoven University of Technology

WeE07-2 16:20-16:40

Tightening ambiguity sets characterizations for
data-driven distributionally robust optimization
Lotfi Mustapha Chaouach TU Delft

Dimitris Boskos TU Delft

Tom Oomen TU Eindhoven and TU Delft

WeE07-3 16:40-17:00

A Pareto ellipsoids based algorithm for multi-
objective optimisation under parametric uncer-
tainty
Wannes Mores KU Leuven

Satyajeet S. Bhonsale KU Leuven

Ihab Hashem KU Leuven

Philippe Nimmegeers, Jan Van Impe

WeE07-4 17:00-17:20

Computational advantage for model predictive
control by using multiprocessing libraries and
artificial bee colony optimization
Jhonny Rodrigues Faculdade de Engenharia da

Universidade do Porto

Alejandro Goldar Universitè libre de Bruxelles

WeE07-5 17:20-17:40

Alpaqa: A matrix-free solver for nonlinear
MPC and large-scale nonconvex optimization
Pieter Pas KU Leuven

Mathijs Schuurmans KU Leuven

Panagiotis Patrinos KU Leuven

WeE07-6 17:40-18:00

Towards tight convergence rates of the gradient
method on hypoconvex functions
Teodor Rotaru KU Leuven

François Glineur Université catholique de Louvain

Panagiotis Patrinos KU Leuven

IM UB5.132
In memoriam Rik Pintelon

John Lataire, Noël Hallemans, Dries Peumans
System Identification - a frequency domain ap-
proach
Chair: Michel Kinnaert 18:15-19:15

Thursday, July 7, 2022

MC2 UB5.132
Mini-course 2: Mouhacine Benosman

A hybrid approach to control: classical control
theory meets machine learning theory
Chair: Laurent Dewasme 9:00-10:30

ThP01 UB5.132
Electromechanical Applications 2

Chair: Wouter Hakvoort 10:50 - 11:50

ThP01-1 10:50-11:10

Low frequency isolation of a six degrees of free-
dom platform using high precision inertial sen-
sors
Mouhamad Haidar Lakkis ULg,ULB

Jennifer Watchi Université Libre de Bruxelles

Christophe Collette ULg,ULB

Rasa Jamshidi, Ameer Sider

ThP01-2 11:10-11:30

Wind farm power reserve for secondary fre-
quency regulation through distributed yaw op-
timization
Younes Oudich Université Libre de Bruxelles

Michel Kinnaert Université Libre de Bruxelles

Frederik De Belie Ghent University

ThP01-3 11:30-11:50

On discretization of continuous-time LPV con-
trol solutions
Yorick Broens Eindhoven University of Technology

Hans Butler Eindhoven University of Technology

Roland Tóth Eindhoven University of Technology

ThP02 UB5.230
System Identification 3

Chair: Paul Van den Hof 10:50 - 11:50
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ThP02-1 10:50-11:10

A frequency domain maximum likelihood Ap-
proach to Estimate Space-Dependent Parame-
ters in heat and mass transport
Ricky van Kampen DIFFER

Siep Weiland Eindhoven University of Technology

Hans Zwart University of Twente

Matthijs van Berkel

ThP02-2 11:10-11:30

Flux fit method for estimating transport param-
eters in nuclear fusion reactors based on pertur-
bation analysis
Jelle Slief DIFFER - Dutch Institute for Fundamental

Energy Research

Ricky van Kampen DIFFER - Dutch Institute for

Fundamental Energy Research

Matthijs van Berkel DIFFER - Dutch Institute for

Fundamental Energy Research

Michael Brookman

ThP02-3 11:30-11:50

Subnetwork identification in diffusively coupled
linear networks
E.M.M. (Lizan) Kivits Eindhoven University of

Technology

Paul M.J. Van den Hof Eindhoven University of

Technology

ThP03 UB4.132
Energy 2

Chair: Alejandro Goldar Davila 10:50 - 11:50

ThP03-1 10:50-11:10

Concurrent design of an electric fleet power-
train
Maurizio Clemente Eindhoven University of

Technology

Mauro Salazar Eindhoven University of Technology

Theo Hofman Eindhoven University of Technology

ThP03-2 11:10-11:30

Modeling and State-Of-Health prediction of
Lithium-Ion Batteries under dynamic, high-
current Applications
Francis le Roux Eindhoven University of Technology

Ernst Ferg uYilo e-Mobility Programme

Theo van Niekerk Nelson Mandela University

ThP03-3 11:30-11:50

Combined cell-level estimation of state-of-
charge and temperature in battery packs
Bjorn van de Ven Eindhoven University of Technology

Ron Sneijders Eindhoven University of Technology

Feye Hoekstra Eindhoven University of Technology

H.J. Bergveld, M.C.F. Donkers

ThP04 UB4.136
Mechatronics

Chair: Emanuele Garone 10:50 - 11:50

ThP04-1 10:50-11:10

Tuning the stability margin for passivity-based
controllers for standard mechanical systems
Carmen Chan-Zheng University of Groningen

Pablo Borja TU Delft

Jacquelien M.A. Scherpen University of Groningen

ThP04-2 11:10-11:30

On Robust Fault Diagnosis of Complex Mecha-
tronic Systems
Koen Classens Eindhoven University of Technology

Maurice Heemels Eindhoven University of Technology

Tom Oomen Eindhoven University of Technology

ThP04-3 11:30-11:50

A Saturation-Aware Trajectory-Based Explicit
Reference Governor for a Robotic Manipulator
Michele Ambrosino Université libre de Bruxelles

Andres Cotorruelo Université libre de Bruxelles

Emanuele Garone Université libre de Bruxelles

ThP05 UB2.147
Vibration

Chair: Michel Kinnaert 10:50 - 11:50

ThP05-1 10:50-11:10

Spectrum optimization of time-delay systems
applied to non-collocated vibration suppression
Adrian Saldanha KU Leuven

Haik Silm KU Leuven

Wim Michiels KU Leuven

Tomas Vyhlidal

ThP05-2 11:10-11:30

Constrained Optimal System Design for Active
Vibration Isolation Systems
Sil Spanjer University of Twente

Wouter Hakvoort University of Twente
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ThP05-3 11:30-11:50

Active Metamaterial Vibration Suppression in
Flexure Mechanisms
Bram Seinhorst University of Twente

Wouter Hakvoort University of Twente

ThP06 UB4.151
State Observers 2

Chair: Joseph Winkin 10:50 - 11:50

ThP06-1 10:50-11:10

On a sliding mode observer for a reaction-
convection-diffusion model
Mohet Judicaël University of Namur and naXys

Hastir Anthony University of Namur and naXys

Habib Dimassi University of Sousse

Joseph J. Winkin, Alain Vande Wouwer

ThP06-2 11:10-11:30

Sampling-free Linear Iterative Bayesian Updat-
ing of Non-linear Model States
Wouter van Dijk University of Twente

W.B.J. Hakvoort University of Twente

B. Rosic University of Twente

ThP06-3 11:30-11:50

Real-time fault estimation for a class of
discrete-time linear parameter-varying systems
Chris van der Ploeg Eindhoven University of

Technology

Emilia Silvas Eindhoven University of Technology

Nathan van de Wouw Eindhoven University of

Technology

Peyman Mohajerin Esfahani

ThP07 UA4.222
Switched Systems

Chair: Bojana Rosic 10:50 - 11:50

ThP07-1 10:50-11:10

On contraction analysis of switched systems
with mixed contracting-noncontracting modes
via mode-dependent average dwell time
Hao Yin University of Groningen

Bayu Jayawardhana University of Groningen

Stephan Trenn University of Groningen

H. Yin

ThP07-2 11:10-11:30

Efficient Abstraction of Switched Stochastic
Systems driven by Neural Networks
Steven Adams TU Delft

Luca Laurenti TU Delft

Morteza Lahijanian University of Colorado Boulder

ThP07-3 11:30-11:50

The one-step function for discrete-time nonlin-
ear switched singular systems
Sutrisno University of Groningen

Stephan Trenn University of Groningen

P3 UB5.132
Plenary Lecture: Nicanor Quijano

The Role of Population Games and Evolution-
ary Dynamics in Control
Chair: Alain Vande Wouwer 12:00-13:00

CL UB5.132

Announcement of the Best Junior Presentation
Prize
Chair:A.Vande Wouwer,M.Kinnaert13:00-13:15
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Plenary Lecture 1: Ilya Kolmanovsky

Title: Perspectives, Challenges and Opportu-
nities in Control of Systems with Constraints
Constraints represent bounds imposed on system
state, output and control signals that must be sat-
isfied during system operation. Examples of con-
straints include safety limits, comfort limits and ob-
stacle avoidance requirements. Constraints are im-
portant considerations in many engineering systems
such as aircraft, spacecraft and automotive vehicles.
Achieving high performance in systems with con-
straints is challenging: The effective controllers must
be nonlinear and often have to be based on prediction
and optimization. The interest in handling computa-
tional (cyber-) constraints in addition to physical con-
straints has also been increasing concomitantly with

the growing research in cyber-physical systems.
The speaker will present several perspectives on control of systems with constraints, drawn from

his experience with the relevant theory and applications, and discuss the underlying challenges and
opportunities. These include, in particular, the development of add-on schemes of various kind
that could be augmented to the nominal system to protect it from constraint violation, the interplay
between closed-loop stability, performance and computations in model predictive control, integration
of constrained control and learning, and dealing with constraints in situations in which eventual
constraint violation is unavoidable. Applications to spacecraft, aircraft and automotive systems will
be considered throughout for illustration.

Short Biography: Professor Ilya V. Kolmanovsky has received his Ph.D. degree in Aerospace
Engineering in 1995, his M.S. degree in Aerospace Engineering in 1993 and his M.A. degree in Math-
ematics in 1995, all from the University of Michigan, Ann Arbor. He is presently a full professor in
the Department of Aerospace Engineering at the University of Michigan. Professor Kolmanovsky’s
research interests are in control theory for systems with state and control constraints, and in control
applications to aerospace and automotive systems. Before joining the University of Michigan in Jan-
uary 2010, he was with Ford Research and Advanced Engineering in Dearborn, Michigan for close
to 15 years. He is a Fellow of IEEE, an Associate Fellow of AIAA, a past recipient of the Donald
P. Eckman Award of American Automatic Control Council, of 2002 and 2016 IEEE Transactions
on Control Systems Technology Outstanding Paper Awards, of SICE Technology Award, of several
technical achievement, innovation and publication awards of Ford Research and Advanced Engineer-
ing. His publication record includes over 200 journal articles, over 400 conference papers, 20 book
chapters, 3 edited books, as well as 104 United States patents. He serves as a Senior Editor for IEEE
Transactions on Control Systems Technology.
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Plenary Lecture 2: David Howey

Title: Data-driven battery health diagnosis in
real-world applications Accurate diagnostics and
prognostics of battery health improves overall system
performance. This allows industry to unlock value by
detecting faults and improving maintenance and logis-
tics, extending operational range, and understanding
asset depreciation. However, battery aging is com-
plex and caused by many interacting factors. Two
key questions arise: first, how to handle modelling
challenges, including parameter variability and non-
linearities, in methods for online estimation of state of
health. Second, how to develop validated predictions
of future health, where key issues include coping with
variable usage scenarios, and cell-to-cell behavioural
differences. This talk will discuss recent approaches
to tackle some of these exciting topics, particularly
focusing on diagnostics from field data, including the combining of non-parametric and parametric
models to allow flexibility in model fitting from data, whilst retaining the benefits of equivalent
circuit and physical models.

Short Biography: David Howey is Professor of Engineering Science at the University of Oxford,
UK. He leads a group researching on modelling and control of energy storage systems, with a par-
ticular focus on Li-ion batteries for electric vehicles and grid/off-grid storage. He received the MEng
degree in Electrical and Information Sciences from the University of Cambridge in 2002 and his PhD
from Imperial College London in 2010. Since 2010 he has co-authored 80+ peer-reviewed journal
and conference articles, and 5 patents. He is an editorial board member of IEEE Transactions on
Industrial Informatics and the new OUP journal Oxford Open Energy, and is co-founder of the Ox-
ford Battery Modelling Symposium. He is the recipient of recent funding from EPSRC, InnovateUK,
UKRI, Faraday Institution, Continental AG and Siemens, and he co-leads control and estimation
tasks in the Faraday Institution Multiscale Modelling project. Howey is also academic lead for the
£40m Energy Superhub Oxford that is building a transmission connected 50 MWh hybrid battery.
He previously led the Faraday Institution “UK EV and Battery Production Potential” project (with
McKinsey), and was academic lead in InnovateUK projects on battery re-use (EP/P510737/1) and
solar home systems in Africa (EP/R035822/1), and a $1.2m Korean project on microgrids, plus Co-I
in EPSRC projects TRENDS, FUTURE vehicles, STABLE-NET and RHYTHM. Professor Howey
is co-founder of Brill Power Ltd., a company spun-out of his lab in 2016 focused on advanced battery
management system topologies. They have raised significant early stage funding and adopted several
patents from his group. Howey also won a Samsung GRO Award on modelling leading to two R&D
contracts and a multi-year collaboration, with results patented by Samsung Electronics.
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Plenary Lecture 3: Nicanor Quijano

Title: The Role of Population Games and Evo-
lutionary Dynamics in Control Recently, there has
been in the control community an increasing interest in
studying large-scale distributed systems (LSDS). Several
techniques have been developed, wishing to address the
main challenges found in LSDS. One way to approach
this type of problems is to use game-theoretical methods.
Game theory shares some common points with control sys-
tems problems, in particular of distributed topology, where
the interconnection of different elements (agents) leads to a
global behavior depending on the local interaction of these
agents. Evolutionary game theory (EGT) is one type of
dynamic games that has been used to design distributed
controllers for different applications like control of water

systems, charging of electric vehicles, and synchronization of isolated microgrids. The aim of this
talk is to present and discuss relevant advances and analytical methodologies in population games
and evolutionary dynamics, and its applications for solving control problems.

Short Biography: Nicanor Quijano (IEEE Senior Member) received his B.S. degree in Electronics
Engineering from Pontificia Universidad Javeriana (PUJ), Bogotá, Colombia, in 1999. He received
the M.S. and PhD degrees in Electrical and Computer Engineering from The Ohio State Univer-
sity, in 2002 and 2006, respectively. In 2007, he joined the Electrical and Electronics Engineering
Department, Universidad de los Andes (UAndes), Bogotá, Colombia as an Assistant Professor. He
is currently a Full Professor, the director of the research group in control and automation systems
(GIAP, UAndes), and an associate editor for the IEEE Transactions on Control Systems Technol-
ogy, the Journal of Modern Power Systems and Clean Energy, and Energy Systems. He has been a
member of the Board of Governors of the IEEE Control Systems Society (CSS) for the 2014 period,
and he was the chair of the IEEE CSS, Colombia for the 2011-2013 period. He has published more
than 100 scientific papers (journal papers, international conference papers, book chapters), he has
co-advised the best European PhD thesis in the control systems area in 2017, and he is the co-author
of the best paper of the ISA Transactions, 2018. In 2021, he obtained the Experienced Research
Award from the School of Engineering, UAndes. Currently his research interests include hierarchical
and distributed network optimization methods for control using learning, bio-inspired, and game-
theoretical techniques for dynamic resource allocation problems, especially those in energy, water,
agriculture, and transportation.
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Mini-course: Mouhacine Benosman

Title: A hybrid approach to control: classical con-
trol theory meets machine learning theory Until re-
cently, one could classify control approaches into two main
paradigms. The first is the classical machine learning (ML)
control paradigm that heavily relies on data, e.g., classical
approximate dynamic programming (ADP), reinforcement
learning (RL) methods, deep neural networks (DNN), and
deep RL. The main advantages of these methods are ef-
ficiency and flexibility due to the increased availability of
data and computation power. On the other hand, these
methods lack performance guarantees, such us stability,
boundedness of signals, a.k.a., safety, and general robust-
ness.

The second paradigm is the classical control theory ap-
proach, which relies on dynamical systems theory, e.g., ro-
bust control theory, adaptive control theory, Lyapunov-based design, etc. In this case the pros and
cons are somewhat reversed. Some examples of advantages of this paradigm include the rigor of
mathematical analysis and the performance guarantees in term of stability, boundedness of signals,
and robustness. However, one of the main disadvantages of this approach is the lack of flexibility or
generalizability since the model of the system must satisfy very specific properties.

In the past 10 or so years, several efforts have attempted to merge these two paradigms. The
result is what we refer to as Learning-based control methods. These methods use tools from classical
control theory together with tools from ML theory. The aim is to design ‘hybrid’ learning-based
controllers that take advantage of the flexibility of ML data-driven methods, while maintaining the
stability, safety, and robustness guarantees from control theory.

This short course will concentrate on learning-based control methods. We first present recent
results in the field of learning-based adaptive control, where classical model-based adaptive control
methods are merged with data-driven estimation methods, e.g., extremum seeking control (ESC),
Gaussian processes (GP) optimization, and reinforcement learning (RL). We then discuss some recent
results on robust constrained model-based RL that use tools from nonlinear control theory to guar-
antee stability, robustness and safety. We will cover the main theoretical aspects of these approaches
and finish the course with a few examples of industrial applications.

Short Biography: Before coming to Mitsubishi Electric Research Laboratories (MERL) in 2010,
Mouhacine worked at universities in Reims University, France and Strathclyde University, Scot-
land, and the National University of Singapore. His research interests include modeling and control
of flexible robotic manipulators, nonlinear robust and fault tolerant control, multi-agent control
with applications to smart-grid and robotics, estimation and control of partial differential equations
with applications to thermo-fluid models, learning-based adaptive control for nonlinear systems, and
control-theory based optimization algorithms with application to machine learning. Mouhacine has
published more than 50 peer-reviewed journal articles and conference papers, and has more than 20
patents in the field of mechatronics systems control. He is a senior member of the IEEE, Associate
Editor of the Journal of Optimization Theory and Applications, Associate Editor of the Journal
of Advanced Control for Applications, Associate Editor of the IEEE Control Systems Letters, and
Senior Editor of the International Journal of Adaptive Control and Signal Processing.
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In memoriam Rik Pintelon
John Lataire, Noël Hallemans, Dries Peumans

System Identification - a frequency domain approach. Prof. Rik Pintelon passed away last
year in September 2021. He was an exceptional person, both from a scientific and from a human
perspective. In this plenary talk, a selection of Rik’s achievements as a person and as a scientist will
be given, and on-going research work along the lines he initiated will be presented.

Rik played a key role in elevating frequency domain based system identification to a mature data-
driven modelling tool. His work was highly recognised in the scientific community. He has been the
recipient of the Joseph F. Keithley award in 2012 from the IEEE Instrumentation and Measurement
society, he received the degree of Doctor of Science (DSc) from the University of Warwick where he
has also been honorary professor from 2013 to 2018, and received multiple awards for publications
including the 2008 IOP outstanding paper award in Measurement Science & Technology, the 2014
Martin Black prize in Physiological Measurement and the 2014 Andy Chi award in IEEE transactions
on Instrumentation and Measurement.

Rik’s work revolved around parametric and non-parametric identification of dynamic systems,
with a very special attention to the estimation of uncertainties. Specifically, he played a leading
and profound role in developing detection and quantification techniques of non-idealities – noise,
nonlinear distortions and time-varying contributions – in Frequency Response Function measurement
techniques. He successfully transferred this expertise to many colleagues and researchers in Belgium
and across the globe, while remaining open minded and meticulous in his derivations.

Rik attached a warm attention to the human aspects of research and education. As the chairman
of the Doctoral Committee at the Engineering Faculty of the VUB he vice-chaired between 30 and
40 PhD defenses per year, assessing the scientific integrity and the fair evaluations of the candidates.
During that time, he instigated exemplary initiatives to improve and maintain the well-being of
PhD researchers, amongst others by monitoring their educational and administrative load and equal
chances, in all confidentiality.

Rik has been a role model to many of us, a great colleague and friend, always to be remembered.

Speakers Biography:

John Lataire (S’06–M’11) was born in Brussels, Belgium, in 1983. He received the Electrical
Engineer degree in electronics and information processing and the Ph.D. degree in engineering sci-
ences (Doctor in de Ingenieurswetenschappen) from the Vrije Universiteit Brussel, Brussels, in 2006
and 2011, respectively. From October 2007 to October 2011, he was on a Ph.D. fellowship from the
Research Foundation—Flanders (FWO). Since August 2006, he has been working as a Researcher
with the Department ELEC-VUB, Brussels. Dr. Lataire is the coauthor of more than 40 articles in
refereed international journals. He received the 2008 IOP outstanding paper award (best paper in
Measurement Science & Technology), the Best Junior Presentation Award 2010 at the 29th Benelux
Meeting on Systems and Control, was the co-recipient of the 2014 Andy Chi award (best paper in
IEEE Trans. on Instrumentation and Measurement), and was the recipient of the 2016 J. Barry
Oakes Advancement Award (from the IEEE Instrumentation and Measurement society). His main
interests include the frequency domain formulation of the identification of dynamic systems, with a
specific focus on the identification of time-varying systems, and the use of kernel-based regression in
system identification.

Noël Hallemans was born in Brussels in 1996. In 2019, he obtained his master’s degree in
Electrical Engineering with the highest distinction from both the Vrije Universiteit Brussel (VUB)
and the Université Libre de Bruxelles (ULB). His master thesis dissertation, entitled ’Nonparametric
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Identification of Linear Time-Varying Systems using Gaussian Processes’, won that year’s Brussels
Engineering Alumni prize for best master thesis. Since September 2019 he has been working as a
researcher with the ELEC department (VUB) under supervision of professors Rik Pintelon and John
Lataire. His research focuses on frequency domain data-driven modelling of dynamical systems, in
particular on the best linear time-varying approximations and kernel-based FRF estimators. Re-
cently, he obtained an Eutopia grant for a scientific research stay at the University of Warwick, to
apply these data-driven methods to energy storage devices.

Dries Peumans (Member, IEEE) was born in Brussels, Belgium, in 1992. He received the M.Sc.
degree and the Ph.D. degree in Electrical Engineering (Electronics and Information Technology)
from the Vrije Universiteit Brussel (VUB), Belgium, in 2015 and 2020, respectively. Since 2021,
he is a postdoctoral researcher at the VUB and at the Advanced RF group of imec. Broadband
characterization and modelling of mm-wave and sub-THz circuits and transceivers currently involve
his research activities.
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Learning stability guarantees for data-driven constrained switching
linear systems

Adrien Banse, Zheming Wang, Raphaël Jungers
ICTEAM, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Email: adrien.banse@student.uclouvain.be,

{zheming.wang, raphael.jungers}@uclouvain.be

Introduction

We focus on stability analysis of constrained switching lin-
ear systems in which the dynamics are unknown and whose
switching signal is constrained by an automaton. We pro-
pose a data-driven Lyapunov framework for providing prob-
abilistic stability guarantees based on data harvested from
observations of the system. Moreover, we show that the en-
tropy of the language accepted by the automaton allows to
bound the number of samples needed in order to reach some
pre-specified accuracy.

1 Constrained switching linear systems

We consider discrete-time switching linear systems defined
by a set A = {Ai}i∈{1,...,m} of m matrices. Their dynamics,
for any t ∈ N, is given by the following equation:

xt+1 = Aσ(t)xt . (1)

A constrained switching linear system (CSLS) is a switching
linear system with logical rules on its switching signal. We
represent these rules by an automaton i.e., a strongly con-
nected, directed and labelled graph G (V,E) with V the set
of nodes and E the set of edges. The edge (v,w,σ) ∈ E be-
tween two nodes v,w ∈ V carries the label σ ∈ {1, . . . ,m},
which maps to a mode of the switching system.

u v w0

1 1

1

0

Figure 1: An automaton defined by two modes (0 and 1), and the
following logical rule. If mode 1 is chosen, then it has
to be chosen at least twice in a row.

The constrained joint spectral radius ρ(G ,A ) of a given
CSLS is defined as follows:

ρ(G ,A ) = lim
t→∞

max{‖Aσ(t−1) . . .Aσ(0)‖1/t :

σ(0), . . . ,σ(t−1) is accepted by G }.
(2)

The stability of a CSLS defined by A and G is ruled by its
constrained joint spectral radius. It is asymptitocally stable
if and only if ρ(G ,A )< 1 (see [2], Corollary 2.8).

Finally, the entropy h(G ) of an automaton G is the growth
rate of |LG ,l | where LG ,l is the language accepted by G
restricted to length l (see [3], Definition 4.1.1). It is given
by the equation

h(G ) = lim
l→∞

log2 |LG ,l |
l

. (3)

2 Data-driven approach

In many practical applications, the engineer cannot rely
on having a model, but rather has to analyse stability in
a data-driven fashion. In this setting, we have acces to
a set of observations ωN = {(xi,0,Ai), i = 1, . . . ,N}, where
xi,0 ∈ S, the unit sphere, and Ai = Aσi(l−1) . . .Aσi(0) with
σi(0), . . . ,σi(l−1) accepted by G .

In order to tackle hybrid behaviors in arbitrary switching
linear systems, novel data-driven stability analysis methods
have been recently developed based on scenario optimiza-
tion. For example, [1] provides a data-driven method for ap-
proximating the joint spectral radius of an unknown switch-
ing linear system. In this work, we generalize this method
to CSLS. We derive a probabilistic Lyapunov method to ap-
proximate the constrained joint spectral radius in order to
give probabilistic certificates on stability.

We then analyze further the obtained result. We show that a
lower entropy allows for a better probablistic guarantee for
the stability of a given CSLS.

References

[1] Guillaume O. Berger, Raphaël M. Jungers, and Zhem-
ing Wang. Chance-constrained quasi-convex optimiza-
tion with application to data-driven switched systems
control. arXiv:2101.01415 [cs, eess, math], 01 2021.

[2] Xiongping Dai. A gel’fand-type spectral radius formula
and stability of linear constrained switching systems.
arXiv:1107.0124 [cs, math], 07 2011.

[3] Douglas Lind and Brian Marcus. An Introduction to
Symbolic Dynamics and Coding. Cambridge University
Press, 1995.
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Stochastic Similarity Relations for Continuous State POMDPs

Maico H. W. Engelaar1, Mircea Lazar1, and Sofie Haesaert1

1 Introduction

With emerging applications in robotics, and especially au-
tonomous vehicles, a high demand exists for control sys-
tems capable of performing complex tasks in a safe manner.
Many of these control systems are inherently uncertain and
evolve over continuous spaces. For such classes of control
systems, Partially Observable Markov Decision Processes
(POMDPs) provide a suitable modelling and analysis frame-
work [4]. For these systems, safe functioning can be speci-
fied rigorously via temporal logic specifications [1, 2]. Such
safety specifications include, amongst others, reachability,
repeatability, invariance and combinations thereof, all with
pregiven minimal probabilities explaining to which extent a
stochastic system needs to satisfy these tasks.

Unfortunately, POMDPs evolving over continuous spaces
can generally not be studied analytically and are computa-
tionally expensive to approximate numerically [3]. Hence,
to mitigate this complexity of POMDPs, the objective of
this study is to find (simplified) abstractions of POMDPs,
by means of (approximate) stochastic similarity relations,
while preserving the safety features, i.e., the temporal logic
specifications. More precisely, this study will develop a new
tailored approach for POMDPs that is based on earlier work
for MDPs [1] and belief MDPs [2], and that enables the de-
sign and verification of controllers.

2 Problem Statement

Given a model M and a temporal logic specification φ , we
want to find a controller C, such that the controlled system
satisfies φ with probability at least B, that is

P(C×M |= φ)≥ B. (1)

More specifically, we will define M as a POMDP, that is,
M := (X,π,T,U,Z,r) where U is the input space; X is a
Polish2 state space; T is a conditional stochastic state ker-
nel that assigns to each state x ∈ X and control u ∈ U a
probability measure T(·|x,u) ∈P(X,B(X)3); Z is a Pol-
ish output space; r is a conditional stochastic observation
kernel that assigns to each state x ∈X a probability measure
r(·|x) ∈P(Z,B(Z)); and π is the initial probability distri-
bution defined as π : B(X)→ [0,1].

In this study, we want to develop abstractions to mitigate
complexity in POMDPs. More precisely, we want to design

1Electrical Engineering, Control Systems group, Eindhoven University
of Technology, Email: {m.h.w.engelaar, m.lazar, s.haesaert}@tue.nl

2A Polish space is a separable completely metrizable topological space.
3B(X) is the Borel σ -algebra of the topological space X.

abstractions of POMDPs that are suitable for the efficient
design and verification of controllers, that is abstractions M̂
based on which we can design a controller C such that

∃Ĉ : P
(
Ĉ×M̂ |= φ

)
≥ B̂⇔∃C : P(C×M |= φ)≥ B. (2)

To achieve this objective, a better type of (approximate)
stochastic bisimulation has to be developed that can fully
relate the dynamics of both systems.

3 Specific Example

To illustrate the importance of this study, consider the fol-
lowing two discrete linear time-invariant stochastic control
systems. These systems can be equivalently represented as
POMDPs, but are given here as the following stochastic dif-
ference equations:

Σ1 :





x1(t +1) = e1(t)
x2(t +1) = x1(t)
x3(t +1) = x2(t)+u(t)
y(t) =

[
x1(t)T x2(t)T x3(t)T ]T

Σ2 :





x1(t +1) = e1(t)
x2(t +1) = x1(t)
x3(t +1) = x2(t)+u(t)
y(t) =

[
x2(t)T x3(t)T ]T

For a specification φ defined solely over x3, we can trivially
ascertain that if a controller C1 exists for system Σ1 such
that P(C1×Σ1 |= φ)≥ B this implies that there will also ex-
ists a controller C2 such that P(C2×Σ2 |= φ) ≥ B and vice
versa. We are investigating exact and approximate stochas-
tic bisimulation relations that cover this example and more
involved examples such as high dimensional POMDPs.

References
[1] S. Haesaert, S. Soudjani, and A. Abate. “Verification
of general Markov decision processes by approximate sim-
ilarity relations and policy refinement.” SIAM Journal on
Control and Optimization, 2017.

[2] S. Haesaert, P. Nilsson, C. I. Vasile, R. Thakker, A.
Agha-mohammadi, A. D. Ames and R. M. Murray. “Tempo-
ral logic control of POMDPs via label-based stochastic sim-
ulation relations.” IFAC-PapersOnLine, 51(16), 271-276,
2018.

[3] K. Lesser, and M. Oishi. “Reachability for partially
observable discrete time stochastic hybrid systems.” Auto-
matica, 50(8), 1989-1998, 2014.

[4] M. Svoreňová, M. Chmelı́k, K. Leahy, H. F. Eniser,
K. Chatterjee, I. Černá and C. Belta. “Temporal logic motion
planning using POMDPs with parity objectives: case study
paper”. In Proceedings of the 18th International Confer-
ence on Hybrid Systems: Computation and Control, 2015,
233–238.
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Controller-design for time-delay systems using TDS CONTROL

Pieter Appeltans, Haik Silm, and Wim Michiels
NUMA, Department of Computer Science, KU Leuven,
Celestijnenlaan 200a - box 2402, 3001 Leuven, Belgium

Email: pieter.appeltans@kuleuven.be

1 Introduction

We present TDS CONTROL, a MATLAB package for the
analysis, and design of controllers for linear time-invariant
(LTI) systems with discrete delays [1]. More specifically,
the code considers systems of the following form:




Eẋ(t) =
m
∑

i=0
Aix(t − τi)+

m
∑

i=0
Biu(t − τi)−

m
∑

i=0
Hiẋ(t − τi)

y(t) =
m
∑

i=0
Cix(t − τi)+

m
∑

i=0
Diu(t − τi) (1)

with 0 = τ0 < τ1 < · · · < τm < ∞ the delay values and
x(t)∈Rn, u(t)∈Rp, and y(t)∈Rq. The matrix E ∈Rn×n is
potentially singular. The other matrices are real-valued ma-
trices with appropriate dimensions. Note that systems of the
form (1) can represent a broad class of LTI time-delay sys-
tems, including neutral systems and delay description sys-
tems (under certain assumptions on the system matrices to
avoid advanced systems).

Compared to undelayed LTI systems, it is well known that
systems with delay are in some sense “infinite dimensional”.
For instance, the stability of a LTI delay system can be ex-
amined in terms of the roots of an associated characteristic
function which has infinitely many roots. As such, the ex-
isting analysis methods for undelayed systems need to be
extended. The presented software can be used to analyze
several control measures such as the spectral abscissa, the
H∞-norm, and the distance to instability for systems of the
form (1).

2 Controller design

Besides analysis, TDS CONTROL can also be used to de-
sign dynamic output feedback controllers with a chosen or-
der nc: {

ẋc(t) = Acxc(t)+Bcy(t)
u(t) = Ccxc(t)+Dcy(t) (2)

in which xc(t) belongs to Rnc , and Ac, Bc, Cc, and Dc are
real-valued matrices with appropriate dimensions. The con-
troller design algorithm consists of minimizing one of the
control measures mentioned above, with respect to entries
of the matrices in (2). For example, in an attempt to design
a stabilizing controller the spectral abscissa, i.e., the real
part of the right-most characteristic root, is minimized. As
a strictly negative spectral abscissa is a necessary and suf-
ficient condition for stability, the presented design method

is not conservative and a stabilizing controller can be com-
puted whenever it exits, although different initial values
have to be sampled until a satisfactory controller is found.

3 Additional features

TDS CONTROL allows to design robust controllers either
with respect to structured uncertainties, including delay un-
certainties, in the plant’s model [2], or by H∞-norm opti-
mization [3]. It is also possible to impose structure on the
matrices in (2), i.e., certain entries can be fixed to a given
value. This allows the design of structured controllers such
as decentralized, overlapping and PID(-like) controllers [4].

The software package takes the sensitivity of certain quanti-
ties, such as the spectral abscissa and the H∞-norm, with
respect to infinitesimal delay perturbations into account,
which is relevant for particular classes of systems that can
be modeled by (1).

TDS CONTROL is freely available for download at
gitlab.kuleuven.be/u0011378/tds-control.
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infinity control for interconnected systems using delay dif-
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49, no. 5, pp. 2212–2238, 2011.
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vol. 93, no. 10, pp. 2275–2289, 2020.
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(γ,δ )−Conformance: A Notion of System Comparison

Armin Pirastehzad Arjan van der Schaft Bart Besselink

Systems, Control, and Optimization Group
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1 Introduction

The analysis and synthesis of modern engineering systems
have become arduous, as these systems often comprise nu-
merous interconnected components. More specifically, it is
prohibitively difficult to address and verify many control de-
sign objectives. These challenges motivate one to seek ways
of abstracting systems into less complex ones which some-
how replicate their behavior. Towards this end, a crucial
step is to conceive a notion of system comparison addressing
the input-output equivalence of two systems. We propose a
notion of system comparison which measures to what ex-
tend two systems behave similarly in an input-output sense.
Moreover, we fully characterize the notion in terms of linear
matrix inequalities.

2 The notion of (γ,δ )−conformance

Consider continuous-time linear systems of the form

ΣΣΣi :

{
ẋi = Aixi +Biui +Eidi,

yi =Cixi,
(1)

where xi ∈Rni , ui ∈Rmi , di ∈Rqi , and yi ∈Rpi represent sys-
tem state, input, disturbance, and output, respectively, and
the matrix Ai is Hurwitz. While the system state xi is con-
sidered as an internal variable, the input ui and the output
yi are regarded as external variables through which ΣΣΣi inter-
acts with its environment. The presence of the disturbance di
leads to non-determinism in the sense that trajectories do not
solely depend on the initial condition xi(0) and the external
input ui.

Definition 1. For γ,δ > 0, the system ΣΣΣ2 is said to
(γ,δ )−conform system ΣΣΣ1, denoted by ΣΣΣ1 4γ,δ ΣΣΣ2, if there
exist constants ε,η ,µ > 0 such that for every input u1,u2 ∈
L2 and every disturbance d1 ∈ L2, there exists a distur-
bance d2 ∈L2 such that for initial conditions x1(0) = 0 and
x2(0) = 0,

‖y1− y2‖2
L2
≤ γ ‖u1−u2‖2

L2
+(δ − ε)

∥∥∥∥
[

u1
u2

]∥∥∥∥
2

L2

+(µ− ε)‖d1‖2
L2
−η ‖d2‖2

L2
.

(2)

For each trajectory of system ΣΣΣ1, the notion of
(γ,δ )−conformance seeks a trajectory of ΣΣΣ2 that is clos-
est to it. Parameters γ and δ measure how close these two
trajectories are. Hence, the notion of (γ,δ )−conformance
measures the capability of system ΣΣΣ2 in replicating the
input-output behavior of system ΣΣΣ1. For this reason, this
notion provides us a criterion which measures how similar
the input-output behaviors of two systems are.

3 Main Results

Inspired by H∞ control theory and dissipativity theory, we
characterize the notion of (γ,δ )−conformance as an LMI
feasibility problem.

Theorem 1. Given γ,δ > 0, system ΣΣΣ2 (γ,δ )−conforms
system ΣΣΣ1 if and only if there exist a positive definite matrix
X , a matrix Π, and positive scalars κ and ν such that



XAT +AX +ΠT BT +BΠ E XCT +ΠT DT

ET −
[

Q 0
0 κI

]
0

CX +DΠ 0 −
[

I 0
0 νI

]



≺ 0,

where

A =

[
A1 0
0 A2

]
, B =

[
0

E2

]
,

C =

[
C1 −C2
0 0

]
, D =

[
0
I

]
,

E =

[
B1 0 E1
0 B2 0

]
, Q =

[
(γ +δ )I −γI
−γI (γ +δ )I

]
.

4 Conclusion

The notion of (γ,δ )−conformance measures to what extent
two systems behave similarly in an input-output sense. This
notion admits an LMI-type necessary and sufficient condi-
tion for which several fast computational tools exist. The
notion of (γ,δ )−conformance can be utilized for such pur-
poses as system abstraction in contract-based design frame-
works.
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Introduction

In this note we study system classes containing switched dif-
ferential algebraic equations (switched DAEs) of the fol-
lowing form:

Eσ ẋ = Aσ x+Bσ u, (1)

where σ : R→N is the switching signal and Ep,Ap ∈Rn×n,
Bp ∈ Rn×m, for p,n,m ∈ N. In general, trajectories of
switched DAEs exhibit jumps (or even impulses), which
may exclude classical solutions from existence. There-
fore, we adopt the piecewise-smooth distributional solution
framework introduced in [1]. We study impulse controlla-
bility of system classes where a class is said to be strongly
impulse controllable if every system contained in it is im-
pulse controllable.

System Classes

In particular, we study classes of switched DAEs with a
switching signal in the class Sn defined as follows.

Definition 1 The class of (arbitrary) switching signals Sn is
defined as the set of all σ : R→{0,1, ...,n} of the form

σ(t) = qp t ∈ [tp, tp+1) (2)

where q := (q0,q1, . . . ,qn)∈ {0,1, . . . ,n}n+1 is the mode se-
quence of σ and t1 < t2 < ... < tn are the n ∈ N switch-
ing times in (0,∞) with t0 := 0 and tn+1 := ∞ for nota-
tional convenience. Furthermore, for a given sequence of
switching times, let τi := ti+1−ti, i= 0,1, . . . ,n−1 such that
τ := (τ0,τ1, . . . ,τn−1)∈Rn

>0, defines the sequence of (finite)
mode-durations.

Note that in the above definition, we do not exclude the
situation that qp = qp+1 for some p, effectively leading
to a switching signal with less then n switches. Conse-
quently, for such a switching signal the mode duration τ
is not uniquely defined, as the switching time tp+1 can be
altered without changing the actual switching signal. Nev-
ertheless, this does not lead to any technical problems.

Definition 2 (System classes) For a family of matrix
triplets {(Ep,Ap,Bp)}np=0 with regular pairs (Ep,Ap), the
system class Σn of associated switched (regular) DAEs (1)
under arbitrary switching is given by

Σn := {(Eσ ,Aσ ,Bσ ) |σ ∈ Sn} ,

where (Eσ ,Aσ ,Bσ ) is understood as a triple of (piecewise-
constant) time-varying matrices for each specific switching
signal σ : (t0,∞)→{0,1, . . . ,n}.

Equipped with the notion of a system class, we state the def-
inition of impulse controllability of (1) based on [2] and de-
fine strong impulse controllability of a system class. Before
doing so, recall that for mode i the augmented consistency
space is defined as

V(Ei,Ai,Bi) :=
{

x0 ∈ Rn
∣∣∣∣
∃ smooth solutions (x,u) of
Eiẋ = Aix+Biu and x(0) = x0

}
.

Definition 3 (Impulse controllability) The (individual)
switched DAE (Eσ ,Aσ ,Bσ ) is called impulse controllable iff
for all x0 ∈ V[E0,A0,B0], there exists a solution (x,u) ∈ Dn+m

pwC∞

with x(t+0 ) = x0 which is impulse free.

The whole system class Σn associated to the family
{(Ep,Ap,Bp)}np=0 is called strongly impulse controllable, if
(Eσ ,Aσ ,Bσ ) is impulse controllable for all σ ∈ Sn.

Main result

If all systems in the system class are impulse controllable,
then all the systems that are effectively single switched sys-
tem. This observation leads to the following result.

Theorem 1 Consider the system class Σn associated to
{Ep,Ap,Bp}np=0 with corresponding (individual) consis-

tency projectors Πp, impulse controllable spaces Cimp
p and

reachability spaces Rp. Then Σn is strongly impulse con-
trollable if, and only if,

V[Ei,Ai,Bi] ⊆ C
imp
j +Ri (3)

for all i, j ∈ {0,1, ...,n}.

The result of Theorem 1 shows that impulse controllability
of a system class can be determined in finitely many steps.
A future direction of reasearch is the study of system classes
containing switched DAEs with a fixed mode sequence.
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1 Abstract

Linear least squares regression is a well-known modeling
technique with many applications in system identification,
filtering, signal processing, and data analysis. Computation
of the model parameters can be organized in a highly effi-
cient way, e.g. by making it recursive in the data, which is
useful for real-time applications. In some applications, such
as the Levinson algorithm for auto-regressive modeling, it
can even be made recursive in the regressors [2, 3]. Adding
to the versatility of the method is the option to include expo-
nential forgetting, by which past data are made increasingly
obsolete, rendering the method of interest for time-varying
parameter estimation as well as detection applications.

The use of exponential forgetting implies that the total sum
of the weights received by past data remains bounded, but
to have very old data still play a role in the estimate, how-
ever small, can be considered unwanted. An alternative to
such an approach is to use a sliding window of finite size.
This can also be implemented recursively, with or without
exponential forgetting; see [4, 5, 6]. Some renewed inter-
est in this topic was sparked in [7, 8] and is also seen more
recently in areas involving edge computing. There it is im-
portant to have lightweight and efficient yet powerful algo-
rithms on board of devices with limited power and memory
storage resources.

In this paper we start from the recursive square root filter
for linear least squares regression presented in [1], which is
recursive in the data, with the square root filter aiming to im-
prove numerical robustness. It admits a Bayesian interpre-
tation so that it can be combined with prior information on
the parameters should this be available. By first deriving its
time-reversed version, which can be used for deleting data
rather than adding it, we extend it to the finite size sliding
window situation with exponential forgetting having similar
complexity as the original algorithm. We then analyze and
demonstrate its numerical behavior. We conclude the paper

by presenting an example in which the algorithm is used for
real-time heart rate detection, motivated by an application
in remote patient monitoring of cardiac function. It employs
a finite window of varying size, and uses test data from the
public PhysioNet database [9].
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1 Introduction

Identification of nonlinear phenomena is challenging, espe-
cially for multiple input multiple output (MIMO) systems.
We present a new structure exploration technique for MIMO
dynamical systems with finite memory and address the fol-
lowing questions: 1) Which system inputs contribute to
which system outputs? 2) Can the nonlinear characteristic
be separated into additive sub-characteristics?

2 Problem setup

Consider a MIMO nonlinear system with p inputs un =
[u1

n u2
n, . . . ,u

p
n ]

T , q outputs yn = [y1
n y2

n, . . . ,y
q
n]

T , and known
finite memory d, where n is the time index:

yn = g(v1
n,v

2
n, . . . ,v

p
n)+ en (1)

vk
n = [uk

n,u
k
n−1, . . . ,u

k
n−d ]

T (2)

The nonlinear characteristic g : Rp×(d+1)→ Rq is unknown
and such that supu∈[0,1]p g(u)≤ cg < ∞. We assume that the
input un is i.i.d. uniformly distributed on [0,1]p, the output
noise en is i.i.d., zero-mean, has covariance matrix σ2

e I and
bounded fourth-order moments, and the noise and input sig-
nals are mutually independent sequences.

3 Double separation algorithm

The first stage of the proposed algorithm is based on the
distance correlation (DC) coefficient. In contrast to Pear-
son correlation, the DC between two signals is zero if and
only if these signals are independent [2]. Making use of the
finite memory of the system, a careful selection of the input-
output data is made such that the data set contains mutually
independent measurements of the system outputs and the
corresponding system inputs. Next, the DC between each
input and output is estimated. Fig. 1 shows a typical result.

The second stage of the proposed algorithm estimates pro-
jection coefficients that are sensitive to the existence of ad-
ditive system sub-characteristics. Let ξ1 be an arbitrary set
of indices of preselected inputs and let ξ2 be its complement.
We say that a characteristic gκ(·) is separable with respect to
ξ1 and ξ2 if gκ = gκ

ξ1
+gκ

ξ2
, where gκ

ξ1
and gκ

ξ2
are functions

that depend only on inputs with indices in ξ1 and ξ2, respec-
tively [3]. Recursive extension of this rule leads to separa-
bility with respect to arbitrary partitions of the set of input

Figure 1: Estimated DC coefficients between η th input and κth
output of a system with 8 in- and 3 outputs. Large co-
efficients indicate dependence, zero (or small) coeffi-
cients indicate independence. We can correctly deduce
that output 1 only depends on the first three inputs, out-
put 2 only depends on inputs 4, 6, and 8, and output 3
only depends on inputs 5, 6, and 7.

indices. We can then estimate if a characteristic is fully sep-
arable, e.g., g1(v1

n,v
2
n,v

3
n) = g1a(v1

n)+g1b(v2
n)+g1c(v3

n), par-
tially separable, e.g., g2(v4

n,v
6
n,v

8
n) = g2a(v4

n,v
6
n) + g2b(v8

n),
or not separable, without identifying these characteristics.

4 Conclusion

The proposed method allows for exploration of the inter-
nal system structure and thus may support further modelling
or identification tasks. A numerical experiment illustrates
the ability of the proposed approach to indicate which of
the system inputs contribute to which outputs and illus-
trates the ability of the approach to detect separable lower-
dimensional sub-characteristics in the system.
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1 Abstract

Recent advances in nonlinear system identification and ma-
chine learning have resulted in a plethora of data-driven
modelling tools. A number of them have already been
successfully applied in the context of fluid dynamics, e.g.
polynomial nonlinear state-space models, dictionary meth-
ods such as Sparse Identification of Nonlinear Dynamics
(SINDy), as well as linear Dynamic Mode Decomposition
(DMD) models. Knowing what model structure is best
suited for a given task is non-trivial.
In this work DMD and SINDy are applied to unsteady fluid
dynamics. Both methods enable to gain insight into sys-
tem dynamics. The canonical system of the flow field in the
wake of a periodically oscillating cylinder is studied.

DMD decomposes periodic data into dynamic modes (DM).
These consist of spatial mode fields and corresponding tem-
poral behaviour, as shown in Figure 1. The spatial modes
and their temporal behaviour are respectively defined by the
eigenvectors and corresponding eigenvalues of transforma-
tion matrix A of the periodic data. These are derived with-
out directly calculating A and can be linearly combined to
reconstruct the data and make future state predictions [1].

Figure 1: Illustration demonstrating the dynamic modes
which consist of the eigenvector-eigenvalue pairs of trans-
formation matrix A. Source: Brunton and Kutz [1].

SINDy can be used to identify nonlinear ordinary differ-
ential equations (ODE’s) that approximate the dynamics of
systems with multiple variables, as shown in Figure 2. The
dynamics of flow fields are identified in the space spanned
by their proper orthogonal decomposition (POD) basis. The
fields are then reconstructed by multiplying the identified
dynamics with the POD modes that match the basis [1].

Both methods are applied to the vorticity field of a lock-in

Figure 2: Demonstration of how a sparse selection of terms
from function library Q is used to reconstruct the ODE’s on
the left which generated the training data. Source: Brunton
and Kutz [1].

experiment using the first 10 modes.
DMD achieves a relative RMS error of 16 % using 10 DM’s.
SINDy captures the dynamics of the field in terms of its first
10 POD modes and identifies them as a set of nonlinear dif-
ference equations, achieving a relative RMS error of 4.5 %.

Figure 3: Dynamics in terms of the first three DMD modes
(a) and as identified by SINDy in the space spanned by the
first three POD modes, including the first DE (b).

Both methods analyse periodic data in terms of modes.
DMD gives insight into dynamics through the individual dy-
namic modes and their sum. These are derived from the
POD modes of the data. SINDy uses the POD modes di-
rectly and translates their relationships into (nonlinear) dif-
ference equations. It captures the dynamics of the studied
system more efficiently than DMD.
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1 Problem Setting and Assumptions

In the real world, nonlinear (NL) behavior exists in most
applications. While these NL systems can be locally ap-
proximated by linear systems, their global behavior is gen-
erally expressed by nonlinear differential equations. On the
other hand, for many of these NL systems, the governing
equations are unknown or hard to find from first principles.
Data-driven approaches could be a good choice for model-
ing such problems.

This research deals with the problem of the identification of
a class of NL systems in the frequency domain. A general
form of the NL differential equation is considered as

f
(

y(t), . . . ,y(na)(t),u(t), . . . ,u(nb)(t)
)
= 0 (1)

where u(t) and y(t) are the input and output signals of the
system, •(n) denotes the nth derivative operator with respect
to t, and f (•) is an NL static function of the instantaneous
values of (y(t), . . . ,y(na)(t),u(t), . . . ,u(nb)(t)).

The NL system is working on a stable slow time-varying
setpoint p(t) = (yL(t), . . . ,y

(na)
L (t),uL(t), . . . ,u

(nb)
L (t)). Then

a small-fast input perturbation is used to perturb the sys-
tem trajectory slightly. When the perturbation p̃(t) =
(ỹ(t), . . . , ỹ(na)(t), ũ(t), . . . , ũ(nb)(t)) is small and the nonlin-
earities are sufficiently smooth, then the NL system can be
approximated by a linear-parameter-varying (LPV) system:

na

∑
n=0

αn(p(t))
dnỹ(t)

dtn +
nb

∑
m=0

βm(p(t))
dmũ(t)

dtm = 0 (2)

where the parameter varying (PV) coefficients αn(p(t)) and
βm(p(t)) are defined by αn(p(t))= ∂ f

∂y(n)
|p(t) and βm(p(t))=

∂ f
∂u(m) |p(t) with n = 0,1, . . . ,na and m = 0,1, . . . ,nb. Indeed,
the LPV (2) is the NL system (1) linearized at each point of
p(t).

In [1] the NL system is linearized around a periodic motion
and in [2] about an arbitrary time-varying trajectory. Both
[1] and [2] are based on LTV approximations, while in this

This research was supported by the Fund for Scientific Research
(FWO Vlaanderen, grant G005218N) and by the Flemish Government
(Methusalem Grant METH1).

paper a direct LPV modeling approach is proposed. In the
proposed method we exploit the known relations among the
PV coefficients and between LPV and NL models. Which
is often the key to obtaining better performance and cop-
ing with a lack of data. On the other hand, in addition to
using the perturbed motion, the proposed method can use
measured data outside this perturbed trajectory as well.

2 Proposed method

A multi-input multi-output (MIMO) Gaussian process (GP)
is used to model the vector of PV coefficients of the LPV
system (2):

(α0(p(t)), . . . ,αn(p(t)),β0(p(t)), . . . ,βm(p(t)))

∼ G P(m(p(t)),K(p(t), p′(t)))
(3)

where m(•),K(•,•′) are the mean and kernel to be designed.
We show that these PV coefficients are related. The relation
between these PV coefficients is considered in the designed
kernel. After modeling the LPV system, by integration, the
NL system is reconstructed. The obtained NL system is an
ordinary differential equation (ODE) in which the coeffi-
cients are GPs. The relation among PV coefficients and the
relation between PV coefficients and coefficients of the re-
constructed NL ODE are considered in the designed kernel.
Finally, the joint LPV and NL systems are identified by a
frequency domain estimator.

In this research, the identification of NL and corresponding
LPV system is reformulated as a Gaussian process regres-
sion with value and integral observations. The value corre-
sponds to LPV region measurements, and integral measure-
ments are related to the NL response.
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1 Background

The availability of reliable and systematic robust control al-
gorithms has spurred the development of uncertainty struc-
tures of multivariable model sets for robust control [1], [3].
Over de last decades uncertainty structures have developed
from additive and multiplicative structures to more advanced
structures specifically tailored for multivariable systems [2],
[3]. The multivariable aspect and the more advanced un-
certainty structures complicate uncertainty structure com-
parison, understanding, controller design, and performance
analysis of uncertain systems.

2 Problem Formulation

The Bode plot is a critical tool for understanding, controller
design, and performance analysis of control systems. In the
scalar case, uncertainty structures for robust control reduce
to a Möbius transformation from which the magnitude and
phase can be computed. However, extending to multivari-
able systems is not straightforward, inducing the notion of
phase of a multivariable uncertain system. The aim is to de-
velop a unified approach for generating multivariable Bode
plots for both the magnitude and phase of multivariable un-
certain systems.

3 Approach

The key observation is that the Bode plot of scalar systems
is based on the polar decomposition which naturally con-
nects the Nyquist plot and Bode magnitude and phase plot.
The key idea is to extend the polar description to the multi-
variable case which leads to a multivariable magnitude and
phase definition [4]. The resulting multivariable magnitude
and phase are extended to the uncertain case by reformula-
tion through the S-procedure to a feasibility problem.

4 Results

The developed approach is applied to a multivariable motion
system based on the uncertainty structure in [3]. The result-
ing multivariable Bode magnitude and phase are shown in
Fig. 1, 2. The figures reveal that for frequencies in the vicin-
ity of the bandwidth, the model set is tight. This specific be-
havior is attributed to the control-relevant structure. Overall,
the example shows that the proposed approach offers addi-

This work is part of the research programme VIDI with project num-
ber 15698, which is (partly) financed by the Netherlands Organisation for
Scientific Research (NWO).

Figure 1: Multivariable Bode magnitude (top) and phase (bot-
tom). True system Po ( ), nominal model P̂ ( ),
model set

( )
, and target bandwidth (◦).

Figure 2: Element-wise Bode magnitude. True system Po ( ),
nominal model P̂ ( ), model set

( )
.

tional insight and understanding by generating multivariable
Bode plots of uncertain systems.
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1 Introduction

The heat and particle exhaust in tokamaks is guided to a
dedicated region called the divertor. Unmitigated, the ex-
pected power fluxes impacting the divertor targets during
reactor relevant operation exceed present-day engineering
limits [1]. Real-time feedback control of plasma detach-
ment, a regime characterized by a large reduction in plasma
temperature and pressure at the divertor target, is required to
maintain a sufficient reduction of these fluxes [2, 3]. Con-
trol of detachment is presently achieved by puffing spe-
cific amounts of deuterium or nitrogen gas into the system.
We aid detachment controller design by developing control-
oriented models of the dynamic processes at play, with the
aim to develop a physics based dynamic model to guide the
tokamak heat exhaust control efforts.

2 Results of system identification experiments

System identification experiments have been performed on
the Tokamak à Configuration Variable (TCV) [4, 5, 6]. In
these experiments impurity emission fronts are used to diag-
nose the divertor plasma. Such an emission front is defined
as follows. During plasma detachment a temperature gradi-
ent along the divertor leg is established. This gradient gives
rise to a sharp optical emission fall-off, frequently referred
to as a front. These fronts are indicative of a local electron
temperature, and their location can be used as a measure of
detachment strength. Their position is used as a control pa-
rameter which is referred to as Lpol as depicted in Figure 1.
The emission front positions are measured using a real-time
detection algorithm [7] applied to camera images from the
multi-spectral imaging diagnostic MANTIS [8]. The iden-
tification experiments show phase behavior reminiscent of a
diffusive, or fractional system. Using additional data from
the CFD like code SOLPS-ITER to complement the exper-
iments, it was found that a 1D diffusion transport model
can accurately describe the obtained FRF measurements [9].
The physics responsible for the diffusive like behavior was
hypothesized to be caused by plasma-neutral collisions the
injected gas molecules undergo until they are ionised. In
this talk we investigate the validity of this hypothesis by an-
alyzing results from monte-carlo style neutral particle simu-
lations by the code EIRENE.

Figure 1: (a) MANTIS camera view in the TCV Tokamak [6].
(b) Identified CIII front location by the detection algo-
rithm, indicated by the red X [5]. (c) Geometric repre-
sentation of the front location Lpol along the outer leg.

3 Modeling based on system identification experiments

The results of the neutral particle simulations show a clear
exponential decay, while an algebraic or fractional decay
would be expected based on the system identification experi-
ments. After further investigation into possible parallel pro-
cesses, we find two parallel exponential time-scales could
be responsible for the measured dynamics. Such a parallel
dynamic system closely resembles an algebraic or fractional
dynamic response. We postulate a control-oriented particle
inventory model with different confinement time-scales of
particles in the main and divertor plasma, which is able to
reproduce experimental findings. This model opens a new
direction for the further investigation of the physical pro-
cesses dominating the divertor plasma response to gas injec-
tion, gaining new insights in the scaling of these dynamics
to future tokamak power plants.
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1 Introduction

There has been an increasing demand in manufacturing in-
dustries for fast motion tasks like pick and place. In hind-
sight, steady decrease in the cost of computing power gives
closed kinematic structured robots like parallel SCARA a
mechanical advantage for such tasks [1]. Advanced tech-
nique like model predictive control (MPC) is one of the
favourable techniques that allows formulation of optimal
trajectory planning that minimizes energy or time for sunc
fast motion tasks. This article presents an energy-optimal
based MPC design for trajectory optimization of a parallel
SCARA robot with obstacle avoidance.

2 Approach

Our MPC control algorithm is computed by solving the fol-
lowing optimization problem:

optimize: end-effector trajectory from starting to end

subject to: Model
end-effector speed constraint

end-effector initial and final constraints
obstacle avoidance

(1)

The objective of the MPC controller is to find a trajectory for
the end-effector from an initial position to the final position
while avoiding obstacle. The obstacle avoidance constraints
are handled by the existence of a hyperplane between the
end-effector and obstacle at each time instant. This approach
can easily accommodate moving obstacles. We consider
readily available variants of kinematic and dynamic mod-
els in the Joint and Cartesian space. The optimization prob-
lem 1 is formulated and solved using an ongoing high-level
toolbox on top of CasADi framework [2].

Figure 1 shows the results with considering kinematic mod-
els in Cartesian space. We found out that our algorithm op-
timizes the trajectory from the starting point to the end point
in 0.25[s] by avoiding the obstacle and without violating the
end-effector speed limits (also shown in the figure). The
computation time is approximately 179[ms] for the consid-
ered model variant. Simulations were also performed with
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Figure 1: (left) End-effector trajectory from starting point to
the final point with obstacle avoidance. (right) End-effector
speed satisfying constraints.

the rest of the variants of model and they show satisfactory
results.

3 Future Work

Future works include the design of our MPC algorithm in
the presence of a moving obstacle. The main aim of our
research is to bring the advanced controller to the manufac-
turing industries. Hence, the implementation of MPC algo-
rithms on industrial platforms online is required to overcome
the drawback related to the computation time. We also aim
at developing computationally feasible plug-and-play MPC
algorithms for industrial platforms and validate it on parallel
SCARA robot.
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1 Introduction
Modular multilevel converters (MMCs) are leading the way
to improve the performance of the power converters in
many industrial applications [1]. Their higher efficiency,
their lower harmonic distortion content, their transformer-
less operational capability, and their fault tolerance make the
MMCs a better solution than most voltage-source-converters
(VSCs) in many applications. Consequently, this hard-
ware has been used as a core element to develop more
efficient and sustainable solutions for industrial applica-
tions, like renewable energy generation, high-voltage direct-
current (HVDC) transmission and ultra-fast charging sta-
tions (UFCS).

2 Motivation

To achieve the expected performance or even to improve it,
accurate control techniques for the MMC are needed. In this
case, as presented in Figure 1, the MMCs have a modular
structure, which implies that coordinated actions among the
modules (SM) are required to operate the MMC efficiently.
The controller implemented in this system should steer all
the capacitors voltage to a common value during its entire
operation for guaranteeing safety and reliability.

Figure 1: Modular multilevel converter schematic.

The discrete-time dynamic of the ith module is formulated
as

Σi : xi(k+1) = xi(k)+
Ts

C
·w(k) ·ui(k), (1)

where Ts is the sampling time, C is the modules capacitance,
xi ∈ R is the ith module capacitor voltage, w ∈ R is the cur-

rent going through the ith module and ui ∈ {−1,0,1} is the
control input. This dynamic offers two main challenges for
controlling the system: (i) bilinear behaviour, and (ii) finite-
discrete control inputs.

3 Approach
Aiming to overcome the challenge of controlling the MMC,
we propose a consensus control approach to balance the ca-
pacitor voltages. In this case, we based our solution on the
framework presented in [2, 3]. Different from the literature,
we design a communication network with a leader-ring-
followers architecture that ensures convergence to a consen-
sus state set by the leader regardless of the number of mod-
ules connected. This solution offers higher robustness than
[1] due to its distributed implementation and the fact that the
leader only needs to be virtually connected to one follower.
Figure 2 shows partial results of the proposed solution.

Figure 2: Capacitor voltage behaviour under consensus control.
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Lithium-ion batteries are the most promising energy storage
systems due to their high energy and power density. Indeed,
they power up a wide spectrum of applications from mobile
phones to electric cars. However, the better performance of
lithium-ion batteries is at the expense of possible safety con-
cerns when these batteries are mishandled. Possible safety
hazards are commonly prevented through battery oversizing,
but this yields bigger, more expensive and underused batter-
ies. An alternative approach is to build less conservative
batteries while relying on battery diagnostics for detection
and isolation of possible faults affecting battery behaviour.

The supervision of lithium-ion batteries is carried out by a
battery-management system, which is in charge of monitor-
ing the state of the battery notably including state-of-charge
(SoC) and state-of-health (SoH). The SoH is the battery con-
dition in a given sense (e.g. capacity) with respect to its con-
dition at the beginning-of-life. Popular approaches for SoC
& SoH estimation rely on state observers (e.g. Kalman fil-
ters) exploiting a model of the battery, where SoH involves
model parameters that evolve slowly with time as the bat-
tery ages. However, identifiability issues may arise from the
state/parameter interplay, and an additional decision system
is needed to analyse the evolution of the model parameters
as well as evaluate their significance with respect to esti-
mation error. In contrast with state/parameter estimation,
another model-based approach resorts to residual genera-
tion, which involves state observers or parity relations. One
should notice that the obtained methods were initially devel-
oped for additive faults. However, changes in model param-
eters (i.e. multiplicative faults) belong to another category.
In this case, parity relation residuals will exhibit patterns
that depend on the operating conditions. Besides, observer-
based residuals consisting of the innovation sequence are not
a sufficient statistic to detect multiplicative faults.

In this work, we want to achieve early change detection and
isolation of lithium-ion battery degradation (multiplicative
faults) from standard battery operation data. To this end,
we design a diagnosis scheme (see Fig. 1) that exploits a
specific type of residual (the so-called primary residual) in
the context of the asymptotic local approach [1]. It must
be stressed that this residual represents a sufficient statistic

for parametric change detection. The diagnosis scheme re-
lies on three aspects. First, a reduced-order electrochemical
model of the battery under both healthy and faulty condi-
tions was used. Secondly, a state observer was used to no-
tably generate the primary residuals. Finally, the residuals
were exploited by statistical tests for FDI. In contrast with
previous contributions [2], a wide faulty parameter space is
explored, including single and multiple faults acting simul-
taneously. Moreover, a statistical test based on Nikiforov’s
method [3] was studied via Monte Carlo simulations under
two possible fault magnitudes. This test is able to detect
small faults and discriminate between them. The detection
and isolation accuracy of Nikiforov’s method improves with
increasing fault magnitudes, although parameters with pos-
sibly low sensitivity and faults involving them are more dif-
ficult to diagnose. Since the proposed fault detection and
isolation (FDI) scheme is able to handle small faults, it could
unlock the possibility of sorting batteries according to their
quality (strong vs weak cells) at the very beginning of bat-
tery life after few cycling operations. Having battery packs
with low cell-to-cell variability would potentially extend the
pack useful life.

Figure 1: Block diagram of the FDI scheme.
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Some battery-powered devices sometimes require a series-
parallel arrangement of Lithium-ion cells, a battery pack, to
fulfill voltage, power and capacity demands. Although, all
the cells within the pack should have identical dynamics for
a given charging profile, cells might not react in the same
way, showing operational imbalances.
A Battery Management System (BMS) should be able to
counteract possible imbalances occurring within the pack in
order to avoid undesirable degradation phenomena. Thus
far, imbalances between cells are equalized either by dis-
sipating the excess of energy or by transferring the energy
from one cell to another. Most of these currently-available
equalization strategies are empirically designed to counter-
act voltage imbalances without accounting for the charging
process. In fact, the imbalances are equalized during idle
times, when the current is assumed to be constant.
For a string of cells, the charging and balancing problem is
addressed by some authors by making use of Model Pre-
dictive Control (MPC), resulting in nonlinear and complex-
to-solve policies. The main challenge to solve an MPC for
the charge and balance of the battery string underlies in the
configuration of the balancing grid. To equalize possible
imbalances, each cell within the string might be connected,
or disconnected, to the grid. Therefore, the description of
the connection scenarios within the MPC builds a nonlin-
ear mixed-integer problem that, to the best of our knowl-
edge, is not solvable in polynomial time. Although in [1] we
propose a max-min to reduce the complexity of this mixed-
integer problem, it is not implementable from a computa-
tional viewpoint for a large number of cells (Fig. 1, dash-
dotted line with triangle markers).
A better approach, as showed in [2], is to consider pulse-
width modulation (PWM) for the shunting switches of the
balancing grid. Thus, both the duty cycles of switches and
the charging current of the string can be determined by a
continuous nonlinear optimization. However, the computa-
tional intensiveness of such nonlinear optimization explodes
when a large number of cells forms the string (Fig. 1, dotted
line with plus markers).
The computational burden of the resulting nonlinear MPC
can be nevertheless reduced (Fig. 1, dash-dotted line with
diamond markers) by evaluating individual optimization
sub-problems, that find the charging current for each cell
to calculate afterwards the duty cycles as the ratios between
the individual current of each cell and the maximum current
(Alg. 2 [1]). However, the computational capabilities of

some BMS might not allow solving a high number of opti-
mization problems at each time instant. Therefore, charging
protocols with a few –and less complex– number of opera-
tions are more convenient and time saving. A possible way
to further reduce the computational burden of the MPC is
by replacing it in each sub-problem with a cascade architec-
ture whose inner loop ensures stability and fast tracking, and
its outer loop enforces constraints satisfaction by finding a
suitable reference.
This work proposes a modification of the ratio-based algo-
rithm of [1] that makes use of a cascade architecture for each
cell, where the outer loop is an Explicit Reference Gover-
nor (ERG). The ERG is a variant of the reference governors
that relies on the invariance of Lyapunov level-sets to ensure
constraint satisfaction. This means that neither prediction
nor online optimization is required, making it very efficient
due to a reduced required number of operations. When this
scheme is implemented (Fig. 1, continuous line with star
markers), the computational time does not increase signifi-
cantly when more cells are considered within the string.
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1 Abstract

Input shaping can effectively reduce residual vibrations of
flexible systems induced by the reference signal. It requires
a trade off of increased travel time versus reduced overshoot.
In this paper a new method is introduced to relate the rela-
tive overshoot to the ratio of vibration time and travel time.
Practical applications of robotics point to point control of
swinging products include case packing of food in liquid
contained bags such as soap and cheese.

For fast pick and placement of swinging products input
shaping provides significant reduction of the overshoot,
without additional time, when the travel time is less than
1.8 times and larger than 2.5 times the natural vibration
time. The classic input shaper ZV provides best perfor-
mance. Combined with matching the feedback controller
bandwidth to the vibration frequency of the swinging prod-
uct the input shaper provides similar performance while pro-
viding a smoother acceleration of the object to reduce peel-
off. An experimental validation on a delta robot system con-
firms the performance improvement obtained by an zero vi-
bration input shaper for a cheese product packed in a liquid
bag suspended by means of a suction cup.

In extreme accurate applications for flexible joint systems
which require minimal overshoot, input shaping has the po-
tential to reduce the residual vibration in case the travel time
is longer than twice the vibration time. For faster flexible
joint applications where the travel time approaches the vi-
bration time, the additional travel time of the ZV shaper does
significantly trade off with the obtained overshoot reduction. Figure 1: Displacement and reference acceleration for in-

put shaped parabolic shaped trajectories. Fre-
quency well tuned, damping mismatch: 10%. Ratio
vibrationtime/traveltime = 0.7
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1 Abstract

In this work, we proposed a collision-free source seeking
control of unicycle robot in an unknown cluttered environ-
ment, where the obstacle avoidance is guided by the con-
trol barrier functions (CBF) embedded in quadratic pro-
gramming, and the source seeking control relies solely on
the use of on-board sensors that measure signal strength
of the source. To tackle the mixed relative degree of the
CBF, we proposed three different CBF, namely the zero-
ing control barrier functions (ZCBF), reciprocal control bar-
rier functions (RCBF) and exponential control barrier func-
tions (ECBF), that can directly be integrated with our recent
gradient-ascent source-seeking control law. We provide rig-
orous analysis of the three different methods and show the
efficacy of the approaches in simulation using realistic vir-
tual environment of Gazebo/ROS.

2 Problem Formulation and Control Design

For the safety-guaranteed source seeking control problem,
we consider an unknown dynamic environment where the
source emanates laminar flow, and it decays with the dis-
tance to the source. The unicycle robot is equipped with
sensors for real-time signal strength and obstacle distance
measurements. The robot can drive forward with a longitu-
dinal velocity u and rotate with an angular velocity ω .

Consider the nonlinear system

ẋ = f (x)+g(x)u (1)

where state x ∈ Rn, control input u ∈ Rm, and f ,g : Rn →
Rn assumed to be locally Lipschitz continuous. The aim
of the collision-free source seeking problem is to design a
control law which generates admissible states such that keep
the system within the safe set Xs for all t ≥ 0, gradually
approach and finally stabilize within the close range of the
unknown source’s location. The safe set is described as

Xs =
{∥∥x− xobs,i

∥∥−d ≥ 0
}

(2)

where i is the sequence number of the obstacles which is
currently with the closest Euclidean distance to the robot, d
is the pre-set minimum safe distance between robot and ob-
stacle’s boundary, (x,y) and (xobs,i,yobs,i) denote the center
coordinates of robot and the boundary coordinate of the i-th
obstacle, respectively.

To clarify, the safe set denotes the closest Euclidean distance
between robot and obstacles’ boundary (which can be the
fixed static obstacles, moving objects, or walking person).

In particular, to combine the source seeking control [1] with
the barier function, we solve the mixed relative degree of the
control inputs v and ω by three methods, which applied with
ZCBF, RCBF and ECBF, respectively. The control barrier
functions are constructed by considering the distance and
orientation of the robot to the closest obstacle’s boundary.

The optimal safe control input u∗ can thereby be obtained
by solving the quadratic programming problem with three
various constraints:

u∗ = argmin
u∈U

1
2

∥u−us∥2 (3)

where the reference control input us comes from the source
seeking algorithm [1].

3 Main Results
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Figure 1: Simulation results based on the three control barrier
functions h, where both the longitudinal and angular
velocity are controlled. The source is set at the origin
(0,0), surrounded by multiple circular-shape obstacles,
and the signal strength is distributed as J(x,y) =−x2 −
y2. The robot is set at three various initial positions
(noted as ′o′) to search the source (noted as ′∗′ ) while
avoiding the collision with obstacles, the minimum safe
distance between robot and the obstacle’s boundary is
set as 0.1.
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1 Abstract

Robot swarms constitute an attractive solution to carry out
tasks where the environment may pose a threat to human
operators or where single robots would not be able to per-
form efficiently. Their robustness and scalability arise from
a fully decentralised control architecture and make them
preferable in such scenarios to multi-robot systems con-
trolled in a centralised fashion. While interest in this field
has been growing steadily over the past twenty years, a sys-
tematic method to design the control software for each of
the individual robots in a way that guarantees some desired
properties of the resulting collective behaviour is still miss-
ing. This is one of the main limitations that hinders the use
of robot swarms in real-world applications. In this project,
we aim to develop a framework that allows to describe the
desired properties of a swarm and automatically generate
control software that ensures such properties.

Robot swarms consist of relatively simple robots (see
Figure 1), which frequently interact with each other in their
pursuit of a common goal. Together with the systematic un-
certainties introduced by imperfect sensors and actuators,
this makes the resulting system behaviour highly unpre-
dictable. A common approach to the verification problem
has been to model robot swarms as Markov chains and use
model-checking tools. We argue that the use of hybrid sys-
tems to model robot swarms allows for a desirable abstrac-
tion of the swarm dynamics and may therefore be used to
formally verify a richer variety of their properties. For pre-
vious work that followed the same motivation, see [1].

In our approach, we define the properties of a robot swarm
as constraints on appropriate state variables, such as inter-
robot distances and velocities. Such properties reflect char-
acteristics of the swarm behaviour that may be required or
desired for a given task, such as collision avoidance or ag-
gregation at a given location. A review of swarm robotics
tasks can be found in [2]. This approach, while more com-
mon in the field of control theory than in swarm robotics,
allows us to systematically produce inequality constraints
that are platform-agnostic and, thus, generalisable.

Through these constraints, we define differential invariants,
which may be used to either complement bounded model
checking tools or for deductive verification. In particular, we
explore the use of differential dynamic logic (dL ), which

Figure 1: The e-puck robot, a swarm robotics platform of
widespread use for research purposes.

follows the grammar

φ ,ψ ::=p(θ1, ...,θn)|¬φ |φ ∧ψ|φ ∨ψ|φ → ψ|
∀xψ|∃xψ|[α]φ |〈α〉, (1)

where φ and ψ are formulas, θ1 and θ2 are terms, p is a
predicate symbol, x is a logical variable and α is a hybrid
program [3]. Extensions of dL , including differential dy-
namic temporal logic (dTL) and quantified differential dy-
namic logic (QdL ), provide tools for reasoning about the
temporal behaviour of hybrid systems and about distributed
hybrid systems, respectively.
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1 Introduction

Due to the many recent developments in autonomous robotic
solutions, close interaction with people to accomplish a
shared goal has become reasonably common [1]. Robot
coworkers possess qualities like strength, endurance, and
precision. This makes them valuable team members, that
complement human’s flexibility and decision making. This
project aims to address safe human-robot collaboration,
while explicitly targeting mixed teams, and in the presence
of learning and adaptation.

2 Challenges

While a lot of research has already been done with regard to
Human Robot Interaction, existing work is mainly focused
on a single robot interacting with a single human [2]. More-
over, the environment is often controlled and the considered
time horizon short. It thus remains to be seen whether cur-
rent approaches could be adopted in dynamic settings in-
volving mixed teams.

3 Method

The focus of this research lies on context awareness, learn-
ing and adaptation, and supervisory control for ensuring
both safety and task progression (Fig. 1); all are consid-
ered from a human-robot mixed team perspective. Robots
that are aware of their context are able to observe and in-
terpret the state of their environment, as well as use this to
infer their team members’ intentions. The contextual cues
important for mixed team tasks and the sharing of informa-
tion between team members will be investigated. This will
be complemented by a literature study about existing world
modelling architectures. Furthermore, mutual learning is
relevant for behavior adaptation and improving coordina-
tion between team members. Therefore, a study to identify
which learning method is best suited for mixed team tasks
in a dynamic environment will be conducted. Lastly, a safe
progression towards the goal is essential. Supervisory con-
trol theory will be researched to determine whether it can be
used to ensure meaningful progression of the task, while at
the same time achieve predictive and thus preventive safety.
This allows smooth collaboration in the team, as opposed
to incorporating safety switches that are triggered when a
threshold is violated.

AI and 
Learning

Context
Awareness
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Control

Task 
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Safety

Intention 
Recognition

Adaptation
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sharing
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Figure 1: Research topics

The literature research on the above mentioned topics should
highlight current limitations with respect to mixed teams.
Based on these limitations, new modelling approaches for
the design of world models and supervisory controllers for
mixed teams in the presence of learning and adaptation will
be devised. The new methods will be validated on a research
integrator consisting of at least two robots and two humans.

4 Conclusion

Our presentation will introduce the initial ideas of the
project on safe human-robot collaboration in mixed teams.
We will discuss the goal and challenges, and introduce the
topics relevant for tackling the problem. Hopefully, this will
trigger an open discussion about relevant methods and in-
sights to advance the state of the art in world modelling,
learning, and supervisory control theory for collaboration in
mixed teams.
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1 Introduction
Considering the increasing trend in energy consumption and
its consequent negative impacts on global warming, the de-
velopment of energy efficient industrial machines is highly
valued. Moreover, industry desires techniques which are ap-
plicable to current manufacturing infrastructures with lim-
ited to no hardware adaptations. Within this scope, trajec-
tory optimization is a promising cost-effective alternative
with no necessity for further investments. In trajectory opti-
mization, the machine user only needs to define the starting
position (θstart ) and ending position (θ f inal) of the machine
as shown in Fig. 1. The time duration (∆t) of the motion task
can also be provided with the aim to optimize the energy ef-
ficiency. Up to now, a wide range of trajectory optimiza-
tion techniques have been reported in literature amongst
which the prevalent MPC paradigm. Nonlinear MPC allows
to find setpoints for motion control systems but when facing
fast dynamic systems, the setpoints need to be delivered in
bounded time. In this work, an online optimal trajectory de-
sign strategy based on Soft Switching Multiple Model Pre-
dictive Control (SSM-MPC) for an industrial pick-and-place
machine is proposed. By using the SSM-MPC, the gener-
ated trajectory will be adaptive to system parameters varia-
tions such as load inertia, etc.

2 System modeling and trajectory optimization
Due to the inherent optimization nature of MPC while han-
dling system constraints, it seems promising to design not
only an optimal but also a robust trajectory. Nonlinear MPC
is an interesting candidate to generate optimal trajectories
considering the nonlinear behaviour of the industrial appli-
cation. However, calculating the optimal trajectory is not
guaranteed in terms of the computational time for nonlinear
MPC while during nonlinear operation the computational
load needs to be bounded in time. To tackle these chal-
lenges, this work presents the SSM-MPC to design optimal
trajectories for motion control systems. We first linearize the
nonlinear system model around various operating points to
build up a model bank [1]. We use the gap metric tool to
optimize the model bank size by assessing the similarity be-
tween the two neighboring linear models. Figure 1 depicts
the pick and place unit and its simplified model based on a
two mass spring damper system. The governing dynamics of

Figure 1: Schematic overview of the SSM-MPC trajectory gen-
eration strategy

this model are summarized in (1) where Jr is the rotor-side
inertia and Jl is the load-side inertia, which depends on the
load position θl . The coupling parameters are stiffness k and
damping b. bl and bm are the load and motor-side external
dampings, respectively. The motor torque T is the control
input and the machine position θ is the system output. Tl is
the load side torque which is a function of θl .{

T −bmθ̇ −b(θ̇ − θ̇l)− k(θ −θl) = Jrθ̈
Tl −bl θ̇l +b(θ̇ − θ̇l)+ k(θ −θl) =

1
2 J̇l θ̇l + Jl θ̈l

(1)

In a chosen operating point θ = θ ∗, Jl(θ ∗) and Tl(θ ∗) are
constant values. By applying frequency domain analysis,
the nonlinear system model behavior around θ ∗ can be ap-
proximated by G(s) = θ̇(s)

T (s) . The model bank is constructed
by applying the gap metric technique on this approximation
in various operating points. Next, the linear MPCs are de-
fined according to the obtained model bank. As shown in
Fig. 1, by varying the operating point, the switching unit
will switch between the linear MPCs to generate the opti-
mal trajectory. Each linear MPC will generate the optimal
trajectory for the operating region in which it was designed.
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1 Introduction
In recent years, there has been a growing interest in the de-
velopment of global linear embeddings of nonlinear dynam-
ical systems. A possible solution is given by the Koopman
framework. The main idea is to lift the nonlinear system
to a possibly infinite dimensional, but linear, space where
the dynamics are governed by a so-called Koopman opera-
tor. In practice, only a limited number of lifting functions
(called observables) can be used. However, as the choice is
generally ad-hoc, there is no guarantee on the approxima-
tion capability. Furthermore, in its original formulation, the
Koopman framework only addresses autonomous systems.
In the present work, we aim to address these shortcomings.

2 Proposed method
To learn the lifting from data, we employ deep Artifi-
cial Neural Networks (deep-ANNs) and develop an encoder
based on the concept of reconstructability [1]. The model
structure is selected as control affine, leading to a linear
form, with a varying input matrix.

Figure 1: Network structure

The data generating system is considered to have a nonlinear
control affine representation:

xk+1 = f (xk)+g(xk)uk, yk = h(xk)+ vk, (1)

where f , g, h are nonlinear maps, xk ∈Rnx is the state, uk ∈
Rnu is the input, yk ∈ Rny is the output and vk ∈ Rny is an
additive zero-mean noise. The selected model structure is
defined next:

ẑk+1 = Aθ ẑk +Bθ (ẑk)uk, ŷk =Cθ ẑk, (2)

with A being the Koopman matrix, B(z) is a nonlinear func-
tion of the lifted state z ∈ Rnz and C denotes the linear out-
put map. The control affine model structure is chosen as it
offers more flexibility in the learning process, providing a

This work has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement nr. 714663).

better approximation capability than using a constant input
matrix [1]. The subscript θ denotes the parameters (weights
and biases) of the ANN. The initial lift to ẑk→k is achieved
using the encoder function eθ :

ẑk→k := eθ (yk−na:k−1,uk−nb:k−1), (3)

where eθ is a combination of the inverse of the constructabil-
ity map and a set of nonlinear constraints. The indentifica-
tion approach assumes an Output Error (OE) noise model
structure and uses a T-step ahead prediction based identi-
fication criterion. The parameters θ are tuned using batch
optimization, allowing for the parallelization of the compu-
tations.

3 Example
To illustrate the capabilities of the proposed method, we
use the Silverbox benchmark [2], which is an electrical im-
plementation of a mass-spring-damper system with a cubic
spring nonlinearity, showing a similar behaviour to a forced
Duffing oscillator. As can be seen in Fig. 2, when a multi-
sine test input is applied, the identified model can accurately
represent the dynamics of the true system. When a linearly
increasing filtered Gaussian (arrowhead) input is applied,
the error increases towards the end, due to the extrapola-
tion region (where data was not available for training). If
this region is discarded, the obtained results are comparable
to the state of the art.

Figure 2: Multisine test (top) and arrowhead (bottom)
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1 Introduction

Characterizing global stability remains a challenge in dy-
namical systems theory. Thanks to the Lyapunov’s second
method, the existence of a Lyapunov function guarantees
global stability, but there is no general method to construct
it. The Koopman operator approach can be seen as a ”global
linearization” of the dynamics and therefore can be used to
induce global properties such as global stability. For a given
nonlinear system, the associated infinitesimal generator of
the semigroup of Koopman operators (Koopman generator
in short) acts linearly on observables (see [3]). This action
can be seen as a linear infinite-dimensional representation
of the nonlinear system that is amenable to spectral analy-
sis. In particular, the existence of specific Koopman eigen-
functions yields necessary and sufficient conditions for the
global stability of hyperbolic attractors [1].

Using the Kooopman operator approach, we proposed in [2]
a novel method for constructing a common Lyapunov func-
tion for particular switched nonlinear systems. Our goal is
to extend the constructive method of [2] to linear infinite-
dimensional cases and induce Lyapunov function for the
original nonlinear system. Regarding theoritical aspects in
Koopman theory (see e.g.[3]) we will focus on vector fields
on polydiscs, so the Koopman generator is defined in the
Hardy space of polydiscs H2(Dn).

2 Koopman operator on H2(Dn)

The Hardy space on the polydisc Dn is the Hilbert space

H2(Dn) =
{

f : Dn −→ C,holomorphic : ‖ f‖2 <+∞
}
,

with the norm ‖ f‖2 = ∑α∈Nn |aα |2 and the scalar product
〈 f ,g〉 = ∑α∈Nn aα b̄α for f (z) = ∑α∈Nn aα zα and g(z) =
∑α∈Nn bα zα . The set of monomials {zα : α ∈ Nn} is the
standard orthonormal basis for H2(Dn), and its elements
will be denoted by eα and ordered with the lexicographic
order. Note that H2(Dn) is a reproducing Kernel Hilbert
space (RKHS) and its (Cauchy) Kernel allows us to define
the evaluation functional 〈kz, f 〉 = f (z). See [4] for more
details.

Consider the continuous-time dynamical system

ż = F(z), z ∈ Dn, F ∈ C 1,

which generates a flow ϕ t : Dn → Dn, with t ∈ R+. The
semigroup of Koopman operators on H2(Dn) is the family
of operators (U t)t≥0:

U t : H2(Dn)→H2(Dn) : U t f = f ◦ϕ t .

The Koopman generator of (U t)t≥0 is the operator

LF f = F ·∇ f , f ∈D ⊂H2(Dn),

where the domain D =
{

f ∈H2(Dn) : F ·∇ f ∈H2(Dn)
}

is
dense on H2(Dn). The Koopman operator U t and its asso-
ciated infinitesimal generator LF are both linear on H2(Dn).
See [3] for more details. In this study we assume the vector
field F is polynomial and the origin 0 is a unique (hyper-
bolic) equilibrum point in Dn.

3 The main result

Under some conditions, the Koopman operator framework
allows us to construct a Lyapunov function for polynomial
vector fields.

Theorem 1 Let

ż = F(z), z ∈ Dn and ḟ = LF f , f ∈D ⊂H2(Dn)

be a nonlinear system and its corresponding Koopman sys-
tem. Let assume that

• the jacobian JF(0) is triangularisable and Hurwitz
• and ∃Q ∈]0,1[ which bounds the double sequence
{

4D2
∣∣〈e j,LF ek

〉∣∣2
∣∣ℜ
(〈

e j,LF e j
〉)∣∣ |ℜ(〈ek,LF ek〉)|

}

1≤k≤ j−1, j≥2

,

where D is the number of nonlinear terms of F.

Then there exists a sequence εk ∼ Qk such that,

1. the series V ( f ) = ∑|α|≥1 εα |〈 f ,eα〉|2 is a Lyapunov
functional of the Koopman system

2. and the function V (z) = V (kz) = ∑∞
k=1 εk|z|2α(k) is a

Lyapunov function for the nonlinear system in Dn.
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1 Introduction

Nonlinear continuous-time models are widely used in con-
trol, but identification methods for continuous-time sys-
tems are relatively underdeveloped. The subspace encoder
method [1] has shown to be a successful and robust state-
space model identification method. This work extends this
method to the continuous-time setting.

2 Continuous-time subspace encoder method

By integrating the state-space equations given by

˙̂x(t) = fθ (x̂(t),u(t)),

ŷ(t) = hθ (x̂(t)),

using an RK4 integrator with a ZOH condition on the input
signal u(t) one is in principle able to compute the simula-
tion loss. However, due to the linear scaling of the compu-
tational complexity and numerical instabilities of the simu-
lation loss, this often becomes infeasible. These issues are
avoided by the encoder method which employs any number
of small subsections of truncation length T . This improves
computational complexity since the loss can be computed
in parallel on each subsection individually and instabilities
have less time to develop.

On each subsection the network structure as seen in Figure
1 is applied. This structure employs an encoder function ψθ
parameterized by a neural network that aims to approximate
the reconstructability map from a set of past inputs and out-
puts to the current state. This encoder function is optimized
together with fθ and hθ and does not require the introduction
of any additional loss functions since if ψθ provides a bet-
ter initial state approximation it also lowers the previously
derived loss function.

3 Benchmark Results

We applied the proposed method on the cascade tank
dataset [2] which has square root nonlinearities and hard sat-
urations due to overflow. The dataset consists of only two
short datasets of lengths 1024 samples (∆t = 4 sec). We use
the first dataset to train models parameterized by 2 hidden
layer networks with 64 nodes per layer for fθ ,hθ and ψθ ,
T = 60, nx = 2 using the Adam optimizer.

The resulting simulations on the test set can be viewed in
Figure 2. This figure illustrates that all estimated models are

RK4
ZOH

RK4
ZOH

Figure 1: The continuous-time subspace encoder method
applied on a subsection of length T starting from t. Here the
t|t notation indicates (current time|starting time) to be able
to distinguish between different subsections.

Figure 2: Simulations on the test set obtained from 11 mod-
els with different initial parameters estimated by the pro-
posed method on the cascade tank dataset.

able to closely emulate the complex nonlinear behaviour of
the system. The mean RMS simulation is 0.315± 0.016 V
which is a the state-of-the-art result similar to the 0.33 RMS
obtained by [3]. We argue that our method is more robust as
it only employs a single loss function and the computational
complexity does not scale with the number of data samples.
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1 Introduction
The class of Linear Time-Invariant (LTI) systems provide
a rich framework for modeling dynamical systems and has
been successful to meet the needs of industrial applications.
However, with the ever-growing complexity and increasing
performance requirements of high-tech systems, nonlinear
(NL) system analysis has become essential in engineering
problems. Due to the complexity of these considered sys-
tems, modeling them via first principles is often too compli-
cated or even impossible. Therefore, we focus in this work
on data-driven modeling, i.e, identification of NL systems.
Despite the tremendous progress in automating and optimiz-
ing the identification procedure [3], identification of systems
beyond the linear class is still immature and lacks theoret-
ical understanding. Moreover, due to the growing system
complexity, the identification algorithms often waste a lot of
resources on identifying simple dynamic relationships, such
as rigid body dynamics. In this work, we aim to leverage the
effectiveness of NL data-driven modeling by augmenting a
priori system knowledge with powerful learning methods.
Model-Augmentation (MA) has already been explored in the
LTI case, but is in a rather immature state for NL systems.
Our MA concept focuses on augmenting a known approx-
imative state-space (SS) model of the NL system with an
Artificial Neural Network (ANN), i.e., a universal approxi-
mator. In this way, the ANN completes the dynamic behav-
ior of the approximative NL SS model, and thus we obtain
an accurate model of the actual NL system. The approxi-
mative SS model can be obtained via, e.g., first principles
knowledge. There are numerous ANN methods available in
literature that we can use in our MA concept. In this work,
we augment our approximative model with the Sub-Space
Encoder Network (SUBNET)1 [1]. The SUBNET method is
particularly suited when considering SS models. We imple-
ment the aforementioned MA concept with the SUBNET on
a 3 Degree-of-Freedom Control Moment Gyroscope (CMG)
usecase.

2 Methods
We obtain the approximative SS model by converting the
first principles model of the CMG, found in [2], to a grid-

This work has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innova-
tion programme (grant agreement nr. 714663), and financial support in the
scope of the AI4GNC project with SENER Aeroespacial S.A., contract nr.
4000133595/20/NL/CRS

1See tinyurl.com/SUBNETdeepSI for a Python toolbox.

ded Linear Parameter-Varying SS (gLPV-SS) model. The
resulting gLPV-SS approximates the NL behavior of the
CMG. This gLPV-SS model now serves as our approximate
SS model, which we now augment with an ANN. With the
SUBNET, we can consider multiple augmentation configu-
rations. In order to retain the state-dimension of the approx-
imate NL SS model, we augment the ANN via an additive
term in the SS equations, i.e.,

x+k = fApprox(xk,uk)+ fANN(xk),

yk = hApprox(xk,uk)+hANN(xk).

The additive ANN completes the dynamics of the gLPV-SS
model, and hence resembles the dynamic behavior of the
CMG. Thus, the ANN learns the dynamics that have been
disregarded in the conversion step towards an approximative
model of the NL system, which significantly reduces the re-
quired resources to obtain an accurate model of the system.

3 Results
The results of this method are shown in Fig. 1, where blue
is the original data of the CMG, orange is the simulation
data and green is the difference between the original and
the simulation data. The left plot shows the behavior of the
gLPV-SS model, while the right plot depicts the augmented
model. The results show that the ANN truly completes the
behavior of the gLPV-SS model.

Fig. 1: gLPV-SS model with ( r) & without ( l) SUBNET augmentation.
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1 Problem statement

Our goal is to estimate the parameters of grey-box models
of mechatronic systems, where the continuous-time model is
augmented with artificial neural network elements included
as additional terms. This black-box part is to improve the
original model derived from first principles, physics (e.g.
rigid body dynamics), in order to have better accuracy in
simulation. The estimation task can be formulated as a
nonlinear optimization problem with a least-squares objec-
tive, acting on the multi-step prediction error of the model
that has been computed by numerical integration, assuming
zero-order hold. However, such problems can be hard to
solve if the objective function has multiple local minima.
Regions in the parameter space where the computation of
the model response becomes non-contractive are also a chal-
lenge. Thus, there is a need for robust identification methods
that can overcome these difficulties and are computationally
tractable.

2 Related work

The subspace encoder method [1] has previously been used
to estimate black-box state-space models with fully con-
nected neural networks as nonlinear functions for the state
and output equations. As in multiple shooting, the subspace
encoder method computes the loss on multiple, possibly
overlapping, short subsections, which improves computa-
tion speed and reduces the effects of local minima. Further-
more, on these subsections, a third network, the so-called
encoder function was used to provide an estimate of the
initial state based on historical input and output samples.
This resulted in an unconstrained optimization problem. The
method is available in the open-source deepSI toolbox [2],
and in [1] it was shown to obtain state-of-the-art perfor-
mance on multiple challenging benchmarks.

3 Proposed solution

In the current study, we combine parameter estimation of
first-principle laws-based models of the system with the sub-
space encoder method (see Figure 1). Starting from the set-
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Figure 1: Simulation within a subsection.

ting in [1], we replace the state and output equations with
the equations of the resulting grey-box model augmented
with neural networks, and we also include physical knowl-
edge into the encoder (e.g. some states are in a fixed relation
with other states, like position with velocity). We use Adam
batch optimization, as in [1]. Compared to traditional multi-
ple shooting, no additional decision variables are needed for
the initial states, as those are provided by the encoder struc-
ture, so the required computational resources scale linearly
with the length of the dataset. We compare the accuracy and
robustness of this method with existing traditional shooting
methods for grey-box identification (single shooting, multi-
ple shooting).

4 Acknowledgements

This research is supported by Flanders Make: ICON project
ID2CON: Integrated IDentification for CONtrol.

References
[1] G. Beintema, R. Tóth, and M. Schoukens, “Nonlinear
state-space identification using deep encoder networks,” in
Proceedings of the 3rd Conference on Learning for Dynam-
ics and Control, May 2021, pp. 241–250.

[2] G. Beintema, deepSI. [Online]. Available: https:
//github.com/GerbenBeintema/deepSI

53



Book of Abstracts 41st Benelux Meeting on Systems and Control

Sensor Data Fusion as an Alternative for Monitoring Oxychlorides
in Electrochlorination Applications

Ross, E.A. 1,2

Edwin.Ross@wetsus.nl
Wagterveld, R.M. 1

Martijn.Wagterveld@wetsus.nl
Mayer, M. 3

Mateo.Mayer@easymeasure.nl

Stigter, J.D. 2

Hans.Stigter@wur.nl
Højris, B. 4

bhoejris@grundfos.com
Keesman, K.J. 1,2

Karel.Keesman@wur.nl
1 Wetsus, European Centre of Excellence for Sustainable Water Technology

Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands
2 Mathematical and Statistical Methods - Biometris, Wageningen University and Research,

PO Box 16, 6700 AA, Wageningen, the Netherlands
3 EasyMeasure B.V., Breestraat 22, 3811 BJ, Amersfoort, the Netherlands

4 Grundfos Holding A/S, Poul Due Jensens Vej 7, DK-8850, Bjerringbro, Denmark

1 Abstract

As oxychloride concentrations have been found harmful to
human and animal health [1, 2, 3], governments are increas-
ingly demanding strict control of such chemical species in
drinking water [4, 5]. As not all oxychlorides can be directly
monitored using hardware sensors, in this work, Sensor Data
Fusion (SDF) was investigated as an alternative approach. In
contrast to manual laboratory analysis it is capable of pro-
viding estimates in real time using affordable sensors [6, 7,
8].

In this study, an SDF algorithm was developed for an elec-
trochlorination process, based on classical observer theory,
with the aim of monitoring chlorate formation. Starting
from time-scale analysis, a reduced-order nonlinear state-
space model of the electrochlorination and mixing process
was formulated. A novel UV-a absorption sensor was used
as part of the sensor suite, to track the hypochlorite concen-
tration.

It was found that, while the system was not fully observ-
able, it was detectable. Using the Extended Kalman Filter
an effective observer was made. The algorithm was verified
experimentally and was found to be capable of accurately
estimating chlorate concentrations in real-time. In addition,
a Monte Carlo analysis was performed on the unobservable
states to determine their uncertainty over the course of the
experiment.
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1 Introduction 

Conduit bursts or leakages present an ongoing problem for 

hydraulic fluid transport grids, such as oil or water conduit 

networks. Measurements from additional sensors increase 

the accuracy of burst detection methods, but the position of 

a sensor within a network is critical in order to maximize the 

additional information provided by the sensor. Although 

sensor placement and operation costs have decreased in 

recent years, there remains a tradeoff between information 

gain and sensor costs (Scozzari et al., 2021). Traditional 

sensor placement methodologies focus on burst detectability 

as the criteria for optimal placement of additional pressure 

sensors and utilize a sensitivity-based approach to determine 

those placements (Boatwright et al., 2018). Most current 

methodologies do not incorporate pressure dynamics into 

the calculations for optimal sensor placement (Boatwright 

et al., 2018; Giustolisi et al., 2008). These pressure 

transients, or water hammers, are often caused by pipe 

bursting and are an important indicator of bursts. It has been 

shown that detection of these transients plays a crucial role 

in burst detection (Lee et al., 2016). Therefore, there is a 

need for optimal sensor placement methodologies capable 

of including fast pressure dynamics. 

2 Methodology 

We present a linearized state-space model of hydraulic fluid 

transport networks suited for optimal sensor placement, 

based on the continuity and momentum equation for 

unsteady, nonuniform flow of a slightly compressible fluid 

through slightly elastic pipes: 

𝜕

𝜕𝑡
(

𝑝
𝑉

) + [
𝑉 𝜌𝑐2

𝜌−1 𝑉
]

𝜕

𝜕𝑥
(

𝑝
𝑉

) = (
0

−𝑔 𝑠𝑖𝑛(𝜃) −
𝑓𝑉|𝑉|

2𝐷

) 

Here, 𝑝 is the pressure in 𝑃𝑎, 𝑉 is the flow velocity in 
𝑚

𝑠
, 𝜌 

is the mass density of the transported fluid in 
𝑘𝑔

𝑚3, 𝑐 is the 

elastic wave velocity in 
𝑚

𝑠
, 𝑔 is the acceleration due to 

gravity in 
𝑚

𝑠2, 𝜃 is the angle the conduit makes with the 

horizontal, with the angle taken positive if the conduits 

slopes upwards in the flow direction, 𝑓 is the Darcy-

Weisbach friction factor (dimensionless), and 𝐷 is the 

diameter of the inside of the conduit in 𝑚. 

 

This approach does not rely on model simulation of 

hydraulic burst scenarios or on burst sensitivity matrices, 

but instead determines optimal sensor placement solely 

from the model structure, taking into account the pressure 

dynamics and hydraulics of the network. Observability 

Gramians can be used to identify the optimal sensor 

configuration by maximizing observability functionals 

based on robust optimality criteria. For linear, time-

invariant systems, the sensitivity of output y with respect to 

initial states x(0) is given by CeAt, thus the observability 

Gramian can be interpreted as a Fisher Information Matrix 

and thus be understood as a measure of information content 

(Grubben and Keesman, 2018). 

3 Results 

Observability-based sensor placement was applied to 

multiple water distribution networks, showing its capacity 

in determining the most suitable sensor locations. We also 

show the results from a comparison between sequential and 

simultaneous sensor placement routines. The results show 

that the best sensor locations for these networks can be 

accurately determined and explained. 
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1 Introduction

Joint state and parameter estimation problems are relevant
in many contexts including control and digital twinning. A
typical approach is to augment the state with the parameters
and formulate the joint estimation problem as a (nonlinear)
state estimation problem. Doing so, however, can destroy
the underlying structure of the problem and often compli-
cates the derivation of theoretical convergence guarantees.
Dedicated techniques have thus been developed in the lit-
erature but these generally only apply to specific classes of
systems. We follow a different sampling-based approach to
jointly estimate states and parameters for general nonlinear
systems, while guaranteeing convergence of state and pa-
rameter estimates to within a margin of the true values [1].

In particular, we consider a discrete-time nonlinear system

xk+1 = f (xk, p,uk,vk),

yk = h(xk, p,uk,wk),
(1)

where xk ∈Rnx , uk ∈Rnu and yk ∈Rny denote the state to be
estimated, known input and measured output, respectively.
The input, process noise vk ∈ Rnv and measurement noise
wk ∈ Rnw are bounded and unknown. The state xk is as-
sumed to be uniformly bounded and the parameter vector p
is constant, unknown and belongs to a given compact set P,
i.e., p ∈ P⊂Rnp . Our objective is to jointly estimate the pa-
rameters p and the state xk of the system (1) (within guaran-
teed margins) subject to bounded process and measurement
noise, given the input and measured output.

2 Proposed solution: Supervisory multi-observer

The proposed supervisory multi-observer scheme, shown in
Fig. 1, consists of (a) the multi-observer, a bank of state ob-
servers, and (b) the supervisor, which at any time selects one
of the observers to provide the state and parameter estimates.

The multi-observer consists of N observers–each cor-
responding to a parameter sample p̂i ∈ P, i ∈ N :=
{1,2, . . . ,N}–given by

x̂i,k+1 = f̂ (x̂i,k, p̂i,uk,yk),

ŷi,k = h(x̂i,k, p̂i,uk,0),
(2)

where x̂i,k ∈ Rnx and ŷi,k ∈ Rny denote the state and output
estimate of the i-th observer. Each observer is designed such
that its estimation error satisfies a robust stability property
with respect to v, w and p̃i := p̂i− p, i ∈N . We propose a
static scheme to obtain the parameter samples {p̂i}i∈N and a
dynamic scheme, which iteratively refines the set of samples
to typically achieve more accurate estimates.

Plant
uk

Observer 1

Observer N

x̂1,k,

x̂N,k,

yk

x̂k,

πk

ŷ1,k

ŷN,k

vk wk
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p̂N,k

p

p̂k

Figure 1: Supervisory observer scheme consisting of
the ( ) multi-observer and ( ) supervisor.

The supervisor selects, at every time k ∈ N, one of the
observers, πk ∈ N , to produce estimates x̂k = x̂πk,k and
π̂k = p̂πk , k ∈ N. The following selection criterion is used:

πk ∈ argmin
i∈N∑k−1

j=0 λ k−1− j(ŷi, j− y j)
2, k ∈ N, (3)

where λ ∈ [0,1) is a design parameter.

3 Convergence guarantees

We can guarantee the following convergence result for the
proposed multi-observer scheme under a persistency of ex-
citation condition: For any desired margins νp̃,νx̃ ∈ R>0,
there exist υp̃,υx̃,ωp̃,ωx̃ ∈ K∞, a sufficient number of ob-
servers N and time M ∈ N>1 such that

‖p̂k− p‖6 νp̃ +υp̃(sup
j∈N
‖v j‖)+ωp̃(sup

j∈N
‖w j‖), for k > M,

lim
k→∞
‖x̂k− xk‖6 νx̃ +υx̃(sup

j∈N
‖v j‖)+ωx̃(sup

j∈N
‖w j‖). (4)

The convergence margins are dependent on the noise and
design parameters ν p̃ and νx̃, which can be made arbitrarily
small (at the cost of requiring more observers N). The esti-
mation scheme is demonstrated using a numerical example.
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1 Introduction

The number of applications that rely on remote sensing and
estimation has increased tremendously in the past decade,
spurred by the availability of inexpensive sensors and pro-
cessors and proper communication networks. Remote sens-
ing and estimation is now ubiquitous in surveillance, indus-
trial inspection, and agriculture, among many other applica-
tions. In many of these applications the sensors can work as
a proxy to detect events (faults, issues) that need to be con-
firmed by closer inspection; inspection may require other
(more expensive) sensors, mobile robots, or personnel. For
instance in the case of precision farming diseases or weed
can be inferred to some extent from a few sensors placed
in the field (e.g., cameras and moisture or temperature sen-
sors). However, for achieving full situational awareness the
number of these sensors would be impractical. Thus, farmer
or mobile robot inspection is required for full situational
awareness. Still, these sensors can provide very useful in-
formation on when to inspect. From a high level perspective
the problem tackled in the present research is to provide a
policy for if and when these (expensive) inspections should
take place based on the limited sensor information.

2 Proposed approach

We propose to tackle this problem as an event-based esti-
mation problem for Partially Observable Markov Decision
Processes (POMDPs). The framework of event-based es-
timation is used since decisions (when to inspect) rely on
measurements (events) rather than on time (e.g. periodic
inspection); in fact some of the present ideas are inspired
by previous work on event-based estimation and control [1].
However, differently from what is common in the context
of event-based control we consider finite state spaces for the
variables to be measured. This greatly reduces the mathe-
matical complexity of the results and can be motivated by
the fact that in many of the intended applications the state is
already discrete or can be quantized. For instance in the
context of precision farming, the state could be a vector
of binary variables indicating if there is weed or not in a

1This research is part of the research program SYNERGIA (project
number 17626), which is partly financed by the Dutch Research Council
(NWO).

given area of the field. The state could also include an inter-
val where the actual temperature lies (rather that the exact
value), which is often enough for decision making in these
contexts. While precision farming applications are our main
motivation, the results are general and can be useful in other
event-based problems for POMDPs.

We formulate the problem as a POMDP with a general aver-
age cost and with two sets of measurements: regular (inex-
pensive) sensors available at every time step and expensive
sensors, whose use needs to be considered at each time step
and thus determined by a decisions variable. Both the case
where obtaining expensive measurements is costly (penal-
ized in the cost) and where the trade-off problem is con-
sidered as a multi-objective optimization problem are tack-
led. The information available to make decision includes
the data from the regular and expensive sensors (only when
used). Under some assumptions justified for the applica-
tions intended, we show that the average cost problem can
be tackled as a shortest path problem, which is actually a
stopping time problem. We show that an optimal policy can
be obtained, for which the complexity does however grow
exponentially with the time horizon and thus it is imprac-
tical. This motivates us to propose two classes of approxi-
mate policies. First, we propose a class of policies resulting
from relaxed dynamic programming, see [2]. These policies
guarantee a cost within a constant factor of the cost of the
optimal policy. In practice the complexity of the approxi-
mate policy is by far smaller than that of the optimal policy.
However, there are no formal guarantees that this is the case.
Second, inspired by [1], we propose a class of policies that
(under mild assumptions) leads to a strictly better cost than
that of periodic inspection for the same inspection rate. The
two proposed policies are compared in numerical simula-
tions for meaningful applications in precision farming.
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1 Introduction

Following the ever growing adoption of automation tech-
nologies, also spatially distributed systems such as energy
distribution and road transportation systems, become in-
creasingly automated. In such systems communication be-
tween subsystems is often beneficial, if not critical, to the ef-
ficient operation of the system. The use of such long range,
often wireless, communication however comes with an in-
creased vulnerability to cyber-attacks, which can cause ma-
jor disruptions to safe operation if they go undetected [1].

It is therefore essential to protect these systems against such
attacks. Broadly, one can either apply measures on the com-
municated signal itself, such as is done with encryption [2],
or one can analyse the system behaviour using either a data-
driven or model based methods for detection of anoma-
lies [1]. In this work we will consider model based methods
for anomaly detection, specifically the Sliding Mode Ob-
server (SMO) based detection from [3].

The SMO based detection method from [3] uses the so-
called Equivalent Output Injection (EOI) of an SMO as
residual for detection. In [3] a robust detection threshold
is designed as a bound on the EOI in healthy conditions.
By constructing the threshold in this way it is guaranteed
there are no false attack detections. However, depending on
the size of the uncertainties, sufficiently small and/or fast
attacks can result in missed detections.

2 Multiple Observer Cyber-Attack Detection

In this work we propose to use multiple SMO based detec-
tors in parallel to reduce the rate of missed detections. The
idea to use multiple observers in parallel is not new and has
been used before in the field of fault detection. Here a bank
of observers is designed where each one uses a fixed or adap-
tive model of the fault scenario to be detected [4]. Such an
approach is however not applicable to cyber-attacks as these
can be maliciously designed with unlimited possibilities.

The multiple observer approach to cyber-attack detection
proposed in this work utilizes the flexibility of the detector
behaviour that can be achieved by gain tuning. Specifically,
for the robust SMO based detector from [3] the gains can

be changed to obtain a trade-off between detection time and
minimal detectable attack magnitude. Therefore, by using
multiple detectors with different gains the amount of missed
detections can be significantly decreased.

To demonstrate the effectiveness of the scheme we use the
model of a collaborative vehicle platoon from [3] where the
communication of the acceleration input is being disturbed
by an additive attack. We have implemented the SMO based
detector with six different sets of gains to this model. The
solid lines in figure 1 show the detection time of each of
these detector designs to step attacks of varying magnitude.
Furthermore, the time before a crash occurs due to the attack
is shown with the red dashed line. One can see that with
multiple detectors a larger range of attacks can be detected
in time for a crash to be avoided.

0 2 4 6 8 10
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Figure 1: Detection performance of multiple SMO based cyber-
attack detection for step attacks of varying magnitude.
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1 Introduction
Sequential quadratic programming (SQP) is a method to
solve nonconvex optimal control problems (OCP) like
those emerging, for instance, in nonlinear model predictive
control of robot manipulators. For the following OCP

min
w

φ0(c0(w)) (1a)

s:t: hi(w) = 0; i = 1; :::;nh; (1b)
φi(ci(w))� 0; i = 1; :::;ng; (1c)

the SQP method iteratively solves quadratic programming
(QP) subproblems to generate a sequence of iterates wk that
converges to a local minimizer w� as k! ∞. The objective
function of such QP subproblems depends on the exact
Hessian of the Lagrangian of OCP (1), which is costly to
evaluate. However, if the functions φi(ci(w)), i = [0;ng],
have a convex-over-nonlinear structure, i.e., φi is a convex
function and ci is a nonlinear function, their convexity can
be exploited by variants of the SQP method such as the
sequential convex quadratic programming (SCQP) method,
in order to reduce the complexity of the Hessian.
The SCQP method replaces the exact Hessian of the
Lagrangian in the QP subproblem by an approximation that
ignores the contribution of the purely nonlinear constraints
and the second order derivatives of ci(w). The SCQP
Hessian approximation is defined as follows.

BSCQP
k (w; µ) :=

∂c0

∂w
(w)>∇2

c0
φ0(c0(w))

∂c0

∂w
(w)

+
ng

∑
i=1

µi
∂ci

∂w
(w)>∇2

ci
φi(ci(w))

∂ci

∂w
(w); (2)

where µi are the Lagrange multipliers of the inequality
constraints (1c).

2 Problem
Setting the SCQP method to solve (1) requires several
steps. Within a numerical optimization framework, the
modeler would need to (i) find the index i of the Lagrange
multiplier µi corresponding to ψi, (ii) compute the Hessians
of φi and the Jacobians of ci, (iii) construct the expression
of BSCQP

k (w; µ) (2), and (iv) replace the exact Hessian
of the Lagrangian with the SCQP approximation within

the execution of the SQP method. This modeling and
implementation effort increases the engineering time needed
to prepare and solve an OCP and involves the modification
of solver plugins in the optimization framework, which is
not desirable.

3 Approach
To reduce the engineering time required to implement the
SCQP method, we propose a novel operator lin defined as

lin( f (w)) :=

8><
>:

f̃ (w) := flin(w;w) = f (w)
∂ f̃
∂w (w) = ∂ flin

∂ ŵ (w;w) = ∂ f
∂w (w)

∂ 2 f̃
∂w2 (w) = ∂ 2 flin

∂ ŵ2 (w;w) = 0
(3)

where flin(ŵ;w) := f (w) + ∂ f
∂ ŵ (w)(ŵ� w) represents the

symbolic linearization of a function f (ŵ), i.e., the
application of a first-order Taylor expansion to f (ŵ) around
a symbolic equilibrium point w. The lin operator replaces
the second-order derivative of a symbolic expression with a
zero matrix. Applying the lin operator to ci(w), i = [0;ng]
in (1a) and (1c), and to hi, i = [1;nh] in (1b), we build the
following alternative OCP

min
w

φ0(lin(c0(w))) (4a)

s:t: lin(hi(w)) = 0; i = 1; :::;nh; (4b)
φi(lin(ci(w)))� 0; i = 1; :::;ng: (4c)

whose exact Hessian of the Lagrangian is equal to the SCQP
Hessian approximation (2) [1]. Therefore, directly applying
the SQP method to (4) is equivalent to applying the SCQP
method to (1), reducing the steps required to set the SCQP
method to solve (1).
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1 Multivariate polynomials and splines

Polynomials and splines are often used to approximate uni-
variate functions, but are not as effective in the multivari-
ate case. This is caused by the curse of dimensionality that
increases the amount of coefficients exponentially with the
number of input variables. These all need to be estimated,
which requires a lot of data and computation power. In the
context of multiway data regression you obtain an overfitting
model due to the multicolinearity of the coefficients [6].

2 Tensors

An important research trend is the transition from vector
and matrix based mathematical engineering to generaliza-
tions that make use of higher-order tensors. Tensor algo-
rithms have revolutionised high-dimensional computations.
This development also stumbled upon the same problem, the
curse of dimensionality, but managed to overcome it and
harness it. In machine learning or more specifically su-
pervised learning, this potential still largely has to be un-
leashed [5].

3 Combining both

Tensor decompositions allow for a compact representation
of multivariate polynomials and splines. The compactness
of these representations avoids overfitting and allows com-
putation in a linear time by tensor algorithms, but is still
general enough to represent most naturally occurring func-
tions well [1].

4 Splines versus polynomials

Previously, a similar model was studied specifically with
polynomials [4]. These are easy to represent and allow
for a uniform approximation of continuous functions, but
may lead to high-oscillatory behaviour. In this research [7]
splines are used. These give the same advantages, but are
compactly supported, making them more adaptive for local
approximation and thus even allow the approximation of iso-
lated nonlinearities [3]. The extra difficulty is the placement
of the spline-knots.

1The email addresses are raphael.widdershoven@kuleuven.be,
nithin.govindarajan@kuleuven.be, nico.vervliet@kuleuven.be,
martijn.bousse@kuleuven.be and lieven.delathauwer@kuleuven.be.

5 Contributions

The contribution of this research is a general solution
method to approximate an unknown map, based on noisy
data [2]. Different implementations have been compared.
Without imposing additional structure, classical multivariate
splines have exponential time and memory complexity with
respect to the number of input variables. With this model
it is reduced to a linear complexity. Finally, a few heuristic
methods for placing the spline-knots are compared.
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1 Overview

Unit Commitment problems (UCMs) are problems in
which a set of generators need to work together to
achieve a common goal. Examples of such problems
are the energy grid, heating systems or production of
compressed air. The nature of these problems are NP-
hard as it combines nonlinearities together with dis-
crete states of the generators[1]. Due to this complex-
ity, achieving the global optimum often takes a very
long time and warmstarting is often impossible mak-
ing the solvers limited to offline scheduling approaches.
This abstract proposes a new solution technique based
on Dynamic Programming (DP), a recursive solution
technique. The technique can achieve a near-optimal
solution in short amount of time making it feasible to
run online on embedded targets.

2 Background

The goal of a UCM is to generate a demand flow of
electricity, heat or air as efficiently as possible over a
given time horizon using the given set of generators.
Equation 1 [2] formulates the UCM for a horizon of T
and a set of generators G.

min
∑

g∈G

T∑

t=0

pg(cg,t, sg,t)

s.t.
∑

g∈G
qg(cg,t, sg,t) = D(t) ∀t ∈ [0, 1, ..., T ]

(cg,t, sg,t) ∈ Πg(t) ∀g ∈ G,

∀t ∈ [0, 1, ..., T ]

(1)

In this equation cg,t and sg,t are the capacity and the
machine state of generator g at time t. The consumed
power and the produced flow of the generator g are
given by pg and qg. The machine state can be on, off
or idling and are constraint by the feasible set Πg. The
demand flow is given by D(t). In literature, both the
consumed power and produced flow formulas are often
simplified to piecewise linear functions[1]. As a result,
this formulation becomes a Mixed Integer Linear Prob-
lem (MILP). Existing solvers for MILP-problems are
often hard to warmstart and take a long calculation
time, especially when there are many feasible solutions.

3 Contribution

The proposed DP solution technique divides the origi-
nal problem from Equation 1 into smaller subproblems
for which the state and the capacity for each generator
only has to be solved for one time instance given the
required costs to go to a next iteration. Each iteration
solves the problem given by Equation 2.

min
∑

g∈G
pg(cg,ti , sg,ti)

+ Cg,ti+1
(sg,ti) + Cg,ti−1

(sg,ti)

s.t.
∑

g∈G
qg(cg,ti , sg,ti) = D(ti)

(cg,ti , sg,ti) ∈ Πg(ti|cg,ti−1
, sg,ti−1

) ∀g ∈ G

(2)

In this equation a lumped cost to go to the next state is
given by Cg,ti+1

as well as an additional cost Cg,ti−1
due

to the state of a previous time step. The feasible set of
states for the generator is based on the previous time
step. The algorithm alternately solves these subprob-
lems in a backwards sweep and updates the feasible set
of states for the generators in a forward sweep in time.
This process continues until no further improvements
can be made. After each iteration, the solvers guar-
anties a feasible solution. Since the algorithm can be
stopped at any given time after the first iterate and
allows warmstarting, it is able to run in an online sys-
tem. A comparison with MILP-based approaches from
literature is performed. The results show that the pro-
posed technique achieves a near-optimal solution while
reducing the calculation time. The proposed technique
can run in an online system.

References

[1] Tiwari, S., Dwivedi, B., Dave, M. P., Shrivastava,
A., Agrawal, A., & Bhadoria, V. S. (2021). Unit com-
mitment problem in renewable integrated environment
with storage: A review. International Transactions on
Electrical Energy Systems, e12775.

[2] Knueven, B., Ostrowski, J., & Watson, J. P.
(2020). On mixed-integer programming formulations
for the unit commitment problem. INFORMS Journal
on Computing, 32(4), 857-876.

61



Book of Abstracts 41st Benelux Meeting on Systems and Control

An Adaptive Restart Heavy-Ball Projected Primal-Dual Method for
Solving Constrained Linear Quadratic Optimal Control Problems1

Y.J.J. Heuts G.P. Padilla M.C.F. Donkers
Control Systems Group, Eindhoven University of Technology

Email: {y.j.j.heuts, g.p.padilla, m.c.f.donkers}@tue.nl

1 Introduction

In order to apply numerical optimal control to nonlinear
systems or problems with integer decisions. Sequential
quadratic programming, e.g., [1] can be used to solve the
problem, while in the latter branch-and-bound methods, e.g.,
[2] can be applied. In both cases, a linear-quadratic sub-
problem has to be solved repeatedly. This calls for solvers
for linear quadratic (LQ) optimal control problems (OCPs)
that have a low computational effort that scales well when
the number of states/inputs and time horizon increases. [3]

2 Problem formulation

We aim to solve a linear quadratic reference tracking prob-
lem, which can be reformulated in the static optimization
problem

min
w

1
2 ω⊤Gω +F⊤ω + ıΩ(ω)

s.t. Aω −b = 0,

where G contains the quadratic and, F the linear costs, ıΩ
indicated the box constrained feasible set Ω := {ω ∈R |ω ⩽
ω ⩽ ω}. A and b capture the system dynamics. It should be
noted that all matrices are sparse, i.e., G is a diagonal matrix
and A is a sparse block-banded-matrix. This structure and
sparsity will also be exploited in the following section to
propose a computationally efficient optimization algorithm.

3 Heavy-Ball Projected Primal-Dual Algorithm

In order to find a KKT point of the static optimization prob-
lem, we propose a primal-dual method with preconditioning
matrices chosen such that the unconstrained solution is ob-
tained in one step. The obtained iteration then reduces to
{

ω i+1 = max{ω,min{ω,{−G−1F−G−1A⊤λ i}}
λ i+1 = λ i +α(AG−1A⊤)−1(Aω i+1 −b)+β (λ i −λ i−1).

As an algorithm is unreliable to use if convergence is not
guaranteed, we assess the iteration based on the observation
that it can be rewritten as a dynamic system that admits a
Lur’e structure, i.e., a linear/affine system with states λ with
a static nonlinearity.

1This work has received financial support under the grant LONGRUN

By then defining a Lyapunov function and applying a
LaSalle’s invariance argument, it is possible to show that
for a set of parameters, the iteration is asymptotically stable,
which means that the algorithm converges to the solution of
the original problem.

4 Illustrative Examples

The algorithm is compared to some commercial and open-
source solvers. In Fig. 1 the computational times for each
are reported for two examples. It can be seen that, although
the algorithm has been coded in MATLAB (and the others
are compiled code), we are able to achieve computational
times which are close to solvers that have already proven
their performance.
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Figure 1: CPU time as function of horizon length using different
solvers for an inverted pendulum model (left) and an
ATFI-16 airplane model (right).
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1 Abstract

Electric vehicles are increasingly pervading the market [1].
When designing the powertrain system of electric vehicles,
researchers typically aim to jointly optimize the hardware
design and control of the system, which is often referred to
as a co-design problem. The electric vehicle powertrain sys-
tem investigated in this study can be decomposed into sev-
eral components, namely the battery, the power electronics,
the electric motor (EM) and the transmission. These com-
ponents can then be further subdivided into elements such
as battery cells, stator and rotor, etc. This results in a very
high-dimensional and complex co-design problem.

Typically, the co-design problem is solved using model-
based computer-aided engineering tools. However, there is a
large disparity between the high-level vehicle requirements
that electric car manufacturers might specify (in terms of
performance, cost and energy efficiency) and the low-level
component design questions that are raised in this context.
Moreover, in modeling and design approaches, there exists a
trade-off between the accuracy, the scalability, and the speed
of the computational procedure. To this day, this powertrain
co-design problem is generally approached by using signif-
icant simplifications and assumptions to ensure the problem
is computationally tractable. This is achieved, for instance,
by linearly scaling the EM and its losses in the maximum
torque and the mass, sacrificing accuracy [2]. However,
implementing an optimization algorithm using accurate but
computationally expensive models, such as finite element
(FE) methods, is not amenable to system level optimiza-
tion [3].

This work presents an outlook on a scalable, convex opti-
mization model of the EM, based on multi-fidelity surro-
gate modeling techniques, that can predict high level outputs
with lower level design inputs. After selecting the relevant
design inputs, we first create an EM training data set, con-
sisting of two subsets. The first subset is a smaller set of
(computationally expensive) high-fidelity samples that are

locally accurate. The second subset is a larger set of (com-
putationally inexpensive) low-fidelity samples that can cap-
ture the general trend of the outputs of interest [4]. Care-
fully selecting the locations of these data points in the de-
sign space maximizes the amount of knowledge we can ac-
cumulate from a limited number of sample evaluations. Sec-
ond, we use a surrogate modeling technique that corrects
the regression model of the low-fidelity samples with high-
fidelity local accuracy. This results in a parametric EM
model that predicts the following objectives: the efficiency,
the maximum torque and power, the geometric dimensions,
the weight and the cost. Third, we implement the scalable
EM model in a full powertrain model that consists of similar
models of the remaining components (the battery, the power
electronics and the transmission) depending on the specific
powertrain architecture, and optimize the design and control
over a drive cycle. Additionally, we can set performance re-
quirements on the powertrain, such as a maximum speed or
acceleration. Overall, this approach has the potential to re-
duce the amount of effort from EM design experts, the num-
ber of design variables, and the computational time, whilst
maintaining a good prediction accuracy over the full design
space.
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1 Abstract

Elementary flux modes (EFMs) are a powerful concept in
metabolic engineering for the derivation of macroscopic dy-
namic models, which are useful for the design of biopro-
cess monitoring and control strategies. However, for de-
tailed metabolic networks, the number of modes increases
significantly leading to an intractable initial set of EFMs. In
that context, systematic procedures for the generation or se-
lection of subsets of EFMs are required. In a preliminary
study [1], the authors proposed such a procedure, which is
improved in the current study by including additional fea-
tures, including the computation of the initial set of ele-
mentary vectors, the differentiate consideration of positiv-
ity constraints on the fluxes and the prediction error of re-
duced macroscopic reaction sets (reduced below the num-
ber of measured components). The procedure proceeds in
several steps including minimal generation algorithms and
geometric and optimization-based criteria for the reduction
while ensuring a biological interpretation of the reduced set
of modes. This work makes use of experimental data of
CHO-cells in batch cultures on the basis of a detailed net-
work and proposes different measurement configurations to
highlight the performance of the procedure. Finally, a sim-
ple dynamic model including the prediction of the biomass
is built on the basis of the resulting macroscopic bioreaction
scheme.

2 Methods and results

Fig.1 illustrates the reduction procedure aimed at system-
atically reducing the number of elementary flux modes up
to a number Λ chosen below the number of measured ex-
tracellular species. It starts from an initial set of modes
generated by complete enumeration or subset selection and
is made of several steps which can all be activated or by-
passed as necessary. The reduction ensures (i) the removal
of modes leading to macroreactions without a biological in-
terpretation, (ii) the elimination of collinear modes based
on a cosine-criterion and (iii) the respect of positivity con-
straints and the satisfaction of a least-squares deviation from
experimental data by means of a series of optimization prob-
lems.

This study relies on a detailed metabolic network leading to

Figure 1: The reduction procedure

almost one billion EFMs, giving to the reduction procedure
all its significance. In this case, a fast generation algorithm
is used to identify an initial subset of modes and the reduc-
tion is executed to select a number of elementary flux vec-
tors below the number of measured components. Different
case studies are addressed, i.e., either 6 or 20 extracellular
measurements. Validations are provided and show very sat-
isfactory results. Fig.2 depicts the evolution of the measured
concentrations as compared to the prediction of a dynamic
simulator built on the basis of the bioreaction scheme ob-
tained with the EFM reduction procedure.
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Figure 2: Time evolution of measured concentrations
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1 Introduction

Integrated Pest Management (IPM) systems aim at provid-
ing an effective and environmentally sensitive approach to
pest management [1]. IPM schemes use as inputs informa-
tion on the pests life cycles and environmental conditions.
This information, in combination with available pest con-
trol tools, is used to define and manage pest damage actions
by the most economical means, and with the least possible
impact on the environment.

The development of automated detection technologies of
pests is fundamental in IPM systems, but not sufficient.
Measuring in agriculture is still expensive and many treat-
ments require not only the current status but the future evo-
lution of the infestations. In this context, the use of pest pop-
ulation models is particularly important. Particularly, when
pest management is performed by release of natural enemies
the effectiveness of strategies is highly dependant on the pest
life cycle and more susceptible to certain life stages.

Several pest populations models have been proposed on the
literature, but most of them are ad hoc models developed
and tailored for specific insect species. The aim of this work
is precisely to propose a general model able to describe the
life cycle of most insect species of agricultural interest.

2 Model formulation

The model proposed is a physiologically-based model. Con-
ceptually, physiologically-based models can be defined as
the union between “phenological models” and “population
dynamics models”. This type of models describes the devel-
opment of ectotherm populations over time while consider-
ing the stage development driven by environmental factors.
This popular approach is based on the fact that insects, like
most ectotherms, progress through their life stages with de-
velopment rates that are highly dependent on the environ-
mental parameters, temperature mainly [2].

The ectotherms’ life cycle is divided into discrete age
classes, each representing an “identifiable” life stage. Based
on this we define the life cycle as a series of interconnected
stages whose population varies based on environmentally
dependant rate functions such as development rate, fertility
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Figure 1: Schematic representation of the pest life cycle.

rate or mortality rate. Figure 1 provides a schematic repre-
sentation of this idea.

Accordingly, we associate to each stage a scalar state xi(t)
i = e,L1, . . . ,Ln,Am,A f 1,A f 2 which represents the number
of individuals in the population at time t at the stage i. Each
stage population variation over time is then represented by
an ODE which depends on the inflows and outflows of indi-
viduals associated to that stage. Mathematically,

d
dt

xi(t) = Gi−1(t)xi−1(t)−Gi(t)xi(t)−Mi(t)xi(t) (1)

where xi(t) is the number of insects at the life stage i, Gi(t)
is a generic development rate function, in other words, the
population that goes from stage i to stage i+1, and Mi(t) is
the mortality rate function associated to stage i.
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Epidemic models are crucial to have a better understanding
of the evolution of diseases and to act effectively on them.
One possible control policy in epidemic models is the vac-
cination. This is the one considered in this work.
In the following, an adapted version of the well-known SIR
model of Kermack and McKendrick [1] is used. In this
model the population is divided in three distinct groups: the
group S of susceptible individuals who can catch the dis-
ease, the group I of infected individuals who can transmit
the disease and the group R of recovered indivdiuals who
have permanent immunity. Moreover, in this work, the im-
portance of the age, a, of individuals is taken into account
since several factors in epidemic models are age-dependent,
vaccination being one of them.
The evolution of the disease propagation is described, us-
ing densities, by a set of nonlinear partial-integro differential
equations (PIDE), as mentionned in [2],

(∂t +∂a)S (t,a) =−(Θ(t,a)+µ (a))S (t,a)

−β (a)S (t,a)
∫ L

0
I (t,b)db,

(∂t +∂a) I (t,a) =−(µ (a)+ γ (a)) I (t,a) (1)

+β (a)S (t,a)
∫ L

0
I (t,b)db,

(∂t +∂a)R(t,a) = Θ(t,a)S (t,a)+ γ (a) I (t,a)

−µ (a)R(t,a)

under non-negative initial conditions S (0,a) = S0 (a),
I (0,a) = I0 (a), R(0,a) = R0 (a) and boundary conditions
S (t,0) = B, I (t,0) = 0,R(t,0) = 0, where B denotes the
birth rate. The population is assumed to be closed, therefore,
only birth and mortality can change the total size of the pop-
ulation P(t). Their respective rates are given by B, assumed
to be constant, and µ (a). Moreover, the mode of transmis-
sion of the disease is assumed to be by contact between S-
individuals and I-individuals. The transmission coefficient
is given by β (a). In addition, the I-individuals recover at
a rate denoted by γ (a). It is assumed that β (·) and γ (·)
are in L∞ ([0,L]). Finally, the term Θ(t,a) is the input vari-
able representing the rate of S-individuals being vaccinated
at time t and age a. The vaccination is assumed to work
perfectly: once vaccinated, an individual never catches the
disease again.
The dynamical analysis of the open-loop system shows that,

when the basic reproduction number of infection given by

R(0) =
∫ L

0
c(b)Γ(b)

∫ b

0

β (σ)

Γ(σ)
exp
(
−
∫ σ

0
Θ? (η)dη

)
dσdb,

where Γ(b) = exp

(
−
∫ b

0
γ (η)dη

)
, is greater than 1, then

the disease-free equilibrium is unstable. In view of this,
the aim of this work is to design a feedback control-law
of vaccination Θ(t,a) that implies the convergence of the
states trajectories to the disease-free equilibrium.

To answer this question, an approximation of Model 1
obtained by discretizing (1) in n classes of age is consid-
ered. This methodology is inspired by [3] and leads to a
set of 2n ordinary differential equations. Then, by applying
Isidori’s theory developed in [4, chap.5] it is shown that, by
an appropriate choice of the control tuning parameters, the
state feedback law (θ1(t)...θn(t))T implies the exponential
convergence towards zero of the infected population ik(t)
of the ODE Model, for k = 1, ...,n, as time tends to infinity,
see [5]. Moreover, assuming that θk(t) is greater than 0,
it is shown that the states trajectories remain positive for
the closed-loop system, as is to be expected. Numerical
simulations corroborate those results.

In addition a state-feedback law has been designed di-
rectly on Model 1, see [5]. This law is deduced from
the one obtained on the ODE Model. Since the designed
state-feedback control law is not applicable in practice
because it requires the knowledge of all the state variables,
we aim also to develop a state observer. Finally, in view of
the current sanitary situation, it seems natural to perform
numerical simulations on real data.
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1 Introduction

Water-splitting in photo-electrochemical cells (PECs) to
generate hydrogen can provide a key contribution to the
increased need for energy storage in the shift towards re-
newables. However, solar water-splitting is not yet able to
achieve the efficiencies required for commercial use. The
oxygen generating reaction occurring at the photo-anode,
the oxygen evolution reaction (OER), is commonly regarded
as the performance limiting reaction. Microkinetic mod-
elling of the OER, represented by a non-linear state-space
model, provides an opportunity as it enables investiga-
tion of the OER process in the PEC, for example through
impedance spectra [1]. This model has applied potential as
input and current density as output and 14 physical model
parameters. To improve the OER process investigation ef-
fort, characterisation of the contribution of the 14 parame-
ters to the model output is required. Not with the aim of
model reduction, but to uncover how the uncertainty of these
parameters affects the model, as this could dictate the rele-
vance of further research into these parameters.

Hence in this work, we perform Sobol’s variance-based sen-
sitivity analysis method on the OER model in [1], using this
method for the first time on a photo-electrochemical system.
Prior to the sensitivity analysis, a literature review is con-
ducted into the values of the physical parameters relevant to
the microkinetic model. Using the results from parameter
literature study in the sensitivity analysis allows us to assess
the relevance of a parameter’s uncertainty from the perspec-
tive of the model.

2 Sensitivity Analysis

In Sobol’s method [2], the fractional contribution of each
of the physical parameters to the model output variance is
represented in sensitivity indices, which allows for iden-
tification of a parameters’ direct contribution and its in-
teraction with other parameters. The analysis constitutes
of Monte-Carlo-style model simulations where the physical
parameters are sampled from the value ranges of our litera-
ture study, following the quasi-random Sobol’s sampling se-
quence. We analyse parameter sensitivity for three different
levels of sensitivity index convergence; screening, ranking

and full convergence, which each provide distinct informa-
tion.

3 Results

In this presentation, we show the primary results of our two-
part study: (1) The literature analysis of the physical param-
eters and their value ranges and (2) the OER model sensi-
tivity analysis, which includes the identification of the most
and least influential parameters. For example, we show the
first order (direct influence) and total effect (including in-
teractions) indices of each physical parameter on the OER
model output. Here we discover that, out of 14 parameters,
the valance band energy level EV has the largest influence,
while six parameters have approximately no influence, see
Figure 1. Furthermore, we find that a large intrinsic parame-
ter uncertainty does not necessarily translate to large model
output uncertainty, and vice versa. Additionally, we employ
computationally low-cost sample visualisation methods to
show the tendency of the model output with regards to each
of the parameters, which can be used to identify more opti-
mal OER conditions and improve the modelled system.
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Figure 1: First order and total effect sensitivity indices of the
OER model input parameters.
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1 Introduction

Inspired by the surge of COVID-19 cases that have been ob-
served around the globe after the introduction of vaccination
campaigns and the relaxation of non-pharmaceutical inter-
ventions, we propose a mathematical model on a temporal
network for the spread of infections in a population that is
partially vaccinated. The proposed model focuses on recur-
rent infections, such as those that do not provide permanent
immunity (e.g. COVID-19) or infections that are caused by
fast mutating viruses (e.g. influenza).

2 Model

The infection is spread via physical encounters in close
proximity on an undirected network (V ,E (t)), where V =
{1, . . . ,n} and t ∈ R≥0. The encounters are generated via a
mechanism inspired by continuous-time activity-driven net-
works [1], which incorporates human behaviour by includ-
ing a responsibility level σ ∈ [0,1], reflecting the probabil-
ity that an individual will opt for the protection of others
when only mild symptoms are present. By adding a com-
partment to the traditional susceptible–infected–susceptible
(SIS) model, we separate infectious mildly symptomatic in-
dividuals from infected individuals who are quarantined.
The model includes three control measures: i) testing cam-
paigns, where individuals are triggered to get tested ac-
cording to a Poisson clock with rate ct ∈ R≥0; ii) non-
pharmaceutical interventions (NPIs), modelled by intro-
ducing a parameter η ∈ [0,1]; and iii) vaccination, where
v ∈ [0,1] denotes the vaccination coverage. Here, we in-
clude two parameters, one for the effect of vaccination on
transmission (γt ∈ [0,1]), and the other for its effect on the
development of severe illness (γq ∈ [0,1]). Other parame-
ters are the per-contact infection probability λ ∈ [0,1], the
probability to develop severe symptoms pq ∈ [0,1], and the
recovery rate β ∈ R>0.

3 Results

Employing a mean-field approach, we derive that the system
is governed by

ẏi =2(1−η)λ (1− γtv)
[
1− pq

(
1− γqv

)]
(1−σ)yi − (β + ct)yi,

ẏq =
[
2(1−η)λ (1− γtv) pq

(
1− γqv

)
(1−σ)+ ct

]
yi −βyq.

(1)

(a) Prevalence of severe illness (b) Epidemic threshold c̄t

Figure 1: (a) Prevalence of severe illness and (b) epidemic
threshold for different levels of the effectiveness against se-
vere illness γq and the effectiveness against transmission γt.

From the analysis of (1), we establish that the epidemic
threshold is given by

c̄t := 2(1−η)(1−σ)λ (1− γtv)
[
1− pq

(
1− γqv

)]
−β . (2)

If ct > c̄t, then a local outbreak will be extinguished and not
escalate into a pandemic. If ct ≤ c̄t, the system converges to
an endemic equilibrium. Simulations are used to illustrate
our theoretical results, and to further investigate the role
of vaccination and individuals’ responsibility in epidemic
spreading. Our results show that effective testing practices
and a high level of responsibility are key toward the pre-
vention of outbreaks. Interestingly, we discovered that vac-
cination is beneficial in the mitigation of an epidemic by
reducing the prevalence of seriously ill individuals (Figure
1a), but it could in some cases favour resurgent outbreaks,
as the epidemic threshold increases for a higher level of ef-
fectiveness against severe illness γq (Figure 1b). To obtain
eradication of the disease, this calls for a higher level of cau-
tiousness in the population and higher testing rates. All de-
tails and analytical derivations can be found in the preprint
on arXiv [2].
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1 Introduction

Conventional greenhouse supplemental lighting practices
are often guided by decreases in observed natural light.
For such strategies however, the conversion of supplemental
light energy into photosynthesis may not always be efficient.

Here, the inefficiency of photosynthesis is addressed using a
model-based approach. More concisely, supplemental light
is added to optimise a leaf’s photosynthetic induction, a
physiological measure of its photosynthetic efficiency.

2 The problem

Consider the net photosynthetic rate (An), modelled to ac-
count for plant physiology under natural fluctuating light
(PARnatural) in Fig.1. A leaf’s photosynthetic efficiency at
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Figure 1: Net photosynthetic rate (An) - both modelled and
measured - under natural fluctuating light (PARnatural).

PARnatural(t) can be expressed as an induction percentage,

% induction(PARnatural(t)) =
An(PARnatural(t))

Anss(PARnatural(t))
×100

(1)
Anss(PARnatural(t)) is the steady-state photosynthetic rate
obtainable at a specific PARnatural . Due to stomatal and en-
zymatic limitations, a leaf may not reach Anss during rapid
fluctuations in PARnatural . Accordingly, photosynthetic effi-
ciency decreases.

The aim here is to boost a leaf’s photosynthetic effi-
ciency by using a set-point of 100% induction as control

guide, thereby implementing physiology driven supplemen-
tal lighting.

3 Results

7800 7850 7900 7950 8000

Time [seconds]

97

97.5

98

98.5

99

99.5

100

100.5
P

e
rc

e
n
ta

g
e
 p

h
o
to

s
y
n
th

e
ti
c
 I
n
d
u
c
ti
o
n

Model prediction - no supplemental lighting

Model prediction - with supplemental lighting

Measured - no supplemental lighting

Figure 2: A drop in photosynthetic induction over a 3 minute
period coincides with an increase in PARnatural . An opti-
mised induction level is achieved by introducing supplemen-
tal light (PARsupplemental), shown in green in Fig.3.
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Figure 3: PARnatural and the required PARsupplemental .

4 Conclusion

A leaf’s photosynthetic capacity can be optimised by adding
intermittent low levels of supplemental lighting. The use of
dimmable LEDs make this application feasible. The belief is
that whilst both conventional and physiology driven lighting
practices will produce similar crop yields, the latter will be
associated with lower energy costs.
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1 Introduction and motivation
We consider discrete-time Markov jump linear systems
(MJLS), which are described by dynamics of the form

xt+1 = Aθt xt +Bθt ut , yt =Cθt xt ,

where xt ∈ IRnx , ut ∈ IRnu , yt ∈ IRny and θt ∈W = {1, . . . ,d}
are the (continuous) state, the control, the output and the
discrete mode at time t, respectively. The (discrete-valued)
mode θt is governed by a Markov chain, with transition
probabilities Pi j = P[θt = j | θt−1 = i]. This class of systems
finds applications in a myriad of different fields, including
energy systems [2] and automated driving [3].

Our main objective is to design controllers for MJLS, while
simultaneously learning the transition matrix P, which is
initially assumed to be completely unknown. For the pur-
pose of control, it is often assumed that the mode is directly
measurable [4, 3]. In practice, however, the mode typically
represents some latent internal system state which needs to
be inferred from measurements of the continuous state (if
known) or from output measurements directly. Given out-
put measurements yt , the task is thus to (i) recursively es-
timate the active mode, in order to continually learn the
transition probabilities of the underlying Markov chain, and
(ii) integrate this procedure with an online controller design
which leverages this information to gradually improve per-
formance. By adopting a DR framework, we can do so while
retaining system theoretic guarantees. We illustrate this by
means of a linear controller design, while keeping in mind
more advanced applications, requiring for instance model
predictive control (MPC)-based approaches [3].

2 Mode estimation
In order to learn the transition probabilities, we develop a
procedure to estimate underlying modes, based on output
measurements. Traditional solutions to this problem require
knowledge of the so-called mode-observability index N, i.e.,
the number of previous output measurements (yt−k)

N
k=1 re-

quired to uniquely determine (a subsequence of) the cor-
responding modes (θt−k)

N
k=1. Although it was shown that

this number can theoretically be determined offline, the pro-
cedure to do so is often prohibitively expensive, even for
small-scale systems [1]. To address this shortcoming, we
develop a mode estimation procedure which adaptively se-
lects the length of the observation horizon and show that for
any mode-observable system, this length is upper-bounded

by N. Moreover, we experimentally illustrate that this upper
bound tends to be strict, suggesting more efficient memory
usage than traditional approaches requiring the offline deter-
mination of N.

3 Distributionally robust output-feedback control
Since the mode observer does not provide exact knowledge
of the continuous state xt , we show how a time-varying out-
put feedback controller can be designed that stabilizes the
system in the mean-square sense.

The described mode estimation scheme outputs mode tran-
sitions (θt ,θt+1), which can be used to construct empirical
distributions P̂i = (P̂i j) j∈W , i ∈W : P̂i j =

1
ni

∑ni
k=1 1(θk = i∧

θk+1 = j), with ni the number of observed transitions orig-
inating in mode i at time t (dependence on t is suppressed
to ease notation). Using concentration inequalities, we can
construct ambiguity sets Ai =

{
µ ∈ ∆d | ‖µ− P̂i‖1 ≤ ri

}
,

where ∆d the d-dimensional probability simplex and ri is
selected to ensure that P[Pi ∈ Ai] ≥ 1 − βt for a given
βt ∈ (0,1). Exploiting the polytopic structure of Ai =

conv{P(1)
i , . . . ,P(M)

i }, we construct a (time-varying) control
law ut =Ktyt such that there exists a mode-dependent matrix
Vi � 0, i ∈W satisfying the Lyapunov-type stability condi-
tion

∑
j∈W

P(q)
i j (A j +B jKtC j)

>Vj(A j +B jKtC j)−Vi ≺ 0,

for all q ∈ {1, . . . ,M}, i ∈ W , and t ∈ IN. Extending the
results from [5], we cast this problem to a linear matrix
inequality, which can be solved efficiently. Provided that
the sequence (βt)t∈IN is square-summable, we finally show
mean-square stability of the closed-loop system.
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Control Systems Group
Eindhoven University

Email: {c.j.gonzalez.rojas,l.ozkan}
@tue.nl

Mateus Dias Ribeiro
Institute of Aerodynamics and Flow Technology

German Aerospace Center
Email: mateus.diasribeiro@dlr.de

1 Introduction

Distributed parameter systems (DPS) are ubiquitous in in-
dustrial processes and nature. These systems are described
by partial differential equations (PDEs) and generally rep-
resent complex nonlinear dynamics with solutions consti-
tuting an infinite-dimensional vector space. Depending on
the phenomenon and the purpose of the model, the result-
ing mathematical description of the system can have uncer-
tainties in terms of unknown dynamics, parameters, consti-
tutive equations, or coupling between different scales. In
this work, we explore a system identification approach to
approximate uncertainties in the form of undefined model
structures using a non-intrusive method. The approach com-
bines classical spatio-temporal decomposition techniques
with recurrent neural network models.

2 Problem formulation and Methodology

Consider a DPS described by the following PDE:
∂ z
∂ t

= N
(
z,x, t,∇z, t,u), (1)

where z is the variable of interest (state of the system), N
represents the dynamics (combination of linear and nonlin-
ear terms), x represents the spatial coordinates, t is the con-
tinuous time, and u is the control action. The initial and
boundary conditions are given and the full state and control
signals are available. A simple approach to address these
DPS is to use the canonical linear discrete representation as
follows: zk+1 ≈ Azk +Buk, (2)

where the dynamic and input matrices (A and B) can be
approximated using methods such as the dynamic mode de-
composition with control (DMDc) [1].

The approach proposed in Fig. 1 is related to the DMDc, but
goes beyond the linear approximation on the reduced space.
The steps are the following:

1. Collect the state zk and control measurements uk
across the sampled times from k = 1,2, ...,m and form
the data matrix Z´ with the states zk as columns.

2. Apply the SVD on Z´, define a truncation dimension
r , and then project the states z using the left singular
vectors in U (z = Uz̃).

Figure 1: Methodology proposed

3. Model the temporal evolution of the time coefficients
z̃ using a recurrent neural network (RNN) as in [2],
but including the control measurements uk as input of
the neural network:

z̃t+1 = RNN(z̃t ,uk,ht ,θ), (3)

where ht ,θ are the parameters of the RNN.

It has been shown that the modeling of latent space dynam-
ics with RNNs can provide closure for unresolved reduced
spaces while taking advantage of the sequential nature of
the problem [2]. The last step proposed here is an extension
from autonomous dynamics to systems with control inputs.

3 Conclusion and Future work

We proposed an extension of RNN latent-state modeling of
autonomous systems to problems with control inputs. Mod-
eling the temporal evolution on the reduced space simplifies
the identification problem and allows to move back and forth
to the full space using a simple linear encoding-decoding
operation. This formulation can be extended to applica-
tions where the behavior of the system in a latent space is
partially known or for the development of physics-informed
parametric model surrogates. Another important considera-
tion would be to model the errors derived from the truncated
linear projection and optimize the neural network model in
terms of the reconstruction in the full space.
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Batch control systems are systems that only have a sin-
gle set of control actions at the start of each cycle. How-
ever, the inter-cycle dynamics are complex and need
to follow a predefined trajectory. Examples of such
systems are certain processing steps in manufacturing
processes or the combustion in internal combustion en-
gines. Physics-based models are often too complex and
computationally expensive or too simple and not accu-
rate enough.

In this paper, we present a data-based method to model
the inter-cycle dynamics of such systems. In the pre-
sented method, the inter-cycle dynamics are seen as a
mapping f : U×C×T → R, where U is the input space,
C is the initial condition space and T is the inter-cycle
time space.

The presented method uses a training set of ne ex-
periments collected in the measured operation space(
Ū × C̄

)
⊂ (U × C) over the the full inter-cycle time

T . Using Principle Component Analysis (PCA) [1], it
is possible to separate

(
Ū × C̄

)
from T such that

f(u, c, t) =

ne−1∑

i=1

wi(u, c)xi(t) (1)

with the Principle Component (PC) xi(t) and related
weight wi(u, c) for i ∈ {1, 2, . . . , ne − 1}, input u ∈ Ū ,
initial condition c ∈ C̄ and time t ∈ T . To reduce the
required number of PCs, we approximate the sum in
(1) with npc < ne − 1 PCs. This results in

f(u, c, t) ≈
npc∑

j=1

wj(u, c)xj(t). (2)

Eq. (2) is only defined for the measured operation
space. However, this needs to be expanded to the
full operation space (U × C). This is done by applying
Gaussian Process Regression (GPR) on wj(u, c) ∀j ∈
{1, 2, . . . , npc} [2].

The above presented method is applied to model the
in-cylinder pressure trace during combustion of a duel-
fuel combustion engine fuelled with diesel and E85 [3].
The inputs are the injected mass of diesel and E85 and
start-of-injection of diesel. The initial conditions are
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Figure 1: Measured and modelled in-cylinder pressure at
the same operating conditions not part of the
training data

the pressure and temperature at intake valve close, the
ratio of recirculated exhaust gas and the air-to-fuel ra-
tio.

Fig. 1 shows the measured and modelled in-cylinder
pressure trace f(u, c, t) of an operating point not in-
cluded in the training data. In the example, npc = 7
and the inter-cycle time space is represented by the
crank angle.

During the presentation we will give more insight into
selecting npc and the limitation of the model regarding
the selected experiments. Furthermore, we will discuss
the possibility of modelling cycle-to-cycle variations us-
ing the above presented method.
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1 Background

Feedforward control is essential in mechatronic systems that
perform varying motion tasks with extreme accuracy re-
quirements. In [1], iterative learning control (ILC) with ra-
tional basis functions (RBFs) is introduced to enable high
tracking accuracy with extrapolation of the motion tasks for
rational SISO systems. The rational parameterizations result
in a non-convex optimization problem and is solved by us-
ing SK-iterations, i.e., solving a sequence of weighted least-
squares problems. These algorithms are experimentally effi-
cient due to the fact that the system is commutative and since
almost all iterative aspects involve computational steps and
not experimental steps.

2 Problem formulation

The aim of this research is to develop a solution method for
RBF ILC for MIMO systems that do not commute.

3 Approach

The developed MIMO RBF approach exploits the idea from
input shaping [2] to avoid exploitation of the commutation
property. By rewriting the optimization problem into an
input shaping solution with a compensatory input, a sin-
gle weighted least-squares problems is obtained that can be
solved after each experiment. Instead of solving a sequence
of weighted least-squares problems offline, only a single
weighted least-squares problem is solved each experiment.
This avoids the exploitation of the commutation property at
the cost of only slightly slower convergence.

4 Results

Preliminary results, shown in Fig. 1, for positioning of a
wire bonder in one-direction only, i.e., SISO, shows indeed
that the convergence rate of the cost of the developed MIMO
RBF method is slower than the RBF-SK method while at-
taining the same final cost. As expected, the convergence

1This work is supported by ASM Pacific Technology. The authors thank
Dragan Kostić, Robin van Es, and Jilles van Hulst for their contributions to
this research.

Figure 1: Comparison of cost per trial, i.e., experiment, in SISO
ILC simulation of traditional polynomial BF ( ), the
one-step-only (k = 1) RBF-SK ( ), standard RBF-SK
( ), and the proposed MIMO RBF method ( ).

rate equals that of one-step-only RBF-SK method, i.e., per-
forming only one SK optimization per experiment.

5 Conclusion and outlook

The MIMO RBF framework will enable accurate rational
feedforward control for noncommutative MIMO systems.
Initial result show that the commutation property can be
avoided at the cost of only slightly slower convergence. On-
going research focuses on the analysis of the convergence
properties and experimental validation.

References
[1] J. Bolder and T. Oomen, “Rational basis functions in
iterative learning control - With experimental verification
on a motion system,” IEEE Trans. Control Syst. Technol.,
vol. 23, no. 2, pp. 722–729, 2015.

[2] F. Boeren, D. Bruijnen, N. Van Dijk, and T. Oomen,
“Joint input shaping and feedforward for point-to-point mo-
tion: Automated tuning for an industrial nanopositioning
system,” Mechatronics, vol. 24, no. 6, pp. 572–581, 2014.

74



Book of Abstracts 41st Benelux Meeting on Systems and Control

Data-driven distributionally robust MPC for constrained stochastic
systems

Peter Coppens†

peter.coppens@kuleuven.be
Panagiotis Patrinos†

panos.patrinos@kuleuven.be
†STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium.

1 Abstract

We develop an MPC scheme for stochastic dynamics with
chance constraints. The disturbances {wt}N

t=0 are i.i.d. ran-
dom vectors, the distribution of which is unknown, usually
introducing the need for robust approaches. Distributionally
robust optimization improves upon classical robust control
by using available data to infer properties of the distribution,
while retaining guarantees.

To describe the distribution µ? of wt we use data-driven am-
biguity sets A ⊆P(W ) of probability measures s.t.

IP[µ? ∈A ]≥ 1− ε.

The randomness enters A through the data that is used to es-
timate it. We then synthesize a controller that is optimal for
the worst case distribution in A . The maximization over
measures is reformulated using results from semi-infinite
conic duality [1].

Since the random variables of interest like the cost and
chance constraints depend on multiple realizations of wt we
show how the classical conic duality results can be extended
to ambiguity set over product measures and when chance
constraints are involved. To do so, we need to consider a
tight convex relaxation of the problem. We illustrate how
the resulting scheme can be applied both with offline data or
while gathering data after deployment. Moreover, we show
when recursive feasibility holds

Similar results were achieved in [2] for a tube-based ap-
proach with Wasserstein ambiguity, the radius of which is
not data-driven; in [3] for moment-based ambiguity which
is not data-driven and does not guarantee recursive feasibil-
ity; and [4] for discrete distributions.

All developments hold for general continuous dynamics, the
reformulation however is a semi-infinite optimization prob-
lem. So, for tractability’s sake, we consider the simplified
setting of linear dynamics with additive noise and quadratic
cost and chance constraints. The policy is parametrized us-
ing affine disturbance feedback [5]. The fully data-driven
ambiguity set constrains the second moment and mean of the
additive disturbance using a matrix Hoeffding concentration
inequality [6]. To do so we need to assume that ‖wt‖2 ≤ r
a.s. The resulting optimal control problem is then a semidef-
inite program (SDP). We validate the scheme’s performance
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Figure 1: Evaluation of online learning scheme.

through numerical experiments. Fig. 1 shows a state trajec-
tory for a system with one state and one input. The cost is
such that the state should be as close to the dashed line – de-
picting the chance constraint – as possible, without crossing
it. Each time step a new observation of wt is used to up-
date the ambiguity, which is initialized from 10 samples. It
is clear that as data is gathered, the online scheme becomes
less conservative compared to the robust scheme which only
uses ‖wt‖2≤ r. The bottom offline scheme used 10000 sam-
ples to generate an ambiguity set.
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1 Introduction

Model predictive control (MPC) is a control strategy
that computes the optimal control input by predict-
ing the future response over a finite time horizon [1].
Hereby, the performance of the controller is dictated
by the accuracy of the prediction, which is usually de-
rived from a model of the system. Data–driven con-
trol eliminates the modelling step by directly identi-
fying the prediction matrices from I/O data. Indirect
data–driven predictive control was originally proposed
in [2], where an unconstrained subspace predictive con-
trol (SPC) algorithm was derived based on off-line I/O
data. On-line, the controller estimates the future out-
puts as a linear combination of the estimated prediction
matrices and previously applied inputs and measured
outputs. [3] made an attempt to add integral action by
assuming a particular ARIMAX model structure, which
allows using the discrete output derivative for feedback,
and by summing up terms in the SPC prediction ma-
trices. A data–driven correspondent of standard, rate–
based (also called velocity form) integral model predic-
tive control [1], has not yet been developed, to the best
of our knowledge.

2 Approach

In rate-based MPC, the optimal control input sequence
∆U∗

k is computed every time instant k by minimizing
a cost function, e.g.,

J := (Yk −Rk)
TΩ(Yk −Rk) + ∆UT

k Ψ∆Uk. (1)

Yk is predicted as a linear combination of the rate–
based prediction matrices, the state at time k and ∆Uk.
Through the steps of SPC, we can estimate the data–
driven prediction matrices of the system

[
P1 P2 Γ

]
,

such that,

Yk = P1uk−N + P2yk−N+1 + ΓUk. (2)

However, this is not the rate–based representation. In
our previous research, we propose that using the same
experiment data U and Y , the corresponding rate–
based prediction matrices can be obtained by creat-
ing a manipulated input sequence ∆U , where ∆u(k) =
u(k)−u(k−1) and using that sequence together with Y

in the estimation procedure. Therefore, the rate–based
prediction matrices estimate the same output Yk as,

Yk = P1I∆uk−N + P2Iyk−N+1 + ΓI∆Uk, (3)

3 Results

Fig. 1 presents the closed–loop simulation results on a
linear actuator model for the developed i-DPC and the
standard SPC as presented in [2]. Also, between t = 2 s
and t = 4 s we apply a constant disturbance force.

Figure 1: Linear motor example: closed–loop response
comparison between SPC and i-DPC.

The benefits of the integral action can be observed by
the response to the disturbance.

References

[1] L. Wang, Model predictive control system design
and implementation using MATLAB®. Springer Sci-
ence & Business Media, 2009.

[2] W. Favoreel, B. De Moor, and M. Gevers, “SPC:
Subspace predictive control,” IFAC Proceedings Vol-
umes, vol. 32, no. 2, pp. 4004–4009, 1999.

[3] R. Kadali, B. Huang, and A. Rossiter, “A data
driven subspace approach to predictive controller de-
sign,” Control engineering practice, vol. 11, no. 3, pp.
261–278, 2003.

76



Book of Abstracts 41st Benelux Meeting on Systems and Control

Control of Simulated Moving Bed Chromatographic Processes

Valentin Plamenov Chernev1, Alain Vande Wouwer1, Achim Kienle2,3 and Lino de Oliveira Santos4

1Systems, Estimation, Control and Optimization, University of Mons, Mons, Belgium
valentinplamenov.chernev@umons.ac.be; alain.vandewouwer@umons.ac.be

2Max Planck Institute for Dynamics of Complex Technical Systems and 3Institut für Automatisierungstechnik,
Otto von Guericke University, Magdeburg, Germany; kienle@mpi-magdeburg.mpg.de

4Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; lino@eq.uc.pt

1 Introduction

Simulated moving bed (SMB) chromatographic processes
are used for continuous separation of mixtures of compo-
nents with very close physical properties which are difficult
to be separated by other processes. These processes have
application in the petrochemical, biotechnological and phar-
maceutical industries. The process configuration for binary
separation consists of preparative chromatographic columns
connected to each other forming a ring (Figure 1). The mix-
ture to be separated is fed into the SMB plant through the
feed port. The more adsorbed component travels to the ex-
tract port while the less adsorbed one travels to the raffi-
nate port. Fresh solvent is introduced through the desorbent
port. In order to achieve countercurrent movement of the
liquid and solid phases the columns are repositioned in di-
rection opposite to the liquid flow after some time period
called switching time. Usually these processes are operated
in open-loop mode due to their complexity and because of
the high sensitivity to the disturbances at the optimum oper-
ating point with minimum solvent consumption, often sub-
optimal operating conditions are applied. Here, to hold the
process close to the optimal operating point and to reject the
disturbances we propose different feedback control strate-
gies.

2 Modelling and Simulation

Mathematical modelling of the SMB chromatographic pro-
cess leads to a system of partial differential alegbraic equa-
tions (PDAEs):





ε ∂Ci,k
∂ t +(1− ε) ∂qi,k

∂ t + εvk
∂Ci,k

∂ z = εDax
∂ 2Ci,k

∂ z2
∂qi,k

∂ t = kmi,k

(
q∗i,k(C)−qi,k

)

q∗i,k = f (C)

(1)

where the first equation describes the change of the concen-
tration of the components in the liquid phase, the second in
the solid phase, and the third one describes the thermody-
namic equilibrium between the two phases and it is called
adsorption isotherm. For the solution of this system in our
previous work [1] we used a numerical algorithm based on
the conservation element/solution element (CE/SE) method.

Figure 1: SMB process with the control configuration

Results showed that this method is faster than the popular
cell method used in some commercial chromatographic sim-
ulators which makes it a suitable choice for use in on-line
optimizing control such as model predictive control (MPC).

3 Control Strategy

For the control of the SMB process, classical PID control,
as well as MPC, are developed and discussed, highlighting
their respective advantages and disadvantages. The goal of
the controller is to maintain the product purities at the speci-
fied reference values while at same time minimizing the sol-
vent consumption. To achieve this in real time, information
from the SMB plant is needed. The product purities are mea-
sured by an online analytical analyzer and the concentration
front movements inside the columns are detected by two UV
sensors on each of the outlet ports. Manipulated variables
are the cycle duration Tsw and the liquid flow rates inside ev-
ery column which are maintained by the pumps on each of
the outlet ports as well as on the desorbent port. The feed
flow rate is specified from the upstream operations and acts
as a disturbance which has to be rejected by the controller.
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Motivation
A wide variety of cranes is used in industry, ranging from
big autonomous ones, over ones electronically driven by op-
erators using joysticks or command buttons, to completely
passive hoists for smaller loads. These latter only support
the weight in the vertical direction, and operators still have
to manually move it in the horizontal direction. Since there
is always some friction in the overhead guides, the load will
need to be pushed or pulled to a certain angle to put ten-
sion on the cable, before the overhead support moves along.
Even without friction, there will still need to be sufficient
tension to accelerate the inertia of all the moving parts over-
head. Since angles are always needed to initiate motion, the
loads also often swings, which makes it harder to bring the
load to standstill when desired. For loads in the 10-100kg
range this leads to muscles issues and to low productivity in
operators. Especially since for such loads operators tend to
prefer productivity, and cut corners while not using the sup-
port systems sufficiently slow, whereas for heavier loads the
correct and slow use of supportive systems is hard to avoid.

Implementation and results
In this paper we retrofit a hoist to combat these issues. Mo-
tors were added to actuate the X-Y motion of the overhead
guides on a life-size crane in the Flanders Make lab in Leu-
ven. We also added a sensor to detect the cable angle, so
that when an operator moves the load and the angle is not
zero, we can move the overhead support in the direction of
the load to assist the operator. Figure 1 shows the principle
in a schematic way. Many works have focused on control-
ling swinging cranes. Since we here control from angle to

Figure 1: Implementation on life-size crane in Leuven.

speed of the overhead motor, the control is fairly straightfor-
ward, and a proportional-derivative feedback control (PD-
controller) suffices to yield a good performance.

Experimental results
The approach has been experimentally tested using real op-
erators to move various loads. Figure 2 shows results for

two payloads that needed to be moved from one position to
another while ending at standstill, which is the task opera-
tors typically need to perform in industrial practice. It can
be seen that for both payloads the amplitude of the forces is
much lower, but also that the total motion time (the length of
the signal) is much lower and the task can thus be completed
faster with the added control mechanism.

Figure 2: Forces with and without the support system, for com-
pleting a point to standstill task.

We have made an extensive evaluation of this support sys-
tem on several operators and for various payloads. To im-
prove performance further, we made an adaptive version in
which the cable is connected through a load cell to estimate
the payload mass. With that knowledge we then adjust the
tuning, to provide more support for heavier loads. Figure 3
shows the results: compared to the passive system, both the
normal and especially the adaptive version significantly re-
duce the operator forces.

Figure 3: Comparison for various payloads.
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1 Introduction

The recent introduction of continuous manufacturing pro-
cesses in the pharmaceutical industry has increased the need
for a deeper process understanding to improve its monitor-
ing and control capabilities. Identifying and better under-
standing the relationships between Critical Process Param-
eters, Critical Material Attributes and Critical Quality At-
tributes is crucial to guarantee quality of the final drug. In
continuous manufacturing, the product needs to be traceable
throughout the entire line to ensure a robust control at all
times. Developing a clear connection between the different
inline measurements (i.e., process parameters and PAT data)
and the product characteristics at specific locations is a key
aspect. Residence time distribution (RTD) is a commonly
used methodology that defines the probability distribution
of the time that a particle stays inside a system. The RTD is
specific for a given geometry and materials and it has to be
experimentally determined for every new drug formulation.
For this reason, there is a high interest in making RTD deter-
mination more efficient and less experimentally consuming.

2 Methods

In this contribution, a Direct Compression continuous sys-
tem is studied. A step change was used as an input signal
for RTD determination and the model was implemented as
a combination of an ideal plug flow reactor model with two
CSTR in series (PFR+2TIS). To determine the RTD experi-
mentally, the distribution function is normalized in terms of
API concentration:

C(t) =C0 +(C f −C0)×δ (t −θ)×
(

1− τ1×e
θ−t
τ1 −τ2×e

θ−t
τ2

τ1−τ2

)
(1)

Where C0 is initial concentration, C f is concentration at the
end of the step change experiment, δ is the heaviside func-
tion, θ is delay, τ1 is time constant from tank 1 and τ2 is
time constant from tank 2. The parameters are estimated by
a least squares optimization.

The concentration data used to fit the RTD model is usu-
ally obtained from samples collected at the exit of the tablet
press. What we proposed in this study was to use directly the

spectral data from the NIR tool located in the feed frame of
the tablet press, which offers a much higher measuring fre-
quency, to predict the final concentration of the tablet. Prin-
cipal Component Analysis and PLS-DA were applied to the
NIR spectral data. Both techniques were compared to see
which one was able to capture better the dynamic response
of the step change so it could be used for RTD modeling.

3 Results

In both PCA and PLS-DA approaches the results indicated
that the majority of the system variation was captured with 3
Latent Variables (LV), being the first two the ones capturing
the dynamic response of the step change. To summarize the
step change variation in only one variable, a rotation of the
scores matrix was performed.

The fit of the RTD model was done using content unifor-
mity data (CU), and also the data obtained from the scores
of PLS-DA. The results showed significant similarities be-
tween the two approaches. However, in both cases, the
model is not identifiable. Different constraints were tested
to tackle this issue.
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Introduction: Crystallization process are often modeled us-
ing a Population Balance Model (PBM) [1]. The popula-
tion members are individual crystals, which are only distin-
guished by their size x in simple models. The crystals are
dispersed in a medium with solute concentration C. The
number density function (NDF), n(t,x), represents the es-
timated amount of crystals per size2. Changes in the pop-
ulation are induced by growth (by which size x increases
by solute uptake) and nucleation (by which new crystals are
formed), denoted with kinetic rates G(x,C) and B(C), re-
spectively.

Estimating kinetic rates for G(x,C) and B(C) is often dif-
ficult in practice. In this abstract, we propose the use of
non-parametric regression using Gaussian processes to infer
kinetic behavior from population moment measurements.

The PBM for a continuous crystallization process, where for
further purpose, the growth rate G(x,C) is assumed to be
independent of the crystal size x, is given by [2]

∂n(t,x)
∂ t

+
∂G(C)n(t,x)

∂x
=−dn(t,x),

G(C)n(t,0) = B(C),

dC(t)
dt

=−3kvρC

∫ ∞

0
G(C)x2n(t,x)dx+d(Cin −C(t)),

(1)

where d is a dilution rate, Cin is the concentration of the
inflow and kvρC is a constant factor which relates to shape
and mass density of individual crystals.

The moment dynamics of the population are obtained via in-
tegration, µk(t) =

∫ ∞
0 n(t,x)xkdx. Consequently, (1) is re-

duced into a set of four ordinary differential equations

dC(t)
dt

=−3kvρCG(C)µ2(t)+d(Cin −C(t)),

dµ0(t)
dt

=−dµ0(t)+B(C),

dµ1(t)
dt

=−dµ1(t)+G(C)µ0(t),

dµ2(t)
dt

=−dµ2(t)+2G(C)µ1(t).

(2)

1This work has been funded by Fonds voor Wetenschappelijk Onder-
zoek Vlaanderen (FWO), grant number G066621N.

2Such that the estimated amount of crystals with size in the interval
[x,x+dx] is equal to n(t,x)dx.

Gaussian process regression (GPR) [3] is a tool to per-
form non-parametric regression. A latent function, here both
G(C) and B(C), is assumed to be a Gaussian process, which
can be regarded as an extension to an infinite dimensional
Gaussian distribution. The Gaussian process is specified by
a so-called covariance kernel. By supplying training data,
determined from measurements of the moments µ0,1,2 for
different concentrations C by transforming (2), the Gaussian
process can be conditioned (also termed learning).

A numerical case study, based on aspirin crystallization, is
used to test the procedure. Measurements are generated fol-
lowing dynamics and conditions described in [2]. Artificial
measurement noise is added to replicate real life conditions.
An example of such GPR result is given in Figure 1.
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Figure 1: GPR result of growth rate G(C) (left) and nucleation
rate B(C) (right).

For further work, it will be attempted to include particle size
x along with concentration C as input in growth rate G(x,C)
inference.

Note: This abstract is based on an elsewhere submitted paper
by the authors [4].

References
[1] Ramkrishna, D. (2000). Population Balances: Theory and Appli-
cations to Particulate Systems in Engineering. Academic Press, San Diego.

[2] Savvopoulos, S.V., et al., (2019). A mathematical model of the
ultrasound-assisted continuous tubular crystallization of aspirin. Crystal
Growth & Design, 19(9), 5111-5122.

[3] Rasmussen, C.E. and Williams, C.K.I. (2006). Gaus-
sian processes for machine learning. MIT Press. URL:
http://www.gaussianprocess.org/gpml/.

[4] Busschaert, M. and Waldherr, S. (2021). Inference of Kinetics in
Population Balance Models using Gaussian Process Regression [submit-
ted].

80



Book of Abstracts 41st Benelux Meeting on Systems and Control

A simulation-based method for design space
exploration of production systems

N. Paape*, J.A.W.M. van Eekelen, M.A. Reniers
Control Systems Technology, Eindhoven University of Technology

Email corresponding author*: n.paape@tue.nl

1 Introduction
The design process of a production system is often an intri-
cate process, with many iterations of (re)design. Using sim-
ulation to explore the design space allows design alternatives
to be evaluated [1]. However, much of design space explo-
ration is still manual: iterating on the design, constructing
the model, and interpreting the simulation results.

Our goal is to develop a simulation-based method for design
space exploration of production systems. Figure 1 shows
the four steps that this method utilizes, and the inputs and
outputs for each step. This procedure by itself is not new,
but our plan is to develop novel ideas for how these steps can
be automated. In the next sections we explain the four steps
of the method, and what novel ideas we plan to introduce.

2 Explore design space
The first step is explore the design space, and propose a sys-
tem design. The design space includes specifications such
as which machines are available, how production is con-
trolled, and constraints on the design. We plan to use heuris-
tic search algorithms for design space exploration, similar to
[2]. One of our goals is to investigate how feedback from the
‘evaluate’ step can be utilized to improve design exploration.
For example: when a specific bottleneck is identified, then
the design could be adjusted to reduce this bottleneck.

3 Construct model
The model construction step takes the system design and
uses a model library to construct a simulation model. Using
a model library places the restriction on the design space that
all possible system components, must have a corresponding
model component in the model library (this relation is indi-
cated by the dotted line in Figure 1). We plan on investigat-
ing on how the model library can be developed, and how it
can be used to automatically construct simulation models.

4 Simulate
Production systems are often required to operate in a wide
variety of conditions. To determine the performance of the
system in these conditions, the system is simulated for a
range of production scenarios. A scenario specifies the con-
ditions under which the production system operate. For ex-
ample, a scenario can specify the characteristics of the in-
coming flow of unprocessed products, and the orders which

must be produced. In this method simulation would be au-
tomated in a simulation environment such as Anylogic.

5 Evaluate
In the evaluation phase the performance of the design is
evaluated according to selected performance indicators. We
plan to investigate how this performance evaluation can be
used to automatically identify in which direction the design
exploration should continue. This ‘evaluation report’ is then
returned as feedback to the heuristic for design space explo-
ration. After performance evaluation the stop condition for
design space exploration is checked (e.g. stop if the perfor-
mance targets are met). When reached, the method outputs
a selection of recommended designs.

Explore 
design space

Construct  
model

Simulate

Evaluate

End

continue
stop

Simulation model

System design

Recommended
designs

Performance
indicators

Performance

Scenarios

Model library

Design space

Start

Evaluation
report

Stop condition

Figure 1: The proposed simulation-based method for design
space exploration of production systems.
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1 Introduction

Timetable scheduling plays a key role in daily operations
of railway networks, as it influences the operational costs
and the quality of service provided to passengers. With the
rapidly growing passenger demands and the increasing scale
of railway networks, advanced railway traffic network mod-
els and the corresponding control approaches are crucial to
generate efficient timetables and to improve the performance
of railway transportation services.

Formulating the railway timetable scheduling problem gen-
erally leads to a constrained control problem. Model predic-
tive control (MPC) is a well recognized effective real-time
method to control constrained systems [1]. The passenger-
centric timetable scheduling problem for railway networks
is challenging because of its complexity and scale. For
large-scale systems, many researchers have been develop-
ing non-centralized methods that coordinate subsystems in a
decentralized, distributed, or hierarchical manner to achieve
fast and efficient solutions for the overall system [2]. In our
research, we develop new distributed model predictive con-
trol methods for timetable scheduling for railway networks
where the problem feasibility, optimality, and computational
efficiency are comprehensively considered.

2 A novel timetable scheduling model

Passenger demands are generally represented by time-
varying origin-destination matrices. Incorporating time-
varying passenger demands is a challenging task in real-time
timetable scheduling problems, as it greatly increases the
computational burden. Passenger demands usually change
gradually throughout the day. Therefore, in the developed
model, we discretize the planning time span into several pe-
riods, where passenger demands in each period are assumed
to be constant. The numbers of trains departing at each plat-
form during each period are the decision variables in this
model. By optimizing the number of trains visiting a given
platform during each period, an upper bound of the transport
capacity per period is determined, so that passengers can be
absorbed by trains at the platform.

1This work is supported by the China Scholarship Council under Grant
202007090003.

3 Distributed MPC for real-time timetable scheduling

In general, the MPC optimization problem for railway
timetable scheduling is a nonlinear nonconvex problem.
We can use the method in [3] to transform the nonlinear
terms into linear terms. The MPC optimization problem is
then transformed into a mixed-integer linear programming
(MILP) problem, which can be solved efficiently using ex-
isting solvers, provided the railway network is not too large.

In our research, we propose distributed model predictive
control approaches to deal with the computational com-
plexity issues arising in large-scale railway networks. In
distributed model predictive control methods, the original
large-scale MILP problem is divided into several small-scale
subproblems that can be solved sequentially or in paral-
lel to reduce the computational burden. The distributed-
robust-safe-but-knowledgeable (DRSBK) algorithm [4] is a
promising method for real-time control of large-scale sys-
tems, as it enables the use of much shorter planning horizons
while maintaining the robust feasibility of the original MPC
method. Therefore, the DRSBK algorithm will be adopted
and further improved to fulfill the requirement of real-time
passenger-centric timetable scheduling in railway networks.
The convergence, optimality, and recursive feasibility of the
proposed distributed MPC method will also be investigated.
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1 Introduction and Motivation

Despite significant developments in modeling and system
identification methods, learning complex and chaotic sys-
tems is still a challenging problem. Development of clas-
sical physics-based (white-box) models need deep detailed
knowledge of the system dynamics which is often not com-
pletely available or tedious and expensive to obtain. On
the other hand, data-driven (black-box) methods are capa-
ble to reconstruct complex unknown dynamics from data,
but the estimated models often lack generalizability and are
hard to interpret. As a remedy, this project aims to use an
ANN-based Hamiltonian modeling framework to develop
comprehensive and reliable models for engineering systems.
Hamiltonian Neural Networks (HNNs) are a state-of-the-art
grey-box modeling tool in which Hamiltonian mechanics is
embedded as prior knowledge in the neural network (see
Figure 1).

2 Hamiltonian and Lagrangian ANNs

In Hamiltonian mechanics, the total energy, Etot, of the sys-
tem is conserved and defined as the Hamiltonian of the gen-
eralized position (q) and momenta (p) vectors, i.e. Etot =
H(q,p). The Hamiltonian is a scalar function, satisfying

dq
dt

=
∂H
∂p

,
dp
dt

=−∂H
∂q

. (1)

Greydanus et al. proposed to learn H, as an energy-like
scalar value in an unsupervised manner [1]. They formu-
lated H as an ANN Hθ and trained it under the loss function:

LHNN =

∥∥∥∥
∂Hθ
∂p

− ∂q
∂ t

∥∥∥∥
2
+

∥∥∥∥
∂Hθ
∂q

+
∂p
∂ t

∥∥∥∥
2
. (2)

In this way, the conservation law, equation (1), is embed-
ded in the trained ANN. The identified H fully defines a
continuous-time motion model of the system, which can be
calculated directly. Furthermore, their ability to learn con-
servation laws, makes HNNs more interpretable. The main

This work is part of the DAMOCLES research project which received
funding from the Eindhoven Artificial Intelligence Systems Institute, as
part of the EMDAIR funding programme.

Figure 1: Physics-enhanced ANNs (such as HNNs and LNNs)
embed physics laws in neural network based models.

drawback of HNNs is their use of so-called canonical coor-
dinates. Cranmer et al. generalized HNNs by introducing
the Lagrangian equation of motion to the ANNs [2]. Un-
like HNNs, the use of canonical coordinates is not required
in Lagrangian Neural Networks (LNNs). LNNs enforce
the conservation law to the ANNs for arbitrary coordinates,
hence they can surpass HNNs in modeling more complex
systems.

3 Conclusions

Physics-enhanced neural networks are a forefront research
topic with a high potential in various engineering fields.
In this work, the applicability of HHNs and LNNs to-
gether with the recently introduced port-Hamiltonian ANNs
(pHNNs) [3] for modeling engineering systems is studied
and compared to other classical system identification meth-
ods. Envisaged benchmarking systems include a gyroscope
and pendulum setup in which conservation of energy is im-
portant.
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1 Abstract

The universal approximation property of Neural Networks
(NNs) [1] make them capable of representing very complex
functions. Generally, in control theory we study and ma-
nipulate the properties of dynamical systems using an input
function (the control law) that shape the dynamics of the
closed-loop system. However, using learning in control of
complex systems is often discouraged due to the lack of ex-
plainability of the approach, frequently referred as “black-
box” approaches. Recent progress in the regularization of
NNs has allowed to obtain parametric functions that satisfy
predefined restrictions in the form of a PDE. This is the case
for physics-informed neural networks (PINNs) [2], where
the learned function can be interpreted as an approximated
solution of the PDE.

In many nonlinear control methods for complex systems, the
corresponding control law requires the solution of an aux-
iliary differential equation that embed the control require-
ments or specifications. Interconnection and damping as-
signment passivity-based control (IDA-PBC)[3], is an en-
ergy shaping method for stabilization of an affine nonlinear
system around a desired equilibrium. IDA-PBC focuses in
finding a static state feedback control law of the form,

u(x) = β (x)+ v, (1)

such that the open-loop port-Hamiltonian (pH) system,

Σ1 :

{
ẋ = [J(x)−R(x)] ∂H

∂x (x)+g(x)u(x)
y = g⊤(x) ∂H

∂x (x)
(2)

is transformed into a closed-loop target passive pH system,

Σ2 :

{
ẋ = [Jd(x)−Rd(x)]

∂Hd
∂x (x)+g(x)v

y = g⊤(x) ∂Hd
∂x (x)

(3)

where Jd(x), Rd(x) and Hd(x) are the desired interconnec-
tion, damping and energy functions of the target closed-loop
system and are found by the addition of an auxiliary term to
the open-loop respective functions: Jd(x) := J(x) + Ja(x),
Rd(x) := R(x)+Ra(x) and Hd(x) := H(x)+Ha(x).

Theorem 2 in (Ortega et al.) [3] indicates that such a control
law myst satisfy the following matching equation,

g⊥(x)[Jd(x)−Rd(x)]
∂Hd

∂x
(x) = g⊥(x)[J(x)−R(x)]

∂H
∂x

(x)
(4)

and a set of other implicit assumptions (structure preser-
vation, integrability, equilibrium assignment and Lyapunov
stability) [3] that impose additional structure to the appro-
priate solution.

We propose solving the PDE matching equations (4), using
NNs in the PINN scheme [2], by systematically constructing
a loss function that encodes the requirements in the form of
residuals,

L (θ ;x,x⋆) := ftransient + feq + flyap + fmatching

θ ⋆ = argminθ L (θ ;x,x⋆)
(5)

The NN is then used to solve the non-parameterized IDA-
PBC problem by approximating Ha and Ra (Figure 1).

Figure 1: Neural IDA-PBC diagram.

This methodology allows to reformulate the IDA-PBC con-
trol technique as an adaptive problem (5), providing flex-
ibility for cases where analytical solutions are not easily
avaiblable. The approach has been validated in the settings
of Fully-actuated Mechanical systems and simulation data
was obtained for the Simple pendulum and the Double pen-
dulum cases. The results show that this design methodology
can stabilize both systems around any arbitrary equilibrium
point.
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1 Introduction

The physics–guided neural network (PGNN), which em-
ploys a physics–based model in parallel to a black–box
neural network (NN), is proposed in [1] for identification
of inverse system dynamics with the aim to obtain a high
performing feedforward controller. The framework already
showed significant improvements in tracking performance
with respect to conventional methods on a practical applica-
tion. However, the flexible nature of NNs create an overpa-
rameterization when simultaneously training the parameters
corresponding to the physical and NN model [2]. The result-
ing parameter drift yields uninterpretability of the physical
model, as well as a decreased generalizability of the PGNN
to conditions that were not present in the training data.

2 Nonlinear inverse system identification using PGNNs

We consider the discrete–time inverse dynamical system

u(t) = θ T
0 Tphy

(
φ(t)

)
+g
(
φ(t)

)
, (1)

which describes the relation between the input u(t) and the
regressor φ(t) = [y(t + na), . . . ,y(t− nb),u(t− 1), . . . ,u(t−
nc)]

T for a system that is not affected by noise. Here, y(t) is
the output and na,nb,nc describe the order of the dynamics.
We assume that the part θ T

0 Tphy
(
φ(t)

)
is a linear–in–the–

parameters model that is derived from physics, and g
(
φ(t)

)

denotes the unknown dynamics resulting from parasitic fric-
tion, electromagnetic disturbances, and other effects.

The PGNN is used for identification of (1), i.e., we predict

û
(
θ ,φ(t)

)
= fNN

(
θNN,φ(t)

)
+θ T

phyTphy
(
φ(t)

)
, (2)

with θ = {θNN,θphy} the PGNN parameters, θNN the NN
weights and biases, and θphy the physical model parameters.
Then, θ is identified using an input–output data set ZN as:

θ̂ = argmin
θ

V
(
θ ,ZN). (3)

Typically, a MSE cost function is chosen, i.e., V
(
θ ,ZN

)
=

VMSE
(
θ ,ZN

)
= 1

N ∑N−1
t=0

(
u(t)− û

(
θ ,φ(t)

))2. However, this
yields an overparameterization of the PGNN (2) that results
in a parameter drift during training. The effect is observed
from the competition between the feedforward signals cor-
responding to the NN and the physics–based (PG) part of
the PGNN (2) in the middle plot of Fig. 1.
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Figure 1: Feedforward signals resulting from the different
terms in the PGNN (2) for the reference shown in the top.

3 Results

The parameter drift is prevented, as shown in the bottom plot
in Fig. 1, via the use of the regularized cost function

V
(
θ ,ZN)=VMSE

(
θ ,ZN)+(θphy− θ̂LIP)

T Λ(θphy− θ̂LIP),
(4)

where θ̂LIP are priorly identified parameters of the LIP
model using the MSE, and Λ is a positive definite regular-
ization matrix. Moreover, we propose a method to ensure
that the non–convex PGNN training converges to a set of
parameters that improve on the cost function with respect to
the physics–based model, i.e., V

(
θ̂ ,ZN

)
<V

(
θ̂LIP,ZN

)
.
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1 Background

Neural networks are universal function approximators and,
as such, offer large potential for flexible and accurate motion
feedforward. Motion feedforward involves several impor-
tant aspects, including control-relevance [2] and non-causal
feedforward for non-minimum phase systems that require
pre-actuation to achieve zero error [1].

2 Problem formulation

Consider a SISO control system with error e ∈ R given by

e = Sr − SPf (1)

with reference r ∈ R, feedforward signal f ∈ R and system
sensitivity S = (1 + PC)−1 with plant P and controller C.
The feedforward signal for which e = 0 is given by

f = (SP )−1Sr (2)

Neural networks are used to find a mapping fnn = F(r)
such that the error e in (1) is minimized for f = fnn. The
aim is to investigate the implications of the invertibility of
P , in particular when P has non-minimum phase zeros, and
the use of closed-loop data, i.e., the role of SP in (1).

3 Approach

The training data needed to find the mapping from r to f
consists of a representative set of ten references with cor-
responding feedforward signals ftrain, found using iterative
learning control [3]. The neural network-based feedforward
fnn that minimizes the error in terms of the squared 2-norm
is the minimizer of the control-relevant loss function

JCR(fnn) = ‖SP (ftrain − fnn)‖22, (3)

to which a term w‖ftrain − fnn‖22 with weighting w = 1e−3

is added as regularization.

Non-causal mappings between r and fnn are generated by
two types of networks. Non-causal time-delay neural net-
works (TDNN) take a shifted finite sequence of reference
samples as input, resulting in finite preview. Bi-directional
long short-term memory (biLSTM) layers in recurrent neu-
ral networks (RNN) receive both forward and time-reversed
data, giving infinite preview.

Figure 1: Arizona flatbed printer
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Figure 2: Errors for a reference outside of the training set
resulting from ftrain ( ), polynomial basis functions ( ), a
non-causal TDNN ( ) and a non-causal RNN ( ).

4 Results

Neural networks for motion feedforward are applied to the
industrial flatbed printer shown in Figure 1. The input of the
networks consists of a fourth-order reference with its deriva-
tives. Non-causal TDNNs reduce the loss by a factor 3 com-
pared to a linear feedforward neural network (FNN) that is
equivalent to polynomial basis functions. RNNs are sensi-
tive to overfitting, reducing the performance, see Figure 2.
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Optimal control problems (OCP) are powerful methods that
enable optimization of system states and inputs given a cost
function and constraints [1]. However, their real world per-
formance is typically hampered by insufficient model ac-
curacy. In the field of machine learning, dynamic neural
networks have been proposed as a generic and performant
method to model dynamic systems in a data-driven fashion.
In this paper, we will propose a method that bridges the cur-
rent gap between the two research fields, paving the way for
further studies.

The Mass-Spring-Damper Toy Case
A mass-spring-damper system with state x = [x1,x2], spring
and damper constant k and d is considered, see Eq. 1. It
is integrated using a forward Euler integrator, i.e., xk+1 =
xk +Tsẋk with a sampling time Ts = 0.001 and input u.

[
ẋ1
ẋ2

]
=

[
x2

1
m (−kx1 −dx2 +u)

]
(1)

The Recurrent Neural Network Model
In this section, we will train a data-driven model: a Recur-
rent Neural Net (RNN). A 1-layer fully connected RNN con-
sisting of 10 neurons was selected since the dynamics to fit
are of low (linear) complexity. Furthermore, the sigmoid
(S(y) = 1/(1+ e−y)) activation was used for its continuous
differentiability, which is not the case for e.g., ReLU activa-
tions. This differentiability is expected to be key for conver-
gence in the gradient-based control optimization later. The
RNN equations, see 2, were formulated manually for usage
in the OCP, but it is planned to use model export tools (e.g.,
ONNX [3]) in future work.

z = S
(

W1

[
x̂
u

]
+b1

)

ˆ̇x =W2z+b2

(2)

Training the RNN was done by forward Euler integration
(x̂k+1 = x̂k +Ts ˆ̇xk), denoted by

∫
in Fig. 1, combined with a

mean squared error cost on x̂ using the PyTorch [2] frame-
work. See Fig. 2 for the open-loop simulation of the trained
RNN on the training and validation data.

Figure 1: RNN architecture

Figure 2: RNN training and validation fit.

The Optimal Control Problem
A control task was defined for the RNN model: perform a
point-to-point motion with minimal input force, see Eq. 3.
The optimization was performed using Rockit [1].

min
u

u2

s.t. x̂k+1 = x̂k +Ts ˆ̇xk ∀ k ∈ [1,1001]
x̂0 = [0,0], x̂t f = [0.5,0]

(3)

Results and Outlook
In Fig. 3 the state evolution of both the RNN (x̂) and orig-
inal model (x) when open-loop simulated with the OCP in-
puts are displayed. The target position error x̂1(t f )− x1(t f )
is 0.002m and the RMS state errors are [0.011,0.16]. For
comparison, the OCP inputs were calculated with the orig-
inal model, which resulted in an RMS error on the input of
0.02N. To the authors this first exploration is promising and
indicates various directions for future work.

Figure 3: OCP results on RNN and original model.
References
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1 Motivation

MPC has shown to be a very effective and popular control
approach for urban traffic control [1], due to its flexible and
robust nature. However, the use of MPC has some disad-
vantages as well. Centralized control of large-scale systems
can become computationally infeasible. Besides, when the
system (model) suffers from disturbances and uncertainties,
the control performance will become sub-optimal. In recent
years the use of data-driven reinforcement learning (RL) for
control of urban traffic systems has gained great interest [2].
Model-free RL algorithms do not need a model to obtain
a well-performing control law and they are of adaptive na-
ture, i.e., they can change their control solution according
to changing traffic situations. This makes them very capa-
ble of dealing with disturbances in the system. However,
the performance of such algorithms does not converge to an
optimal solution without a sufficient training process. In ad-
dition, the stability of a RL-based controlled system is gen-
erally not guaranteed. MPC and RL methods excellently
complement each other. Therefore, it is of great interest to
investigate the possibility to combine MPC and RL to ex-
ploit the advantages of both methods.

2 Proposed framework combining MPC and RL

We propose a framework that combines MPC and RL in-
spired by [3]. As shown in Figure 1, the combined MPC
and RL framework is illustrated. The nominal traffic sys-
tem can be represented by a macroscopic traffic model (e.g.,
the BLX model), while the real system can be approximated
by a microscopic simulation model, such as SUMO. This
framework can potentially mitigate the drawbacks of both
MPC and RL control. The adaptive framework may be able
to reduce the negative effect that uncertainties have on the
performance of an MPC controller. Moreover, the addi-
tion of an adaptive law in the form of an RL controller may
also reduce the computational complexity in comparison to
a conventional MPC controller because an RL algorithm can
operate with a very low online computational effort. The im-
provement of performance in the presence of uncertainties

1This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (Grant agreement No. 101018826), and also from the China
Scholarship Council (CSC Grant No. 201806230254).

will potentially be the largest advantage of the application
of the framework in traffic signal control compared to a nor-
mal MPC controller in a traffic signal control setting.

Figure 1: The combined model predictive control and reinforce-
ment learning model-reference framework.

As regards the possible improvements of the framework
compared to a conventional RL controller, the MPC control
law offers a baseline control law, which might result in im-
proved system performance during training of the RL agent
compared to the conventional RL strategy. This might also
make the framework more sample-efficient. Compared to
the model-reference RL control scheme in [3], this frame-
work will also be robust through the rolling horizon scheme
of the MPC controller.
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1 Introduction

The reliable functioning of high-tech systems can only be
achieved through predictive maintenance, for which tech-
niques for fault detection (is a fault occurring?) and fault
isolation (what is the fault source?) are essential prerequi-
sites [1]. We aim to develop a hybrid (physics-learning) fault
detection and isolation (FDI) scheme that provides supe-
rior monitoring performance by leveraging cutting-edge ma-
chine learning (ML) algorithms and first-principles physics-
based models.

2 Problem Formulation

Consider a nonlinear dynamical system of the form:
{

ẋ(t) = g(x(t),u(t))+η(x(t),u(t))+ω(t)+φ(x(t),u(t), t),
y(t) = x(t)+ν(t),

(1)
where t, x, y, u are time, state, measured output, and known
input vectors, respectively. Function g(·) is a known non-
linear function. Function η(·) represents unknown model
uncertainty. Functions ω(·),ν(·) are unknown disturbances,
and function φ(·) is the unknown process fault.

3 Methodology

The proposed methodology has two stages: 1. offline un-
certainty learning, and 2. online FDI scheme. First, in the
offline learning stage, a static map for unstructured uncer-
tainty is trained on the basis of the healthy system input and
output data (i.e., for the system with φ = 0). We use a super-
vised method (i.e., linear regression in this abstract) to find
the static map from system input and output to uncertainty in
the training phase. Labeled data for the supervised learning
of the model uncertainty is obtained using the known part
of the system dynamics and healthy system input and output
historical data. Then, in the online stage, we estimate the
fault by matching the faulty model and the approximately
known model of the healthy system (which is constituted by
a physics-based model and the trained uncertainty model).
Based on the estimated fault signal, the fault can be de-
tected and isolated using the CUSUM-based procedure [2]
as a change detection method.
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Figure 1: The CUSUM sequences and the thresholds.

4 Simulation Results

In what follows, the methodology is applied to a nonlinear
benchmark system (a single-link robotic arm with a revolute
elastic joint). In the simulation, a fault occurs abruptly at
225 seconds. The CUSUM-based thresholds and sequences
for each state are depicted in Fig. 1. It is clear from the left-
down plot of the figure that the fault can be detected by the
proposed method since the CUSUM sequence exceeds the
threshold after the fault occurrence.
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1 Introduction

Behavioural assume-guarantee contracts are introduced in
[1] as an alternative to common methods for providing spec-
ifications on control systems, such as dissipativity theory
and set invariance. While the specifications expressed by
the latter are typically static, contracts express specifications
on dynamic behaviour. Furthermore, contracts take the envi-
ronment of the system explicitly into account. Incorporating
knowledge about this environment can ease the design bur-
den on the system. It is also essential in facilitating modular
design and analysis of interconnected systems.

We are only interested in contract specifications that can ac-
tually be satisfied by some system. In other words, so-called
consistent contracts are the only ones of practical relevance.
Motivated by this, we present necessary and sufficient con-
ditions for consistency of assume-guarantee contracts.

2 Contract consistency

Consider a linear system of the form

Σ :

{
ẋ = Ax+Bu,

y =Cx+Du.
(1)

In the context of an interconnected system, Σ interacts with
other components via the external variables u and y. Thus,
we identify Σ by its external behaviour

B(Σ) = {(u,y) | ∃x s.t. (1) holds} . (2)

The contracts presented in [1] are used as specifications for
the external behaviour of Σ. A characteristic feature of these
contracts is that they take the environment of Σ explicitly
into account. The environment of Σ is a linear system that
generates the input u. The available information about the
behaviour of the environment of Σ is captured by the as-
sumptions A, defined as a linear system of the form

A : 0 = A
( d

dt

)
u, (3)

where A(s) is a polynomial matrix. On the other hand, the
guarantees Γ capture the desired external behaviour of Σ
when interconnected with a relevant environment. They are
defined as a linear system of the form

Γ : G
( d

dt

)
y = H

( d
dt

)
u, (4)

where G(s) and H(s) are polynomial matrices.

A Σ y

u
⊂

u

y
Γ

Figure 1: Σ implements C = (A,Γ)

A contract C = (A,Γ) is a pair of assumptions and guaran-
tees. A system Σ implements C = (A,Γ) if and only if

B(A∧Σ)⊂B(Γ), (5)

where A∧Σ is obtained by feeding the input generated by A
to Σ. This is illustrated in Figure 1. If there exists a system Σ
that implements the contract C , then C is called consistent.
Not every contract is consistent. Indeed, u is an input in Σ,
hence u is free in B(Σ), which implies that any restrictions
on u imposed by the guarantees must already be present in
the assumptions. In other words, the contract C = (A,Γ)
is consistent only if Bi(A) ⊂ Bi(Γ), where the behaviour
Bi( · ) is with respect to the input u only.

The condition that Bi(A) ⊂Bi(Γ) is not sufficient. How-
ever, we can obtain the following necessary and sufficient
condition in a special case of the guarantees Γ.

Lemma 1. If G(s) is square and invertible, then C = (A,Γ)
is consistent if and only if there exists a polynomial matrix
M(s) such that G(s)−1(H(s)−M(s)A(s)) is proper.

A suitable polynomial matrix M(s) can easily be obtained in
the following special case, where we utilize the properties of
row-reduced polynomial matrices [2].

Lemma 2. If G(s) and A(s) are square, invertible, and in
row-reduced form, then C = (A,Γ) is consistent if and only
if G(s)−1(H(s)− M̄(s)A(s)), where M̄(s) is given by the
polynomial part of H(s)A(s)−1.

Lemma 2 can be generalized to the case where G(s) and A(s)
are not a priori row-reduced. Using the result, we can obtain
necessary and sufficient conditions for contract consistency
in the most general case.
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1 Introduction

In this abstract, we consider the issue of synchronising mul-
tiple agents whose dynamics can be described by Euler-
Lagrangian equations. An H∞ distributed controller al-
gorithm is developed to guarantee the synchronisation of
multi-agents with respect to unknown time-varying time-
delays in the communication channels between the agents.
Instead of considering static controllers, we propose dy-
namic controllers that behave as second-order linear sys-
tems. The proposed sufficient criterions for the asymp-
totic convergence and synchronisation with respect to time-
delays follow from the Lyapunov-Krasovskii functional us-
ing linear matrix inequalities framework. The sufficient con-
ditions only depend on the upper bounds of time-delays,
and are independent from the dynamics of agents. This
makes the proposed method suitable for systems with mul-
tiple agents that are each subject to different dynamics.

2 Problem definition and distributed synchronising
controller

Multi-agent systems consisting of agents interconnected
with communication networks have the potential to tackle
tasks more effectively than single systems. They can coop-
erate with each other while executing pre-determined tasks
like multi-agent robotic manipulators that together need to
carry a heavy load. Besides cooperation, distributed control
systems can significantly improve the robustness and perfor-
mance of the overall system. It is worth mentioning that the
concept of synchronisation has readily shown its advantages
and usefulness for coordinating of multi-agents in several
works existing in literature [1].

The multiple agents in distributed control systems need to
come to an agreement on the determined command, i.e. the
so-called consensus problem between agents needs to be
solved. Realizing consensus can help many applications and
is therefore a heavily investigated research topic at the mo-
ment. Furthermore, it seems that consensus between differ-
ent agents probably is the most investigated research topic
because of its various applications. In this study we focus on
the synchronisation problem between agents that are subject
to time-varying time-delays in the communication channels.
It is well-known already that a communication delay leads to
worse performance or even instability in dynamical systems

controlled over the communication channels. We consider
here communication delays in an alternative approach us-
ing linear matrix inequalities (LMIs) that rely on the delays
upper bounds.
We consider a networked system with N agents, in which
we suppose all agents (i∈ 1,2, ...,N) are modelled by Euler-
Lagrange equations as follows

Ai(xi)ẍi +Bi(xi, ẋi)ẋi +Ci(xi) = τi +ωi (1)

in which the vector xi ∈ Rn denotes the group of angular
positions of the joints; Ai(xi) ∈ Rn×n, Bi(xi, ẋi) ∈ Rn×n and
Ci(xi) denote the inertia matrix, the matrix of coriolis and
centripetal forces, and gravitational forces, respectively. τi ∈
Rm and ωi ∈ Rw indicate the torques as control input and
disturbance input acting on the ith agent, respectively.
The group of interconnected agents (1) are synchronised if
the following relation holds

lim
t→∞
|| x j(t)− xi(t) ||= 0 ∀i ∈ {1, ...,N},∀ j ∈ Ni, (2)

We propose the following dynamical distributed synchronis-
ing H∞ controller with constants k1i, k2i, k3i

Diüi = k1isign(αix̄i)− k2i

N

∑
j=1

βi j(ui(t)− (3)

−u j(t−ηi j(t))− k3iu̇i ∀i ∈ {1, ...,N},∀ j ∈ Ni,

in which x̄i = xi−ui and ηi j(t) is the communication time-
delay between the ith and jth agents. Furthermore, the con-
stant βi j indicates the coupling gain between the ith and jth
agents.

In order to meet the actuator limit, we define the input of ith
agent as follows

τi =−k1isign(α1ix̄i(t))− k4isign(α2iẋi(t))+Ci(xi) (4)

It is worth mentioning that the input signal (4) is bounded
with an upper bound that is equal to k1i + k4i+ ||Ci(xi) ||∞.
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Extended differential balancing for nonlinear systems
Arijit Sarkar1 and Jacquelien M.A. Scherpen1

I. INTRODUCTION

With the growing needs of daily human life sophisticated
technologies result into the increasing complexity of systems
in numerous fields of science and engineering. However, the
increasing complexity leads to high computational burden
to design controllers which motivates us to represent the
original system using a reduced order model while preserving
certain structures of the original system. In this work we
investigate nonlinear systems with constant input vector-
fields. Generalized differential balanced truncation have been
proposed in [1] to find the reduced order model for these
kinds of nonlinear systems with a prior error bound and
stability guarantees. We extend this idea to extended differ-
ential balanced truncation which can provide a tighter apriori
error bound than generalized differential balanced truncation
as well as can be useful in preserving certain properties,
structures in the reduced order model of the system.

II. EXTENDED GENERALIZED DIFFERENTIAL GRAMIANS

Let us consider the system

Σ :

{
ẋ = f(x) +Bu,

y = Cx,
(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp. Now, we can consider
the variational system associated with the nonlinear system
as

dΣ :




δẋ =

∂f(x)

∂x
δx+Bδu,

δy = Cδx,
(2)

where δx ∈ Rn, δu ∈ Rm and δy ∈ Rp denote the
state, input and output of the variational system respec-
tively.The generalized differential controllability and observ-
ability Gramians are defined as the the solutions P ≻ 0,
Q ≻ 0 of the following differential Lyapunov inequalities

∂f(x)

∂x
P + P

∂⊤f(x)
∂x

+BB⊤ ⪯ 0, (3)

Q
∂f(x)

∂x
+

∂⊤f(x)
∂x

Q+ C⊤C ⪯ 0, (4)

for all x ∈ Rn. The generalized differential Gramians as
defined in [1] can be extended to the extended differential
Gramians. Extended Gramians have been defined for discrete-
time LTI systems in [2] and for continuous-time LTI systems

1Jacquelien M. A. Scherpen and Arijit Sarkar are with Jan C. Willems
Cemter for Systems and Control, Engineering and Technology Institute
Groningen, Faculty of Science and Engineering, University of Groningen,
The Netherlands. {{j.m.a.scherpen, a.sarkar}@rug.nl}

in [3]. Here we define extended differential Gramians for
nonlinear systems.

Let us consider the following two LMIs which are the
backbone of the definition of extended differential Gramians.[

Xo(x) Q− (αIn + ∂⊤f(x)
∂x )S

Q− S⊤(αIn + ∂f(x)
∂x ) (S + S⊤)

]
⪰ 0 (5)



−P̌ ∂f(x)

∂x − ∂⊤f(x)
∂x P̌ −P̌ + (βIn + ∂⊤f(x)

∂x )T −2P̌B

P̌ − T⊤(βIn + ∂f(x)
∂x ) T + T⊤ 2T⊤B

−2B⊤P̌ 2B⊤T 4Im


 ⪰ 0 (6)

where X0(x) := −Q∂f(x)
∂x − ∂⊤f(x)

∂x Q − C⊤C, P̌ := P−1.
Also consider Xc(x) := −P̌ ∂f(x)

∂x − ∂⊤f(x)
∂x P̌ − P̌BB⊤P̌ −

ϵP̌ .

Theorem 1. The inequality (4) has a solution for all x ∈
Rn if and only if (5) has a solution (Q,S, α) with Q ≻ 0,
(S+S⊤) ⪰ 0 and α large enough for all x ∈ Rn. In addition
to that if Xo is positive definite, then there exists α large
enough and S = S⊤ ≻ 0 such that (5) holds for all x ∈ Rn.

Theorem 2. The inequality (3) has a solution P if and only
if (6) has a solution (P̌ , T, β) with P̌ ≻ 0. In addition to
that, if Xc is positive definite then ∃β and T = T⊤ ≻ 0 such
that (6) is satisfied.

Theorem 3. Suppose the system (1) is balanced with the
extended differential observability Gramian (Q,S, α)
and inverse of extended differential controllability
Gramian(P̌ , T, β) as defined in (5) and (6) respectively. If
the system is in the balanced coordinates,

S = T−1 = ΛST = diag{σ1, σ2, · · · , σn},
where σ1 ≥ σ2 ≥ · · · ≥ σn > 0. Then the output of the
original and reduced order model satisfy

||y − ŷ||2 ≤ 2

n∑

j=r+1

σj ||u||2

where σr >> σr+1 and α = β.
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1 Background

Increasing performance requirements for mechatronic sys-
tems leads to continuous-time performance evaluation be-
coming more important. Continuous-time performance is
typically evaluated using a significant higher sampling rate
for the plant compared to the sampling rate of the controller,
resulting in multirate systems. Similarly to single-rate sys-
tems, multirate systems require performance quantification.

2 Problem Formulation

Consider the multirate control structure in Figure 1, where
the controller Kl is sampled at a low-rate ωs,l = ωs,h/F
and Ph at a high-rate ωs,h = 2π/hh. Performance criteria

−
Ph

uh

rh
yh

KlSd Hu

Figure 1: High-rate plant Ph operating in multirate feedback loop
with low-rate controller Kl . The signals are up- and
downsampled using Hu and Sd .

for Linear Time Invariant (LTI) systems are typically eval-
uated using Frequency Response Functions (FRFs). How-
ever, since multirate systems are Linear Periodically Time-
Varying (LPTV) [1], evaluating frequency domain models
is not trivial. Several definitions for FRFs for multirate
systems are available [2], requiring multiple experiments.
Hence, the aim of this paper is to develop a more time-
efficient method to identify multirate FRFs.

3 Approach

This paper considers the Performance Frequency Gain
(PFG) definition of multirate FRFs, given by [2]

P
(

e jωhh
)
= sup

wh ̸=0

∥ζh∥P
∥wh∥P

, (1)

where ζh and wh are chosen by the user, with wh contain-
ing only one frequency component.The PFG represents the
maximum response of a system for a single input frequency,
hence requiring a multitude of experiments to determine for
a frequency grid. An alternative representation of the PFG
uses Kl and Ph [2]. To identify Ph, this paper uses the time-
lifted representation, translating a SISO LPTV into a MIMO

LTI representation [1]. First, define J : r 7→ y and S : r 7→ u,
where r = Lrh, y = Lyh, u = Luh and L the time-lifting
operator. Ĵ and Ŝ are estimated with local polynomial mod-
eling, since it identifies MIMO systems in a single experi-
ment [3]. Second, recover the time-lifted original system as
P̂ = LP̂hL−1 = Ĵ Ŝ

−1
. The high-rate system P̂h is found by

inverse lifting [1, Section 6.2.1]. Finally, the PFG is calcu-
lated by performing the procedure in [2], using P̂h and Kl .

4 Initial Results

A high-rate fourth-order system Ph with controller Kl is con-
sidered with F = 3. The PFG is determined based on an
estimate of Ph, both using an Emperical Transfer Function
Estimate (ETFE) and the developed approach. The estima-
tion error of the PFG for these methods is shown in Figure 2.
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Figure 2: Error for estimating the PFG for ETFE ( ) and the
developed approach ( ) .

5 Ongoing Research

Ongoing research is focused at validating the framework in
an experimental setting.
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1 Introduction
Previous work of our research group showed how the least-
squares optimal realisation of an autonomous linear time-
invariant (LTI) system can be obtained by solving a mul-
tiparameter eigenvalue problem (MEVP), the eigen-tuples
of which characterise the globally optimal solution(s) [3].
We extend this methodology to the single-input single-
output (SISO) setting, resulting in an approach for least-
squares globally optimal misfit modelling for SISO systems.
Thereby we address a longstanding open problem of least-
squares optimality in misfit modelling.

2 Misfit modelling
We parametrise LTI models by means of a rational trans-
fer function b(z)/a(z) in the time-delay operator z−1, which
maps the input to output. This model description is a spe-
cial case (misfit-only) of the more general misfit versus la-
tency framework [4]. The degree n of the numerator and the
denominator of the transfer function determines the com-
plexity of the model. Given a sequence of input-output
data www = (uuu,yyy) ∈ RN ×RN and a specified model com-
plexity n, we want to identify the model for which the 2-
norm of the corresponding misfit is minimal. The mis-
fit w̃ww = (ũuu, ỹyy) ∈ RN ×RN is the ‘modification’ that has to
be made to the given data such that the resulting sequence
ŵww = (ûuu, ŷyy) ∈ RN ×RN satisfies the model equations of the
identified model exactly. A schematic overview is given in
Figure 1. Misfit modelling has close links to Willems’ be-
havioural approach [6, 5] on the one hand and (structured)
total least-squares on the other [2, 1].

LTI model: b(z)
a(z)ûuu ŷyy

+ +

yyyuuu

ũuu ỹyy

Given data

Unknowns

Figure 1: Schematic overview of the identification problem in
the misfit setting. The given input-output data (uuu,yyy) is
decomposed in a regular part (ûuu, ŷyy) that satisfies the LTI
model exactly, and a misfit part (ũuu, ỹyy), the 2-norm of
which should be minimized. In spirit, the misfit idea is
close to the dynamic errors-in-variables approach, but
we do not presume any a priori statistical assumption.

3 Problem formulation
Several approaches to solve the misfit modelling optimisa-
tion problem have been proposed in the literature, both for
the parametrisation used here [2, 1], and for a behavioural
(isometric) state-space parametrisation [5]. However, these
iterative methods remain heuristic, in the sense that conver-
gence to a globally optimal model is not guaranteed.

The misfit modelling problem can be written as:

min
ũuu,ỹyy,ai,bi

σ2 = ||ũuu||22 + ||ỹyy||22 =
N−1

∑
k=0

(uk − ûk)
2 +

N−1

∑
k=0

(yk − ŷk)
2,

s.t. ŷk+n +a1ŷk+n−1 + ...+anŷk = b0ûk+n+

b1ûk+n−1 + ...+bnûk ∀k ∈ {0, ...,N −n−1},

with ai,bi ∈ R, i = 1, ...,n the coefficients of b(z)/a(z). Ob-
viously, this optimisation problem is nonlinear, yet, upon
closer inspection, its nature is multivariate polynomial: the
objective function is a sum of squares, and all unknowns
(the ûk’s, ŷk’s and the transfer function coefficients) also ap-
pear as multivariate polynomials in the constraints. Upon
invoking Lagrange multipliers, the first order necessary con-
ditions for optimality are also multivariate polynomials, the
common roots of which characterise the globally optimal so-
lutions of the identification problem. Rooting such problems
is equivalent to solving an MEVP.

We will elaborate on these lines of thought in more detail in
our presentation and we will reveal the special properties of
the optimal model and associated data sequences, some of
which have already been briefly mentioned in [1].
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1 Introduction

For autonomous systems, previous work has shown that the
globally optimal least-squares misfit identification can be
translated to a multiparameter eigenvalue problem (MEVP).
Such an MEVP can be solved using a linear algebra frame-
work, allowing the characterization of the globally optimal
solution and its system theoretic properties [1]. We will ex-
tend these results to the identification of two-dimensional,
and by extension, general multidimensional systems.

2 Multidimensional autonomous systems

Multidimensional autonomous system models contain more
than one independent variable, e.g. time and space. We con-
sider two-dimensional, linear, shift-invariant, single output
commutative state space models of the form:

xk+1,l = A1xk,l , xk,l+1 = A2xk,l , yk,l = Cxk,l(0)

with A1A2 = A2A1.

As a first step towards solving this multidimensional mod-
elling problem, starting from a given output sequence
yk,l , we confine ourselves to the identification of systems
for which A1 and A2 are simultaneously diagonizable.
More precisely, we assume that A1 = VΛΛΛ1V−1 and A2 =
VΛΛΛ2V−1, where the ΛΛΛi-matrices are diagonal matrices con-
taining the eigenvalues of the Ai-matrices and the matrix V
has the common eigenvectors as its columns. Note that this
is a sufficient, though not a necessary condition for the ma-
trices to commute. Under this assumption, an n-th order au-
tonomous 2-D model can be parameterized by the 2n eigen-
values λ (i)

j of the Ai-matrices, the n components ξ j of the
initial state x0,0 and the n components c j of the row vector
C. This parameterization can of course be easily extended
to even higher dimensional models.

3 Least-squares misfit identification

In the misfit identification framework, the given output se-
quence yk,l is altered by a misfit sequence ỹk,l to obtain the
so-called ’exact’ data ŷk,l = yk,l − ỹk,l . As the name implies,
the ’exact’ data ŷk,l is required to satisfy the equations of the

identified state space model exactly. For some predefined
order n, misfit modelling then aims to find the nth order sys-
tem that minimizes the 2-norm of the misfit sequence. More
formally, this corresponds to solving the following nonlinear
least-squares problem [2]:

min
λ (1)

j ,λ (2)
j ,ξ j ,c j

||ỹ||22 =
N1

∑
k=0

N2

∑
k=0

(yk,l − ŷk,l)
2

s.t. ŷk,l = ∑n
j=1 c jξ j

(
λ (1)

j

)k(
λ (2)

j

)l
.

Obviously, the misfit modelling optimisation problem is
non-linear, yet, upon closer inspection, its nature is mul-
tivariate polynomial: the objective function is a sum of
squares and all unknowns also appear as multivariate poly-
nomials in the constraints. Upon invoking Lagrange multi-
pliers, the first order necessary conditions for optimality are
also multivariate polynomials, the common roots of which
characterise all stationary points, including the global opti-
mal solutions. Rooting such problems is equivalent to solv-
ing an MEVP. Furthermore, this characterization allows us
to describe the system theoretic properties of the globally
optimal model and its misfits. In particular, we aim to ex-
tend Walsh’s theorem to the multidimensional setting [1, 3].
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1 Abstract

Quadrotors are a versatile and popular category of Un-
manned Aerial Vehicles (UAVs). They can take off and
land vertically and perform sophisticated maneuvers, while
still being relatively small in size with a simple structure
and low maintenance costs. They are also easily acces-
sible due to the availability of off-the-shelf components
and open-source autopilot solutions that enable fully au-
tonomous flight. Quadrotors are recently becoming more
widespread in commercial and civil applications, because of
improvements in computational power, battery life, minia-
turization, and reduction of sensor complexity. Due to these
improvements, combined with many concurrent advances in
robotics, swarms of quadrotors are emerging as a suitable
technology for complex missions [2].

Designing platforms for real-world swarm applications is
challenging [3], for instance because each robot in a swarm
must measure information within its immediate environment
via its onboard sensors [1]. More onboard sensing capa-
bilities are therefore required than would be needed if the
UAV were to be fully controlled by a base station. In the
case of quadrotors, a further design challenge is that local
failures are unlikely to remain local, because the robots are
much more agile and powerful than ground vehicles of sim-
ilar size. Their failures are likely to cause collisions and
damage to neighboring quadrotors and objects in the envi-
ronment.

On the one hand, overcoming the design challenges of
quadrotor swarms by using several expensive sensors and
increasing the size of the quadrotors is not optimal in terms
of the cost factor. On the other hand, as individual quadro-
tor size and mass decrease, the ability to sense its local en-
vironment also decreases, because each quadrotor can carry
only lighter, cheaper (and often less capable) sensors and
actuators. A smaller, lighter quadrotor is often less capa-
ble of acting on its environment, intensifying design chal-
lenges for complex missions. Designing a quadrotor for
swarm robotics research requires adequate lab facilities, the
ability to build platforms from scratch, and an extensive

budget. As real-world experiments with quadrotor swarms
consume a lot of resources, most of the current research in
swarm robotics instead presents non-realistic simulation re-
sults without actual robot implementation [4]. In the limited
cases where real UAVs are used, most implementations use
commercial off-the-shelf quadrotors that often lack com-
plete documentation and openness and have limited extensi-
bility for allowing researchers to modify them for scientific
work.

In this work, we present a novel, well-documented, entirely
open-source quadrotor platform to foster and support re-
search involving quadrotors in swarm robotics. The quadro-
tor can operate both in laboratory settings and outdoor en-
vironments, can rely only on onboard processing and sens-
ing without external infrastructure or positioning (e.g., GPS,
motion capture system). We are currently validating the
hardware and its support software in indoor experiments.
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1 Introduction

In recent years, the development of UAVs and their au-
tonomous flight have received significant attention. When
planning a multiple UAV flight, coordination among the
agents needs to be addressed. In order to prevent collision
and perform a mission efficiently, the trajectory of each ve-
hicle should be predicted and tracked in real-time. Model
Predictive Control (MPC) has shown promising path plan-
ning results for autonomous vehicles. A distributed ap-
proach is discussed to ensure computational feasibility in
real-time. In distributed MPC, each UAV is an individ-
ual subsystem and solves its optimal control problem au-
tonomously while considering the estimated states of other
UAVs. The proposed approach should ensure that the entire
system converges to the planned destination while avoiding
the collision. First, we define a centralized problem, which
is later decomposed into distributed cooperative problems
for each UAV [1].

2 Problem formulation

The mission consists of multiple agents departing from dif-
ferent starting points in the area of interest. Each agent has
an attributed destination, a point of interest where the UAV
needs to take a snapshot. Points of interest and their distri-
bution are given a priori by the centralized global planner.
An example of a mission with 2 UAVs is given in Figure
1. The points are defined in Cartesian coordinates with con-
stant altitude.

Figure 1: Mapping mission for 2 UAVs

A dynamic model of an UAV is given in (1) and (2). The
system states are represented by Cartesian and angular coor-
dinates and are given by a =

[
x y z φ θ ψ

]⊤ where x, y and

z are position coordinates; and φ , θ and ψ are angular posi-
tions. The inputs are u =

[
U V W P Q R

]⊤, where U , V , W
are velocities and P, Q, R angular velocities of an UAV [2].




ẋ
ẏ
ż


=




CθCψ Sφ SθCψ −Cφ Sψ Cφ SθCψ +Sφ Sψ
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φ̇
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=
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0 Cφ −Sφ
0 Sφ/Cθ Cφ/Cθ
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R


 (2)

Distributed MPC problem for each vehicle i ∈ N minimizes
the cost function:

Ji(tk, pa
i ,u

a
i ) =

∫ tk+hp

tk
γai∥pa

i (t, tk)∥2 + γui∥ua
i (t, tk)∥2 dt

+ γtigi(pa
i (tk +hp, tk))

(3)

subject to constraints:
ȧ(t; tk) = f (a(t; tk),u(t; tk)),a(t; tk) ∈ A ,u(t; tk) ∈ U (4)

∥pi(t, tk)− p j(t, tk)∥ ≥ α,∀i, j ∈ N, j ̸= i (5)
vmini ≤ vi(t)≤ vmaxi ; |ωi(t)| ≤ ωmaxi (6)

where pa
i = ∥(xi,yi,zi)− (xd

i ,y
d
i ,z

d
i )∥2 and ua

i are distances
between desired and actual position and inputs of i-th ve-
hicle, respectively; gi represents terminal cost and γai,γui,γti
are weighting scalars. Constraint (4) represents the system
dynamics and constraints on the inputs. Constraint (5) en-
sures that there is no collision between vehicles i and j, with
a minimum safe distance α . Physical constraint (6) bounds
velocity and angular velocity of an UAV.
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1 Introduction

Unmanned Aerial Vehicles takes more and more places in
many domains due to their numerous possible applications.
Therefore, understanding their inherent dynamics and us-
ing them as desired is a key feature in their development.
The first approach has been to consider a linear model of
the quadrotor and then use linear controllers [1]. Those con-
trollers can handle the quadcopter dynamics under the as-
sumption that they are in almost hovering conditions. How-
ever, many applications need to control the aircraft in a
larger span of conditions as specific tasks, perturbed envi-
ronment or loss of control in flight. It is why, nonlinear con-
troller were rapidly considered in this domain.

In this work, we will use a feedback linearization process,
the Incremental Nonlinear Dynamic Inversion , to control
the Parrot Mambo Drone.

2 Quadcopter model

Quadcopters are 6 degrees of freedom aerial vehicles
equipped with four rotors (Figure1). The rotors produce
forces and torques that allows moving the body into a 3D
environment.

z
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y
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w3w2

w4
F1
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3
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Figure 1: Aircraft with 4 rotors in the body frame

3 Incremental nonlinear dynamic inversion

The Incremental Nonlinear Dynamic Inversion (NDI) con-
troller is a feedback linearization controller [2] which uses
derivatives of the system states as an input. Consider a non-
linear model of a drone:

ẋ = f (x)+g(x)u (1)

The idea is to impose that ẋn behaves according to a virtual
input ν in small time increment:

∆ẋn = ∆ν ≈ b(x)∆u (2)

Then, the input can be computed as :

∆u(t) = b−1(x)∆ν (3)

The virtual input can be selected as a state feedback law :

ν =−k1x1 − k2x2 −·· ·− kn−1xn−1, (4)

and b(x) is the jacobian matrix w.r.t. the input.

4 Simulation Results

Figure 2 shows simulation results.

Figure 2: Simulation Results - Trajectory following comparison
between the INDI controller and a classic PID structure
for the Parrot Mambo Drone
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1 Introduction

This work presents an optimal control problem formula-
tion for online trajectory generation in drone racing through
gates and tunnels. Often, state of the art solutions for pass-
ing gates rely on predefined waypoints or keyframes in front
of and behind the gate with fully determined dynamic state
to assure collision free passage [1], or trust that a tradeoff
between a progress reward and a safety reward will keep the
drone close enough to the gate center in order not to hit the
sides [2]. In both cases, the gate geometry is not explicitly
taken into consideration. A technique that does explicitly
take into account gate geometry by representing the space
around it as forbidden area uses the separating hyperplane
theorem to avoid collision [3]. This technique, however,
scales badly with the number of obstacles, and is not robust
against varying configurations of drone and gate poses.

Another issue when planning the motion through a gate is
that the time at which the drone passes through the gate is a
priori unknown. Often it is manually fixed or decided by a
heuristic.

2 Presented approach

The approach presented in this work formulates the motion
planning problem as a multi-stage optimal control problem
(OCP). This means that the full motion planning problem
is split up into stages, each constrained by the same vehicle
dynamics, but with their own specific box constraints that
delimit the collision free space. For one gate, it considers
three stages: an approach stage, a fly-through stage and a
fly-away stage. Figure 1 illustrates that the drone position
is constrained to the red, yellow and blue area for each of
the stages respectively. The formulation is readily extended
to multiple gates by adding more stages. For the 3d case, it
suffices to add two more constraints in the fly-through stage
for the sides of the gate.

3 Results and future work

This approach explicitly takes into account the gate geome-
try, the advantage of which is clearly observed in Figure 1:
the solution takes the fastest route, not the route through the
gate center. It also directly tackles the passing time prob-
lem by splitting the full motion planning problem up into
subsequent stages of which the travel times are minimized
together in one OCP.

Figure 1: Left: Multi-stage for one gate. Right: Solution of
the motion planning problem through a short, stretched
gate and a long, narrow gate.

The formulation is succesful in generating feasible trajecto-
ries for a large range of gate configurations, unlike the sep-
arating hyperplanes approach. Computation times for two
gates are in the order of 350 ms on a laptop with power-
ful CPU. To enable fast onboard computations, several tech-
niques could be explored such as the use of SQP solvers
with smart initialization, real time iteration schemes and au-
tomatic C-code generation.

Future work includes these techniques for computation
speed up, as well as an approach to recede the planning hori-
zon, such that the OCP can be solved in a model predictive
control fashion. The approach will be demonstrated in a
physical experiment.
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1 Introduction

To improve comfort in Autonomous Vehicles (AVs), their
control systems can mimic human drivers. Imitation learn-
ing algorithms serve this purpose but they usually are fully
model-free approaches. On the other hand, Model Predic-
tive Control (MPC) always relies on a (simplified) dynamic
model of the vehicle and its surroundings. This work sug-
gests a seamless combination of the two approaches to ob-
tain a human-like AV controller from demonstrations of a
desired behavior for a lane keeping control task, exploiting
MPC to obtain a model-based version of popular imitation
learning algorithms.

2 MPC for End-to-End Differentiable Imitation
Learning

In our context, MPC is defined as a deterministic policy,
providing a control action based on the current state of the
system and on some learnable parameters at = π(st ,θ). To
compute the optimal control action, it relies on a predic-
tive differentiable model of the plant st+1 = f(st ,at). To
match the human driving behavior, imitation learning al-
gorithms minimize loss functions L(st) depending on the
states. With a model-free policy, this determines the need
of a reinforcement learning step in the loop, while, with our
model-based approach, we can exploit the MPC structure
to differentiate from st to θ . Indeed, in order to compute
∇θ L(st) = (∇sL∇θ s)|s=st , we can compute ∇θ s|s=st in a re-
cursive fashion as:

∇θ s|s=st = (∇a f ∇θ a)|a=at−1+ (1)

(∇s f ∇θ s)|s=st−1 +(∇a f ∇sa∇θ s)|a=at−1,s=st−1

The computation of ∇θ a relies on the Karush–Kuhn–Tucker
conditions of the MPC.

3 Example: human-like lane keeping control from
demonstrations

It has been shown [1] that human lane keeping in curved
roads very rarely follows centerline driving. However, that
is the common objective for most of lane keeping con-
trol algorithms. Therefore, human lane keeping demonstra-
tions are collected on a fixed-base simulator, with constant

Figure 1: Training loop of MPC-based imitation learning for lane
keeping control

Figure 2: Evolution of the lane centerline deviation d on the
whole track from initial condition (left, θ1,2 = 0) to
learned policy with state cloning (right)

50km/h speed. The controlled vehicle is simulated in Sim-
center Amesim as a 15DOF high-fidelity model. The MPC
policy relies instead on a 6DOF model bicycle model in
Frenet coordinates. Its constraints limit the centerline de-
viation d such that the vehicle stays on its lane. Its cost
function is defined as J(θ , t) = a2

y +(θ2st +θ1)
2.

In Figure 2 we show the results obtained by a state cloning
algorithm, which can be thought of as the model-based
adaptation of a behavioral cloning algorithm. Specifically,
the loss function is L(st) =

1
T ∑T

1 (dt − d̂t)
2, where d̂ is the

human demonstrated lane centerline deviation.
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1 Introduction

OEMs starting development in ADAS application require
the final product to be balancing both comfort and safety at-
tributes. To provide a comprehensive testing, it is needed to
develop a methodology that can highlight realistically those
attributes while keeping costs and risks at the lowest level.
Exclusive real world testing is not affordable, while rely-
ing only on simulation data does not guarantee the desired
accuracy. To tackle this issue, by intertwining virtual en-
vironments with physical measurements a Digital Twin of
the ADAS ecosystem is obtained, containing both the ego
vehicle and its surroundings.

2 Vehicle Model Identification

This work focuses on the simultaneous identification of
two vehicle models with separate functionalities: a Linear
Parameter-Varying (LPV) control model and a high-fidelity
simulated plant model. Both can help in enhancing control
and testing for ADAS comfort applications.

2.1 Single-track LPV model
In modern controllers such as Model-Predictive Control
(MPC), a linear single-track model is usually derived, whose
parameters are identified using vehicle measurements of
constant-speed maneuvers. However, the values of the ob-
tained cornering stiffness parameters C f ,Cr vary severely
with the longitudinal speed of the vehicle vx, so a model
identified with data obtained at a certain velocity will not be
representative in multiple speeds scenarios. To mitigate this
inaccuracy, the identification and use of a single-track LPV
model is proposed, using data collected at different veloc-
ities with the test vehicle in Figure 2. Figure 1 shows the
comparison between the results of an LTI model where C f
and Cr have constant values and a LPV model obtained with
the tool presented in [1].

(a) 20 km/h (b) 50 km/h (c) 100 km/h

Figure 1: Comparison between LPV, LTI and physical measure-
ment for the lateral velocity in a step steer maneuver at different
speed

Figure 2: Test vehicle
equipped with steering
robot used for data col-
lection

Figure 3: Performance
difference between non-
optimized and optimized
models with respect to real
data

2.2 15DOF plant model with optimized tire model
A precise representation of the physical vehicle is of
paramount importance to study the dynamical responses of
the vehicle to control actions and for the computation of
comfort and safety metrics. For these reasons, a model more
complex than the LPV one is needed; this work proposes a
15DOF model in Simcenter Amesim coupled with a Pace-
jka tire model. The 15DOF model has different components
that need to be populated with parameters: the chassis, the
suspensions and the tire. Of the three of them, the tire pa-
rameters are the ones that are more difficult to obtain; more-
over, they greatly affect the accuracy of the complete model.
To mitigate this issue, an optimization process has been per-
formed with Simcenter HEEDS on the PKY1 and PKY2 pa-
rameters of the magic formula, using 250 evaluations and
setting as objectives the minimization of the difference be-
tween the states of the model and the corresponding data
measured on a real vehicle. Figure 3 shows the effect of the
optimization on the final performance of the model.
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1 Introduction

One of the most critical issues for ensuring safety and high-
quality performance in the control of swarms of unmanned
aerial vehicles (UAVs) is collision avoidance. The current
collision avoidance systems have satisfactory performance
with regards to path planning optimization [1], but the com-
putational cost and the requirements on measurement in-
formation increase with the collision avoidance precision.
When implementing these algorithms, the embedded colli-
sion avoidance system faces hardware restrictions, and mea-
surement errors. The objective of this work is to propose
a combination of low-cost strategies based on geometrical
rules and potential field forces that require low computa-
tional cost, and limited information about the environment.

2 Potential field collision avoidance approach

The potential field approach for collision avoidance prob-
lems is a strategy based on a virtual force Fi (i = 1, ...,n)
with a magnitude and desired direction in order for the UAV
to avoid collisions [2]. Specifically, the virtual force con-
sists of an attraction component Fatt that considers the target
and the other drones when a formation is required and a re-
pulsion force Frep, which considers the distance to the other
drones and the fixed obstacles in the terrain. The final force
Fi is shown in Figure 1.

Static obstacle

Moving obstacle

Goal

Figure 1: Collision avoidance with obstacles.

3 Geometrical rule

The potential field method sets the direction in which the
UAV can avoid collisions. However, it can generate infinite
oscillations in some cases when the trajectory is subject to
restrictions. One such case occurs when agents fly in front

of each other. It is therefore proposed to adapt the target
using geometric rules.

4 Simulations results

The first simulation presented in Figure 2 shows the behav-
ior of the algorithm in the presence of two static obstacles.
When the UAV enters the critical area the UAV avoids colli-
sion. In the second case two problematic scenarios are pre-
sented: UAV head to head and UAVs with a cross-shaped
path shown in Figure 2 and 3 respectively. The geometrical
rule avoids the evident collision in both cases.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
X (m)

0

2

4

6

8

10

12

14

Y 
(m

)

Collision Avoidance with obstacles
Initial conditions
Goal position
Obstacles
Repulsion area

Figure 2: Collision avoidance with static obstacles.

0 10 20 30 40 50
X (m)

0

10

20

30

40

50

Y 
(m

)

UAV going head to head
UAV 1
UAV 2
Initial conditions
Goal position

0 10 20 30 40 50
X (m)

0

10

20

30

40

50

Y 
(m

)

UAV going from cross to cross
UAV 1
UAV 2
Initial conditions
Goal position

Figure 3: Collision avoidance method in two scenarios:
(left) UAVs going head to head, (right) UAVs with
a cross-shaped path.

References
[1] Huang, S., Teo, R. S. H., & Tan, K. K. (2019). ”Col-
lision avoidance of multi unmanned aerial vehicles: A re-
view”. Annual Reviews in Control, 48, 147-164.

[2] L Garcia-Delgado et al. “Quad-rotors formation based
on potential functions with obstacle avoidance”. In: IET
Control Theory & Applications 6.12 (2012), pp. 1787–1802.

102



Book of Abstracts 41st Benelux Meeting on Systems and Control

Modelling of a Primary Flight Electromechanical Actuator
considering Temperature and Production Variability

Benjamin Wauthion, Michel Kinnaert
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1 Introduction

The development of electrically powered actuators for flight
controls has started in the nineties within the framework
of the ’more electrical aircraft’ trend. The design of the
Electro-Hydrostatic Actuators (EHAs) has been a significant
step of this evolution since it has granted the suppression of
one of the three independent hydraulic systems present on a
conventional aircraft [1]. Then, the Electromechanical Ac-
tuator (EMA) was presented as an alternative to EHAs since
it provides a simpler solution that could improve weight,
consumption and reliability figures while decreasing main-
tenance requirements. Nevertheless, for critical application,
the reliability of the EMA technology has not yet been suf-
ficiently demonstrated. In fact, comparing to the other kind
of actuators, an EMA contains gear teeth, ball bearings and
screw, which makes difficult the prediction of its behaviour
over a long-time horizon for the primary flight control ap-
plication. Particularly, the occurrence of excessive friction
or excessive backlash has to be prohibited for safety reason.
To understand those phenomena, and to be able to predict
them, a model of the EMA has to be built. Based on the
afore mentioned model a health monitoring procedure can
be used to quantify the degradation of EMA components,
and this before that a failure appears.

This abstract introduces the procedure for modelling an
EMA. The main challenge is to build a model that fits a large
population of EMAs that contain production variability that
can be translated into parametric model uncertainty. The in-
dustrial partner, SABCA, provides data sets to analyse this
production variability as well as test benches to test and val-
idate the EMA model.

2 The approach

The model describes the EMA (constituted of an electric
motor, a gear box, a nut/screw mechanism, and a rod) and
its environment, namely, the controlled surface (CS) linked
to the EMA and the external force applied on the CS. This
external part models either an in-flight aerodynamic force
or the interaction with the test bench. Figure 1 gives an
overview of the system.

In order to describe the friction and backlash phenomena,
the model contains on the one hand, a three parameters

Figure 1: Schematic view of the EMA and its environment

Stribeck friction model, and on the other hand a three param-
eters backlash model. The friction model combines stiction
and viscous frictions terms and accounts for dependence
with respect to the load. The backlash model includes a
”Pure backlash” zone (inherent to the mechanical compo-
nents) and a ”stiffness” zones (corresponding to the contrac-
tion of the EMA components). A state space model of the
EMA can then be written as follow.

Ẋ = f (X ,U,Φ0) (1)

Where X and U are the states and inputs vectors and Φ0
is the vector of friction and backlash parameters associated
to a healthy EMA. By exploiting the database of produced
EMAs, a parameter vector Φ0 is identified for each EMA.
A non-negligible dispersion of the parameter values due to
the production variability is found. To approach the prob-
ability distribution of the parameters a combination of nor-
mal distribution is used. By taking this parameter variability
into account, the model is then able to represent the entire
SABCA actuator fleet.

In parallel, using the SABCA tests benches, a study of the
evolution of the parameters with temperature is performed
in order to include a temperature dimension in the model.
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1 Introduction

Gravitational Waves are distortions of spacetime which are
induced by cosmic events such as the merger of black holes.
Current generation detectors such as Virgo [1] and LIGO [2]
have been able to measure these spatial distortions which
are in the order of 1×10−18 m. Next generation detectors
such as Einstein Telescope [3] aim to measure distortions in
the order of 1×10−20 m, allowing to look even further into
space.

2 Measurement principle

These distortions of space are measured using the concept
of interferometry. In Fig. 1, a basic interferometer is shown,
which is a simplified configuration of a typical Gravita-
tional Wave detector. The laser on the left emits a beam
of light through the Beam Splitter (BS), splitting the beam
into two orthogonal directions: to the right and upwards.
The individual beams are reflected back by the End Mir-
rors (EM) and subsequently interfere at the BS. The inter-
ference pattern, determined by the relative length difference
between the BS and two EMs, is measured by a photodi-
ode (PD). Gravitational Waves have the property that they
stretch spacetime in a certain direction and simultaneously
contract it in the orthogonal direction by the same amount,
hence changing the measured interference pattern.

Figure 1: Simplified configuration of an interferometer used in
Gravitational Wave detectors.

3 Control challenges

Control systems play a crucial role in the operation and per-
formance of Gravitational Wave detectors. One of their main
applications is to actively align the mirrors with respect to
each other, both in the longitudinal direction of the beam
as well as their angular orientations. The mirrors and other
optical components must furthermore also be isolated from
environmental disturbances, requiring the use of multi-stage
vibration isolation systems. Passive isolation is typically not
sufficient, necessitating active control of the isolation stages.
Both types of control systems are often MIMO problems
that deal with different types of disturbances, yielding a va-
riety of challenges when designing the controllers for these
systems.

The sensitivity of the detector is solely determined by a sin-
gle degree of freedom (DoF), which is the difference in
length between the two arms. Each disturbance couples
through different subsystems to the differential arm length
and many of these disturbances are attenuated on a subsys-
tem level. A more global approach to the control design
may yield further improvements in terms of optimizing the
detector sensitivity.

4 Technological challenges

Current and next generation Gravitational Wave detectors
face a wide variety of technological challenges. Advance-
ments in the control systems can contribute to tackling many
of these challenges and therefore lead to improved detection
capabilities.
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1 Introduction

The design process of Cyber-Physical Systems of Systems
(CPSSs) consists of a multi-disciplinary engineering pro-
cess focusing on functional specification and verification of
scenarios and a mono-disciplinary engineering process fo-
cusing on the realization of these scenarios in a platform
composed of mechanical, optimal, electrical and software
components. These engineering disciplines each use a spe-
cific set of engineering methods, tools and technologies that
are loosely coupled both on a syntactic and on a semantic
level. This has a major impact on engineering efficiency; It
hampers verification sufficiently early in the development
process, especially concerning system-wide (performance
and safety) aspects (e.g. throughput and collision avoid-
ance). Additionally, it hinders system evolvability and de-
ployment, i.e. introducing new scenarios or adaptation of
existing ones. To significantly improve engineering effi-
ciency seamless syntactic and semantic interoperability be-
tween the multi-disciplinary modelling tools need to be es-
tablished, enabling rapid deployment of (new) machine sce-
narios and effective prediction and trading-off of key system
aspects concerning performance and correctness.

2 Involved tools

The following tools each tackle one or more aspects in the
engineering of CPSSs:

1. LSAT1: LSAT is short for Logistics Specification and
Analysis Tool, and can be used for system specification
through resources that consist out of peripherals. These pe-
ripherals can execute actions. Activities are aggregations of
actions, that describe a piece of behavior in the system, and
can be dispatched on the system. LSAT also has visualiza-
tion techniques such as Gantt charts, movement trajectory
plots, and graphical editing to aid the engineer.
2. PLE tool: The Product Line Engineering (PLE) tool is
used for variability management in of the system, and can
automatically validate and derive product instances within a
product line.
3. CIF2: CIF, as part of the Eclipse Supervisory Control En-
gineering Toolkit (Eclipse ESCETTM), is an automata-based

Research leading to these results has received funding from the EU EC-
SEL Joint Undertaking under grant agreement no 826452 (project Arrow-
head Tools) and from the partners national programs/funding authorities.

1https://esi.nl/research/output/tools/lsat
2https://www.eclipse.org/escet/, ‘Eclipse’, ‘Eclipse ESCET’ and ‘ES-

CET’ are trademarks of Eclipse Foundation, Inc.

tool and language, and is used to specify system behavior,
formulate behavioral requirements, and perform supervisory
controller synthesis to obtain a correct-by-construction su-
pervisory controller that adheres to the requirements.
4. SDF33: SDF3 is used for makespan analysis, to find
the optimal behavior that, for instance, produces products as
quickly as possible.
5. mCRL24: mCRL2 is a model checking tool in which
properties of system behavior can be specified and verified.
This can guarantee particular behaviors in the system, and
when a property does not hold a counter-example is given to
aid in solving the problem.
6. AEE: The Activity Execution Engine (AEE) is used to go
from a model of the system and controller, to deployment of
the controller on the physical system. Through the AEE, the
timing requirements as specified in LSAT are adhered to.

3 Toolchain and interoperability

The introduced tools all have their own specific functional-
ity. With their combined functionality, they can be used in
a workflow for model-based system engineering of CPSSs.
An example for such a workflow is as follows:

1. A product line is specified in LSAT.
2. Given a feature configuration, an LSAT product instance
can be derived with the PLE tool.
3. Safety requirements are specified, and a supervisory con-
troller is synthesized with CIF.
4. Using the timing information given in the LSAT model,
SDF3 is used to select the optimal dispatching sequence
of activities from the safe behavior of the supervisory con-
troller.
5. With mCRL2, progress properties are verified for the be-
havior that results from the obtained dispatching sequence.
6. The obtained control strategy can be deployed on the
physical system using the AEE.

Since all tools use their own semantics, automatic model
translators have been developed to obtain equivalent mod-
els with which the tools can perform their operations. The
Arrowhead Framework is used as an Internet Of Things so-
lution to realize seamless integration between the tools. This
means that the services from the tools can be used, without
unnecessary manual steps. In this way, concept flexible and
efficient model based design of CPSSs can be performed.

3https://www.es.ele.tue.nl/sdf3/
4https://www.mcrl2.org/
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1 Introduction
Developing supervisory controllers for large-scale cyber-
physical systems is becoming increasingly difficult due to
large numbers of actuators and sensors involved. Supervi-
sor synthesis, introduced in [1], enables control engineers
to automatically derive such a supervisory controller from a
model of the plant and a model of the control requirements.
Model simulation is often used to validate the controlled
system behavior. While simulation is a powerful tool allow-
ing for a quick analysis, it lacks certain aspects of an imple-
mented controller. These aspects include the execution on
the control hardware and communication with subsystems
and user interfaces (UIs).

To include these aspects in the validation process, hardware-
in-the-loop (HIL) simulation can be used, where the supervi-
sory controller is implemented on the control hardware and
where it communicates with simulated subsystems and UIs.
Real-life case studies that use supervisor synthesis and HIL
simulation are, however, few in number. In this work, we
present a case study that has been performed for the devel-
opment of a supervisory controller for the Swalmen tunnel.

2 The Swalmen tunnel
The Swalmen tunnel is a road tunnel in the Netherlands that
is 400 meters long and that consists of two traffic tubes and
an escape route between them. The northern entrance of the
Swalmen tunnel is shown in Figure 1.

Figure 1: Northern entrance of the Swalmen tunnel.

The main function of the supervisory controller is to moni-
tor the situation in the tunnel using sensors, and to correctly
handle an emergency when it is detected. A supervisory
controller has been synthesized from a plant model consist-
ing of 180 automata and 414 requirement models.

3 HIL simulation
The first step after synthesis is obtaining PLC code from the
supervisory controllers. Because of the formal description
of the controller model, automatic PLC code generation is
possible. The inputs for this generator are the supervisory
controller model, and a hardware mapping that connects the
events in the controller to the inputs and the outputs of the
PLC. For the Swalmen tunnel, PLC code is generated for an
ABB PLC containing 17620 lines of code, 260 input signals,
and 46 output signals.

To perform HIL simulation, a HIL setup is used. This setup
consists of the PLC and two PCs that simulate the UI and
the virtual tunnel, respectively. These simulation models
are created using the Ignition SCADA software which can
read and write the variables in the PLC through an OPC UA
server. The simulation models are visualized and connected
to the PLC variables, e.g., a button in the UI is connected to
the corresponding input variable of the PLC.

HIL simulations have been performed for the Swalmen tun-
nel to validate the controlled tunnel behavior. In all sce-
narios, the observed behavior corresponded to the expected
behavior. Furthermore, the PLC performance has been ana-
lyzed by looking at the PLC cycle time, which was the opti-
mal value of 10ms at all times.

4 Conclusions
In a case study for the Swalmen tunnel, PLC code is au-
tomatically generated from a synthesized supervisory con-
troller, and subsequently implemented in a HIL setup.
Through HIL simulations, the controlled behavior has been
validated and it has been determined that the PLC perfor-
mance is optimal.
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1 Introduction

The delayed resonator [1] is an established concept of tuned
vibration absorption. It is an peculiar application of a de-
lay, which combined with an accelometer provides a effi-
cient way to turn a passive absorber virtually into a an un-
damped mass-spring. In the ideal case it provides complete
suppression of the vibrations, however it relies on placing
the absorber close to the target of suppression.

Recently there has been steps towards the so called non-
collocated vibration suppression problem, as represented in
the figure for a small lumped mass-spring system. The goal
of this work is to extend the delayed resonator design in
this general case. The suppression effect cannot rely any-
more directly on anti-resonance but instead a more general
equilibrium of forces. Consequently, we have to look at the
transmission zeros from the vibration force to the displace-
ment of the target mass.

2 Transmission zero assignment

To assign the zeros with the help of a delayed-resonator, we
take a state-space view of the model in Figure 1,

ẋ(t) = Ax(t)+B f (t)+Baua(t)

y(t) =Cx(t), ya(t) =Cax(t).

Here A ∈ Rn×n is the dynamics of a mass-spring-damper
system, B ∈ Rn×1 is the input matrix describing where the
vibration force f (t) = sin(ωt) acts and C ∈ R1×n specifies
the position of the target body to be suppressed. The ma-
trices Ba ∈ Rn×1 and Ca ∈ R1×n specify the location of the
vibration absorber.

It can be shown that with the delayed feedback law ua(t) =
gẏa(t − τ) a pair of transmission zeros can be placed to the
imaginary axis at ± jω by selecting the gain and delay as

g =

{
1
|z|
− 1

|z|
and τ =

{
arg(z)

ω if Im(z)≥ 0
arg(z)+π

ω if Im(z)< 0
,

where z = jω
[
Ca 0

][jωI −A −B
−C 0

]−1 [Ba
0

]
. Note that

(due to the periodicity) the value for the delay τ is actually
not unique, however the solution with the smallest delay is
preferable for the sake of overall system stability.
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Figure 1: Delayed-resonator (DR) in non-collocated vibration
suppression

3 Open problems

A cost of the simplicity in the design of the delayed res-
onator is that closing the loop using acceleration feedback
leads to a neutral time-delay system and its detrimental ef-
fect on stability is even more critical in the non-collocated
case. A further complication comes form the fact that the
tuning might be interdependent on a higher-level controller,
as in a previous work where an additional controller was as-
signed the task of stabilization [2].

Finally, in the collocated case the design of vibration ab-
sorbers in general and the delayed resonator in specific is
well studied [3]. In contrast, questions like where to place
the absorber and how to dimension it in the non-collocated
case is still open and will be addressed in the talk.
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1 Introduction

Since the recognition of mechatronics as a full-fledged
engineering discipline, many researchers, teachers and
institutions have been developing dedicated study programs
for mechatronic engineering students. The inherent
challenges of engineering fields with an interdisciplinary
nature, such as mechatronics, are dealt with in many
different ways at universities and training centers all over the
world [1, 2, 3, 4]. Nevertheless, there is a clear consensus
that a sufficient amount of hands-on experience is key to
master the design, analysis and implementation aspects of
typical mechatronic engineering problems [4, 5].

At KU Leuven, the structure of the mechatronic engineering
program is mainly determined by the general blueprint
and the broad scope of the Belgian academic engineering
curricula, which impose rather strict timing constraints. As
a result, students have only recently become familiar with
systems modeling and basic control design techniques by
the time they are gaining their first hands-on experience
with a real mechatronic system. In this presentation, we
introduce the assignments of an integrated project on active
magnetic bearings (AMBs) which has been tailored for
engineering students in this situation. Although AMB
systems form an intriguing technology arousing a lot of
enthusiasm of these future engineers, rotors supported by
AMBs often have fast, nonlinear, highly-coupled dynamics.
Therefore, it is important for them to receive clear
instructions and guidelines on their approach in order
to successfully levitate the rotor of a lab-scale magnetic
bearing setup with the standard linear systems and control
theory concepts they are acquainted with only.

2 Hardware description

The lab-scale magnetic bearing setup is based on the
commercially available MBC500R system by LaunchPoint
Technologies [6]. We replaced the high-speed rotor,
however, by a symmetric in-house designed shaft, the
flexible modes of which are irrelevant for the control design
(see Section 3 for the motivation). The 4 radial bearing
control currents are considered as inputs, whereas the 4
radial rotor displacements with respect to the bearing center
are considered as outputs; see the scheme in Fig. 1. The
axial motion of the rotor is constrained by a plain bearing. A
standard real-time computer with a high-level user interface
is connected through the analog interface of the setup.

axial plain bearing

Fig. 1: Conceptual drawing of a rotor radially supported by AMBs

3 Assignment

The assignment is twofold. On the one hand, it comprises
the rigid-body modeling of the rotor-bearing system.
By only considering rigid-body dynamics, the system’s
behavior is straightforward to derive from first principles.
Flexible dynamics would typically call for finite-element
modeling and parameter tuning, which is out of the scope
of the project: the system is unstable and the required
closed-loop identification approaches to find the actual
parameters have not been covered in the students’ program
yet. On the other hand, the students are asked to design
a stabilizing feedback control law, based on their derived
model, for levitating a shaft that is not rotating. Reducing
the scope of a classic rotordynamic problem as such offers
the opportunity of SISO control design: it is well-known that
the rigid-body dynamics of a symmetric rotor at standstill
can be completely decoupled (diagonalized) by applying
appropriate static input-output transformations [7].
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1 Abstract

Research on dynamic modeling and control of mechanical
systems is currently taking on different challenges. The dy-
namics of mechanical systems play a fundamental role in the
design for their operational functionality, meaning, the thor-
ough understanding of the dynamics of engineering systems,
including aspects of both modelling and analysis, is a key
discipline. In addition, it is an important prerequisite to the
automatic control of engineering systems, and, it is tightly
connected to the discipline of systems and control, which fo-
cuses on the fundamentals of ensuring that mechanical sys-
tems can operate safely and with desired performance. Con-
trol is also the central factor in making mechanical systems
increasingly autonomous.
In this field, designing mechanical devices that can have
compliance and mechanical robustness needed for safe and
passive interaction with an unknown environment is desired
for many applications such as health, agriculture and many
others. This goal can be achieved via using softer materials
in the design procedure of mechanical systems. Some non-
linearities in a dynamic model can arise from the material
characteristics of the system and this can also cause uncer-
tainties and also controlling these systems can become very
intricate as model based control might not be achievable
any more. For example, traditional rigid robots are made
from rigid and dense materials that can guarantee accurate
and repeatable motions. Yet, soft robotics is a relatively
new subfield of robotics with the aim to improve the mo-
tion complexity and environmental robustness that is gen-
erally lacking its rigid counterpart [1-3]. Despite numerous
beneficial factors of low-compliance [4], this imposes nu-
merous challenges on modeling and control. The dynamics
of a continuously deformable soft robot are in theory of the
infinite-dimensional nature [5,6]. This paradigm shift has
also further emphasized the challenges in control-oriented
modeling of soft robots; as their physical description are of-

ten more suited for a Partial Differential Equations (PDEs)
rather than Ordinary Differential Equations (ODEs).
In this research we investigate a reduced-order ODE model
for continuum soft robots with the aim of finding a reason-
able balance between the model precision and its applicabil-
ity for control. This model should also be able to incorporate
the hyper-elastic and visco-elastic properties of the robot.
Using this model, the goal of controlling the soft robot to
track a desired trajectory is explored using control architec-
tures in classic robotics with the aim of accurately control-
ling the posture of the soft robot.
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1 Abstract 

This paper deals with finite set model predictive control  (FS 

MPC) design for hybrid control analysis. The method is 

deemed suitable to adapt to variations in the system. It does 

so by considering the vicinity of the previous control input 

while searching for a more effective control input. The 

effectiveness of the technique is explored in tracking the 

problem of a mass spring damper system. 

 
2 Methodology 

Over the last decades, the finite set mpc has gained much 

attention in the power electronics community due to the 

discrete nature of the power switches, the low and finite 

amount of switches besides encompassing benefits of model 

predictive control [1]. In this paper, in order to improve the 

performance of the previous controller, a model predictive 

controller (FS MPC) was designed, to be cascaded in series. 

The inevitable system variations often deteriorates the 

previous control performance thus rendering the control input 

insuffient and there is a need for the modified optimal control 

input. The designed FS MPC intelligently search for the 

optional values through an algorithm based on shooting 

method renowned for the nonlinear problems . Commonly, 

the shooting method is used in the literature to solve the 

boundary value problems [2] however, in this study it was 

used to shoot for the optimum control input, starting from the 

previous control input, to make the MPC control objective 

function approach zero. The detailed algorithm is presented 

in Figure1 and will be elaborated on in the final paper.  

     
 Figure 1.Finite control set mpc based on shooting method 

 

 

 

3 Results 

The methodology was implemented on a mass spring damper 

system in matlab/Simulink for the unit step tracking case study. 

The objective function used in the FS MPC was   ∑ (𝑦𝑘+𝑖-
3
𝑖=0

𝑟𝑘)
2.In the first case (Figure 2), the linear quadratic integrator 

controller (LQI) was designed for tracking the step input (blue 

line).   

Figure 2. LQI controller response with FS MPC 

After system variation introduction, delayed response along 

with overshoot was observed (red line). In this case, proposed 

finite set mpc was used in series with LQI with variation (green 

line) the rise time was increased along with the acceptable 

overshoot phenomena. 

In the second case, instead of LQI, conventional MPC was 

designed through Simulink mpc block (blue line). In this case, 

variation was introduced by changing one of the parameters of 

the system by 20% (red plot), the response badly deteriorated. 

Afterwards, finite set mpc was added in cascade (green plot) 

the response settling time was increased without having 

overshoot. 

          
  Figure 3. Conventional mpc response with FS MPC  
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1 Introduction

The vast majority of control algorithms are implemented
on digital hardware. In recent years, analysis and synthe-
sis of linear sampled-data (SD) systems has been shifted
from using lifting technique, see, e.g. [1], to using jump-
flow (JF) systems, see, e.g. [2], that allow for mixed dis-
crete/continuous specifications. However, design methods,
such as loop shaping or mixed-sensitivity approaches [3] are
not tailored for SD systems. In this work, we aim at provid-
ing a more general dissipativity framework for JF systems
than in [2], enabling the development of SD performance
shaping techniques that use the intuition of well-known LTI
shaping techniques [3].

2 Dissipativity-Based Control Synthesis

In this work, we consider a closed-loop (CL) interconnec-
tion T between a generalized SD plant P and a discrete-
time (DT) controller K with sampling time tk = hk. The
CL SD systems has the following JF state-space realization:

T :





ξ̇ (t) = Acξ (t)+Bcwc(t), for t ∈ (tk, tk+1]

ξ (t+k ) = Adξ (tk)+Bdwd [k]

zc(t) = Ccξ (t)+Dcwc(t)

zd [k] = Cdξ (tk)+Ddwd [k],

(1)

where ξ (t) ∈ Rnξ , wc(t) ∈ Rnwc , wd [k] ∈ Rnwd , zc(t) ∈ Rnzc

and zd [k] ∈ Rnzd denote the state, continuous-time (CT) dis-
turbance, DT disturbance, CT performance channels and DT
performance channel, respectively. In this work, we have
developed LMI-based controller synthesis results that mini-
mize the SD H∞-norm

∥P∥H∞= sup
wc ̸=0,wd ̸=0

√
∥zc∥2

L2
+∥zd∥2

ℓ2√
∥wc∥2

L2
+∥wd∥2

ℓ2

(2)

and enable the development of controller synthesis design
methods for SD systems.

3 Controller Design Methods

The availability of sufficiently general synthesis techniques
allow for the development of design methods that are typi-
cally formulated as a generalized plant, in which the plant is
augmented with LTI filters that encode desired time-domain
performance criteria. To enable the design of these fil-
ters, we adopt an impulse sampler. This allows for a L2
time-domain interpretation of the SD system and, hence, a

frequency-domain interpretation, using the so-called funda-
mental frequency analysis. This allows for the development
of waterbed effect-like relations for SD systems.

4 Results

Let us consider now the problem of re-designing a CT con-
troller (that satisfies certain closed-loop specifications) as a
DT controller. The generalized plant is shown in Figure 1.
In Figure 2, we show the step response of the CL system
with 1) the CT (non-sampled-data) controller, 2) a Tustin
discretization and 3) the DT controller designed using the
SD framework. In this figure, where we have taken a large
sample interval, it can be observed that sampling leads to
performance loss, yet the SD controller performs better than
the Tustin discretization.

CHAPTER 4. PERFORMANCE SHAPING OF SAMPLED-DATA SYSTEMS

4.3.2 Controller matching

For LTI systems the H∞ framework is very mature and lots of literature is available on the
topic of performance shaping for such systems. When one has designed a controller on the
basis of the CT interpretation, a question one might ask is which discrete-time controller
approximates the CT time-domain behaviour best? This can be solved through the following
controller-matching scheme. The controller-matching technique is shown in figure 4.13.

(a) Controller matching configuration (b) Filter matching structure

Figure 4.13: Continuous-time controller matching with feedback weighting

This system can be written in the sampled-data generalized plant framework shown in ??
where the continuous-time controller is now modelled as part of the plant dynamics. The
only performance channels is the continuous-time error between the controller outputs. A
more natural design for such a controller is a simple Tustin (sometimes called bi-linear or
trapezoidal) discretization of the original CT controller. Here a comparison for the system
given in example ?? is studied to determine if this controller-matching approach can outper-
form discretization. This difference is depicted in figure 4.14.

Figure 4.14: Time-domain comparison plots between Tustin and matched DT controller

68 Design Methods for Sampled-Data Systems

Figure 1: Generalized plant for SD controller redesign.

Figure 2: Continuous-time domain interpretation of SD system.
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1 Introduction
Motivated by increasing precision demands for switched
amplifiers, this paper addresses the problem of model pre-
dictive control (MPC) design for discrete–time linear sys-
tems with a finite control set (FCS). To improve the steady–
state behavior of FCS–MPC, a cost function is formulated to
penalize the tracking error with respect to a state and input
steady–state limit cycle.

2 Problem description
Switched amplifiers are operated by fast switching among
of finite number of switch configurations. The model of
switched amplifiers is captured by the following class of
discrete–time linear systems with a finite control set:

x(k+1) = Ax(k)+Bu(k)

y(k) =Cx(k)
(1)

where x(k) ∈ Rn is the system state, u(k) ∈ {0,1}m denotes
the discrete system inputs, which represent the switching
state and y(k)∈Rq is the system output. The vector u(k) be-
longs to a finite control set U. Generally, the system output
y(k) cannot be controlled to maintain the exact output ref-
erence yre f for the averaged model at steady state; instead,
the output will oscillate around yre f , which will generate a
periodic trajectory, also known as a limit cycle.

In this work, an optimal limit cycle X := {x(0), . . . ,x(p−1)}
at steady state with a fixed length p ≥ 1 is derived [1]. X
is optimized to generate a suitable trajectory of y(k), while
satisfying certain criteria such as least mean deviation with
respect to yre f or minimum ripple amplitude. Then, the cost
function of FCS–MPC is designed such that the convergence
to the optimal limit cycle is achieved.

3 Approach
For a derived optimal limit cycle X and its corresponding op-
timal input U , the FCS–MPC for tracking this optimal limit
cycle can be formulated as the following integer optimiza-
tion problem:

min
u0|k,...,uN−1|k

J
(
x(k),Uk,X ,U

)
= ∥(xN|k − xN|k∥2

P

+
N−1

∑
i=0

∥xi|k − xi|k∥2
Q +∥ui|k −ui|k∥2

R

s.t. xi+1|k = Axi|k +Bui|k, ∀i = 0, . . . ,N −1

ui|k ∈ {0,1}m, ∀i = 0, . . . ,N −1

xi|k ∈ X, ∀i = 1, . . . ,N

(2)

where

xi|k = x(k+ i mod p), ∀i = 0, . . . ,N,

ui|k = u(k+ i mod p), ∀i = 0, . . . ,N −1,
(3)

If the optimization problem (2) is always feasible, the
asymptotic convergence is guaranteed if the matrix A is
Schur stable and the terminal cost matrix P is chosen a
positive definite solution of the linear matrix inequality
−P+Q+A⊤PA ≺ 0.

The limit cycle tracking FCS-MPC has been implemented
for one switched amplifier model [2], Figure 1 presents the
trajectory of two of the system states. It can be observed that
the system states converge to the optimal state limit cycle X
asymptotically.
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Figure 1: Trajectory of two system states of the amplifier.

4 Outlook
For future work it is of interest to develop more general
stabilizing designs for FCS–MPC and to analyze merging
of different cost functions with FCS–MPC to improve both
transient and steady–state behavior.
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1 Introduction

Practical control systems often operate in uncertain environ-
ments. Safe optimal control in such situations can be mod-
eled in many different ways. In this regard, we define an
infinite-horizon optimal control problem for a discrete-time
deterministic system, where the state is subjected to a con-
ditional value-at-risk constraint. Then, we design a distri-
butionally robust iterative MPC scheme that combines the
notions of learning model predictive control [1] and distribu-
tionally robust risk constraints [2] to progressively approxi-
mates the solution of the infinite-horizon problem.

2 Problem statement and Method

Consider the following discrete-time system:

xt+1 = f (xt ,ut), (1)

where f : Rnx ×Rnu → Rnx defines the dynamics. At time t,
xt ∈ Rnx and ut ∈ Rnu are the state and control input of the
system, respectively, and xt ∈ X ,ut ∈ U , where X and U
are assumed to be compact convex sets. The aim is to solve
an infinite-horizon risk-constrained optimal control problem
for system (1) that drives the system to a target equilibrium
point xF ∈ X . To that end, let r : X ×U → R≥0 be a
continuous function that represents the stage cost associated
to the optimal control problem. We assume that
{

r(xF ,0) = 0,
r(x,u) > 0, ∀(x,u) ∈ (X ×U )\{(xF ,0)}.

(2)

Using this cost function, the risk-constrained infinite-
horizon optimal control problem is given as

min
∞

∑
t=0

r(xt ,ut) (3)

s.t. xt+1 = f (xt ,ut), ∀t ≥ 0, (3a)
xt ∈ X ,ut ∈ U , ∀t ≥ 0, (3b)
x0 = xS, (3c)

CVaRP
β [g(xt ,w)]≤ δ , ∀t ≥ 0, (3d)

where xS ∈ X is the initial state and constraint (3d) repre-
sents the risk-averseness. Here, CVaR stands for the condi-
tional value-at-risk, w is a random variable with distribution
P supported on the compact set W ⊂ Rnw , δ > 0 is the risk

(a) θ = 5×10−4 (b) θ = 5×10−2

Figure 1: Generated trajectories for different radii of the ambiguity set.

tolerance parameter, β > 0 is the risk-averseness coefficient,
and the continuous function g : X ×W → R is referred to
as the constraint function.

The infinite-horizon problem (3) is difficult to solve due to
state, input, and risk constraints. Thus, we suggest a proce-
dure to approximate it in which, at each iteration, we gen-
erate a trajectory using an MPC scheme, where a DR con-
strained finite-horizon problem is solved repeatedly. We as-
sume a general class of ambiguity sets that are defined using
the data collected in previous iterations. The terminal con-
straint in the finite-horizon problem enforces the state to lie
in a subset of the safe states sampled in previous iterations.
Once a trajectory is generated, the samples of the uncer-
tainty collected in the iteration are added to the dataset and
the sampled safe set is updated appropriately. The attractive
aspect of our iterative algorithm is the fact that safety and
cost-performance can be tuned using distributional robust-
ness, irrespective of the number of available samples.

3 Results

Under the assumption that a robustly feasible trajectory is
available at the first iteration, we show that each iteration is
recursively feasible, and asymptotically converges to the tar-
get state. We apply our algorithm to find a risk-averse path
for a mobile robot in the presence of an uncertain obstacle.
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Introduction
In literature, the magnetic spring (MS) [1] has been pro-
posed as an option for energy and peak power reduction
in (near) repetitive mechatronic motion systems. It stores
energy using magnetic forces instead of alternatives rely-
ing on mechanical deformation (i.e., springs) or conver-
sion of mechanical energy to electrical energy (e.g., capac-
itors), thereby relaxing the downsides (fatigue and conver-
sion losses) of other alternatives. However, the key chal-
lenge is how to design and control such MS-assisted mecha-
tronic systems, in order to achieve good performance under
variable operational conditions.

Therefore, we have developed a systematic toolchain for the
design and control of such magnetic spring assisted drive-
trains, addressing the optimization of both the desired torque
profile of the magnetic spring (including its physical geom-
etry), as well as the dynamics and controls of the considered
drivetrain.

The Magnetic Spring
The rotational variant of the MS, see Fig. 1, consists of
a rotor and stator of magnetic material. The relative angle
(θ ) between these two parts determines the torque applied
to the rotor axle. When an MS is added in series with a
motor, this magnetic spring torque can be utilized to reduce
the oscillating motor torques required for repetitive motions.

Figure 1: Torsional magnetic spring.

Proposed Magnetic Spring Co-Design Toolchain
The workflow of the toolchain is as follows:
I. Model generation (including the magnetic spring). The
system dynamics are modelled in CasADi [2]. These sym-
bolic equations can either be directly formulated as a DAE,
or extracted from Simscape using Simscape2CasADi [3].
II. Optimal system and control design. In a single opti-
mization problem (inspired by the methods in [2]), the dy-
namics and controls of the system will be optimized, along

with the desired magnetic spring torque profile Tspring(θ).
Alternatively, the MS torque characteristic can be designed
using engineering rules, see [1].
III. Optimal component design for magnetic spring. The
parameters of the magnetic spring are optimized in a finite
element simulation, given a physical parameterization. The
goal is to match the torque profile obtained in (2).
IV. Re-computing the optimal controls. If desired, re-
compute (2) with result of (3).

Experimental Validation on Two Systems
The developed methodology is experimentally validated on
two setups: an academic four-bar linkage setup and an in-
dustrial parallel delta robot, see Fig. 2. This first setup fea-
tures a crank-rocker mechanism and is representative of an
industrial weaving loom. It is equipped with an adaptive
MS and performs repetitive motions. The second setup per-
forms near-repetitive 3D pick and place motions and its MS
is designed as a simpler sinusoidal non-adaptive spring. For
each of the cases, the performance improvements are shown
in Table 1: considerable reductions in energy and / or RMS
torques are achieved.

Figure 2: Bar-linkage and delta-robot with MS.

Table 1: Performance improvements for bar-linkage and delta
robot.

No spring With spring Red.
Energy bar-linkage 74 J 39 J 47%
RMS torque delta-robot 16.3 Nm 4.9 Nm 70%

Acknowledgements: This work has been carried out within the framework
of Flanders Makes ICON project “Torque Ripple Reduction” funded by the
agency Flanders Innovation & Entrepreneurship (VLAIO). Flanders Make
is the Flemish strategic research centre for the manufacturing industry.

References
[1] Mrak, B., B. Wex, and H. Mitterhofer. ”Methodology for Shape
Optimization of Magnetic Designs: Magnetic Spring Characteristic Tai-
lored to Application Needs.” Actuators. Vol. 11. No. 2. MDPI, 2022.
[2] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and optimal
control,” 2019.
[3] J. Gillis and E. Kikken, “Symbolic equation extraction from sim-
scape,” Benelux Meeting, 2018.

115



Book of Abstracts 41st Benelux Meeting on Systems and Control

Identifying bang-bang type MPC using Support Vector Machines

Tony Dang, Frederik Debrouwere, and Erik Hostens
Flanders Make,

Lommel, Belgium
Email: tony.dang@flandersmake.be

1 Introduction

Model Predictive Control (MPC) has many desirable charac-
teristics such as its predictive power, its ability to take into
account constraints, and being optimal w.r.t. a chosen cri-
teria. However, the computational cost required for solving
MPC makes it challenging to deploy it for real-time systems.
Additionally, in many cases the resulting optimal control
law from the MPC is quite simple, e.g. yielding bang-bang
type control. We propose an approach to identify these type
of optimal control laws as closed form controllers, which
eliminates the need for solving an optimization problem on-
line.

2 Approach

We start from a specific type of MPC problems where no
input penalization is considered:

min
x,u

V (x) =
∫ T

0
x(t)⊤Qx(t)dt

subject to ẋ = f (x,u)

u ∈U.

(1)

The optimal control law often yields a bang-bang type con-
troller. In order to identify this nonlinear control law, offline
simulations are performed to generate a data set of optimal
solutions. This boils down to solving a supervised classifi-
cation problem. Support Vector Machines (SVMs) [2] are
proposed as the model. The dual problem for solving the
classification problem is extended with a linear constraint to
enforce the switching mode through the origin x∗:

max
α

JD(α) = − 1
2

N

∑
k,l=1

ykylK(xk,xl)αkαl +
N

∑
k=1

αk

subject to
N

∑
k=1

αkyk = 0

0 ≤ αk ≤ c, k = 1, ...,N
N

∑
k=1

αkykK(x∗,xk)+b = 0.

(2)

Solving this optimization problem results in an identified
switching mode for the bang-bang controller.

3 Results

The methodology is applied in practice on a parallel SCARA
robot at a frequency rate of 2 kHz. Data is generated by
solving a nonlinear input-constrained MPC problem offline
(figure 1) for arbitrary point-to-point motions in CasADi [1].
A switching mode is identified using SVMs. The resulting
bang-bang controller yielded faster tracking of the setpoints
and lower overshoot compared to the PID controller (figure
2).

Figure 1: Sampled OCP solutions for motor 1 projected on
a 2D slice of the 4D state space. Red and green samples
indicate minimum and maximum input torque respectively.

Figure 2: Measured encoder output θ . Serial singularities
were reached around 3s and 4s.
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1 Introduction

The advancements in computer science and telecommuni-
cations of recent years have allowed control engineering to
expand its field of application from localized and coherent
process plants to interconnected systems. However, even
if the computing power and flexibility of processors, and
the availability of communication devices to embed in net-
works have increased, the problem of controlling extended
and heterogeneous structures in an optimal and robust fash-
ion remains. This problem is exacerbated by the increas-
ing size and complexity of the networks, leading to the ne-
cessity of finding strategies to control Large Scale Systems
(LSSs), where ‘large’ should be interpreted as ‘too big to
be controlled in a centralized fashion’. Examples of those
types of systems can be found in the fields of multi-modal
transportation (which may include the use of intelligent ve-
hicles), smart grids (with distributed generation via photo-
voltaic cells or wind mills), water and gas distribution sys-
tems, smart buildings, and supply chains. Promising so-
lutions are sought in Distributed Model Predictive Control
(DMPC) strategies, which are by themselves a current field
of active research.

2 Modelling Framework for Large-Scale Systems

The nature of LSSs often leads to an intuitive interpre-
tation of their structure through graph theory. In fact
a complex system can be converted into a collection of
nodes, which represent processing system dynamics and in-
put/output gateways, and links, which are instead transmis-
sion channels of a certain ‘flow’ of information, energy, or
material, and which model the relations among the various
nodes. This topological structure also occurs at a control and
communication level, thus providing multiple superposed
graphs that may also vary with time or as a consequence
of certain events. Therefore, to extend the modelling capa-
bilities of existing representations of LSSs, it is possible to
integrate hybrid models with dynamic graphs and design a
framework suitable for the application of DMPC.

3 Partitioning

The application of a DMPC strategy requires the identifica-
tion of an adequate network partitioning in subsystems that
present specific properties to preserve a certain degree of
optimality in comparison with a centralized control architec-
ture [1]. Many criteria have been considered in the literature

for partitioning a system and often the choice is application-
dependent. Moreover, for LSSs this partitioning can be un-
practical or too computationally expensive to be performed
on-line in a centralized fashion. Therefore, along with the
necessity of a non-centralized control approach arises the
one of a distributed partitioning strategy to properly allocate
the computational burden among control agents, and to al-
low for an on-line and minimally reconfigurable real-time
adaptation of the network partitioning to topology changes.

4 Open Issues and Research Directions

Several works have been proposed for distributed control of
LSSs [3]. The initial focus of many studies has been on
linear systems, but it remains an open question to consider
more complex structures, also allowing for the integration
of networks with different physical nature, which are com-
monly referred to as heterogeneous systems. In particular,
our attention, in the context of LSSs, will be devoted to net-
works with hybrid dynamics, which represent a challenging
extension of current works and allow to model a wider class
of relevant phenomena [2]. Another research direction con-
cerns the partitioning of LSSs in subsystems, especially re-
garding networks with dynamic topologies and distributed
partitioning strategies. The definition of suitable metrics
to capture the relevant features of the network for an opti-
mal partitioning will be one research objective. Finally, a
relevant aspect of distributed control approaches applied to
LSSs is related to loss of optimality w.r.t centralized control
architectures. Quantifying this degree of suboptimality and
improving performance of distributed systems is a topic that
deserves a specific attention for the evolution of complex
systems.
Acknowledgment: This project has received funding from the Eu-
ropean Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (Grant agreement
No. 101018826) – Project CLariNet
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I. INTRODUCTION

Distributed computation emerged in the last century
mainly because of computation power constraints where by
splitting a problem across many parallel threads, researchers
were able to reach a solution in a shorter period of time.
With the rise of the cloud as a service and broad-band
communication, computation power constraint is not the
main reason for distributed computation in many fields.
Instead, privacy concerns play a significant role in developing
distributed algorithms in particular for Cyber-Physical Sys-
tems(CPSs). However, a distributed protocol cannot solely
solve the privacy issues arising in centralized CPSs since
the involved parties still need to share data with each other.
Therefore, improving privacy level even in distributed CPSs
is of main concern.

II. PROBLEM FORMULATION

We consider a scenario where, at each time k =
1, 2, . . . ,K, agent i in a network is interested in evaluating
a polynomial which depends not only on her own private
variable xi but also on the private variables of her neighbours
xj with j ∈ Ni. In particular, we consider the following class
of polynomials:

Φi(xi(k), xj(k)) :=
∑

j∈Ni

Pij(xi(k), xj(k))

+
∏

j∈Ni∪i

Wj(xj(k)),
(1)

where Pij =
δij∑

p,q=0
c
(pq)
ij xp

i x
q
j , Wj =

δj∑
q=0

c
(q)
j xq

j , and i ∈
V . The notation x−i is used to indicate the dependency of
Φi on xj with j ̸= i. Notice that Pij is the summation of
bivariate polynomials, with xi and xj , j ∈ Ni, being the
corresponding two variables. Moreover, the second term on
the right hand of (1) collects the multivariate polynomials
with more than two variables. As can be seen from (1), we
assume that these terms can be written as a product of |Ni∪
i| = di + 1 univariate polynomials. This is a large class
of polynomials and can accommodate distributed algorithms
in control systems with linear or polynomial coupling, as
well as distributed optimization algorithms with polynomial
constraints.

T. Hosseializadeh and N. Monshizadeh are with the Engineering and
Technology Institute; F. Turkmen is with Bernoulli Institute for Mathemat-
ics, Computer Science and Artificial Intelligence, University of Groningen,
The Netherlands. Email: {t.hosseinalizadeh, n.monshizadeh,
f.turkmen}@rug.nl.

Assumption 1. Agents in a network G are honest-but-
curious, also known as semi-honest, meaning they follow
the required protocol for interacting with other agents but are
also interested in determining private values in the network.

Assumption 2. An adversary A is probabilistic polynomial
time, passive, and communications among agents are done in
its presence. The adversary A can be an agent in the network
or an external party observing the communication.

The problem we are interested in is to provide a privacy
preserving protocol for the evaluation of (1) for agent i. In
other words, agent i should be able to obtain the exact value
of Φi without revealing the value of her own private variable
xi to any other agent j and without gaining any privacy-
sensitive piece of information other than the result of target
function Φi.

III. PROPOSED ALGORITHM

The solution we provide is based on secret sharing and
PHE techniques(see [1] for details of the algorithm). In
particular, we use Paillier’s scheme to protect the privacy of
xi, and secret sharing for preserving the privacy of xj , with
j ∈ Ni. Additive secret sharing is used in the summation
part of Φi, and multiplicative secret sharing is used in the
multiplicative term in Φi (see (1)).

A. Privacy Analysis
In this subsection, we focus on privacy preserving proper-

ties of the proposed algorithm. First, we note that privacy of
agent i is preserved throughout the computation of Φi(·) due
to the adopted encryption scheme. The situation for privacy
preservation of the neighbours of i is different, and their
privacy is potentially susceptible to the collusion of agent
i with other neighbours. To study such potential collusion,
we partition the agents into a set of corrupt Vc and non-
corrupt agents Vnc, where the corrupt agents may collude
with each other and the non-corrupt agents are simply honest-
but-curious. In the proposed algorithm, we assume that the
distinguished neighbours are not corrupt.

Theorem 1. Assume that Di ∈ Vnc and consider the
computation of Φi(·) following Algorithm 1 in [1]. Let
j ∈ Ni. Then xj is not inferred uniquely if either i ∈ Vnc or

Ni ∩ (Vnc\j) ̸= ∅, (2)

i.e. i has at least one non-corrupt neighbour other than j.

REFERENCES

[1] T. Hosseinalizadeh, F. Turkmen, and N. Monshizadeh, “Private compu-
tation of polynomials over networks,” arXiv preprint arXiv:2104.01369,
2021.

118



Book of Abstracts 41st Benelux Meeting on Systems and Control

Abstracted Reduction of Interconnected Structural Models

Luuk Poort
Eindhoven University of Technology∗

l.poort@tue.nl

Rob Fey
Eindhoven University of Technology∗

r.h.b.fey@tue.nl

Bart Besselink
University of Groningen†

b.besselink@rug.nl

Nathan van de Wouw
Eindhoven University of Technology∗

n.v.d.wouw@tue.nl

1 Introduction

To assess their dynamic behaviour, complex structural sys-
tems are usually modeled using finite element methods. The
large order of these models necessitates the use of model
reduction techniques to enable efficient dynamic analysis.
These models, represented by the system of linear differ-
ential equations ΣΣΣ, often consist of an interconnection of
substructures ΣΣΣ j, j = 1, . . . , k. In practice, model reduction
is often performed on individual substructures ΣΣΣ j, by, e.g.,
component mode synthesis methods (CMS), because (i) di-
rect reduction of ΣΣΣ is not computationally tractable and (ii)
substructures are typically developed by independent teams.
However, if the reduction of a substructure ΣΣΣ j to its re-
duced representation Σ̂ΣΣ j does not consider the coupling to
the other substructure dynamics, the accuracy of the cou-
pled, reduced-order model (ROM), Σ̂ΣΣ, cannot be ensured.

2 Research approach

We introduce the idea of reducing ΣΣΣ j in interconnection with
a low-order approximation of the other substructures, to im-
prove the accuracy of Σ̂ΣΣ. Stated differently, instead of con-
sidering (and reducing) ΣΣΣ j in isolation, we consider the in-
terconnection of ΣΣΣ j with an abstraction of its environment.
This ensures that the reduced Σ̂ΣΣ j is relevant in the scope of
the overall structure. By using only an abstraction instead
of the full substructure models, the computational cost of
the reduction problem decreases and only a basic, nominal
designs of the other substructures are required.

Reduction of the interconnection of ΣΣΣ j and the correspond-
ing abstraction using standard reduction methods would de-
stroy the interconnection structure and results in one unified,
reduced model. Therefore, structure-preserving reduction
methods, such as structure-preserving balanced truncation
(SPBT) of [1], are employed to retain the interconnection
structure and thus retain access to the reduced subsystems
Σ̂ΣΣ j. The combination of SPBT with the use of abstractions
is denoted abstracted SPBT (ASPBT).
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sity of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

†Bernoulli Institute for Mathematics, Computer Science and Artificial
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Figure 1: Schematic drawing of the coupled beam model.
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Figure 2: Relative reduction error in |Y/U |.

3 Numerical example

Observe the SISO system of two equivalent Euler beams,
with 2% modal damping each, in Figure 1. The coupling
consists of a translational and rotational spring, with, re-
spectively, 50 and 5 times the left cantilever’s translational
and rotational stiffness at its end. The discretized cantilever
and free beam substructures consist of 60 and 62 degrees
of freedom (DoF), respectively, and are reduced to 4 DoF
each. Reduction is performed using (i) SPBT, (ii) ASPBT
(using CMS-reduced abstractions of 3 DoF) and (iii) sub-
system balanced truncation (BT). The resulting relative error
magnitudes of the collocated FRF is shown in Figure 2.

4 Conclusion and outlook

Numerical evaluation indicates that ASPBT is superior to
subsystem BT in terms of input-output accuracy of the
ROM, and is comparable to SPBT. This implies that low-
order abstractions are sufficient to capture the relation be-
tween ΣΣΣ j and ΣΣΣ, while significantly improving computa-
tional tractability. In further work, we will formulate error
bounds to be able to further compare ASPBT to alternatives.
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1 Introduction
Many complex models of dynamic (multi-)physical systems
are naturally based on an interconnection of subsystems.
The models of interconnected systems often have a high
number of states, which makes controller synthesis, simula-
tion and analysis computationally expensive. This motivates
the need for model order reduction (MOR) techniques ap-
plicable to such systems. Subsystem reduction, where each
of the subsystems is reduced individually, is a completely
modular approach. Hence, the interconnection structure of
the high-order model is preserved and the computationally
challenging reduction of one very high-dimensional model
is avoided by dividing the problem into multiple smaller
problems. However, although subsystem reduction meth-
ods will lead to accurate reduced-order representations of
the high-order subsystems, this does not directly mean that
the reduced-order interconnected system is also accurate.
Based on [1], we introduce a method which gives an a priori
error bound on the frequency response of the reduced inter-
connected system based on the a priori error bounds of the
reduced subsystems.

2 Preliminaries
We study systems of k linear time-invariant (LTI) subsys-
tems that can be aggregated and represented by block-
diagonal transfer function G = diag(G1, . . . ,Gk). The sub-
systems are interconnected via matrix K. The external in-
puts u and outputs y are connected to the subsystems via
external input and output matrix L and M, respectively. In
subsystem reduction, each of the subsystems G j is reduced
to an approximate reduced-order subsystem Ĝ j and the ag-
gregate is given by Ĝ = diag(Ĝ1, . . . , Ĝk). The high-order
interconnected system Gc and the reduced-order intercon-
nected system Ĝc with ŷ = Ĝcu (Figure 1), are then

Gc = MG(I−KG)−1L, Ĝc = MĜ(I−KĜ)−1L. (1)

3 Methodology
For balanced truncation, a widely used MOR method, an
upper bound on the H∞-norm of the difference between the
high-order and reduced-order systems is available a priori.
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Figure 1: Block diagrams of Gc (top left), Ĝc (bottom left), and
Gc− Ĝc represented by N0,W and ∆ (right).

In this work, we extend a priori knowledge of subsystem er-
rors ‖G j− Ĝ j‖∞ to knowledge on ‖Gc− Ĝc‖∞. To do so, we
define all subsystem reduction errors as an uncertain system
∆ := G− Ĝ. Then, we can model Gc− Ĝc as a closed loop
between N and ∆ as shown in Figure 1. Here, the nomi-
nal system N := N0W is a function of N0(G,K,L,M) and
weighting matrix W := diag(w1I, . . . ,wkI,wcI). Using this
framework, the structured singular value µ , a powerful tool
from robust control, can be used. Namely, if N is internally
stable, then

‖Gc− Ĝc‖∞ ≤ w−1
c ,and

‖G j− Ĝ j‖∞ ≤ w j ∀ j = 1, . . . ,k

}
⇔ µ∆(N)< 1. (2)

Given that an error bound w j is available a priori for each
subsystem, this relation can be used to find an error bound
w−1

c on the interconnected system. A less conservative
frequency-dependent version of (2) can be used at the cost
of increased computation time. In [1], these bounds are il-
lustrated using an example.

4 Conclusion
With (2), we can directly compute the impact of errors in
subsystems to the error of the interconnected system. This
result is also the first step towards determining a model ac-
curacy specification for the individual subsystems guaran-
teeing a required overall system accuracy. Therefore, the
method can be used as a significant means for the develop-
ment of accurate modeling of interconnected systems within
a completely modular setting.
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1 Introduction

The emerging field of neuromorphic computing aims to re-
duce the energy requirements of computing platforms. For
these new neuromorphic technologies dedicated hardware
needs to be developed. It is suggested that memristors will
play an important role within the hardware of these new
neuromorphic technologies. Memristors, originally intro-
duced by Chua in [1], are resistors with a memory storage
that can act as non-volatile memory. In this work, we intro-
duce a mathematical framework to study the behavior of net-
works of memristors. We show that the memristive behav-
ior of such a network is preserved on external branches, i.e.
the branches connecting the network to an external source.
This result is a generalization of Chua’s closure theorem that
states that “a one-port containing only memristors is equiv-
alent to a memristor” [1].

2 Main results

We will consider a connected memristor network with N
nodes and B branches characterized through the incidence
matrix D ∈RN×B, see Figure 1. Let q ∈RB and ϕ ∈RB de-
note the branch charges and fluxes, respectively. We model
the memristors through the relation M ⊂RB ×RB as

(q,ϕ) ∈ M, (ML)

see [1]. We assume that, for some α > 0 and β > 0,

(q−q′)⊤(ϕ −ϕ ′)≥ α|q−q′|2 +β |ϕ −ϕ ′|2

for all (q,ϕ),(q′,ϕ ′) ∈ M. Now, we consider BE external
sources, whose distribution over the network is captured in
the incidence matrix DE ∈ RN×BE . We denote the corre-
sponding flux potentials and charges by ϕE and qE .
We want to show that qE and ϕE are related by a memristive
relationship by utilizing integrated versions of Kirchhoff’s
voltage and current law, as in [2], and (ML). We note that
the integrated version of Kirchhoff’s current states that

D(q−q0) = DE(qE −qE,0) (KqL)

and the integrated version of Kirchhoff’s voltage law reads

∃ζ ∈RN s.t.
[

ϕ −ϕ0
ϕE −ϕE,0

]
=

[
D⊤

D⊤
E

]
ζ . (KϕL)

qE,1 qE,2

Figure 1: Network of memristors attached to two external sources
with corresponding charges qE,1 and qE,2.

Here, the notation was simplified by omitting time-
arguments, e.g. q0 = q(0) and ϕE,0 = ϕE(0).
Now, we can state the following result.
Theorem 2.1 Let (q0,ϕ0) ∈ M and qE − qE,0 be given.
Then, there exists a unique ϕE −ϕE,0 such that (KqL), (KϕL)
and (ML) hold. Moreover, there exist αE > 0 and βE > 0
such that

(qE −q′E)
⊤(ϕE −ϕ ′

E)≥ αE |qE −q′E |2 +βE |ϕE −ϕ ′
E |2.

3 Discussion

The above result shows that the memristive behavior of a
network of memristors is preserved on its external branches.
This result enables us to derive an analogous expression for
the notions of effective resistance and Kron reduction, see
[3], for memristor networks. The inequality in Theorem 2.1
can give information of the influence of the memristors in
the network on the memristive behavior measured on its ex-
ternal branches. These topics will be explored further in
future research.
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1 Introduction
Data-driven modeling suitable for dynamic networks re-
ceived a great deal of attention in recent years, where dy-
namic networks refer to widely distributed and spatially in-
terconnect systems that are often large-scale. The intercon-
necting dynamics (modules) can be estimated using the dy-
namic network framework. In order to obtain consistent es-
timates of the modules, the disturbances due to sensor noise
need to be incorporated in the estimation procedure. The
indirect method in [1] achieves consistent estimates while
considering both the sensor and process noise. Direct meth-
ods lead to estimates with smaller variance, and have the
potential to work with less costly experiments, i.e. less ex-
ternal excitation signals are required. However, most direct
methods only consider the process noise [2].

The objective is to obtain accurate (consistent) estimates of
the modules in a dynamic network that is influenced by both
sensor and process noise, using the multi-step least squares
method from [2].

2 Process and sensor noise
The dynamic network framework typically considers a dy-
namic network influenced by process noise, where the nodes
w =

[
w1, · · · ,wL

]⊤ are expressed as

w = G0w+R0r+ v (1)
where G0 is a hollow matrix, that has the modules G0

ji as its
elements, the v is the disturbance related to the process noise
that can be represented as filtered white noise v = H0e. The
matrix R0 and excitation signals r are user manipulated, with
r uncorrelated to e.
In practice the measurements of the node signals w are in-
fluenced by sensor noise, meaning we can write [3, 1]

w̃ = w+ s, (2)
where w̃ are the measured node signals and s is the distur-
bance due to sensor noise that is uncorrelated to r and v.
Substituting w̃ in (1) results in w̃− s = G0(w̃− s)+ v+Rr
that can be rewritten to

w̃ = G0w̃+ ṽ+Rr, (3)
where ṽ = v+(I −G0)s, illustrated in Figure 1.

1This project has received funding from the European Research Coun-
cil (ERC), Advanced Research Grant SYSDYNET, under the European
Union’s Horizon 2020 research and innovation programme (Grant Agree-
ment No. 694504)

Figure 1: Example of a 2 node network with measured nodes
influenced by sensor noise [3], where ṽ= v+(I−G0)s.

3 Multi-step least squares method including sensor
noise

The multi-step least squares method of [2] considers a dy-
namic network that is only influenced by process noise as in
(1). The main steps of the method can be summarized as

1. High-order ARX modeling: this ARX model provides
a reconstruction of the innovation signal ε ,

2. Parametric identification: Use the reconstructed inno-
vation signal ε̂ as additional measured input.

We show that if we add the sensor noise, the algorithm of
[2] models the disturbances due to process noise and sensor
noise together. Meaning if we reformulate ṽ = v+(I−G0)s
to ṽ = H̃0ẽ, our estimated disturbance model is an estimate
of H̃0 and the reconstructed innovation ε̂ is an estimate of
ẽ. Note that using this approach comes at the cost that ad-
ditional excitation signals r might be required. As a result
we obtain consistent estimates of the dynamic network mod-
ules, despite the presence of sensor noise.
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1 Background

Feedforward control is essential for accurate reference
tracking in motion control. For modern systems, feedfor-
ward controllers involve the inverse of increasingly complex
systems with high order dynamics and dominant nonlinear
dynamics of unknown structure. In addition, a large class of
tasks must be performed.

2 Problem formulation

The aim is to obtain a nonlinear, noncausal feedforward con-
troller for systems with complex nonlinear dynamics, which
is applicable to a range of references. To this end, the sys-
tem is parametrized as a GP. This allows for high flexibility
and the specification of relevant prior information. Gaus-
sian Process (GP) regression has had a major impact on the
field of system identification [2] and control [1], as its non-
parametric, possibly nonlinear model structure allows for
the representation of a large range of systems.

3 Kernel-based inverse model control

Let G(q) denote a discrete-time, nonlinear SISO system,
such that G−1 characterizes the control effort u(t) solely
from past and future outputs y(t + τ), t,τ ∈ Z. In partic-
ular, G−1 is assumed to be a non-causal nonlinear impulse
response (NFIR) system of the form

u(t) = f (yt) , (1)

with yt = [y(t +nac) , . . . ,y(t −nc)]
⊤. Given a stabilizing

feedback controller C(q), the aim is to model f from a
dataset D = {u(t),y(t)} such that f (rt) yields the con-
trol effort u(t) that realizes an arbitrary reference sequence
rt = [r (t +nac) , . . . ,r (t −nc)]

⊤.
The key idea is to model f as a GP, i.e.,

f (yt)∼ GP(0,k(yt1 −yt2)), (2)

where k is a kernel function that poses a prior on the smooth-
ness of f with respect to y, e.g., a Matèrn3/2 kernel [3].
The expected feedforward signal required to realize refer-
ence R = [r1, . . . ,rN ]

⊤ is then given by the posterior mean
of the GP as

E[f(R)] = K(R,Y )
[
K(Y,Y )+σ2

n I
]−1 u. (3)
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Figure 1: Error e = r − y using linear feedforward ( ) and
the GP-based feedforward signal ( ), along with the
scaled reference ( ). With GP-based feedforward,
∥e∥2 is reduced by a factor 1.9.

This allows for the synthesis of feedforward signals for dif-
ferent tasks r, given that D contains observations of similar
trajectories y.

4 Experimental results

The developed feedforward approach is applied to an A3
printer with friction. First, 11 closed-loop experiments are
performed to obtain a dataset, using standard acceleration
and velocity feedforward. In each experiment, a different
reference r̃ j = a jr1 is used, with r1 a second order reference
and a j ∈ [0.90,0.92, . . . ,1.10]. The data-set is then used to
construct a feedforward signal with (3), for a different refer-
ence r2. The result is shown in Figure 1. Even though r2 is
not used as a reference when obtaining the dataset, the error
is reduced substantially by the GP-based approach.

5 Conclusion

A feedforward approach is presented that generates feedfor-
ward signals for systems with nonlinear dynamics of un-
known structure while allowing for task flexibility. Future
work aims at the extension towards MIMO systems.
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1 Abstract

We show the potential of a class of dynamical systems, re-
ferred to as virtual systems, in control design. Roughly
speaking, for a given (original) plant, a virtual system can
be understood as a system that can produce all plant’s tra-
jectories, i.e, the plant is embedded in the virtual one. We
provide two examples of control design where a virtual sys-
tem is used as a target closed-loop system and as an auxiliary
system in which the design process is performed.

2 Virtual control systems

We consider a control system Σu given by

Σu :
{

ẋ = f (x, t)+∑m
i=1 gi(x, t)ui,

y = h(x, t), (1)

evolving on an N-dimensional manifold X with tangent
bundle TX ; where x ∈X , u ∈U ⊂Rm and y ∈ Y ⊂Rm.
The sets U and Y are assumed to be open subsets of Rm.

Definition 1 (Virtual control system [3]) Consider the
system Σu in (1). A virtual control system associated to Σu
is defined as the system

Σv
u :
{

ẋv = Γv(xv,x,uv, t),
yv = hv(xv,x, t), ∀t ≥ t0,

(2)

parametrized by x, with state xv ∈X , and input uv ∈ U ,
where hv(xv,x, t) and Γv(xv,x,uv, t) are such that

Γv(x,x,u, t) = f (x, t)+
n

∑
i=1

gi(x, t)ui,

hv(x,x, t) = h(x, t), ∀u,∀t ≥ t0.

(3)

It follows that any solution x(t) = ψt0(t,xo) of the original
control system Σu in (1), starting at x0 ∈ Cx for a certain
input u, generates the solution xv(t)=ψt0(t,x0) to the virtual
system Σv

u in (2), starting at xv0 = x0 ∈ Cv with uv = u, for
all t > t0. However, not every virtual system’s solution xv(t)
corresponds to an original system’s solution. Thus, for any
trajectory x(t) of the original system, we may consider (2)
as a time-varying system with state xv.

Example 1 ([1]) Consider the mechanical system

q̇ = v,

M(q)v̇+C(q,v)v = τ,
(4)

with state x = (q̇,v), where v = q̇, and input τ . The system

q̇v = vv,

M(q)v̇v +C(q,v)vv = τv−K(vv− v),
(5)

in the state xv = (qv,vv) and parametrized by x = (q,v), is a
virtual system associated to (4). Indeed, if (qv,vv) = (q,v)
and τv = τ , then (5) can produce the trajectories of (4).

3 Control design using virtual systems

3.1 Virtual systems as target closed-loop dynamics
System (4) in closed-loop with the following control scheme
[4, 3]

τ := M(q)v̇r +C(q,v)vr−Kvr + τv, (6)

where vr := q̇d−Λ(q−qd) with qd a desired trajectory and
vv = v− vr, yields precisely the virtual system (5).

3.2 Auxiliary virtual systems in the control design
Consider the following controller for the virtual system (5)

τv := M(q)v̇r +C(q,v)vr−Kp(qv−qd)−Kd(vv− vr)+ τv.
(7)

It follows that the controller for the original plant in (4) is
given by [2, 3]

τ := M(q)v̇r +C(q,v)vr−Kp(q−qd)−Kd(v−vr)+τ. (8)
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1 Introduction
Hybrid Integrator-gain systems (HIGS) [1] are hybrid con-
trol elements aiming at overcoming (fundamental) perfor-
mance limitations of linear feedback control. Thus far in the
literature, discretization and sampled-data analysis of these
control elements are not addressed. In this work, a discrete-
time (DT) version of HIGS is presented, which preserves its
main characteristics. Furthermore, a discrete-time approach
is presented for stability analysis of sampled-data HIGS-
controlled systems arising from the interconnection of DT
HIGS-based controllers and continuous-time (CT) plants.

2 Discrete-Time HIGS

The proposed DT HIGS element, H , is given by

H :





xh[k] = xh[k−1]+ωhTse[k], if ξ [k] ∈ F̃1
xh[k] = khe[k], if ξ [k] ∈ F̃2
xh[k] = 0, if ξ [k] ∈ F̃3
u[k] = xh[k],

(1)

where e[k] ∈ R, xh[k] ∈ R, and u[k] ∈ R denote the input,
state and output of H , at sample time k ∈ N. Moreover,
ωh ∈ R≥0, kh ∈ R>0, and Ts ∈ R>0, denote the integrator
frequency, gain parameter and the sampling time, while the
decision as to which mode of operation is followed depends
on ξ [k] = (e[k],xh[k − 1],e[k − 1]). The sets F̃1,F̃2, and
F̃3, are such that the proposed DT HIGS has two important
characteristics (i) it produces an output similar to a CT HIGS
element (see [1]) and (ii) the input/output (e,u) pair of (1)
satisfy a sector constraint similar to that of a CT HIGS [1].
The latter will be exploited in stability of analysis sampled-
data HIGS-controlled systems.

3 Proposed Analysis Approach
To analyze stability of sampled-data systems arising from
closed-loop interconnection of linear CT plants and DT
HIGS-based controllers, the procedure outlined in Fig. 1
is proposed, wherein a DT description of the system is ob-
tained by considering an exact discretization of the plant
model. Two methods for stability analysis of this system
are presented based on (i) frequency domain conditions that
can be verified using frequency response data and (ii) con-
ditions based on linear matrix inequalities (LMIs) guaran-
teeing input-to-state stability (ISS) using multiple Lyapunov
functions. Moreover, it is shown that the inter-sample be-
havior of the considered class of sampled-data systems can
be bounded, and thus, stability of the sampled-data system
can be concluded from stability of the studied DT system.

4 Example

Results obtained from the different stability analysis tests
applied to an example involving control of a mass-spring-

Sampled-Data System

(CT plant + DT controller)
Discrete-time System

Plant discretization

Discrete-time stability

analysis (ISS)
1
kh

+Re{W (ejω)}> 0

Frequency domain

Pi − C
⊤
E⊤

i WiEiC ≻ 0

A⊤
1 PjA1 − Pi + C

⊤
E⊤

i U1,ijEiC + . . . ≺ 0

A⊤
2 PNA2 − Pi + C

⊤
E⊤

i U2,iEiC + . . . ≺ 0

...

Time domain

D
T

IS
S

Bound the inter-sample

behavior
Sampled-data ISS

Figure 1: The proposed stability analysis approach.

damper system are shown in Fig. 2. It is observed that while
the frequency domain conditions can be easily verified based
on frequency response data, the proposed LMI-based condi-
tions are significantly less conservative.

Figure 2: Stable region , stable (kh,ωh) pairs obtained from
LMIs •, frequency domain criterion •.

5 Future work
Future work includes reducing the conservatism associated
with the stability analysis methods.
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Motivation
Many controllers need to act on a system despite signifi-
cant changes in the system’s dynamics or its environment
throughout time. To avoid that the controller then has to be
very conservative with limited performance, adaptive con-
trol can be used. However, industry often does not trust such
controllers, but prefers the non-adaptive controllers they are
used to. They can furthermore ”validate” those based on
understanding into how the behavior will extrapolate.

As an intermediate solution we propose to make an adaptive
controller that infrequently switches between a small set of
predefined controllers, where each of those is the same con-
troller type as the one currently used, but tuned differently.
We will then switch between those controllers based on the
observed conditions. The key novelty in this paper is that we
will not define those conditions based on insight, but derive
them from the data. This way, ideally, we can derive from
the data what the important conditions are to adapt to.

Application to hybrid vehicle
We consider as an example the control of a hybrid electrical
vehicle, for which we have to control the power split be-
tween combustion engine and electromotor. A mature con-
trol strategy for this application is an ECMS controller, but
the optimal tuning of an ECMS typically depends on the
duty cycle. These are however very difficult to predict, so in-
stead robustly tuned ECMS controllers are usually used. We
therefore apply the idea outlined above, and look to switch
between a small set of pre-defined ECMS controllers, each
with their own tuning.

Figure 1: Layout of hybrid vehicle with combustion engine on
front wheels, and electromotor on the rear.

To decide when to use which controller, we used a clustering
based approach. We first used dynamic programming (DP)
to find optimal power split choices for a large and diverse
training set. Then we calculated for each point which ECMS
parameters yield locally equivalent choices. For each point
we also calculated a set of features derived from a window of
past data, using the typical sensors available, such as vehicle
speed, throttle, etc. As a result, we end up with a big set of
points containing ”optimal” ECMS parameters, and features

that can also be estimated on a vehicle. Then we look for a
set of clusters in this combined space, so that (i) each cluster
contains a set of points with similar features, and thus hope-
fully similar conditions, (ii) all the points in the cluster can
be controlled with similar ECMS parameters.

Afterwards we assemble the adaptive controller using a clas-
sifier to detect cluster membership online based on the same
features (but now without including the ECMS parameters),
and then online we run that classifier and simply select the
ECMS parameters corresponding to the detected cluster.

Results
Performing the clustering using K-means and using 2 clus-
ters, this yields a split as shown in Figure 2. Based on that

Figure 2: Output of clustering into 2 clusters.

split, we evaluated the resulting adaptive controller for 3 dif-
ferent validation cycles (not included in the training data).
Compared to the best possible non-adaptive ECMS we save
an additional 0.6-1.3% of fuel, and we approximate the truly
optimal DP solutions to within 0.4-0.7%.

Benefits of using this method
Here we used only 2 clusters, and features derived from only
a few signals. However, on the long term the problem of de-
ciding which are the key features to adapt to might become
more relevant, as more and more possible sources of infor-
mation to adapt to become available, due to the increasing
sensor count and connectedness, and some very rich sensors
like camera’s and/or LIDARs.

Acknowledgements: This work has been carried out within the frame-
work of Flanders Make’s ICON project ’ConACon’ (Context Aware Con-
trol), funded by the agency Flanders Innovation & Entrepreneurship
(VLAIO) and Flanders Make. Flanders Make is the Flemish strategic re-
search centre for the manufacturing industry.
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Introduction. Airplanes, cars, drones and power systems
are examples of safety-critical control systems. These sys-
tems are often best described by stochastic discrete-time
models. For these systems, we are interested in the de-
sign of controllers that provably satisfy formal specifica-
tions. In this work, we focus on the synthesis of controllers
for continuous-state stochastic systems that yield guarantees
on the satisfaction probability of temporal logic specifica-
tions. The synthesis of these controllers crucially depends
on approximate finite-state abstractions and their accuracy
quantification. This quantification is often performed using
approximate stochastic simulation relations with a constant
precision. However, for high-dimensional systems and com-
plex formal specifications, this constant precision limits the
achievable guarantees of the controllers. Therefore, we de-
fine a stochastic simulation relation that contains multiple
precision layers, hence allowing a variable precision.

Problem statement. Consider a discrete-time stochastic
system M whose behaviour can be described by stochastic
difference equations. For this system, we want to design a
controller C such that the composed system M×C satisfies a
formal specification φ with a high probability. This specifi-
cation can be given as a temporal formula to represent either
simple specifications such as reach-avoid, invariance, live-
ness or more complex combinations thereof. Given speci-
fication φ and probability p ∈ [0,1], the synthesis problem
becomes

P(M×C ⊨ φ)≥ p. (1)

However, for continuous-state models there does not exist
an analytical solution to this problem.

Approach. In order to perform control synthesis for
stochastic models with guarantees, we approximate the
continuous-state models by finite-state models M̂, for which
it is possible to verify certain temporal logic specifications.
This method is known as correct-by-design control synthe-
sis [1] and is schematically shown in Figure 1. The top spec-
ification layer gives the desired behaviour of the controlled
system using temporal logic and is used to synthesize an ab-
stract controller over the abstract, finite-state model. This
controller is refined from the finite layer to the continuous
layer, leading to controller C. To bound the approxima-
tion error caused by using a finite-state model, we use sim-
ulation relations [2] that bound deviations in the output ε
and in the probability δ . Therefore, the computation of the
satisfaction probability of φ , M ×C ⊨ φ , is replaced by a
robust computation [3] that yields a lower bound, that is,

1Control Systems group, Eindhoven University of Technology,
Email: b.c.v.huijgevoort@tue.nl
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Figure 1: Schematic representation of correct-by-design control
synthesis

P(M×C ⊨ φ)≥Rε,δ (M̂×Ĉ ⊨ φ). Generally only one sim-
ulation relation R is computed, leading to a constant pre-
cision. In ongoing work [4], we allow a variable precision
by defining a multi-layered simulation relation R consisting
of multiple simulation relations. Furthermore, we present a
method to compute a lower-bound on the probability of 1)
staying in simulation relation Ri and 2) jumping from simu-
lation relation Ri to R j as illustrated in Figure 2. The use of
a variable precision increases the achievable guarantees of
the controllers and therefore, also the probability in (1).

R1 R21−δ11 1−δ221−δ12

1−δ21

Figure 2: Multi-layered simulation relation R consisting of two
simulation relations R1 and R2. The edges are labelled
with a lower-bound on the transition probability.
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I. INTRODUCTION

Fixed-time control barrier functions (FxT-CBFs) are typ-
ically designed to satisfy the “eventually-always” type of
specifications, which aim to drive the state of a dynamical
system to some given sets in specific time intervals and enforce
the system trajectories to evolve in some safe sets at all
times [1]. However, if external disturbances are present in the
dynamical control system, the FxT reachability of the safe sets
cannot be guaranteed. To this end, we extend the FxT-CBFs to
the functions that are robust to external disturbances, i.e., FxT
input-to-state safe CBFs (FxT-ISSf-CBFs). Further, we also
propose implicit FxT-CBFs (IFxT-CBFs) and IFxT-ISSf-CBFs
based on implicit function theory (IFT) [2], which simplifies
the calculations of the derivatives of CBFs.

II. PRELIMINARIES

Consider a control-affine system

ẋ = f(x) + g(x)u, (1)

where x ∈ D ⊆ Rn and u ∈ U ⊆ Rm, f :
D → Rn and g : D → Rm×n are locally Lip-
schitz. Let a closed convex set C ⊂ Rn be the 0-
superlevel set of a continuously differentiable function h :
Rn → R, and we define E ≜ {x ∈ Rn : I(x) ≥ 0},
∂E ≜ {x ∈ Rn : I(x) = 0}, Int(E) ≜ {x ∈ Rn : I(x) > 0},
Out(E) ≜ {x ∈ Rn : I(x) < 0}, where the notations ∂, Int
and Out on E denote the boundary, inner and outer regions of
E , respectively. Besides, a continuous function α : (−τ, ζ) →
R, with τ, ζ > 0, is an extended class K function if α(0) = 0,
and α is strictly monotonically increasing.

Definition 1. (FxT-CBFs) The continuously differentiable
function h : Rn → R is a FxTC-CBF if there exists a, b > 0,
p = 1 − 1

γ and q = 1 + 1
γ for some γ > 1, such that the

following holds:

sup
u∈U

Lfh(x) + Lgh(x)u ≥ −a⌊h(x)⌉p − b⌊h(x)⌉q, (2)

where L denotes the Lie derivative, and the operation ⌊·⌉s =
sgn(·)| · |s, s > 0.

Definition 2. (FxT Reachability) Consider a target set C and
a safe set S , where they are both defined as a set like I, the
CBFs C and S are denoted by h(x) and X (x), respectively.
Then the target set C is FxT reachable if the trajectories of
the system (1) satisfy the following two conditions: i) if the
trajectories start from the safe set S, the target set C will be
visited within time interval T (x0) ≤ Tmax := 1

a(1−p)+
1

b(q−1) ;
and ii) before reaching the target set C, the system trajectories
will always stay in the safe set S .

Theorem 1. If there exists a FxTC-CBF h : Rn → R for the
system (1), then the target set C is FxT reachable [1] along
the trajectory of the system (1).

III. IFXT-CBFS AND IFXT-ISSF-CBFS

Definition 3. (IFxTC-CBFs) An implicit function M : R ×
D → R, (h,x) 7→ M(h,x) is a IFxT-CBF if the following
conditions are satisfied:

1) M is continuously differentiable on R×D;
2) for any x ∈ D, there exists M ∈ R : M(h,x) = 0;
3) Let ξ = {(h,x) ∈ R×D : M(h,x) = 0}. For (h,x) ∈ ξ,

x ∈ C ⇒ h(x) ≥ 0, x ∈ ∂C ⇒ h(x) = 0, x ∈ Int(C) ⇒
h(x) > 0, x ∈ Out(C) ⇒ h(x) < 0;

4) −∞ < ∂xM(h,x) < 0 holds for all (h,x) ∈ ξ;
5) for all (h,x) ∈ ξ, supu∈U

∂M/∂x
∂M/∂h · (f(x) + g(x)u) ≤

a⌊h(x)⌉p + b⌊h(x)⌉q ,

Theorem 2. If there exists a IFxT-CBF M : R×D → R for
the system (1), then the target set C is FxT reachable.

Next, we consider an additive disturbance d : D → Rn to
the nominal dynamics (1), i.e.,

ẋ = f(x) + g(x)u+ d(x). (3)

We define a new function η(x) := h(x) + ε, where ε is the
solution of a · εp + b · εq − δ = 0, ε > 0, and δ is dependent
on the bound of the disturbance. Then, an updated safe set
Cd is defined as Cd ≜ {x ∈ Rn : η(x) ≥ 0} with ∂Cd ≜
{x ∈ Rn : η(x) = 0}, Int(Cd) ≜ {x ∈ Rn : η(x) > 0},
Out(Cd) ≜ {x ∈ Rn : η(x) < 0}.

Assumption 1. We assume that 1) the safe set C of the nominal
system (1) is FxT reachable; 2) there exists L > 0 such that
∥∂h(x)

∂x ∥ ≤ L for all x ∈ D; 3) there exist a positive bound d̄
such that d(x) ≤ d̄; and 4) the parameters, a, b and δ, follow
the inequality a ≤ b if δ/(2

√
ab) ≥ 1.

Definition 4. (FxT-ISSf-CBFs) The continuously differentiable
function h : Rn → R is a FxT-ISSf-CBF for the safe set Cd if
the following holds: supu∈U ḣ(x) ≥ −a⌊h(x)⌉p−b⌊h(x)⌉q−
δ, where δ = Ld̄.

Theorem 3. If there exists a FxT-ISSf-CBF h : Rn → R for
the system (3), then the safe set Cd of the system (3) is FxT
reachable.

Theorem 4. Let Assumptions 1 − 4 hold. If there exists a
continuous function M : R × D → R, (h,x) 7→ M(h,x)
satisfying the conditions 1), 2), 3), 4) of Definition 3 and the
following condition:

sup
u∈U

∂M/∂x

∂M/∂h
·(f(x)+g(x)u) ≤ a⌊h(x)⌉p+b⌊h(x)⌉q+δ, (4)

then the target set Cd is FxT reachable.
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1 Abstract

In this presentation, an adaptive high-performance control
approach for model-based control of Partially Premixed
Combustion (PPC) engines is introduced. PPC is a next-
generation combustion technology, which has the poten-
tial to achieve both ultra-low emissions and high efficiency.
Unlike the conventional diesel and gasoline engines, high
knock resistance fuel (e.g. Research Octane Number (RON)
70) and high dilution (e.g. Exhaust Gas Recirculation (EGR)
50%) has been exploited in PPC engines to increase the pre-
ignition mixing time. Butanol has been used in this study
because of it’s relative high heat value, proper anti-knock
characteristics (RON 98), and can be mixed with commer-
cial diesel under any mass fraction. Also butanol can be
produced from bio-mass and has been expected to play a
significant role in the future utilization of carbon neutral
fuels. As the PPC concept is characterized by a complex
chemical-physical process of low temperature kinetic reac-
tions, it lacks direct trigger of ignition and combustion as
well as it is sensitive to varying operating conditions. These
complex nature of PPC makes it challenging to control the
combustion for optimum efficiency and emissions at broad
engine operation with low cyclic variability and without ex-
ceeding maximum allowed in-cylinder pressure rise rate or
peak pressure. The nonlinear relationship between the con-
trol input and combustion system response makes that con-
ventional lookup table-based control might need too much
maps and calibration effort, thus no longer feasible for real
operation scenarios. Model-based control approach is there-
fore needed to give proper reference for the feed forward
combustion control of PPC engines. Furthermore, due to
the variation of real driving conditions and the unmodeled
dynamics, a fixed model is generally not accurate enough
for control during real operation conditions of PPC engines.
The current study proposes a learning-based control ap-
proach with a hybrid model. A simplified first principal de-
rived model has been first developed to provide a base es-
timation of the ignition properties. A learning module with
Gaussian Process Regression (GPR) has then been added to
capture the model errors between the model prediction and
in-cylinder pressure measurement data, as shown in figure
1. The aim of this study is to develop a self-learning con-

trol oriented model and a model based controller to adjust
combustion phasing during steady operation conditions.

Figure 1 illustration of learning based PPC combustion con-
trol concept

This approach has been demonstrated on a single-cylinder
heavy-duty diesel engine. BH80 (80 vol% bio-butanol and
20 vol% n-heptane) is blended and tested at 8 bar gross
Indicated Mean Effective Pressure (gIMEP) in PPC mode.
Inlet heating, inlet boosting and multi-injection strategies
have been implemented to simulate the variation of opera-
tion conditions. Algorithms were implemented on a Field
Programmable Gate Array (FPGA) in order to analyze the
heat release using measured cylinder pressure, which is in-
put to next cycle control. As a basis for the combustion con-
trol concept a detailed physics-based model was first devel-
oped and validated on the engine experiment data. Then,
the learning-based control oriented model has been tested
on the high fidelity physics-based simulator with Model-In-
Loop (MIL) simulation. The results show that without the
implementation of the learning model, across a wide range
of input conditions, the physics-based model is able to cap-
ture the auto-ignition characteristics and predicts the start of
combustion within ±2o Crank Angle (CA). After implemen-
tation of the learning part, the error bond for the predictions
of start of combustion has been reduced to ±1oCA. The final
results have also been compared with other common used
learning approaches (e.g. neural networks, parameter updat-
ing). The current approach shows improvement with regard
to both prediction accuracy and the extrapolation capacity.
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1 Background

Advanced feedforward control methods often enable mecha-
tronic systems to perform varying motion tasks with ex-
treme accuracy. Many of these developments focus on lin-
ear time-invariant systems, either polynomial [1] or rational
[2], possibly with friction compensation. In many systems,
additional nonlinearities, including actuator saturation, are
present that may limit control performance.

2 Problem Formulation

The aim is to achieve low error and high flexibility to vary-
ing tasks for motion systems that exhibit dominant linear
dynamics, and which contain a static input nonlinearity,
i.e., a Hammerstein system. This research aims to learn a
parametrized input nonlinearity using data.

3 Approach

A parametrized linear feedforward, i.e., basis functions [1],
can compensate the linear component of the described sys-
tem. In addition, the input nonlinearity can be compen-
sated by inversion in the feedforward, together constituting
a Wiener feedforward. The key idea is that norm-optimal it-
erative learning control (NOILC) is able to compensate non-
linear behavior if it is repetitive. In order to do so, the input
nonlinearity is modeled using a parametric model. Then, the
NOILC optimization is performed with a repeated reference
satisfying persistence of excitation for the nonlinear system.
Lastly, the converged NOILC feedforward signal is fitted by
the parametrized Wiener feedforward. The fitted parameter
values can be used to invert the input nonlinearity.

4 Results

Fig. 1 shows results for positioning of a simulated wire bon-
der system in one direction, i.e., SISO, with an input non-
linearity. Shown are linear rational basis function (RBF)
feedforward [2] and RBF with inversion of the input non-
linearity, obtained using the proposed method. Observe that
the proposed method compensates the input nonlinearity,

Figure 1: Comparison of the error 2-norm per trial for linear
parametrized feedforward (-) and the proposed method
(-). In order to show the flexibility of the methods, the
motion task is changed at trials 11 and 16. This task
change is indicated by vertical dashed lines.

which results in a lower error 2-norm and higher perfor-
mance directly after a task change compared to strictly linear
parametrized feedforward.

5 Conclusion and Outlook

This research introduces a method for identification and
compensation of input nonlinearities by exploiting a norm-
optimal ILC signal. Results indicate that performance in
terms of both tracking error and flexibility to task variations
are improved.
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1 Introduction

The aim of this work is to develop a neural network (NN)
based learning algorithm which robustly and optimally con-
trols an nonlinear system along a trajectory without ap-
plying variational calculus tools. An industrially accepted
(sub)optimal control method adhering the constraints is the
model predictive control (MPC) approach. Here we develop
a technique to make use of recently proposed learning algo-
rithms ([1]) in approximating the MPC controllers via NNs.

The need for learning an MPC controller is due the online
optimization step inherent in the MPC setup. Restricted
number of MPC iterations can lead to suboptimal control
actions due to real time requirements, especially for large
scale systems. Instead, we make use of the achievements
in the physics informed neural network (PINN) approach to
effectively learn and generalize the control actions obtained
from the MPC controlled closed-loop data to elevate online
solution of the optimization problem.

2 Optimization Problem for Learning Controllers

We consider the reference tracking problem for nonlinear
systems in the form of MPC problem P:

P :





min JMPC,

JMPC =
Np−1

∑
j=0

ε>j|kQε j|k +∆u>j|kR∆u j|k,

x j+1|k = f (x j|k,u j|k), y j|k = h(x j|k),
ε j|k = y j|k− rk+ j, u j+1|k = u j|k +∆u j|k,

c j(x j|k,u j|k)≤ 0.

(1)

We assume that state and MPC control actions are available
for different reference settings. For the learning problem we
construct a NN with the cost function

JNN = Jdata +λ1JMPC,

where Jdata = ∑Ndata
i=0 ‖uMPC

i −uNN
i ‖2

2 corresponds to squared
sum of the difference between the control actions predicted
via the NN uNN and the training sample uMPC, while the
cost term JMPC is as given in Eq. (1) and parametrized with
respect to the NN. The tuning, or regulatization, parameter
λ1 allows the user to weight the terms corresponding the
respective cost terms.

3 A Case Study and Future Work

We consider the problem of a 4-tank system with MPC pa-
rameters as in [2]. The NN consists of one hidden layer with
12 ELUs, two output nodes for two control inputs, and in-
puts as the state and the reference signal parameters (ampli-
tude and frequency). Low learning rate (η = 0.01) and high
dropout value is required to reduce the noisy NN output.
The reference signal, constraints and trajectories are given
in Figure 1. We train the NN with the state and MPC input
trajectories generated from stochastic initial conditions and
reference signals that are not used in the evaluation.
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Figure 1: Output trajectories for system controlled with MPC and
neural network induced control actions.

The results indicate that both of the controlled systems are in
close alignment. However the NN based controller does not
back off the operating point sufficiently. Future directions
are better parameterization of reference signals for long pre-
diction horizons, guarantees on the constraint satisfaction
and control performance properties.
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1 Introduction

Traditionally, iterative learning control (ILC) is em-
ployed to improve the performance of a repetitive task
by learning on a single system. However, in the con-
text of Cyber-Physical Systems (CPS) and Industry
4.0, mechatronic systems are interconnected and could
therefore exploit knowledge learned by other machines
systematically. For instance, the commissioning of a
new fleet of similar machines, that has to learn how
to optimally perform the same task, or the addition
of a new system to a tuned fleet, are possible scenarios
where learning and sharing a common model could lead
to an improvement of performance and/or reduction of
commissioning time.
This work present the Multi-System Iterative Learning
Control (MSILC) algorithm that aims to extend tradi-
tional ILC towards multiple systems.

2 Algorithm

The MSILC approach is based on a generic nonlin-
ear norm-optimal ILC method that, as shown in [1],
can be interpreted as a two-step procedure: first com-
pute an explicit model correction and subsequently
invert the corrected system dynamics. Specifically,
the MSILC further exploit the model correction step
by calculating a common correction—shared between
all systems—and a correction specific to each sys-
tem, as shown in Figure 1. The MSILC algorithm,
is implemented as a custom class of RoFaLT [2],
MultiSystemsILC, and is available on GitLab 1. The
software provide a and generic tool for an optimization,
model-based nonlinear ILC.
The approach is theoretically analyzed and categorized
in the field of linear ILC through the well known frame-
work of filter design. The MSILC iteration-domain dy-
namics can be equivalently represented by the update
law (1) for the next iteration i+1 of a system k belong-
ing to a fleet of K systems. The parameter φ, resulting
from the regularization in the delta correction step, pro-
vide a tuning knob to trade-off between a single-system

1https://gitlab.mech.kuleuven.be/meco-
software/multisystem-ilc

Model inversion

Common  correction

Delta  correction Delta  correction

Model inversion

MultiSysILC

Figure 1: Illustration of the MSILC algorithm.

norm-optimal update law (1a) and a common norm-
optimal update law. The filters L and Q are designed
by means of the regularization parameter in the model
inversion step of the algorithm.

uki+1 = φQ
(
uki + L eki ) (1a)

+ (1− φ)
1

K

K∑

j

Q
(
uji + L eji

)
, (1b)

3 Numerical study

The functioning of the approach is discussed through
a numerical study of a fleet of positioning stages
with measurement affected by iteration-varying distur-
bances. The results demonstrate the increase of the
fleet performance achieved by using a trade-off between
a single-system and common update law.
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Abstract

Large development times and costs are required in
calibration of transient control of diesel engines.
Existing control calibration approach for engines
follows a two-step approach: base calibration
at steady-state conditions and expert intensive
calibration for transients operation. This approach
is unsystematic, requires large expert effort and the
calibrated control settings usually result in sub-optimal
engine performance in transients [1].

In this paper, a Machine Learning-based methodology
is proposed, where a Long Short-term Memory (LSTM)
neural network (NN) model can learn in a supervised
manner the transients control policy and reference
trajectories as a function of external inputs to the
control system. This study focuses on transient control
of diesel engine air-path subsystem. The objective is
to develop a systematic approach to accurately model
transient control policy, reduce the expert effort with
minimal computational and memory complexity for
real-time implementation on engine control unit (ECU).

The proposed model-based calibration approach
comprises: 1) off-line optimization to determine
transients control policy and 2) efficient modeling of
this policy for ECU implementation. This work focuses
on the second step of this proposed approach. The
proposed model M input-output structure is defined
as,

M : w →
[
u0

r

]
(1)

where the model learns to predict the control signals u0

and r as a function of external inputs w in supervised
learning manner as shown in Figure 1. Here, → refers
to mapping from inputs to output.

Figure 1: Proposed control system design

For this data-driven modeling, the input-output data
has to be generated using off-line optimization as

described above. However, for the model development

in this study the training data-set (w, [u0 r]
⊤
)

is generated from an existing calibrated engine
model-in-the-loop environment.

The proposed input-output relationship is modeled
using a LSTM NN, which is a gated recurrent neural
network (RNN) [2]. LSTM NNs are efficient in
learning long-term time dependencies between inputs
and outputs. In order to determine the LSTM model
parameters, numerical optimization method is applied.
The optimization problem is to minimize the expected

empirical loss between the true data labels o = [u0 r]
⊤

and the LSTM model predictions ô(w;Θ) = [û0 r̂]
⊤
,

where Θ are the model parameters.

In this presentation, we will present the LSTM model
development approach, which includes experiment
design and data acquisition, data-set generation, choice
of input history length to the LSTM model, NN
hyper-parameter tuning and model validation. The
choice of best LSTM model architecture is motivated
by trade-off analysis as shown in Figure 2 between
the system performance accuracy and calibration effort
with varying LSTM model complexity.

Figure 2: Illustration of the trade-off
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1 Introduction

Recent successes in Reinforcement Learning (RL) and the
rising abundance of data have led to a growing interest in
learning-based control methodologies [1], which strive to
learn different elements of the controller framework in order
to reduce conservativeness and improve closed-loop perfor-
mance. However, ensuring safety and constraint satisfac-
tion, paramount aspects in the majority of control applica-
tions, remains a challenge, particularly during the learning
process. A purely data-driven solution to this issue, Safe RL
[2] encourages safety in the long term by appropriately mod-
ifying the optimality criterion or the exploration process by,
for instance, penalizing dangerous behaviours or integrating
knowledge from a teacher. Nonetheless, few or no formal
guarantees on constraint satisfaction are currently available
in literature. An alternative approach is offered by Learning-
Based Model Predictive Control (LBMPC) [3], which has
also been gaining substantial attention thanks to its ability to
structurally take safety constraints into account and to pro-
vide formal tools for the analysis of stability and feasibility.

In this presentation we review recent works on LBMPC,
identify open issues in the field, and suggest a set of pos-
sible research directions addressing these issues.

2 Approaches

Model Predictive Control (MPC) has established itself as a
powerful control methodology able to explicitly handle hard
constraints and deliver an (sub)optimal policy even with a
possibly inaccurate model of the underlying system. In re-
cent years, particular focus has been dedicated to the in-
tegration of learning within this framework. The various
approaches in LBMPC can be classified by what elements,
e.g., the model dynamics, the controller design parameters,
or the disturbance set, are learned [3].

Learning the system dynamics to improve performance is
an obvious direction, since MPC relies on a nominal model
to formulate predictions on the state trajectories. A fre-
quent assumption in this line of research is to collect the
unknown errors affecting the nominal model as an additive
term, which is learnt based on data collected online. Gaus-
sian Processes (GPs) are commonly employed as they seam-
lessly allow for the treatment of model uncertainties, though
assumptions on the shape of the disturbance set are often
made to be able to establish stability and safety.

Another direction is to learn the controller parameters, such
as the stage cost, the terminal cost, terminal set constraint,
as well as the disturbance set. In this context, noteworthy
is the combination of Safe RL with robust MPC [4], where
the MPC controller acts as a parametric function approxima-
tion that can structurally handle safety, while the RL agent
is tasked with tuning the parameters of the controller. Here,
care during the parameter update must be taken to avoid
jeopardizing stability and feasibility of the MPC.

3 Open issues & research directions

We highlight the following open challenges: (i) several
studies have shown promising theoretical and practical re-
sults in the integration of robust MPC with learning tech-
niques, but a concern is that its conservativeness may ad-
versely affect the efficiency: can less conservative formula-
tions, such as stochastic and scenario-based MPC in partic-
ular, be employed to yield higher performance? Addition-
ally, (ii) can we use the tools from scenario-based optimiza-
tion to obtain a probabilistic certification for safety? Lastly,
(iii) exploration of the safe action space is mostly imple-
mented passively. Is it possible to adapt the theory from
Multi-Armed Bandit (MAB) and RL to actively ensure suf-
ficient and efficient exploration in LBMPC as well?
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1 Optimal motion planning

Optimal control problems (OCP) offer a versatile method-
ology for solving optimal motion planning of mechatronic
systems over a continuous state space x(t) ∈ Rnx and con-
trol space u(t) ∈ Rnu . Using a direct transcription, one can
transform such an OCP into a nonlinear program. A popular
multiple shooting transcription results in:

minimize
x1,x2,...,xN+1,

u1,u2,...,uN

∑N
i=1 l(xk,uk)+ e(xN+1),

subject to xk+1 = F(xk,uk), k = 1 . . .N
B(x1,xN+1) = 0,
h(xk,uk)≥ 0, k = 1 . . .N

(1)

with l(·, ·) and e(·) representing cost, F(·,c)̇ representing
discretized system dynamics, B(·, ·) representing boundary
conditions, and h(·, ·) representing path constraints.

2 Obstacle avoidance

In an environment littered with convex obstacles
O1, . . . ,Ono , obstacle avoidance of a convex self S with
those obstacles can be readily mapped to the above path
constraints with a signed distance function:

dist(S(xk),Oi)≥ 0, k = 1 . . .N, i = 1, . . . ,no. (2)

As an example, consider a circular self at position p(x) with
radius R and circular obstacles with positions pi and radii ri.
Equation (2) becomes:

‖p(xk)− pi‖2− (R+ ri)≥ 0, k = 1 . . .N, i = 1, . . . ,no.

When using an efficient modeling tool such as CasADi[1],
the computational bottleneck in numerical solution for large
no is to be found in the numerical algebra (”linalg”) of a
solver as opposed to evaluations of objective and constraint
functions including its derivatives (”fun eval”).

3 Use of LogSumExp

To reduce matrix dimensions, we propose to replace the i-
enumeration in Equation (2) with a smooth approximation
to the minimum distance based on LogSumExp, i.e.

lse(y) := log(ey1 + . . .+ eyn), with y ∈ Rn. (3)

0 20 40 60 80 100 120 140
Number of obstacles

0

1

2

3

4

Co
m

pu
ta

tio
na

l t
im

e 
[s

]

linalg (classic)
fun eval (classic)
linalg (lse)
fun eval (lse)

Figure 1: Benchmark results

Its approximation error is one-sided and quantifiable: intro-
ducing α as scalar scaling factor, 1

α lse(α·) is never smaller
than the true maximum and at most log(n)/α larger.

Dismissal of LogSumExp for obvious overflow and accu-
racy issues appears unfounded [2]; a robust computational
recipe, still continuously differentiable is given by:

lse(y) = max(y)+ log1p
(

∑n
i=1

i 6=argmax(y)
eyi−maxy

)
. (4)

4 Results

Adding LogSumExp as differentiable component in
CasADi, we present in Figure 1 a simple benchmark of time-
optimal point-to-point motion of a bicycle model through a
grid of circular obstacles, solved with Ipopt.
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1 Introduction

An adaptive Model Predictive Control (MPC) scheme is pro-
posed for the control of systems with time-varying topolo-
gies. Such systems are relevant for e.g. heating control in
buildings where connections between different rooms can
be closed and opened, pneumatic networks where states of
valves can change, etc. Such dynamically changing systems
are often too complex for classical control strategies. In
many cases, these systems are also MIMO systems. Hence,
MPC is a potentially suitable strategy for such problems.

An adaptive MPC scheme is proposed by modelling the sys-
tem using graph theory [2]. The introduction of the Lapla-
cian matrix L =D−A = [Li j] as a parameter in the system
allows us to adaptively switch the topology during the MPC
loop, without the need for rewriting all system equations.
D is the Degree matrix and A the Adjacency matrix, and
undirected communication is assumed.

2 Modelling approach

Figure 1: Three subsystems in an arbitrary topology. Com-
munication dynamics are indicated by the red edges. The
black edges indicate the internal dynamics of the individual
subsystems.

The communication dynamics between different subsystems
enter each individual subsystem as an additional input. E.g.
for the system given in figure 1, the full system dynamics
are modelled as follows:

ẏ1 = f (y1,u1)− lll1/τc
[
y1 u1 y2 u2 y3 u3

]⊺

u̇1 = f (u1,y1)− lll2/τc
[
y1 u1 y2 u2 y3 u3

]⊺

. . .

(1)

with τc the time constant for the communication dynamics
and llli the row vectors of the Laplacian matrix L . For the
given system in figure 1, the Laplacian takes the following
form:

L =




2 0 0 −1 −1 0
0 1 0 0 0 −1
0 0 0 0 0 0
−1 0 0 1 0 0
−1 0 0 0 1 0
0 −1 0 0 0 1



. (2)

The Laplacian L enters the system equations as an adaptive
parameter in the MPC scheme, as shown in equation 1.

3 Results

Simulation results in CasADi [1] of the adaptive MPC
scheme are applied to a pneumatic system (figure 2). An
input-bounded MPC is defined with V (x,u) = ∑N

k=1(y2,k −
yref)

2. The topology is identical to the topology described in
figure 1. Around 150 seconds, a topology change is induced:
a disconnection between y1 and y3 occurs.

Figure 2: Simulation results of the adaptive MPC.
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1 Introduction

Collision-free trajectory planning of robotic systems in a
cluttered environment has attracted a lot of attention in in-
dustry and the robotics research community over the last few
years. Applications can be found in a variety of domains
such as aerial vehicles, forklifts driving in a warehouse, as-
sistive robots in medical environments, etc. Motion planners
create a feasible trajectory that satisfies certain constraints
such as robot joint and actuation limits, and avoids colli-
sion. This work describes a novel, computational-cost re-
ducing collision avoidance constraint for trajectory planning
of robotic systems by adopting a smooth approximation of
the maximum function. The proposed method reduces the
number of constraints in a trajectory planning problem by
expressing a number of constraints as one single constraint
that is approximately equivalent to the most critical con-
straint and still has a continuous derivative over its whole
domain.

2 Smooth reformulation

In multi-DOF robotic optimization based motion planning,
all possible collisions are formulated as a set of separate con-
straints in an Optimal Control Problem. These are generally
formulated as

d(Oki,Rk j)≥ 0 i = 1, . . . ,Nobs, j = 1, . . . ,Nob j (1)

where d(Oki,Rk j) is the distance between obstacle Oki and
robot primitive Rk j and Nobs, Nob j are the number of obstacle
and robot primitives. The amount of collision constraints
becomes substantial for a cluttered environment with a lot
of possible collisions and allows for a possible reduction.

A smooth maximum reformulation, called the Logarithmic-
Sum-of-Exponentials (LSE) definition [?], computes a sin-
gle approximated minimal distance dk on a point pk on the
trajectory

dk = ad −
1
α

log(
Nobs

∑
i=1

Nob j

∑
j=1

e−α(d(Oki,Rk j)−ad)) (2)

Traditional LSE Min
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Figure 1: Boxplot comparing three formulations for 25 different
configurations of the 3D robotic arm example with five
iterations per configuration.

where ad is the actual minimal distance between all robot
and obstacle pairs at point pk, α is a scaling factor deter-
mining the maximal approximation error log(NobsNob j)/α .

3 Numerical validation

Figure ?? shows the decrease in computation times in a 3D
robot motion planning task with 36 primitives. The pro-
posed reformulation clearly speeds up planning algorithms
by combining several constraints. A reduction of 28% of the
median computation time over several configurations can be
noted. The gain in computation time clearly outweighs the
cost due to an increase in iterations, even in complex plan-
ning cases.
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1 Introduction

Interventional procedures, such as catheter-based operations, rep-
resent the state-of-the-art for the treatment of some heart and neu-
rological diseases. The execution of these procedures requires tak-
ing multiple X-ray images of a patient’s body from multiple angles
in different phases of the procedure. Imaging is facilitated by a
robot that moves in a cluttered and dynamically changing envi-
ronment shared with the surgical team. Previous research has fo-
cused on increasing the degree of dexterity of such medical robots
[1]. In this research we focus on improving how the surgical team
can personalize robots’ trajectories by adopting a Learning from
Demonstration (LfD) approach. The system is composed by mul-
tiple robots that together perform imaging. Since it is not efficient
neither effective to request users to teach each single robot, we
focus the learning from demonstration approach on the following
research question: How can users teach one robot and the teaching
be automatically propagated to all robots composing the system
such that the task can be performed according to user preferences?
In this study, the main purpose is to complete a collaborative task
shared among two medical manipulators, namely a leader and a
follower. LfD based on a probabilistic approach is chosen [2] as
the key method to teach the desired trajectories to the leader robot.
The follower robot knows only the task constraints such as relative
position and relative velocity from the leader robot. The experi-
mental setup is reported in Fig. 1.

Figure 1: Considered configuration of the leader-follower
setup from the doctoral thesis of van Pixteren [1]

2 Method

Demonstrations are shown to the leader robot in a simulation envi-
ronment via a teleoperation device (i.e. a joystick). This reduces
collision risks since the physical robot is very large in size. The

trajectory of the leader robot is recorded in the form of joint angles
and end-effector positions. After several demonstrations with dif-
ferent initial positions, the joint probability distribution of the in-
put and the output is fitted by a Gaussian Mixture Models (GMM).
Gaussian Mixture Regression (GMR) [2] is then used to encode the
robot’s motion. In the reproduction stage, a similarity metrics [2]
is chosen such that:

minimize
ẋL,θ̇ L

(θ̇ L − ˙̂θ L)TW θ (θ̇ L − ˙̂θ L)+(ẋ− ˙̂xL)TW x(ẋL − ˙̂xL)

subject to ẋL = Jθ̇ L

where the semi-definite positive matrices W θ ,W x can be selected
according to the importance of the constraints on the joint angles
(θ L) and end-effector positions (xL). The purpose of this equation
is to keep the actual joint position or the end-effector position close
to the demonstrated data. The follower robot is allowed to move
while satisfying the task’s constraints. During the demonstration,
the end-effector position of the leader robot with respect to the tar-
get position is recorded ( xL

T ) and the desired distance between the
leader and the follower robot can be calculated by a function such
that:

xF = f (xL
T ,d). (1)

3 Conclusion and Future Studies

We argue that, in a multi-robot setup with known task’s constraints,
the task can be taught to only one robot. In this approach, the fol-
lower adapts to the leader, and it is responsible to satisfy coordi-
nation constraints. In the next steps, the orientation between the
end-effectors of the two robots will be taken into account in the
reproduction stage. In order to be responsive to dynamic obstacles,
reinforcement learning will be used to generalize the motion of the
system. We expect to show that when the leader reacts to obstacles,
the follower also learns how to best modify its trajectory. Along-
side, when the follower encounters obstacles, the leader will learn
how to adapt its motion to compensate for unexpected motion of
the follower.
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1 Introduction

The task of harvesting a tomato truss requires the truss to
be separated from the stem by severing the peduncle. Chal-
lenges to perform this task with an autonomous robotic sys-
tem include ripeness detection of the truss and localizing the
peduncle, which is often done using only a vision system.
Occlusion by leaves, stems and other trusses generally ham-
per vision-based detection. This study proposes a supple-
mentary method to reach the peduncles, based on vibration
feedback.

2 Approach

When mechanically exciting the tree at the stem, at a cer-
tain frequency the truss will resonate to the excitation. A
visualization of this is shown in Figure 1. When traveling
along the stem, while exciting it, the shift of this resonance
frequency indicates the progress towards the peduncle.

Figure 1: Resonance of a tomato plant at increasing frequencies,
visualized by overlaying multiple frames in a video.
Blur indicates movement, while sharpness indicates
that the plant part is standing still. A consecutive de-
coupling of the trusses is observed at increasing fre-
quencies.

3 Results

It is demonstrated that the resonance frequency increases
when the distance to the peduncle decreases, which is at-
tributed to a change of the mechanical stiffness of the stem

1EMAIL: j.p.f.senden@tue.nl

part between the location of excitation and the location of
the peduncle. The closest truss has the highest resonance
frequency of 3− 4Hz. Similar to the mock-up plant, it is
shown that these frequencies increase when approaching the
peduncle, with approximately 0.7Hz/m, shown in Figure 2.
The change of the frequencies should be used to track the
progress towards a truss, rather than predicting an exact lo-
cation. This approach is independent of the exact parame-
ters of the plant, resulting in a promising proof-of-concept
as extra sensor modality.

Figure 2: Measured frequency responses, where the stem is ex-
cited at different distances below the first truss. The
blue circles indicate the anti-resonance frequencies, in-
dicated by a phase increase, of the four trusses at dif-
ferent distances.

4 Conclusion

The dynamic response of the plant to an excitation force can
be used track the progression towards the truss, while trav-
eling up the stem. This relative truss localization method is
complementary to vision based fruit localization techniques.
This method works without the need of exact model param-
eter. Instead, the resonance frequencies need to be deter-
mined at different actuation positions. Tracking if these fre-
quencies increase or decrease give enough information to
know whether we are approaching a tomato or moving far-
ther from it.
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1 Introduction

Wireless networks play an important role in many cutting-
edge control applications like large-scale systems, multi-
agent systems, and mobile robotics. When the feedback
loop is closed over wireless, the links cannot be assumed
ideal but they are affected by packet losses and delays. We
aim to experimentally test how the wireless network affects
the satisfaction of constraints on the system evolution.

2 Experimental setup

The tests presented in the following involve experimental
communication data from a Wi-Fi network and accurate
simulated dynamics of a two-wheeled robot. The network
experiments consist of the transmission of time-stamped
packets from a host PC to a target board (Raspberry Pi 3)
over a Wi-Fi network (IEEE 802.11n standard), and the
other way around, with a given periodicity (T =5ms). This
setup mimics the periodic communications between a plant
and a remote controller. The packet loss sequences obtained
in the experiment have been included in a Simulink model
together with the plant model and the control algorithm.
We accurately simulate the nonlinear unstable dynamics, the
sensing devices (encoders and MPU), and the actuator sat-
uration. In the following, we compare 4 control strategies:
the RG over Lossy Networks [1], the MPC for Tracking over
Lossy Networks [2], the Networked MPC [3] with an inner
stabilizing controller, and the Networked MPC [3] directly
applied to the unstable system. Among these 4 solutions,
only the last one does not need a reliable link between the
sensor and the actuator, thus it is the most general. However,
the setup with reliable sensor-actuator link is not restrictive
in several applications, e.g. in robotics, where the system
can be locally controlled but the on-board computational ca-
pabilities are not sufficient to implement high-performing
control strategies and to enforce constraints.

3 Results

We test the considered strategies on a reference tracking task
and we require the tilt angle to be less than 0.1rad. Under
good channel conditions, all the strategies achieve the same
performances, without noticeable differences with respect
to the case with dedicated ideal cables. Under bad channel
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conditions, an explicative result is reported in the figure. We
can see that [3] is not able to enforce the constraints. When
the robot is pre-stabilized, the violations are modest, but still
up to 0.05rad on a limit of 0.1rad. If the local controller
is not implemented, the consequences are catastrophic: the
robot falls down and cannot proceed anymore. This is due to
the fact that the bound on the number of consecutive packet
losses, required by [3], is violated by the Wi-Fi network.
Conversely, strategies [1] and [2] succeed in reaching the
desired set-point while satisfying the constraints.

4 Discussion and conclusion

From the outcomes of the experiments, we think that, under
average channel conditions, [1] and [2] are able to achieve
the same performances as classic solutions relying on wired
cables. Under bad channel conditions, we believe that [1]
and [2] can still guarantee constraint satisfaction. These re-
sults suggest that using a local simple controller to stabilize
the system and a wireless controller to enforce constraints is
a promising direction for advanced control applications.
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1 Introduction

State estimation plays an important role in the functioning of
autonomous vehicles and, is usually coupled with the con-
struction of the environment model (map-building), gener-
ally known as SLAM. The map is not only used to fine tune
the state estimation, but also serve as an input to the motion
planning module in an autonomous vehicle.
Development of state estimation and map building algo-
rithms are often driven by a combination of factors such as
choice of robot, the environment of operation and perfor-
mance requirement. However, subtle changes in these fac-
tors, such as operation of the robot in rainy weather condi-
tion/highly dynamic environment can result in poor perfor-
mance of the algorithms, if they’re not originally designed
for such changes. Therefore, the robustness and reliability
of the SLAM algorithm needs to be quantified. This often
requires expensive physical testing.
Simulation environments can help address some of the re-
liability and robustness issues, since they allow testing the
SLAM algorithm, in different weather conditions (rainy,
windy, sunny), dynamic environments and also induce dif-
ferent uncertainties. However, simulation environments of-
ten have the issue that the data from the sensor models are
not rich when compared with physical sensors.
Simcenter Prescan is a simulation environment that pro-
vides high fidelity Physics-based lidar, radar and camera
models (based on Unreal engine), based on accurate energy
propogation, motion computation and modelling of beam
shape. Here, the SLAM algorithms can be verified and, also
validated for a certain performance requirement.

2 Simulation-aided Algorithm Development and
Validation

In this work, we look at how high fidelity simulation envi-
ronments like Simcenter Prescan, can aid in the development
of SLAM algorithms and also help quantify their operating
conditions (robustness).

For this we begin by first verifying a state-of-the-art SLAM
algorithm, Lego-Loam [1] to accurately localize and map
the environment using only a lidar sensor, in both virtual
and physical environments. We not only make use of rotat-
ing lidar like velodyne VLP16, but also adapt the algorithm
to work with solid-state lidars like Xenomatix. We first test
the efficacy of the algorithm in a virtual environment con-
structed on Prescan (shown in Figure 1).

Figure 1: Development of SLAM based on both Real and Sim-
ulation environments: (a) Lidar and Camera (b) Au-
tonomous Vehicle Platform: Simrod (c) Scenario used
for SLAM verification

Most of the state-of-the-art algorithms for SLAM are tested
on real physical data, where in the SLAM results are often
validated with data from GPS, which is also prone to error.
However, in a virtual environment like Prescan, ground truth
is known making it easier to validate the algorithms. We also
validate the performance of the algorithm on real data, using
both Xenomatix and Velodyne on the Autonomous vehicle
platform at Siemens (Simrod) as shown in Figure 1.

In the future, we’ll also look at how to leverage this simula-
tion capability not only to verify the SLAM algorithms but
also aid in other activities such as maximizing SLAM per-
formance by identifying the placement of multiple sensors.
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1 Introduction

Despite the progress in recent decades, autonomous driving
still faces significant challenges in terms of reaching high
levels of automation. Evasive maneuvers in hazardous sce-
narios are prime examples requiring further research should
be conducted. First, due to the lack of sufficient and reli-
able experimental data in hazardous driving scenarios, the
available methods for motion planning and control are lim-
ited to model-based approaches. Second, during aggressive
maneuvers, the vehicle’s dynamics and the tire behavior ex-
ceed their linear ranges. Therefore, more accurate dynamics
should be taken into account for better closed-loop perfor-
mance. Meanwhile, acting swiftly is crucial. Hence, the
main challenge will be finding the right balance between
the accuracy of the vehicle model and the computation time.
Different approaches to using hybrid representations of the
vehicle dynamics model are discussed here.

2 Vehicle Dynamics Models

The coupling between longitudinal and lateral dynamics, as
well as the tire-force behavior, contribute to a highly non-
linear vehicle model. One control design option is to uti-
lize nonlinear control design techniques. Alternatively, the
model may be simplified in order to use linear control de-
sign techniques while still capturing some of the nonlinear
phenomena: representative techniques in this directions are
the Linear Parameter-Varying (LPV) and PieceWise-Affine
(PWA) approximations.

The LPV formulation transforms a nonlinear system into a
parametrized linear system with measurable varying param-
eters. Due to the fact that this transformation is not always
possible, there are three methods to approximate a nonlinear
system as an LPV system [1]: the polytopic approach, the
grid-based approach, and the linear fractional transforma-
tion approach, all of which use linear time-invariant models
at different operating points. Atoui et al. have compared
these approaches for single-track modeling of the vehicle’s
lateral dynamics [1]: the conclusion is that the grid-based
method has the best performance in terms of computation
cost and accuracy. When all or a subset of the varying pa-
rameters are also states of the system, the resulting formu-
lation is called quasi-LPV, for which two other techniques

have been introduced [2]: state transformation and func-
tion substitution.

In PWA approximation, the state space is divided into poly-
topes, and the nonlinear system is approximated by an affine
function in each polytopic region. Several methods have
been proposed for providing such approximations and de-
termining an error bound based on them [3]. In finding
a PWA approximation, there are two main considerations:
how should the state space be divided and how should the
approximated function be calculated. State space partition-
ing is particularly important since it determines the compu-
tational complexity, the accuracy, and potential numerical
issues of the resulting controller. In general, a higher num-
ber of partitions reduces the error bound in each region, but
leads to frequent switches among regions.

3 Future Research

LPV and PWA are seldom applied to highly complicated
models, but rather to simpler ones with mild nonlinearities.
Planning and control of evasive maneuvers for automated
vehicles in critical scenarios requires a systematic analysis
of different vehicle models and their computational perfor-
mance and requirements, which — to the best of our knowl-
edge — has not yet been conducted. Our future research will
therefore focus on developing a comparison benchmark for
selecting a model for trajectory planning and vehicle control
in hazardous driving scenarios.

This research is supported by the Dutch Science Foundation
NWO-TTW within the EVOLVE project (nr. 18484).
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1 Introduction

Automated guided vehicles (AGVs) are increasingly popu-
lar for transport and sortation in intralogistic systems. Con-
trolling a dense fleet of vehicles such that system level per-
formance requirements are met, is challenging. The main
functionalities in the system level controller are job assign-
ment, path planning and traffic control, see Figure 1. We
present a traffic control approach for AGVs on a grid layout.

Jobs

Job Assignment

Path Planning

Traffic Control

Vehicle Movement

Destination 
reached?

Job

Path

Reservations

no

yes

Figure 1: Generic AGV workflow, based on [1].

2 Grid based AGV traffic control

On a grid layout, AGVs move from tile to tile. Tiles do not
overlap and need to be reserved for a vehicle exclusively be-
fore the vehicle may enter the tile. An example is given in
Figure 2. Four AGVs are shown with intended paths (ar-
rows) and currently reserved tiles (colored shading). AGVs
A, C, and D compete for tile 1, and AGVs C and D compete
for tile 2. Which AGVs get to drive these tiles first?

1

2C

B

D

A

Figure 2: Grid example with four AGVs.

The proposed traffic controller reserves tiles for AGVs using
a periodically executed workflow (Figure 3), that consists
of a happy flow part and a starvation avoidance part. The
happy flow allows for AGV prioritization, and the execution
of hard checks and soft checks. Hard checks include e.g. tile
availability and deadlock avoidance, while soft checks in-
clude e.g. hinder avoidance due to priorities. The checks
jointly produce a precedence graph in which each AGV is
represented by a vertex (see the right hand side of the figure).
If the precedence graph contains strongly connected com-
ponents (i.e. vehicles prevent each other from driving), then
the starvation avoidance strategy can be applied to the graph
such that at least one vehicle that did not pass all soft checks
gets a tile to drive. This ensures global system progress.

yes

Hard and soft checks next tile(s) 
selected AGV

AGVs left to reserve 
next tile(s)?

Get AGVs to reserve next tile(s)

end

If allowed, tile(s) are reserved for 
selected AGV

no

Reserve next tile for one AGV per 
strongly connected component

Prioritize AGVs remaining to reserve 
next tile(s) & select first

Strongly connected 
component(s) in graph?

yes

no

 

Happy Flow Starvation Avoidance
start

Figure 3: Workflow for reserving tiles for AGVs.
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1 Introduction

The general framework of this research concerns the con-
strained navigation of autonomous ships. The aim is to deal
with the navigation of ships in narrow ways (e.g. a harbor),
as depicted in Fig. 1. The type of ship considered in this
work is a two-azimuth thrusters ship (Fig. 2). The ability
of such ships to produce lateral forces adapts to this kind of
navigation environment.

Figure 1: Example of constrained navigation path.

2 Model predictive control

We propose to tackle this problem by using a Model Predic-
tive Control (MPC) as it is widely reported for ship naviga-
tion to deal with inherent vehicle constraints such as actua-
tor saturation [1]. In addition, narrow ways navigation adds
constraints on the ship position and velocity, which can also
be handled by MPC scheme. Prestabilizing the system with
a control law allows to simulate an infinite prediction hori-
zon, and hence, ensure the feasibility of the MPC, increase
its robustness, and simplify the computational burden.

3 Two-azimuth thrusters ship

The dynamics of surface marine vehicles is usually reduced
to a 3 degrees of freedom model: surge, sway, and yaw
motion. A two-azimuth thrusters ship has four control sig-
nals (the thrust F and the orientation θ of each thruster) that
produce together a resulting x-oriented thrust Fx, y-oriented
thrust Fy and z-oriented torque τ .

Figure 2: Two-azimuth thruster ship model.

4 Control allocation

Control schemes for ships navigation usually compute the
desired Fx, Fy, and τ based on position or velocity reference.
Control allocation aims at finding the mapping from the de-
sired thrusts and torque to an optimal configuration in terms
of thrusters orientations and thrusts [2]. This is usually done
by solving an optimization problem to minimize the total
thrusters power and accounting for some constraints such as
thrusters singularities. Since MPC already requires online
optimization, it is interesting in terms of computational ef-
forts to avoid online optimization for control allocation. Our
objective is therefore to find if it exists, a closed-form solu-
tion to control allocation, i.e. to find a continuous function
ϕ such that:

ϕ : IR3 −→ IR4 : β =




Fx
Fy
τ


−→ δ =




F1
F2
θ1
θ2


 .
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1 Introduction

Automated and cooperative driving holds the promise to im-
prove road traffic by reducing traffic accidents, congestion,
saving time and money for drivers and transportation com-
panies, and by reducing pollution. The main functionalities
that are needed in automated driving vehicles, as shown in
Figure 1, need to cope with more complexity, for example
dealing with mixed traffic, multiple road users, prediction
uncertainty and interactions with drivers. These challenges
are observed in virtually all scenarios including lane merg-
ing scenarios.

Sensors, 
World Model

Decision 
Making

Motion 
Planning

Low Level 
Control

Sensors, 
World Model

Decision 
Making

Motion 
Planning

Vehicle 
Control

Figure 1: Example of autonomous vehicle elements.

2 SOTA in motion planing and control

Driving and merging in a dense high-speed traffic flow is a
challenging task for drivers and autonomous vehicles, due
to the need to perform multiple tasks at once (see Figure 2)
[2]. Current (merging) algorithms, using machine learning
or optimization methods, are not always able to proactively
make proper decisions, as they often only exploit current
knowledge they have. This calls for new and safer solutions
[1].

VehicleSensors Actuators

Environment

Driver

EGO

Figure 2: High overview of challenges in autonomous vehicles.

3 Lane merging scenario in mixed traffic

In order to develop safe trajectory generation and control
algorithms for merging (see Figure 3), in this presentation
a distributed model predictive controller will be presented
based on generalizing the idea of collision points [3]. This
will lead to convex optimization programs to be run online.

Figure 3: Example lane merging scenario.

4 Summary and future work

In summary, this presentation will show the trends and fu-
ture needs for safe and comfortable motion planning and
control, based on an extensive literature review. Through a
simulation based benchmark study for merging scenario we
will show preliminary results regarding the potential of in-
cluding (uncertain) predicted information in the model pre-
dictive controller. Furthermore, the first steps in develop-
ing trajectory generation and control are shown for a merg-
ing scenario in mixed traffic. Future work will focus on a
more realistic inclusion of prediction uncertainty in trajec-
tory generation and control.

Acknowledgment

This work is part of the research program AMADeuS with project num-
ber 18489, which is partly financed by the Netherlands Organisation for
Scientific Research (NWO).

References
[1] M. Bouton, A. Nakhaei, D. Isele, K. Fujimura, & M.J. Kochender-
fer (2020). Reinforcement Learning with Iterative Reasoning for Merging
in Dense Traffic. In arXiv:2005.11895v1 [cs.AI] 25 May 2020.
[2] W. Cao, M. Mukai & T. Kawabe (2019). Merging trajectory genera-
tion method using real-time optimization with enhanced robustness against
sensor noise. In Artificial Life and Robotics (2019) 24:527–533.
[3] A. Katriniok, P. Kleibaum, & M. Joševski (2017). Distributed
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1 Introduction

Traffic accident related deaths are the 8th cause of death
worldwide. Autonomous Driving (AD) vehicles are ex-
pected to significantly reduce these deaths, yet to attain
full AD several challenges still remain. For example,
due to either faults (e.g, temporary hardware failures) or
performance-limits (e.g, false negative detection of objects)
AD vehicles still cause collisions and, consequently, require
supervision from human drivers or tightly controlled envi-
ronments. To ensure AD vehicles are safe enough, they must
be able to detect and mitigate faults and performance-limits
during operation, without reducing AD availability.

2 Current Limitations in AD architectures

Detection of performance-limits and faults is generally
based on a redundant channel with a heterogeneous safety
World Model (WM) in a Monitor-Actuator architecture [1],
which improves upon single channel systems (Fig. 1.a)
by allowing detection of performance-limits of the primary
channel (Fig 1.b). To allow performance-limit detection in
secondary channels a cross-channel checking architecture is
required (Fig. 1.c).

Figure 1: Diagram of detectability of performance-limits of ar-
chitectures: (a) single channel, (b) Monitor-Actuator,
(c) scalable cross-channel checking

Existing mitigation strategies rely on transition of control
to drivers or emergency stop Motion Planners (MP). This
reduces the availability of AD functions and can create dan-
gerous situations due to short transition of control times or
sudden braking. To address these issues, we propose a scal-
able cross-channel checking architecture.

3 Safety Shell multi-channel architecture

The Safety Shell computes the last safe intervention time
(τL) via cross-comparisons of the selected channel to all
WMs (Fig. 2). The τL represents when an emergency ma-
noeuvre is expected to be needed to avoid unreasonable risk,

as adapted from the MP appraoch by [2]. By continuing
with the selected channel if τL permits, we avoid prema-
ture disruptive intervention due to performance-limits of the
channels’ WM or MP. This increases AD time without sac-
rificing safety or comfort. If the selected channel doesn’t re-
plan to a safe trajectory or the risk assessment isn’t reduced,
the arbiter may switch to a safer channel, maintaining the
availability of AD functions.

Figure 2: Abstract overview of the proposed Safety Shell scalable
multi-channel architecture and arbitration concept

4 Simulation results

In a false-negative object detection test, the Safety Shell ar-
chitecture reduces collision probability compared to both
single channel and a Monitor-Actuator architecture with au-
tonomous emergency braking functionality (Fig. 3). In a
false-positive object detection test our method continues in
the majority of cases where the Monitor-Actuator architec-
ture triggers braking to standstill or a transition of control.
These results confirm the potential of the Safety Shell.

Figure 3: Results of false-negative detection use-case
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atic False Positive Mitigation in Safe Automated Driving
Systems,” Int. Symposium on Industrial Electronics and Ap-
plications, 2020, pp. 1-8
[2] F. Damerow and J. Eggert, “Risk-aversive behav-
ior planning under multiple situations with uncertainty,”
IEEE Int. Conference on Intelligent Transportation Systems,
2015, pp. 656-663

146



Book of Abstracts 41st Benelux Meeting on Systems and Control

An online optimization approach to the random coordinate descent
algorithm in open multi-agent systems

Charles Monnoyer de Galland1 Renato Vizuete2,3 Julien M. Hendrickx1 Paolo Frasca3

Elena Panteley2

1ICTEAM, UCLouvain, Belgium: {charles.monnoyer,julien.hendrickx}@uclouvain.be
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1 Introduction and problem formulation

The optimal resource allocation is a well-known optimiza-
tion problem where a budget must be distributed among
agents in an optimal way. Such problems arise, e.g., in the
distribution of computation power (budget) among comput-
ing entities (agents): each agent i has a fixed amount of tasks
to be computed di (called demand) and actually computes
some quantity xi, such that the total amount of computed
tasks ∑i xi matches the total demand ∑i di, i.e.,

min
x∈Rn ∑

n
i=1 fi(xi) subject to ∑n

i=1 xi = ∑n
i=1 di, (1)

where each function fi : R → R is α-strongly convex and
β -smooth, and corresponds to the local cost held by agent i.

Many existing analyses around such problem stand for sys-
tems where the set of agents is fixed during the process. Yet,
arrivals and departures of agents can occur at a time-scale
similar to that of the process, e.g., with agents experienc-
ing faults or joining the process for a limited period of time.
This gives rise to open multi-agent systems, where the set
of agents may change with the time, resulting in the sys-
tem size nk, the local cost functions f k

i and the demands dk
i

potentially changing at each iteration k. In particular, the
solution of (1), denoted as x∗,k, also evolves with k.

We analyze the performance of the Random Coordinate De-
scent algorithm (RCD) introduced in [1] in open systems.
This algorithm allows for solving (1) with low computa-
tional complexity, as agents update their estimates in a pair-
wise fashion by following each other’s gradient. The conver-
gence of the RCD algorithm in open systems of fixed size
has been already analyzed in [2]. However, in this work,
we use tools inspired from online optimization to study this
algorithm in a system of potentially variable size, by com-
paring its performance xk with that of the optimal solution
x∗,k and the selfish strategy xs,k

i = dk
i , which amounts to the

total absence of collaboration between the agents.

2 Methodology and preliminary results

Following the online optimization approach used e.g., in [3],
we define the dynamical regret RegT which we will use to

characterize the performance of the algorithm, but also the
benefit BenT and potential benefit PotT as follows:

RegT :=
T

∑
t=1

(
f t(xt)− f t(x∗,t)

)
; BenT :=

T

∑
t=1

(
f t(xs,t)− f t(xt)

)
,

and PotT = RegT + BenT = ∑T
t=1 ( f t(xs,t)− f t(x∗,t)). The

regret thus corresponds to the accumulation of errors with
respect to the optimal solution, and the benefit to the ad-
vantage of performing the RCD algorithm instead of doing
nothing. We derive upper and lower bounds on the evolution
of these quantities in expectation to highlight how the RCD
behaves as compared to the optimal and selfish strategies.
We show that these bounds grow linearly with T , and there-
fore their exact value does as well, as illustrated in Figure 1.
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Figure 1: Evolution of ERegT , EBenT and EPotT simulated in a
system of 5 agents subject to frequent replacements.
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1 Introduction
CasADi [1] is a numerical optimization framework that
implements algorithms to solve (non)convex optimal control
problems. It uses expression graphs to handle the evaluation
and differentiation of functions and algorithms. Every
node in such graphs represents an atomic operation and the
traversal order, i.e., the order in which the nodes are visited
and evaluated, is defined by using the depth-first search
(DFS) algorithm. Such traversal order sets the foundation
for automatic code generation and determines the amount of
memory to be allocated for evaluating an expression graph.
The DFS algorithm, together with breadth-first search
(BFS), is one of the most generally used traversal order
algorithms. However, neither of them guarantees an
evaluation with minimum memory usage. This poses a
problem for the implementation of algorithms in embedded
systems, as they have very limited memory, and in standard
CPUs, as a high memory usage would represent cache
misses (and larger evaluation times) during the evaluation
of the expression graph.

2 Methodology
The MinMemTraversal algorithm [2] is a traversing order
algorithm that guarantees the memory-optimal evaluation
of expression trees (instead of graphs) with nodes of non-
atomic objects. This algorithm considers the maximum
memory usage during the evaluation of each node and
the memory usage upon completion of such evaluation
to define indivisible sequences of nodes with memory-
optimal traversal. We have extended the MinMemTraversal
algorithm to compute the memory-optimal traversal order
of expression graphs of atomic operations. This extended
algorithm exploits two properties of such expression graphs:
(i) every node can have more than one child and (ii) every
node has unit size in memory. The first property indicates
that a node should be kept in memory until all its children
have been evaluated, while the second property indicates
that in-place evaluation, i.e., a node can overwrite one of
its parents in memory, is possible.

3 Results

We show the effectiveness of our algorithm by means of an
example where the forward sensitivity of an expression is
computed. Let us define an expression f (x) that is built
iteratively as

f (x) := zn =

(
x; if n = 0;
zn�1 sin(zn�1); otherwise;

(1)

where x is a symbolic variable of unit size and n 2 Z�0 is
the number of iterations. Using the Leibniz chain rule, one
can compute the forward sensitivities of f (x) with a forward

seed y as ∂ f (x)
∂x

>
y, where

∂ f (x)
∂x

:=
∂ zn

∂x
=

8><
>:

1; if n = 0;
sin(x)+xcos(x); if n = 1;

∂ zn
∂ zn�1

∂ zn�1
∂x ; otherwise;

(2)

and ∂ zn
∂ zn�1

= sin(zn�1)+ zn�1 cos(zn�1).
Both DFS and BFS return a traversal order whose evaluation
has a space complexity of O(n). However, please note

that the computation of ∂ zn
∂x
>

y 8n > 1 depends only

on zn�1 and ∂ zn�1
∂x

>

y, i.e., the immediately preceding

iteration. Therefore, the evaluation of ∂ zn
∂x
>

y 8n > 1
does not require to store values from previous iterations
in memory and has an optimal space complexity of
O(1), which is achieved with our algorithm. Since
the original MinMemTraversal algorithm is not able to
handle expression graphs, its traversal reordering cannot be
compared against our algorithm.
The next research step involves the assessment of our
extended algorithm in (i) the reduction of the memory
requirements of functions and algorithms within a model
predictive control framework, and (ii) the effect of such
reduction on the speed-up of the solution of the underlying
optimal control problem.
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1 Introduction

The Performance Estimation Problem (PEP) was recently
developed to automatically compute tight worst-case bounds
on the performance of a wide class of first-order optimiza-
tion algorithms designed for given classes of functions [1].
A key step in the PEP framework is to render the infinite-
dimensional problem of computing the worst-case function
of the given class tractable. It relies on the derivation of nec-
essary and sufficient interpolation conditions, i.e. for some
n ∈ N,d ∈ R, given a set {xi,gi, fi} ∈ (Rd ×Rd ×R)n, the
existence of a function f of a given class, and of a quan-
tity g depending on f (for instance its gradient) interpolat-
ing (xi,gi, fi) is ensured if and only if the set satisfies some
condition. In [1], an interpolation framework for classes of
functions such as smooth strongly convex functions has been
derived, based on Legendre conjugates.
We propose a novel approach to derive interpolation condi-
tions for various classes of functions, allowing to extend the
field of applications of the PEP framework. This approach
is related to the question of whether or not a function de-
fined on a small domain possesses an extension guaranteed
to have some properties, for instance continuity [2] [3].

2 Contribution

Suppose a function f is defined on a (possibly finite) subset
A ⊂ Rd and satisfies, for all x,y ∈ A, a pairwise constraint,
for instance

f (y)≥ f (x)+ ⟨g(x),y− x⟩ where g(x) ∈ ∂ f (x). (1)

We define this constraint to be interpolable if and only if
there exists an extension F of f , defined on Rd , such that
F(x) = f (x) for all x ∈ A and F satisfies the constraint for
all x,y ∈ Rd . An interpolable constraint defining a class of
functions, such as the constraint (1) for the class of convex
functions, is an interpolating condition for this class.
Our novel approach to derive interpolable constraints relies
on the following definition:

Definition 1. Suppose a function f is defined on a (pos-
sibly finite) subset A ⊂ Rd and satisfies, for all x,y ∈ A, a
pairwise constraint. This constraint is extensible if and only
if for all x+ ∈ Rd , there exist f+ ∈ R,g+ ∈ Rd such that the
pairwise constraint is satisfied for all x,y∈A∪{x+}, i.e. if f
can be extended to any point in such a way that the extension
satisfies the constraint at all points of its domain.

It holds that infinitely extensible and finitely extensible con-
straints enforcing the local boundedness of f and g are
equivalent to interpolable constraints. Hence, instead of de-
riving extensions valid on Rd , we now simply prove the ex-
istence of a single-point extension. Moreover, proving that a
constraint is not interpolable can be done straightforwardly
by providing a counterexample to its extensibility. For in-
stance, consider this constraint defining L-smooth functions:

| f (x)− f (y)−⟨g(y),x− y⟩| ≤ L
2
||x− y||2.

The two triples (x,g, f )) = {(0,−1,0),(−1,−2,1) satisfy
the constraint with L = 1. However, there exists no f+,g+
extending the constraint to x+ = −1

2 . Hence, this constraint
cannot serve as an interpolation condition for the class of L-
smooth functions. Using the extension technique, we prove
the following:

Theorem 1. The family of constraints defined by

f (x)≥ f (y)+A||g(x)−g(y)||2 +B(||g(x)||2 −||g(y)||2)

+C||x− y||2 −4
AC
D

⟨g(x),x− y⟩+D⟨g(y),x− y⟩

where A,B ≥ 0 and D ̸= 0, is extensible and interpolable.

Note that letting A = 1
4L , B = 0, C =−L

4 and D = 1
2 provides

an interpolation condition for the class of L-smooth func-
tions. Similarly, letting A = 1

2(L−µ) , B = 0, C = µL
2(L−µ) and

D = L
L−µ provides an interpolation condition for µ-strongly

L-smooth convex functions.
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1 Introduction

The Performance Estimation Problem (PEP) methodology
has been recently introduced [1, 2] to compute the exact
worst-case performance of a first-order optimization method
on a given class of function, e.g. L-smooth µ-strongly con-
vex functions. In this work, we propose to solve PEP for the
class of quadratic functions of the form f (x) = 1

2 xT Qx with
µI ⪯ Q ⪯ LI for given parameters µ and L, i.e. L-smooth
µ-strongly convex homogeneous quadratic functions.

2 Problem statement

PEP can be formulated as semidefinite programs where the
matrix variable is the 2N ×2N Gram matrix G = PT P with
P =

(
x1 · · · xN g1 · · · gN

)
. In the PEP context, the xi’s and

gi’s are, respectively, the iterates and the gradient at the it-
erates, produced by the N iterations of the given method.
However, in this work, we will consider for simplicity that
the xi’s and gi’s are just given.

We define a Gram matrix associated to a quadratic function.
Definition 1. A symmetric matrix G ∈ S2N is a (µ,L,N)-
quadratic-Gram matrix if and only if there exist a dimension
d ∈ N, a symmetric matrix Q ∈ Sd with µI ⪯ Q ⪯ LI and a
sequence xi ∈ Rd for i = 1, . . . ,N such that G = PT P with

P =
(
x1 · · · xN

g1︷︸︸︷
Qx1 · · ·

gN︷︸︸︷
QxN

)
∈ Rd×2N . (1)

The set of all (µ,L,N)-quadratic-Gram matrices is de-
noted Gµ,L,N . It can be shown that any conic combina-
tion of (µ,L,N)-quadratic-Gram matrices is also a (µ,L,N)-
quadratic-Gram matrix, thus, the set Gµ,L,N is a convex cone.
Theorem 1. The set of all (µ,L,N)-quadratic-Gram matri-
ces Gµ,L,N is a convex cone.

Since the set Gµ,L,N is convex, we seek an explicit convex
description of it in order to add the constraints to PEP.

3 Case with N = 1 point

First, we look at the case N = 1 where we only have one
point x1 and its gradient g1. It can be shown that the set
of (µ,L,1)-quadratic-Gram matrices of one point is exactly
described by three convex inequalities.

Theorem 2. Given a symmetric matrix G =

(
g11 g12
g12 g22

)
,

the conditions

g11 ≥0 (2)

g2
12 ≤g11g22 (3)

g22 ≤−µLg11 +(µ +L)g12 (4)

are necessary and sufficient conditions for G ∈ Gµ,L,1.

4 Case with N points
Now, we consider the general case N ≥ 1. First of all, we
can write a quadratic-Gram matrix under the following form

G =

(
XT X XT QX

XT QX XT Q2X

)
(5)

where X = (x1 · · · xN) ∈ Rd×N . In addition to the global
symmetry and positive semidefiniteness of G, hence of di-
agonal blocks XT X and XT Q2X , we observe that off diago-
nal block XT QX is also symmetric and positive semidefinite.
Actually, it is possible to find several necessary characteriza-
tions of a quadratic-Gram matrix (see for example Theorem
3 in [3] in a different context). However, it appears to be
much less straightforward to check or prove the sufficiency,
which is the question we are investigating.

5 Conclusion and perspectives
Theorem 1 ensures that the set of quadratic-Gram matrices
is convex. Therefore it is likely that there exists a way to
describe the set with an explicit list of convex constraints.
Once these constraints are identified and we are able to solve
PEP on quadratic functions, it will be possible to measure
and quantify the gap between the worst-case performance of
a given first-order optimization method on general L-smooth
µ-strongly convex functions and on quadratic functions.

N. Bousselmi is supported by the French Community of Bel-
gium through a FRIA fellowship (F.R.S.-FNRS).

References
[1] A.B. Taylor, J.M. Hendrickx, F. Glineur Smooth
strongly convex interpolation and exact worst-case perfor-
mance of first-order methods. Mathematical Programming,
2017, vol. 161, no 1, p. 307-345.
[2] Y. Drori, M. Teboulle Performance of first-order
methods for smooth convex minimization: a novel approach.
Mathematical Programming, 2014, vol. 145, no 1, p. 451-
482.
[3] S. Colla, J.M. Hendrickx Automated Worst-Case Per-
formance Analysis of Decentralized Gradient Descent. 2021

150



Book of Abstracts 41st Benelux Meeting on Systems and Control

Advances in Feasible SQP Methods for NMPC

David Kiessling, Joris Gillis, Jan Swevers
MECO Research Team, KU Leuven, Leuven, Belgium

DMMS-M lab, Flanders Make, Leuven, Belgium
Email: david.kiessling@kuleuven.be

Moritz Diehl
Department of Mathematics

Department of Mircosystems Engineering
University of Freiburg, Freiburg, Germany

1 Introduction

In Nonlinear Model Predictive Control (NMPC) a nonlinear
program (NLP) resulting from an optimal control problem
(OCP) is solved in every sampling period. The first input
of the optimal solution is applied to the system, the time
horizon is shifted by one sampling time, and the procedure
is repeated. We consider NLPs of the form:

min
x0,...,xN

u0,...,uN−1

N−1

∑
k=0

l(xk, uk)+ e(xN)

s.t. x0 − x0 = 0
xk+1 = f (xk, uk), ∀k = 0, . . . , N −1
g(xk)≤ 0, ∀k = 0, . . . , N

(1)

where xk ∈Rnx , uk ∈Rnu describe the states and controls, re-
spectively. l : Rnx ×Rnu → R, e : Rnx → R denote the stage
and terminal cost functions. f : Rnx ×Rnu → Rnx describes
the dynamics of the system and g : Rnx ×Rnu → Rnh de-
scribe the stage constraints. Current state-of-the-art NMPC
algorithms face several challenges. Firstly, the NLP should
be solved within every sampling time in order to guarantee
a reliable feedback controller. If the solution time exceeds
the sampling period it is advantageous to stop the solver at
a suboptimal, but feasible iterate and using that control in-
put as next input. Secondly, current NMPC solvers mainly
rely on local convergence properties, but particularly in path
planning problems of mechatronic systems highly nonlinear
constraints can require global convergence of the underlying
solver.
Our research aims at overcoming these two bottlenecks in
current NMPC practice. Sequential Quadratic Programming
(SQP) methods are especially advantageous in solving a se-
quence of optimization problems. Keeping every iterate fea-
sible can be exploited for early termination in the NMPC
context. Moreover, equipping the SQP method with a glob-
alization strategy, such as a merit function or a filter com-
bined with a trust-region or linesearch mechanism is nec-
essary to guarantee global convergence and therefore solve
hard problems arising, for instance, in motion planning.

2 Feasible SQP Methods

The SQP subproblem consists of the linear approximation of
the constraints in (1) and a quadratic approximation of the
Lagrangian function, respectively. For ease of notation we
summarize the variables of (1) in w ∈ Rw, the cost function

in F(w), the equality constraints in H(w), and the inequality
constraints in G(w). For a given matrix Hk ∈ R(nw×nw)and
an iterate wk the QP subproblem is given by

min
∆w∈Rnw

∇F(wk)
⊤∆w+

1
2

∆w⊤Hk∆w

s.t. H(wk)+∇H(wk)
⊤∆w = 0

G(wk)+∇G(wk)
⊤∆w ≤ 0.

(2)

Denoting the solution of (2) by ∆wk, the new iterate wk+1 =
wk +∆wk is in general not feasible with respect to the con-
straints of (1). Projecting wk+1 onto the feasible set of (1)
yields a feasible step w̃k+1. We call such a combination of
QP step and projection a feasible SQP method. In [3] an
algorithmic framework is described that combines a trust-
region approach with a projection on the feasible set. In-
dependent of the applied projection the method converges
globally as long as the projection satisfies certain conditions.
A particular projection is described in [2]. The main idea of
this approach is to repeatedly correct the higher order terms
of h(wk+1), g(wk+1) until feasibility is obtained at the point
w̃k+1. This technique is known as zero-order iterations.

3 Outlook

In the future, we will focus on advancing the results of [2, 3]
towards a fast and reliable solver for NMPC problems. Zero-
order iterations converge towards the solution of a perturbed
version (1). Fast convergence of these iterations is crucial
for an efficient SQP algorithm. Improving the globalization
strategy of [3] in combination with zero-order iterations can
yield faster overall convergence. Furthermore, [1] points out
a direct connection between the algorithmic framework of
[3] and optimization on manifolds, which might be explored
in future research.
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back control of systems governed by large differential algebraic equations”, Real-Time
and Online PDE-Constrained Optimization, pages 3–22. SIAM, 2007.

[3] S. Wright, M. Tenny “A feasible trust-region sequential quadratic program-
ming algorithm” SIAM Journal on Optimization, 2004.

Acknowledgement: This work has been carried out within the framework of Flan-
ders Make SBO DIRAC: DIRAC - Deterministic and Inexpensive Realizations of
Advanced Control. Flanders Make is the Flemish strategic research centre for the
manufacturing industry.

151



Book of Abstracts 41st Benelux Meeting on Systems and Control

Performance Estimation Problem for
Decentralized Optimization Methods

Sebastien Colla and Julien M. Hendrickx
ICTEAM Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium.

Email: { sebastien.colla, julien.hendrickx } @uclouvain.be

1 Introduction
We develop a methodology that automatically provides
nearly tight performance bounds for first-order decentral-
ized methods on convex functions and we demonstrate its
usefulness on different existing methods [1]. Decentralized
optimization has received an increasing attention due to its
useful applications in large-scale machine learning and sen-
sor networks, see e.g. [2] for a survey. In decentralized
methods for separable objective functions, we consider a set
of agents {1, . . . ,N}, working together to solve the follow-
ing optimization problem:

minimize
x ∈ Rd

f (x) =
1
N

N

∑
i=1

fi(x),

where fi : Rd → R is the private function locally held by
agent i. Each agent i holds its own version xi of the deci-
sion variable x, performs local computations and exchanges
local information with its neighbors to come an agreement
on the minimizer x∗ of the global function f . Exchanges
of information often take the form of an average consensus
on some quantity, e.g., on the xi. These consensuses can be
represented using a multiplication by a matrix W ∈ RN×N ,
typically assumed symmetric and doubly stochastic.

One of the simplest decentralized optimization method is the
distributed (sub)gradient descent (DGD) [2] where agents
successively perform an average consensus step (1) and a
local gradient step (2). We have, for all i ∈ {1, . . . ,N},

yk
i =

N

∑
j=1

wi jxk
j; (1)

xk+1
i = yk

i −α∇ fi(xk
i ), (2)

where α > 0 is a constant step-size.

2 Contributions and results

In general, the quality of an optimization method is eval-
uated via a worst-case guarantee. Obtaining theoreti-
cal worst-case performance bounds for decentralized algo-
rithms can often be a challenging task, requiring combining
the impact of the optimization component and the intercon-
nection network. This can result in performance bounds that
are complex and not very tight. For example, we have empir-
ically shown that the existing performance bounds for DGD
are significantly worse than the actual worst-cases. How-
ever, accurate performance bounds are important to cor-
rectly understand the impact of the network topology and
algorithm parameters on the performance of the algorithm.

In this work, we follow an alternative computational ap-
proach that finds a worst-case performance guarantee of an
algorithm by solving an optimization problem, known as the
performance estimation problem (PEP). The PEP approach
has led to many results in centralized optimization, see e.g.
[3], but it has never been applied to decentralized optimiza-
tion methods. The current PEP framework lacks for ways
of representing the communications between the agents. We
therefore propose two formulations of the average consen-
sus steps that can be embedded in a solvable PEP [1].
The first formulation uses a given averaging matrix W to di-
rectly incorporate the updates of the chosen method as con-
straints over the iterates. This leads to performance bounds
that are tight, but specific to the given matrix.
The second formulation is a relaxation that considers en-
tire spectral classes of possible symmetric matrices. This
allows PEP to provide spectral upper bounds on the perfor-
mance that are valid over an entire class of networks and
can thus be compared with the bounds of the literature. This
also allows looking for the worst communication network
from the given class. This formulation is a relaxation be-
cause it replaces the set of consensus steps (e.g. (1)) with
a set of constraints that are only proven to be necessary for
having an averaging matrix in the given class. Although it
is a relaxation, the performance guarantees it provides for
the decentralized algorithms we have experimented, such as
DGD and DIGing, significantly improve on the theoretical
existing ones and are numerically tight. They are also in-
dependent of the number of agents in the problem and they
help for better tuning of the parameters of the algorithms.

Using our two new formulations, the PEP approach can be
applied directly to many decentralized algorithms.
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1 Introduction

In order to mitigate the power balancing burden from the
main powergrid, the Energy Storage Units (ESUs) provide
smooth power fluctuation due to change in power demand
at the point of common coupling. It is required that the to-
tal active power of the microgrid is regulated to its refer-
ence value at the point of common coupling. For achiev-
ing this power balancing, control of State of Charge (SOC)
of ESUs are required to avoid depletion and saturation of
ESUs. So, it is required that all the ESUs maintain same
SOCs or reach a certain consensus. Considering each ESU
as an agent, which are interacting with each other, the prob-
lem is deduced to a distributed consensus control problem
for a multi-agent system.

For the interaction among agents, consider an undirected
graph G = (V ,E ,A ), with the set of vertices V , where ith

vertex represent ith agent, the set of edges E ⊆ V ×V , and
weighted adjacency matrix A = [ai j] with non-negative ad-
jacency elements ai j. The degree for an agent is defined as

di
∆
= ∑N

j=1 ai j to form the degree matrix D
∆
= diag(d1, · · ·dN)

to give the Laplacian matrix L = D−A = [Li j].

2 Problem Formulation

Consider the following mth order dynamics in a multi-agent
system:

ṗ(1)i (t) = ṗ(2)i (t), ṗ(m−1)
i (t) = ṗ(m)

i (t), · · · , ṗ(m)
i (t) = ui

i = 1, ...,N agents
(1)

where ṗ(k)i ∈Rn are the states of the ith node. The consensus
protocol for each agent is defined as [1]:

ui =−
N

∑
j=1, j 6=i

ai j

m

∑
k=1

Kik(pk
j(t)− pk

i (t)). (2)

where Ki is the state feedback matrix to be designed for each
agent. We consider an application of homogeneous ESUs
in a microgrid, where each ESUs are modelled as second-
order agents with SOC and Rate of Power (RoP) as their
states [2]. We consider a virtual leader at the point of com-
mon coupling to solve the active power balancing problem.
The control objective is to track the SOC trajectory of the
virtual leader and the cooperative control formulation (2) for
multi-agents is used to achieve this control objective.

3 Results

A certain load profile defines the virtual leader trajectory,
with 50% initial SOC as shown in the figure 1. Six ESUs
with different initial SOCs are considered follow the trajec-
tory of the virtual leader. Two communication graphs are
considered, namely, G1 and G2 as shown in the figure 1.

Figure 1: (Top-left) ESUs following virtual leader for
two communication networks G1(top-right) and G2(bottom-
right). (Bottom-left) ESUs following virtual leader for G2
and switching to G1 after 7s.

With simulations performed separately with G1 and G2, it
is observed that the followers converge faster with stronger
communication and the ability of the protocol to converge
in case of a switching network topology. These results
will allow us to further accommodate time-varying network
topologies to gracefully achieve consensus in case of fail-
ures in a microgrid.
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Motivation
Whereas there is a strong trend towards actively controlled
power nets on city/neighborhood level (smart grids) and
household level (microgrids), industrial nets are mostly still
lagging behind. They are usually grown over time, and not
designed in a coordinated manner. Each machine typically
has its own rectifier or front end, which means each front
end has to be able to deliver peak power. There usually also
are no significant storage elements, making it impossible to
balance varying loads. As a result, high peak powers are
often obtained, and outages and reliability issues do occur.

Approach
In this paper we instead consider an industrial DC grid,
wherein all machines are driven from a single shared DC
grid. This is fed using a small set of shared rectifiers or
front ends, and a set of shared DC storage elements such as
batteries or super caps are added.

Figure 1: Layout of classical nets (left), using a front end per ma-
chine, and without storage elements, compared to that
of the proposed DC net (right), using a (set of) shared
front end(s) and shared DC storage.

A controller is then added to actively decide when power
should be drawn or fed to the net through the front ends,
and when to or from the storage elements. For simple cases
rule-based controllers can be developed, but when for exam-
ple variable pricing and uncertain predictions are included,
MPC quickly becomes the best choice. This MPC is then set
up to choose the optimal flow of powers, taking into account
a model for the losses, and a prediction of upcoming events.
For a simple case with 1 active front end (AFE) with effi-
ciency η1, 1 super cap (SC) with state of charge SOC and
efficiency η2 > η1, and 1 load, the resulting MPC optimiz-
ing over a horizon of N samples, becomes:

min
PAFE, PSC

∑
k=1 : N

(
(1−η1)

∣∣PAFE
k

∣∣+(1−η2)
∣∣PSC

k

∣∣
)

s.t. PAFE
k +PSC

k = Pload
k , k = 1 : N

SOCk+1 = SOCk +Ts PSC
k , k = 1 : N

0 ≤ SOCk ≤ 1 k = 1 : N

SOCN = 0.5

wherein PX denotes the power delivered by source X.

Results
In simulations as well as on an experimental setup we have
shown that this approach can significantly reduce the peak
power and thus the purchase cost of the front ends, and fur-
thermore reduce losses by avoiding the use of the less ef-
ficient components. A simulation example for the simple
case above using full horizon MPC is shown in Figure 2,
wherein the peak AFE power is reduced with almost 50%
compared to the AC case without SC, and losses are reduced
by 1-5% by using the less efficient AFE less. More complex
cases can yield more savings in installation cost (smaller to-
tal front end capacity to be traded off with price of storage)
as well as running costs (less losses). There they will fur-
thermore provide more flexibility to actively control power
flows, which allows to react more easily to issues popping
up (e.g. failures) and in doing so avoid outages.

Figure 2: Result of full horizon MPC comparing AC without SC
(full line), vs DC with SC (dashed).

Remaining challenges
However, in order to achieve these for realistic applications,
the main difficulty in the MPC problem is to, despite imper-
fect predictions, ensure long term charge sustainability.
Otherwise the state of charge can drains or fills completely
at the wrong times, thereby reducing the ability to actively
control and balance loads. We will present several options,
among which an approach relying on augmenting the pre-
diction horizon with a virtual horizon. This virtual horizon
contains a typical load pattern, so it basically leads the MPC
to consider what control actions to make now, given the typ-
ical loads to be expected in the future.
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1 Introduction

Acoustic anechoic chambers are used to conduct measure-
ments and experiments under free-field conditions. In the
ideal case, all acoustic waves are absorbed at the walls, such
that no reflections exist. In reality low frequency sound will
be reflected by the walls, due to limitations of passive ab-
sorption measures [1]. Active noise control is effective at
lower frequencies, which makes this a promising addition
to the passive wall absorption. Because of the typical large
dimensions of the chamber, a large number of sources and
sensors is required for satisfactory performance. The com-
putation of a controller for such a large-scale system is com-
putationally expensive. This work shows a scheme to ef-
ficiently obtain a finite impulse response (FIR) controller,
demonstrated by a single-channel simulation in a duct.

2 Approach

Following the approach in [2], both a precondi-
tioner/decoupler of the secondary path (Ĝmi(z) and
Ĝai(z)) and a prewhitening/decorrelation filter (F̂w(z)) are
derived via the frequency-domain. The filters are delayed
to ensure causality. The delay to be added is found by min-
imizing errors due to wrap-around and truncation effects.
The adaptive part of the algorithm used in the simulation
incorporates normalization of the input by its power.

3 Simulation

A duct with a single-channel control setup is used to sim-
ulate the control performance. The setup is schematically
shown in Fig. 1, where d1 = 0.8575m, d2 = 0.343m, d3 =
0.1715m, d4 = 1.3720m and R0 = 0.90, RL =−0.95 are the
reflection coefficients at x = 0 and x = L respectively.

Figure 1: Simulation setup: single-channel control in a duct.

The FIR filters corresponding to the decomposition are
shown in Fig. 2. All FIR filters are truncated after J = 128
samples. A delay of 20, 10 and 50 samples is added to F̂w(z),
Ĝmi(z) and Ĝai(z) respectively. A normalized tolerance of

0.0137 is used to truncate 68 of 513 singular values to com-
pute Ĝmi(z).

(a) FIR of F̂w(z). (b) FIR of G(z).

(c) FIR of Ĝmi(z). (d) FIR of Ĝai(z).

Figure 2: FIR filters used in the iterative algorithm.

The algorithm is compared to a normalized filtered-error
LMS algorithm. The results are shown in Fig. 3, from which
can be concluded that the preconditioned algorithm has im-
proved convergence speed.

Figure 3: Convergence of the algorithms.
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1 Introduction

Model predictive control (MPC) is a control methodology
that considers the system model to predict the future output,
this interval is known as prediction horizon. An optimiza-
tion problem is usually constrained is solved to find the con-
trol sequence that minimizes a cost function defined. The
first sequence value is applied, and the process starts again,
moving forward the prediction horizon one sample time.

MPC uses a system model and a cost function that the user
defines, usually, it is a regulator problem or track a chang-
ing set point, but also any other objective could be defined.
Track a reference without error is a commonly required task,
but, in the presence of persistent disturbances or model mis-
matches achieve zero offset is not always possible. Just
adding an integrator to the plant could not eliminate the off-
set [2]. In this work, the unknown information from the
model is lumped in disturbance variables, the MPC problem
can take it into account and achieve a perfect tracking of the
reference.

2 Problem formulation and results

Consider a discrete nonlinear system which is defined by

xk+1 =f (xk,uk) xreal k+1 =freal (xk,uk)
yk =h(xk) yreal k =hreal(xk)

(1)

where x ∈ Rnx is the state vector, u ∈ Rnu the input vector,
and, y ∈ Rny the system output. The model from the left
side (known) could be slightly different from the real one on
the right side (unknown), it could be because of some un-
modeled dynamics or unmeasured disturbances in the sys-
tem. To address this, the system must be augmented with a
disturbance model for the estimation process, and assuming
these disturbances as constant (dk+1 = dk) we have

xk+1= faug (xk,dk,uk)
yk= haug(xk,dk)

(2)

Inside the function faug is defined the influence of the dis-
turbance in the states. Inside the function haug is defined
the effect of the disturbance to the output. Using the mea-
surements, the states and disturbances are estimated using
a Kalman filter, therefore the optimization problem solved
each sample time is defined as [1]

minimize
x, u

N−1∑

t=0

ℓ(xt − xs,ut − us) + F (xN − xs)

subject to x0 = x̂k, d0 = d̂k,

xt+1 = faug(xt, d̂k,ut)
(3)

where xs = faug(xs, d̂k,us), rk = haug(xs, d̂k).
The functions ℓ and F are commonly as the linear quadratic
regulator functions, this will reduce error terms to zero.
The second order model of a DC-motor with a spring con-
nected to the rotor is considered. The model is linear, but the
measurements come from a nonlinear friction motor model.
The motor should track a position reference while a constant
disturbance is applied.

0 1 2 3 4 5 6

-0.05

0

0.05

0.1

0.15

Reference

Real value

Estimation

Measurement

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

Real value

Estimation

Acknowledgement This work is supported in part by Flan-
ders Make SBO DIRAC ”Deterministic and Inexpensive Re-
alizations of Advanced Control” and in part by KUL-C1:
KU Leuven Research project C14/15/067 ”B-spline based
certificates of positivity with applications in engineering”.

References
[1] M. Morari and U. Maeder. Nonlinear offset-free
model predictive control. Automatica, 48(9):2059–2067,
2012.

[2] Gabriele Pannocchia and James B. Rawlings. Dis-
turbance models for offset-free model-predictive control.
AIChE Journal, 49(2):426–437, 2003.

157



Book of Abstracts 41st Benelux Meeting on Systems and Control

Offset-free model predictive control of the electron density profile in
a tokamak

T.O.S.J. Bosman1,2,∗, M. van Berkel1, M.R de Baar1,2

1 DIFFER - Dutch Institute for Fundamental Energy Research, Eindhoven, the Netherlands
2 Eindhoven University of Technology, Control Systems Technology, Eindhoven, the Netherlands

∗ t.o.s.j.bosman@differ.nl

1 Introduction

The tokamak is at the moment the most promising design
for a thermonuclear fusion reactor (see [1] for a control-
oriented introduction). In such a reactor, energy is produced
by harvesting the energy released when deuterium and tri-
tium atoms fuse together. The generated fusion power, and
thus the performance of the reactor, depends on the spatial
electron density distribution, referred to as electron density
profile. However, the electron density is also subject to lim-
its that can lead to detrimental instabilities when violated.
Consequently, reliable control of the plasma density profile
is essential for high-performance and safe operation of toka-
maks.
On contemporary experimental reactors, gas injection or the
injection of a single pellet type (mm-sized body of frozen
fuel) are the actuators used for this purpose. On future com-
mercials reactors, pellet injection is regarded as the only
viable option for core density control as gas injection will
be ineffective. Since multiple pellet types will have to be
used, a controller that can control the density distribution
with multiple actuators is required. In this work, an offset-
free model predictive control (MPC) setup is proposed for
this purpose.

2 Problem formulation

The evolution of the electron density profile ne(ρ, t) in a
tokamak on the spatial domain ρ ∈ [0,1] can be described
by the 1D partial differential equation

1
V ′

∂
∂ t

(ne(ρ, t)V ′)+
1

V ′
∂Γ(ρ, t)

∂ρ
= S(ρ, t)+Λ(ρ)uc(t),

(1)
where Γ is radial electron transport flux (often represented
by a drift-diffusion model), S are uncontrolled particle
source terms, Λ the spatial deposition profile of the control
inputs uc, and V ′ the time derivative of the plasma volume
(assumed known). The aim of the controller is to change
the control inputs such that: (i) a high-performance refer-
ence density profile is tracked in a region of interest; (ii) the
line-integrated density stays below the Greenwald density
limit [2]; and (iii) a favorable ratio is maintained between
the logarithmic gradients of the ion temperature profile and
the electron density profile.

3 Approach

In [3], a control-oriented model for the particle transport in a
tokamak called RAPDENS was proposed where the density
profile is approximated using finite elements. The result-
ing states x(t) are the time-varying spline coefficients that
parameterize the profile. RAPDENS computes the local lin-
earization of the transport dynamics at each time step. The
resulting linear model is augmented with a disturbance state
d(t) that is estimated at each time step with a Kalman filter.
The augmented linear model is used to derive the offset-free
MPC controller as follows

min
uc

0,...,u
c
N ,ε

∥xN − x̄N∥2
P +

N−1

∑
k=0

∥xk − x̄k∥2
Q +∥uc

k − ūc
k∥2

R +Wε ε2

(2)

subj. to AineqUk ≤ bineq, (3)
g1(xk,uc

k,dk,ε)≤ 0, (4)

where N is the prediction horizon, P, Q, R, Wε are weights,
and x̄, ūc the desired steady-state state and inputs. Aineq and
bineq are matrices used to account for the limit on the line-
integrated density using the hard linear constraint (3). The
function g1 is used in the soft nonlinear constraint (4) to
account for the favorable ratio of logarithmic gradients [4]
as discussed in Section 2. Violation of the soft constraint is
penalized with the parameter ε .

4 Results

The designed offset-free MPC controller has been tested in
control simulations using the control-oriented model RAP-
DENS. The simulations show that the controller is capable
of regulating the density profile with multiple pellet actua-
tors. However, for large pellets that can only be injected at
low frequencies, the discrete pellet dynamics become dom-
inant and limit the achievable performance. This serves as
motivation for further hybrid controller development.
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1 Introduction

The accurate estimation of wheel slip properties on chang-
ing floor surfaces can improve the driving behavior and po-
sitional accuracy of vehicles. In this abstract we focus on
detecting a change in the floor surface online, using the
Summed Normalized Innovation Squared (SNIS) consis-
tency check, which is a measure to statistically check if the
innovations of a Kalman Filter are still consistent with the
model [1].

2 Summed Normalized Innovation Squared

The Normalized Innovation Squared (NIS) values can be
calculated as a weighted version of the squared innovations,
where the weighting is done with a covariance matrix S j
which is a measure for the expected uncertainty on the in-
novations. The SNIS test checks consistency by using the
last m NIS values and is given by:

SNISk =
k

∑
j=k−m+1

ν⊤
j S−1

j ν j. (1)

SNIS values are χ2-distributed for a linear system subject
to Gaussian model uncertainty. Checking if a NIS or SNIS
value is above a given boundary value allows for testing the
consistency of the measurement. If the innovation cannot be
explained by the expected uncertainty on the measurement,
an inconsistency is detected, stating that either the model
(parameters) or measurement is erroneous. Changing the
parameter m allows for a trade-off between fast detection of
surface changes and the number of false alarms.

3 Use case and approach

A model of an omnidirectional vehicle with four indepen-
dently driven Mecanum wheels is used, applying the wheel
slip model as discussed in [2]. Within the extended Kalman
Filter we assume that the surface friction parameter is time
invariant in order to easily detect a changing surface. Once
this occurs, the SNIS values show peak values, an incon-
sistency is reported and the estimation error covariance for
this parameter is enlarged in order to allow for fast conver-
gence towards a new constant parameter value. Depending
on this enlargement the convergence speed can be reduced
drastically.

4 Detecting contact transitions

Figure 1 shows the simulation of a lemniscate-shaped mo-
tion trajectory five times in a row. After each trajectory the
motion is repeated with the same control inputs but with a
different friction surface parameter, except for the transition
between the third and fourth movement, where the friction
coefficient stays constant. The different levels for this fric-
tion coefficient and convergence towards this value is shown
in green and red respectively. The velocity of one of the
wheels is shown in blue to keep track of the evolution of
the trajectory. The second part of this figure shows how the
SNIS value is evolving over time and the threshold above
which an inconsistency is detected.
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Figure 1: Convergence behavior of the friction surface parameter
with changing surface properties.
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1 Introduction

The error quantification of an identified model is important,
e.g., for robust control and analyzing the effect of the error
on the closed-loop performance when the model is used for
control. While the classical asymptotic analysis provides er-
ror quantification when the data length approaches infinity,
there is a growing interest from the machine learning and
system identification communities in non-asymptotic analy-
sis to provide error bounds for a finite data length [1]. This
talk provides a short introduction and review of these results
and their application in control.

2 Non-asymptotic identification with measured states

Consider a linear state-space model:

xt+1 = Axt +But +wt , (1)

where xt ∈Rn, ut ∈Rp, and wt is a sub-Gaussian distributed
white noise. For simplicity, we assume B = 0 and x0 = 0
for now. Then given the measurements {xt}N

t=1, the prob-
lem is to obtain the estimate Â of A in (1), and more im-
portantly, to provide an error bound of the following type:
With high probability and for any finite N larger than some
lower bound, it holds that ∥A− Â∥2 ⩽ εA(N), where ∥ · ∥2
denotes the spectral norm, and the error also depends on the
identification approach and the unknown A.

The least squares estimator Â of (1) has been consid-
ered in [2] when A is stable, and it is shown that εA =
O
(√

(n logn)/[Nλmin(Γ∞)]
)
, where, for any positive inte-

ger t, Γt ≜ ∑t−1
k=0 Ak(Ak)⊤ is the finite-time controllability

Gramian. Therefore, the error has a decay rate O(1/
√

N)
with respect to the data length, which is the optimal rate as
shown in the lower bound of [2]. It can also be found that a
larger minimum eigenvalue of the infinite-time controllabil-
ity Gramian leads to a smaller estimation error. This bound
is further extended in [3] to consider marginally stable A
and unstable A. When all the eigenvalues of A are outside
the unit circle, an exponential decay rate O(|λmin(A)|−N)
can be achieved for the error εA. The analysis can also be
trivially extended to systems with inputs, which has been
addressed in the literature.

1This research has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innova-
tion programme (Grant agreement No.101018826 - CLariNet).

3 Non-asymptotic identification with unmeasured states

When only the output is measured with the output equation
yk = Cxt +ηt , where yt ∈ Rm and ηt is white noise, a sub-
space identification method can be employed to obtain esti-
mates Â and Ĉ from {yt}N

t=1. More importantly, if the model
order is known, a finite-sample error bound ∥TAT⊤− Â∥⩽
ε , for some orthonormal matrix T , can be derived, which
shows that ε =O(logN/N) when A is marginally stable [4].
An error bound for subspace identification when the model
order is unknown has also been developed in the literature.

4 Connection to control

The finite-sample error bounds have been employed to an-
alyze the performance of robust LQR or LQR for the nom-
inal model with the uncertainty ignored. As an example,
consider (1) with states measured and then the least square
estimate (Â, B̂) of the system. Denote the optimal perfor-
mance of an infinite-horizon LQR controller by J⋆ when
the true system is known, and let Ĵ be the performance of
an infinite-horizon robust LQR controller applied to the es-
timated nominal model with the finite-sample error bound.
Then the performance error can be bounded as (Ĵ−J⋆)/J⋆ =
Õ((n+ p)/N) [1], where Õ suppresses a logarithmic factor.
The bound shows a clear dependence of the control perfor-
mance on the state, input dimensions, and the data length.
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1 Introduction

In this work, the harmonic retrieval of the sum of complex
exponentials is considered. Numerous techniques to esti-
mate the parameters are available, such as linear prediction
methods [1], subspace-based methods [2]-[4]. The discrete-
time signal, 𝑥𝑛, is given as a sum of 𝐾 complex damped
exponentials, corrupted by white Gaussian noise 𝑏𝑛:

𝑥𝑛 =

𝐾∑︁
𝑘=1

𝑎𝑘𝑒
𝑗 𝜙𝑘 𝑒 {(−𝛼𝑘+ 𝑗2𝜋 𝑓𝑘 )Δ𝑡 }𝑛 + 𝑏𝑛, 𝑛 = 0,1, ..., 𝑁 −1.

The parameters defining the model are frequency 𝑓𝑘 , damp-
ing factor 𝛼𝑘 , amplitude 𝑎𝑘 and phase 𝜙𝑘 . This paper focuses
on the signal sequence, that has multiple signal poles, where
the harmonic retrieval problem results in high error [5]. This
issue is addressed by a more generalized signal model, 𝑥𝑛,
that considers the multiplicity of poles.

𝑥𝑛 =

𝑟∑︁
𝑘=1

𝑀𝑘∑︁
𝑙=1
𝑎𝑘𝑒

𝑗 𝜙𝑘𝑛𝑙−1𝑒 {(−𝛼𝑘+ 𝑗2𝜋 𝑓𝑘 )Δ𝑡 }𝑛 + 𝑏𝑛.

Here, 𝑟 is the number of unique poles whose multiplicity is
𝑀𝑘 , 𝑘 = 1,2, ..., 𝑟 . More compactly,

𝑥𝑛 =

𝑟∑︁
𝑘=1

𝑀𝑘∑︁
𝑙=1
𝑐𝑘𝑛

𝑙−1𝑧𝑛𝑘 + 𝑏𝑛,

where 𝑐𝑘 = 𝑎𝑘𝑒 𝑗 𝜙𝑘 , 𝑧𝑘 = 𝑒 {(−𝛼𝑘+ 𝑗2𝜋 𝑓𝑘 )Δ𝑡 } are the 𝑘 th complex
amplitude and signal pole, respectively, to be estimated.

2 Harmonic Retrieval

Various methods namely, Hankel Total Least Square (HTLS),
Kung’s methods, linear prediction and model order reduction
are used to estimate the signal poles 𝑧𝑘 , from the signal
sequence 𝑥𝑛 of given model order 𝐾 . In the former two
methods, 𝑥𝑛 is arranged in a Hankel matrix 𝑯 of size 𝐿×𝑀 ,
𝐿 > 𝐾 , where 𝐿 is hyperparameter and𝑀 = 𝑁−𝐿+1,𝑀 >𝐾 .
The frequencies and damping factors are determined from
the signal pole estimates 𝑧𝑘 , 𝑘 = 1, ...,𝐾 . For the estimation
of complex amplitudes 𝑐𝑘 , given in 𝒄, by least square method,
a modified Vandermonde matrix𝑻 of size 𝑁×𝐾 is proposed,
that is constructed using 𝑧𝑘 and their multiplicities.

𝑻𝒄 = 𝑥𝑛, 𝑛 = 0,1, ..., 𝑁 −1,

𝑻 =




𝑧𝑛1
𝑛𝑧𝑛1
...

𝑛𝑀1−1𝑧𝑛1


𝑇

. . .


𝑧𝑛𝑟
𝑛𝑧𝑛𝑟
...

𝑛𝑀𝑟−1𝑧𝑛𝑟


𝑇 
.

𝑟 - number of unique poles, 𝑀1, .., 𝑀𝑟 are their multiplicities.
The amplitude and phase are determined from the estimated
complex amplitudes 𝑐𝑘 .

3 Numerical Examples and Conclusions

The effect of hyperparameter 𝐿 on the performance of the
HTLS and Kung’s realization methods for 𝑥𝑛 is studied here.
From experiments, the estimates are better for a (nearly)
square Hankel matrices, i.e. 𝑁

3 ≤ 𝐿𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ≤ 𝑁
2 . The algo-

rithms were tested for signal with and without noise. HTLS
and Kung’s realization method resulted in better estimates,
as they involve numerically stable SVD, whereas linear pre-
diction and model order reduction determine poles through
state matrix, constructed by coefficients of recurrence re-
lation of the polynomial function, leading to numerically
unstable results. The parameter estimation is limited to sig-
nal sequence with poles of multiplicities 3. The signal model
is numerically unstable for higher multiplicity.
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1 Spectral identification of networks

Spectral network identification aims at estimating the eigen-
values of the Laplacian matrix L of the network from data.
This allows to infer global information on the network struc-
ture from local measurements at a few number of nodes
Mauroy2017.

2 Scalar diffusive coupling framework

We consider a dynamical system defined over a network.
The local dynamics of the unit attached to node k are di-
rectly influenced by its neighbors through input and output
signals. In the particular case of n identical units with diffu-
sive coupling, the dynamics of node k are described by





ẋk = F(xk)+G(xk)uk ∈ Rm

uk = ∑n
j=1 Wk j(yk − y j) ∈ Rr

yk = H(xk), ∈ Rr

(1)

with the (continuously differentiable) functions F : Rm →
Rm, G : Rm → Rm×r and H : Rm → Rr. Note that the cou-
pling coefficients Wk j are the entries of the adjacency matrix
W ∈ Rn×n of the network. The network Laplacian matrix
is given by L = D−W , where D denotes the degree matrix
defined by di = ∑n

k=1 Wik. We further assume that the units
asymptotically reach a synchronized state x1 = · · ·= xn = x∗,
i.e. limt→∞ xk(t) = x∗.

The Jacobian matrix associated with the whole system (1)
and evaluated at x∗ writes

J = In ⊗A−L⊗BCT , (2)

with A = ∂F/∂x(x∗), B = G(x∗) and C = ∇H(x∗). In the
previous work Mauroy2017, it was proved that the rela-
tionship between the spectrum of the Jacobian matrix σ(J)
and the spectrum of the Laplacian matrix σ(L) is one-to-one
when r = 1 and satisfies

(A−µIm)w = λBCT w, (3)

where µ ∈ σ(J) and λ ∈ σ(L). It follows that one can
retrieve the spectrum of L from the spectrum of J. More-
over, states measurements can be used to compute the spec-
trum of the Jacobian matrix through the DMD algorithm
Schmid2010.

It is noticeable that the results of Mauroy2017 are limited to
the case r = 1 in (1). This corresponds to scalar-valued input
and output signals, a condition that is not satisfied in many
situations, such as reaction-diffusion networks. If r > 1, the
rank of the matrix BCT can be larger than 1 and the one-to-
one relation between µ and λ obtained from (3) does not
hold. In this context, the main contribution of the present
work is to provide a generalized framework for spectral
identification, which is valid for the case of vector-valued
inputs and outputs (r > 1).

3 Generalization of the framework

We will show that the spectral identification problem is fea-
sible under a mild assumption based on the spectral mo-
ments of BCT . More precisely, one can obtain a linear sys-
tem of equations which allows to compute the spectral mo-
ments of L from those of J. Finally the spectrum of L can be
recovered from its spectral moments. However, this process
might lead to significant numerical errors on the individual
eigenvalues and should therefore be avoided.

We will propose an alternative method for solving the spec-
tral identification problem, which is based on the properties
of the characteristic polynomial of the generalized eigenval-
ues problem (3). This method will be illustrated with nu-
merical simulations.
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1 Introduction

Recent developments in the identification techniques pro-
pose to use regularized optimization methods to decouple
the experimental data adherence maximization term and a
low-order model promoting term. Recently, a state of the
art, sparsity recovery regularizer technique, the atomic norm
regularization, has been developed by Chandraskearan et al.
in [2] and it is applied to system identification problems by
Shah at al. in [3], as a low-order model promoting method.
This technique approximates the infinite dimensional atomic
set via the discretization and solves an ℓ1 norm regularized,
convex optimization problem to obtain the poles and the
residues (i.e. numerator) of the first order transfer functions
that composes the estimated model as a linear combination.
However, a potential drawback in such a technique is having
biased estimations of the residues and not accurate represen-
tations of the poles of the atoms.

2 Proposed Identification Approach

In this study, novel identification methods are developed
by extending the atomic norm regularization based system
identification technique. For this purpose, a new definition
of the atomic set is introduced to ensure the responses of the
atoms are real valued.

The proposed first method extends the atomic norm regu-
larized identification with the group Lasso (GL) regularizer,
with the aim to impose the constraint on the special coeffi-
cients structure arising from the newly defined atomic set.
Unfortunately, to obtain a convex program, the group Lasso
penalizes large coefficients more compared to small coeffi-
cients since the same penalization parameter, λ , is used for
all variables similarly to ℓ1-norm regularization. This re-
sults in high biased estimations for the large coefficients,
a problem which constitutes the main motivation of this
study to implement further techniques in the field of high-
dimensional statistics.

For a nearly unbiased sparse estimation, firstly the regular-
ization function should be singular at the origin to promote
the sparsity, and secondly, it must be bounded by a con-
stant to avoid the bias at the large coefficients. Under these
constraints, we extend the grouped atomic norm regularized
identification via DC programming based non-convex pe-
nalization framework of Gasso et. al in [4]. Hence, we ap-

proximate Log and ℓq penalties as iterative reweighted Lasso
problems by adaptively penalizing the parameters.

Iteratively solving Eq.1 by initializing w(0)
ω = 1 presents DC-

based non-convex extension of the atomic norm-regularized
identification problem, while the first step is the group Lasso
problem.

β̂ (k) = argminβ
1
2∥y−∑ω Xω βω∥2

2+

λ ∑ω w(k−1)
ω

√pω ∥βω∥2,w
(k)
ω = 1−

h′
(∥∥∥β̂ (k)

ω

∥∥∥
2

)

λ

(1)

where Xω is truncated response vector of the atoms under
input sequence, pω = 2 for ω ∈H , pω = 1 for ω ∈ R(−1,1),
h′ = λ (1 − q

|β j|1−q ) for ℓq-penalty, h′ = λ (1 − 1
|β j|+ε

) for

Log-penalty, H is the discretized set of the upper half of
unit disc and R(−1,1) is the discretized set of the natural num-
ber in the range of (-1,1).
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Figure 1: Simulations for fitting metric (W ) and bias-
variance comparison of the proposed methods and the base-
line algorithms
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1 Introduction

Real-time parameter estimation is used to fit an actuated
second-order mass-spring-damper system on a small set
(few seconds, 4096 Hz) of measured frequency response
data. Previously the parameters were estimated by the Lin-
ear Least Square (LLS) estimator, which resulted in biased
estimates in the presence of periodic disturbances. This can
be seen in Figure 1, where the exact second order model, the
measured data and the Bode plot from the LLS estimate are
shown. The periodic disturbance at 60Hz is seen as natural
frequency and has a negative effect on the performance of
the estimator. In this research a new estimation algorithm is
proposed to improve the accuracy of the estimation when a
periodic disturbance is disturbing the system.

2 Improved algorithm

To improve the estimation, three adjustments have been
made to the algorithm: (a) using the Maximum Likelihood
(ML) algorithm such that frequency points with a large
uncertainty contribute less to the solution than frequency
points with a small uncertainty [1], (b) using random ex-
citations and (c) adding initial and final conditions to the
transfer function model [1] [2]. The ML estimator does im-
prove the accuracy in case of random disturbances but not
in case of periodic disturbances. The estimation accuracy in
case of periodic disturbances can be improved by the sec-
ond adjustment. This can be explained by looking into more
detail to the weighting function of the maximum likelihood
algorithm which is the inverse of the output error variance
and is calculated with the cross- and auto-power spectra of
the input-output signals:

σ2
Y (k) = SYY ( jωk)−SYU ( jωk)S−1

UU ( jωk)SH
YU ( jωk). (1)

A periodic disturbance will be correlated with a periodic ex-
citation, while with a non-periodic excitation, there is no
correlation between the input and the output signal which
results in a small value for the cross-power. As a result,
the output error mainly depends on the power spectrum SYY
which has a high value at the periodic disturbance and a low
weighting will be assigned to the disturbed frequency by the
ML algorithm. This results in a more accurate parameter

estimation as can be seen in Figure 1, where the estimated
Bode plot with the ML algorithm is approximately the same
as the exact Bode plot. However, due to the random exci-
tation, the excitation is different for every second and the
variance in the estimates is slightly increased. When using
random excitations, it is important to apply the third adjust-
ment. Initial and final conditions should be added to the
transfer function because the signals are not measured over
an infinite time period and sampling is applied to measure
discrete time signals.
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Figure 1: Bode plot of the measured data, real data and estimated
models

3 Results

From this research it is concluded that in case of non-
periodic and periodic disturbances, the use of the ML es-
timator in combination with a non-periodic excitation signal
and an extended transfer function model the accuracy of the
estimation is improved. The variance in the estimation is
increased by using the random excitation, but the overall ac-
curacy is improved.
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MIMO Volterra system Identification

When it comes to nonlinear system identification, Volterra
series are a commonly used model structure. Being an
extension to the linear FIR model, Volterra series have the
following characteristics: the outputs y(t) are expanded as
a combination of past inputs u(t), weighted by the Volterra
coefficients wi. A Volterra series is usually truncated at a
degree D and memory M, which results in the following
relationship for a single input, single output (SISO) system:

y(t) = w0 +
D

∑
d=1

M−1

∑
m1,...,md=0

wd(m1, . . . ,md)
d

∏
j=1

u(t −m j)+ e(t).

Unfortunately, the number of Volterra coefficients scales ex-
ponentially with the order of nonlinearity D. This is known
as the Curse of Dimensionality.
Generally, two attractive features of a system identification
algorithm are a quick run-time and trustworthy, informa-
tive results. First, a system identification cycle usually re-
quires many iterations to tune hyperparameters like M and
D. Therefore, it is advantageous to have a short computation
time. Second, system identification is used in various appli-
cations (as for example designing control systems), where
confidence bounds can be useful to estimate how much trust
can be placed into the predictions.
Due to the Curse of Dimensionality, the feasible order of
nonlinearity for Volterra Series is limited to 3 or 4. Other-
wise, the storage costs are too high to perform the system
identification on a standard laptop. Switching to a cluster
is unfortunately not a lasting solution either. Due to the ex-
ponentially growing storage demand, the cluster will also
quickly reach its limits. As a result, we cannot rely on hard-
ware to solve this issue.
Classically, the identification problem is rewritten as
ordinary-least-squares problem and validated with a test-
data set by looking at some scalar metric like the root mean
squared error. This has two major drawbacks: Assumptions
on the model are made implicitly and the evaluation of the
trustworthiness of the model relies on a single number.

Bayesian Inference in a Volterra Tensor Network

These drawbacks can be alleviated with the following ideas:
The key idea to lift the Curse of Dimensionality is to trade
storage for computation. By decomposing the Volterra

Figure 1: Test data with Bayesian Volterra tensor network

model into a tensor network, the computational complex-
ity scales now linear in the order of nonlinearity [1].
Implementing Bayesian framework for the system identifi-
cation offers three benefits: explicit assumptions, confidence
bounds for the estimation and including prior knowledge
about the system. These advantages are preserved when ap-
plying tensor networks [2].
In this work, we want to discuss the following research ques-
tion: Is it possible to apply a Bayesian framework to a multi-
ple input, multiple output (MIMO) Volterra tensor network?
As a preview on the results, we consider an academic ex-
ample. It consists of a 10th order nonlinear Volterra system
with 810 = 1.073.741.824 coefficients. The system is sub-
ject to white, Gaussian noise. The computation was done
on an IntelCore i7-10610U @ 1.80GHz with 16GB RAM in
19s. The mean prediction with 99% confidence bounds of
the validation output are depicted in Figure 1.
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1 Abstract

In last decade, the production of speciality products through
biochemical process has gained traction. Amongst other
products, microorganisms have been used to produce arti-
ficial sweeteners, biopharmaceutics, etc. Such a biochemi-
cal process is governed by a multitude of reactions within a
single microbial cell, as well as the interaction between the
cell and the reactor medium. Metabolic networks summarise
all the reactions and within the cell and the interactions of
the cell with the surroundings. The different metabolites act
as the nodes of the network and the reactions or fluxes be-
tween the different metabolites act as the edges. The en-
tire network can be summarised in the stoichiometric ma-
trix S, whose elements Si, j correspond to the stoichiomet-
ric coefficient of the ith metabolite in the jth reaction. The
main disadvantage of using a metabolic network model is
the limitation on the size of the network that can be used.
Genome scale models constitute of hundreds of metabolites
and reactions leading to a large number of differential states.
Thus, control and optimisation of bioprocesses is based on
the macroscopic mass balance based models.

The state of the art in bioprocess control, the nonlinear
model predictive control (NMPC) uses the model to solve
an dynamic optimisation problem over a prediction hori-
zon. The optimal inputs computed are applied only till a
new measurement is obtained, at which point the model is
reinitialised and the dynamic optimisation problem solved
again by shifting the prediction horizon forward. Recently,
[1] demonstrated the use of a metabolic network based non-
linear model predictive control to regulate a bioprocess.
However, a very small scale metabolic network with four
metabolites and seven fluxes was used. The free fluxes in
the network were estimated from the extracellular metabo-
lites in a moving horizon estimation (MHE) framework.

In this paper, we aim to compare the metabolic network
based NMPC with the traditional macroscopic model based
NMPC. The biochemical plant is assumed to follow a
metabolic network (Figure 1) with known flux distribution.
The case study considers a continuous bioprocess with two
substrates. The two substrates are mixed before they are
fed into the bioreactor. This flow rate of the feed is con-
stant, but the composition can be be altered by manipulating
the weight fraction in the mixing step. Thus, the control
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Figure 1: Metabolic network used in the case study

input in this case is the weight fraction. Based on the sim-
ulated data, a macroscopic mass balance model is identified
describing the biomass growth, the substrate consumption,
and the product formation.

The traditional NMPC uses the macroscopic model to com-
pute the optimal input sequence, and apply it to the plant.
As all the external metabolites are assumed to be measured,
a estimator scheme is not required. In the metabolic network
based NMPC, the free fluxes need to be estimated from the
available measurements, i.e., the extracellular metabolites.
Following [1] and [2], an MHE framework is utilised to es-
timate the three free fluxes. The tracking performance both
these control schemes is compared and the influence of pa-
rameters such as prediction horizon and measurement noise
is elucidated.
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1 Abstract

Microbial food safety is both directly and indirectly affected
by climate and climate change, placing public health at risk.
This contribution presents a modelling framework to assess
the effects of climate change on microbial food safety. The
dairy sector is considered as a case study. At the stage of raw
milk, the microbial food safety of dairy is directly associated
with the total mesophilic microbial count, or Total Bacterial
Count, TBC, measured in CFU/mL. TBC serves as an indi-
cator for the milk contamination levels at the environment
of the farm.

Climate change impact assessments are usually based on
impact models [1]. These models describe the effect of
climate variables on the system under study. The first ob-
jective of this contribution is the development of such an
impact model, that characterizes the effect of climate vari-
ables on the TBC levels of raw cow milk. For this, TBC
data of raw milk from 123 dairy farms in the Maltese is-
lands is used. The data covers a timespan of 6 years, namely
from January 2015 to December 2020 and has a weekly
sampling frequency. The climate data used, originates from
the AGRI4CAST Resources Portal, from the Joint Research
Center (JRC) of the European Commission. Data-driven
modelling methods, such as partial least squares, are uti-
lized.

The second objective of this contribution is associated with
the input of impact models during the impact assessment,
namely, climate change projections. These are the output
from established climate models, which are developed by
multiple climate science institutions worldwide [2]. They
describe the atmosphere of the Earth along with its inter-
actions with other compartments of the climate system, e.g.,
water bodies, and the incoming solar radiation. Climate pro-
jections are generated by considering several different alter-
native scenarios for future climate mitigation, e.g., business
as usual, strong collaboration to mitigate, etc. As there is no
single ’best performing’ climate model, a group of models,

called multi-model ensemble, has to be considered for each
future scenario [3]. Thus, the second aim of this contribu-
tion is to obtain climate change projections that account for
multiple climate mitigation scenarios in the form of multi-
model ensemble trajectories. This involves: (1) screening
of the available climate models, based on their ability to
simulate the temperature conditions of the area under study,
(2) performing bias adjustment using a suitable method that
ensures biological consistency on the output of the impact
model, and (3) downscaling the projections to the appropri-
ate scale [4].

By initializing the developed impact model with the ob-
tained climate projections possible food safety risks associ-
ated with climate change are identified. Propagating these
risks, from the stage of raw milk, along the farm-to-fork
continuum is useful to evaluate possible threats related to
different dairy products.
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1 Introduction

During beer brewing, the fermentation stage is crucial to
guarantee beer quality. Beside, the complex behavior of the
involved components makes beer fermentation an interest-
ing candidate application for advanced monitoring and con-
trol, which require a mathematical model. To this end, Gee
and Ramirez [1] proposed a complete fermentation model,
which however would imply a complex instrumentation for
control purposes. Andrés-Toro et al. [2] derived later on
a simpler model validated with various temperature profiles
and measurements from industrial breweries. This model
however involves biomass, which is difficult to measure on-
line in common fermentors. A more practical and control-
oriented description was proposed by Trelea et al. [3], based
on the carbon dioxide dynamics instead of biomass, also
considering total sugar and ethanol concentrations.

In this work, the model of [3] is slightly adapted, with
among other changes, the introduction of a logistic kinetic
structure for the CO2 production. Structural and local iden-
tifiability analyses are also achieved to avoid possible over-
parametrization and provide parameter estimation accuracy
assessment.

2 Mathematical model

The dynamic model is obtained by mass balancing based
on reaction scheme (1) where sugars (S) are consumed by
yeast (X) to produce, ethanol (E), carbon dioxide (CO2),
and among the byproducts, vicinal diketones (VDK) which
are later converted into other products (P). Stoichiometry
is normalized with respect to carbon dioxide, replacing the
biomass as main variable to monitor the status of the fer-
mentation process.

KSS
µX X−−→ kEE+ kV VDK+CO2

VDK
rAb−−→ P (1)

3 Results

A set of experimental runs have been achieved using a 30L
batch fermentor, producing a kölsch (Ale) beer, and vary-

ing the initial concentrations, and the operating tempera-
ture. The resulting data sets are used for model identifica-
tion and validation. The parameter identification procedure
is based on a weighted least-squares criterion. Minimization
is achieved using a combination of the MATLAB® optimiz-
ers fminsearch and lsqnonlin, in order to reach the best local
minimum and evaluate the parametric sensitivity Jacobian,
which can be further used to compute the fisher Information
Matrix and assess parameter local identifiability and confi-
dence intervals.

Figure 1 shows the resulting model fitting with the experi-
mental data.

Figure 1: Experimental data and model prediction.

The model is in good agreements with the experimental data.
Ongoing research considers the dependency of the latency
phase to temperature.
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1 Introduction and problem description

Hyperthermia treatments are successful adjuvants to con-
ventional cancer therapies in which the tumor is sensitized
by heating. To monitor the treatment, the clinical practice
heavily relies on invasive sparse probes that are uncom-
fortable for the patient. Magnetic Resonance Thermometry
(MRT), is proposed as a solution to this problem as it allows
for three-dimensional temperature measurements using an
MRI scanner. However, clinical integration is hampered by
a low signal-to-noise ratio and measurement bias. To ad-
vance the clinical integration, we consider the problem of
estimating the internal patient temperature using MRT.

MRT measurements exploit temperature dependent param-
eters in Magnetic Resonance Imaging (MRI). For example,
the widely used PRFS MRT exploits the temperature depen-
dent magnetic shielding coefficient of the hydrogen nucleus
in water molecules [1]. In this paper, we represent MRT
measurements by the following output model,

yi(rrr) =Ci(rrr)T (rrr)+ηi, ηi ∼N (ai(rrr),Σi(rrr,rrr′)), (1)

for i = 1, . . . ,N. In (1), yi, rrr, Ci, T , ai, Σi denote the
MRT, position vector, tissue-dependent sensitivity, tempera-
ture, bias, and covariance, respectively. For multi-echo MRI
scans N is typically ∼ 101. As a result, at each sample time,
we receive ∼ 107 data points. To solve the problems that
arise in large-scale data acquisition, we are interested in fus-
ing (1) into a single output given by y(rrr) = ∑N

i=1 Li(rrr,rrr′) ∗
yi(rrr) using simple kernel functions Li(rrr,rrr′), where [∗] de-
notes the convolution operator. A general overview of the
proposed state estimation pipeline is shown in Fig. 1.

MRI scanner State estimation

Sensor
fusion

ObserverMRT

Figure 1: Estimation pipeline with distributed sensor fusion and
state observer for tractable temperature estimation.

2 Methods and results

As briefly mentioned, we are interested in fusing N MRT
measurements given by (1). More specifically, we will fo-
cus on two MRT principles, namely, PRFS (P) and T1-
relaxation (T1) based MRT [1]. These measurements are
denoted by yP(rrr) and yT1(rrr), respectively, with

CP(rrr) =CT1(rrr) =
{

1, for rrr in aqueous tissue,
0, otherwise,

(2a)

ηP ∼N (a(rrr),Σ(rrr,rrr′)), ηT1 ∼N (0,βΣ(rrr,rrr′)), (2b)

where β > 1. Loosely speaking, yP(rrr) is impaired by mea-
surement bias and yT1(rrr) by a low signal-to-noise ratio. Our
goal is to exploit the observation that the bias a(rrr) is well-
described by low-order polynomials [1, 2]. Hence, we pro-
pose complementary low and high-pass filter that satisfy
LHP(rrr,rrr′) ∗ a(rrr) ≈ 0 and LLP(rrr,rrr′) := δ (rrr,rrr′)−LHP(rrr,rrr′),
where δ denotes the Dirac-delta kernel, as inspired by [2].
Both filters are implemented by projecting the MRT onto
a polynomial basis and discarding the low and high order
polynomials, respectively.

The complementary filter sensor fusion is validated using
a heated phantom experiment. The corresponding PRFS,
T1, and fused MRT are shown in Fig. 2. From Fig 2, the
bias in the PRFS MRT is clearly visible by the overall lower
temperature, as well as the low signal-to-noise ratio of T1
MRT. Observe that the fused MRT is both bias corrected,
while the noise is comparable to PRFS MRT.

Figure 2: MRT from a phantom mimicking the pelvic region.
Gray regions correspond to CP/M(rrr) = 0. Left: biased
low noise PRFS MRT. Middle: unbiased high noise T1
MRT. Right: Unbiased and low noise fused MRT.

3 Conclusions and future work

Complementary low and high-pass filters are shown to be
a successful strategy in fusing PRFS and T1 MRT. Over-
all, fusing multiple measurements is a promising strategy to
distribute the complexity of the observer design while being
robust to the limitations of each MRT principle.

We believe further improvements can be realized by mod-
eling and simultaneous estimation of the measurement bias
and including additional MRT principles. Finally, online es-
timation of the patient-specific output sensitivity, as seen in
some MRT principles, could result in more MRT measure-
ments that are available for sensor fusion.
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Mechanical ventilation
Mechanical ventilation is used in Intensive Care Units
(ICUs) to save lives of patients who are not able to breath
on their own. Mechanical ventilation supports patients by
ensuring adequate oxygenation and carbon dioxide elimina-
tion. Mechanical ventilators attached to the patient are used
to ensure airflow in and out of the lungs. This is challeng-
ing for spontaneously breathing patients because it poten-
tially leads to ventilators disrespecting the demands of the
patient, i.e., Patient-Ventilator Asynchrony (PVA). Different
types of PVA can be characterized based on the delay during
inspiration ∆tinsp and expiration ∆texp between patient and
ventilator. In practice, currently asynchronies can only be
detected by real-time inspection of pressure and flow wave-
forms as depicted in Figure 1. However, clinicians lack time
and/or knowledge to effectively detect asynchrony based on
pressure and flow waveforms [1], therefore an automatic de-
tection approach is pursued.

Detection problem
Using first principle modelling, it is found that PVA can
be detected from pressure and flow curves based on nonlin-
ear dynamical models with unknown parameters and logical
rules that are patient and ventilator specific. From a system
identification point of view, the goal is identify the dynam-
ical models for a wide variety of plants (different patients)
and inputs (available pressure and flow curves).

General approach
The general approach consists of experiment design, a
model set choice and a fit criterion choice. In the experi-
ment design, prior knowledge, in the form of first principle
models, is used to generate synthetic data from a simulation
environment. The set of models that we consider are artifi-
cial neural networks (ANNs). Subsequently, by choosing a
fit criterion the dynamical model can be identified using the
generated data and a particular model choice. In this way,
the data-driven identified dynamical model contains implicit
knowledge about the underlying first principle models. In
case of the PVA detection, a dynamical model based on a re-
current neural network is trained using a cross-entropy loss
function [2]. In the next section, the detection performance
of the model is shown using synthetic patient data.

Results
Through a simulated case-study the performance of the de-
tection model is shown in Figure 2. The figure shows all the
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Figure 1: Typical pressure supported patient breath, where
the ventilator supports the patient inspiration after ∆tinsp sec-
onds and cycles off ∆texp seconds after the patient’s expira-
tion.

Figure 2: Results of the asynchrony detection model. Each
data point represents patient breath combined with a ven-
tilator breath that is characterized based on the inspiration
delay ∆tinsp and the expiration delay ∆texp. An asynchrony
is detected correctly if the data point has the same color as
the background, which is the case for 93.3% of the breaths.

different patient breaths represented by a single data point
and their detected asynchrony type. The asynchrony type of
a breath is detected correctly if the colour matches the back-
ground colour. The total detection accuracy is 93.3%, which
is a significant improved compared to clinicians, which do
often not have the time or ability to detect asynchronies in
practice at all. In a larger context, this shows that data-
driven models, such as ANNs, have the potential to repre-
sent complex dynamical systems if the models are trained
with synthetic data that is generated with a first principle
model-based simulation environment.
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1 Introduction

In the agro-food industry, it is essential to reach high cell vi-
ability rate when forming dry yeast. However, during the
various processes, cells encounter several stress-inducing
environments, which increase the mortality rate of the yeast
cells. The intracellular accumulation of trehalose, a sugar
naturally synthesized within insects, plants and yeasts, rises
the resistance to stress and improves yeast cells viability in
industrial bioprocesses. This paper describes the extension
of a baker’s yeast growth model to account for the intracel-
lular trehalose storage and mobilization.

2 Model development

The model is an extension of the yeast growth with the co-
ordinated uptake of glucose and nitrogen introduced in [1],
which includes the overflow metabolism as described by [2]
to account for the Crabtree effect. New reactions charac-
terizing the storage and mobilization of trehalose are added.
Hence, the model is based on the reaction network:

G
r1−→ k1X (1)

G
r2−→ k2X + k4E + k7A (2)

E
r3−→ k3X (3)

N +A
r4−→ k8X (4)

Gint
rsT⇌
rmT

1
2

T (5)

where X , G, N, E, A, Gint and T respectively denote the
biomass, extracellular glucose, ammonium, ethanol, intra-
cellular α-ketoglutarate, intracellular glucose and intracel-
lular trehalose. k1 . . .k8 represent the pseudo-stoichiometric
coefficients. The reactions included in the network (1)-(5)
express: i) biomass growth on glucose through respiration;
ii) biomass growth on glucose through fermentation, with
ethanol production and α-ketoglutarate accumulation; iii)
biomass growth on ethanol through respiration, which is
only possible if the global glucose uptake is inferior to the
maximum respiratory capacity and occurs only in the pres-
ence of ethanol; iv) formation of biomass on ammonium as
well as coordinated consumption of α-ketoglutarate, there-
fore boosting the fermentation as α-ketoglutarate is con-

sidered an inhibitor of the fermentation; v) storage of tre-
halose by consumption of the intracellular glucose and tre-
halose mobilization with release of intracellular glucose.
The mass balance on each component results in a set of
delay-differential equations, due to the delayed dependence
of trehalose storage on the extracellular glucose uptake rate
and the delayed dependence of trehalose mobilization on
ethanol respiration rate.

3 Parameter estimation

All model parameters are estimated from experimental data.
The estimation of the parameters corresponding to the re-
actions (1)-(4) is reported in [1]. The focus here is on the
estimation of five parameters corresponding to the trehalose
storage and mobilization rates. These parameters are identi-
fied using MATLAB ’lsqnonlin’ function, which applies the
trust-region-reflective optimization algorithm to minimize a
least-squares criterion. This criterion consists of the sum of
squared differences between model predictions and the ex-
perimental values. A multistart approach is used. For each
parameter, pseudo-random values over given ranges were
used for the initialization of the optimization algorithm. The
estimated parameters are reported in Table 1.

Table 1: Estimated parameters
Parameter Value 95% Confidence

µsT max [gT/gG] 0.0500 [0.0416, 0.0584]
µmT max [gT/gE] 0.4796 [0.3262, 0.6330]

KIsN [gN/L] 0.3317 [0.1658, 0.4976]
τs [h] 6.080 [6.0797, 6.0803]
τm [h] 3.3905 [3.3558, 3.4251]
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1 Introduction

Reinforcement learning (RL) provides powerful tools for the
synthesis of controllers due to its strong interactions with
the environment. When RL is applied to physical systems,
model-based RL, also known as (approximate) dynamic pro-
gramming, has received more attention since it can make ef-
fective use of the state transition information provided by
the model. However, most of the RL explorations in optimal
control problems do not consider constraints that commonly
exist in safety-critical systems. Based on this observation,
we consider an RL formulation in optimal control of linear
systems, specifically, linear quadratic regulation (LQR), and
intend to enforce the learning-based controller to satisfy lin-
ear constraints, involving states, inputs, or even multi-time
step constraints.

2 Constrained LQR and model predictive control

As for the constrained LQR problem, the existing literature
often considers a finite-horizon problem with a terminal cost
to approximate the original infinite-horizon LQR problem.
With the optimal value function of the unconstrained LQR
problem as the terminal cost, the finite-horizon problem will
be equivalent to the infinite-horizon problem if the horizon
is sufficiently long. Such constrained LQR algorithm can
be executed online in a receding horizon manner, known as
model predictive control (MPC). MPC is a multi-step roll-
out algorithm and is related to policy iteration methods in
RL [1]. However, the determination of the horizon N is
time-consuming: usually one needs to solve an extra convex
program or iteratively increase its value. Moreover, some
tight constraints will make the minimum admissible value
of N very large, and consequently impose more computa-
tional burden on the online MPC implementation.

3 RL for constrained systems

Compared with MPC, RL methods do not need multi-step
policy optimization and can thus be more computational
inexpensive. They can be divided into policy-based and
value-based methods. In constrained cases, however, nei-
ther the optimal policy nor the value function is readily
available, even for the most basic LQR problems. Al-
though explicit MPC can provide analytical solutions to con-

strained LQR problems, it often suffers from high compu-
tational complexity and memory requirements. These ob-
servations motivate researchers to employ approximate RL.
Approximation in policy space uses, e.g. neural networks,
to learn unconstrained policies and leverages projection or
safety filter-based methods to modify the policies. These
policy-based designs, however, sometimes fail to capture the
optimal solution of the constrained problem and lack sta-
bility guarantees. In comparison, approximation in value
space, which uses approximation architectures to represent
the value function and produces the policy through online
solving a constrained optimization problem, is an indirect
approach. [2] first investigates this approach, although it is
limited to searching for the best linear feedback control law.
Applying RL to approximate the constrained LQR controller
with feasibility and stability guarantees is still an open issue.

4 Intended approaches

It has been proved that the optimal control law for the con-
strained LQR problem is piecewise affine (PWA), and the
corresponding optimal value function is convex and piece-
wise quadratic. With this knowledge, we can (i) construct a
PWA neural network to learn the control law, or (ii) design a
piecewise quadratic neural network to approximate the value
function. Fed with different initial states, the constrained
LQR algorithm can be performed offline to collect enough
training data. When interacting with the system online, the
policy-based method needs a feasibility certificate, while the
value-based method solves a convex constrained policy op-
timization problem. The main benefits of these methods are
that they move lots of computational tasks to offline and do
not require an initial stabilizing policy.
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1 Background

Feedforward control can significantly improve the perfor-
mance of dynamic systems [1]. It aims at finding the input
to a dynamic system such that this system’s output tracks
a desired reference. Typically both high performance and
flexibility to varying references are desired. An extensive
feedforward control framework that addresses these require-
ments has been developed for linear time-invariant (LTI)
systems, based on system identification and inversion [2],
or direct identification of the inverse in a learning setting
[3]. Extensions to nonlinear dynamics typically require the
dynamics to be fully known [4].

2 Problem Formulation

Increasing performance requirements in industrial applica-
tions, such as precision mechatronics, lead to a situation in
which the LTI assumption is no longer satisfied. These non-
linear dynamics do not fit the LTI feedforward parametriza-
tion and subsequently limit the performance.

The goal is to develop a feedforward control framework that
integrates physical models containing prior knowledge to-
gether with universal function approximators, e.g., neural
networks, to compensate the unknown nonlinear dynamics
in an explainable manner.

3 Approach

The developed feedforward framework is a class of nonlin-
ear finite impulse response (FIR) parametrizations, i.e.,

f (k) =
ℓ

∑
i=0

θiq−ir(k)+Cφ

(
r(k),q−1r(k), . . . ,q−ℓr(k)

)
,

which is a parallel combination of a linear FIR model and a
function approximator Cφ acting on the reference and its ℓ
lags, parametrized as a neural network with coefficients φ .

The parameters θ ,φ are optimized using an orthogonal-
projection based cost function, in which the neural network
output in the subspace of the model is penalized through
orthogonal projection. This results in uniquely identifiable
model coefficients θ .

1This work is supported by Topconsortia voor Kennis en Innovatie
(TKI), and ASML and Philips Engineering Solutions.
1Control Systems Technology Group, Eindhoven University of Technol-
ogy, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. 2Philips En-
gineering Solutions, High Tech Campus 34, 5656 AE Eindhoven, The
Netherlands. 3ASML, De Run 6501, 5504 DR Veldhoven, The Nether-
lands. 4Delft University of Technology, P.O. Box 5, 2600 AA Delft, The
Netherlands. *Email: j.j.kon@tue.nl

4 Results

Figure 1 shows the application of this feedforward frame-
work to a system with nonlinear friction. It illustrates that
the developed parallel parametrization (middle) is able to
capture the unknown nonlinear dynamics, resulting in high
performance, whereas the an LTI parametrization (top) is
not able to. The non-uniqueness of the developed paral-
lel parametrization results in opposing contributions, and is
removed by the orthogonal-projection based cost function
(bottom), such that the neural network captures only the un-
known dynamics.

Future research focuses on extending the feedforward
parametrization to (nonlinear) zero dynamics for flexible
modes, and its application to CT scanners and wafer stages.
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Figure 1: Optimal ( ) and generated ( ) feedforward with
model ( ) and neural network ( ) for LTI (top) and de-
veloped parallel parametrization without (middle) and with
(bottom) orthogonal-projection based cost function.
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Introduction
Dog clutches are widely used in the automotive
industry, where they can for example be embed-
ded in gearboxes or power transfer units (PTUs).
PTUs allow switching
from 2WD to 4WD, but
are also relevant for e-
axles and drivelines of the
future. They can use dog
clutches since they are
more cost-effective than
e.g., friction clutches,
however, (dis-)engagements cause more noise, potentially
leading to NVH issues. In this paper, we present a sim-
ple learning-based control algorithm to ensure smooth
engagements of a dog clutch embedded in a PTU.

Considered System and Challenges
As represented in Fig. 1 [1], a dog clutch connects two
gears running at nearly the same speed. If the teeth are well
aligned and the speed difference is small, the dog clutch can
be actuated, causing a left to right displacement, and the
teeth to nicely mesh. With speed differences that are too
high, or teeth that are misaligned, the teeth will first bounce.
There will then be a delay while the gears rotate further, af-
ter which the actuation can finally mesh the teeth correctly.

Figure 1: The states in the engagement of the dog clutch.

In this work we will focus on the controls of the lin-
ear displacement, which is actuated by a highly non-linear
solenoid. A voltage can be commanded, after which current
will be built up in the solenoid, causing the gear to move if
enough force is built up. Several challenges are present:

• Non-linearity and stochasticity of the PTU, including
the influence of external conditions such as temperature
and battery voltage, but also the teeth alignment which is
a function of initial (random) slip angle and slip speed.

• Limited sensing, as for estimation and control only
command voltage and measured current can be used (po-
sition & speed were only measured for validation).

• Only very approximate models are available.

• Solenoid time constant is similar to the typical en-
gagement time, limiting achievable feedback bandwidth.

Proposed Control Framework
We have developed a simple speed-based controller relying
on a speed observer, which requires only approximate model
knowledge (e.g., constant resistance and inductance of the
solenoid’s coil) and limited measurements, yielding v̂ [2].
The control approach consists of the following steps:

1. Command a block-wave current reference signal Ire f ,
causing a voltage V to be sent (via a PI controller), build-
ing up force on the gear. When enough force is built up,
the gear will start moving.
2. When motion is detected using the estimator, i.e.,
v̂ > vthreshold , we switch to a speed-based feedback con-
troller: V = Kv̂, which commands a voltage to build up
current (and thus force) in the opposing direction, brak-
ing the actuator before it hits the end stop.
3. Engagement.

The optimal value of the control gain K (and thus how hard
we brake) is determined using a simple rule-based learning
controller. The control approach has further been extended
to cases where the teeth are not yet aligned.

Experimental Results
We applied the developed controls to an experimental PTU.
The results for a single condition are shown in Fig. 2:
when the controller is applied, significantly smoother en-
gagements are achieved. Averaged over multiple conditions,
the (weighted) vibrations recorded with an accelerometer
are reduced with on average 45-80%, thereby improving
NVH significantly.
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1 Introduction

Our daily lives depend on the proper functioning of many
complex large systems, such as energy, water, and trans-
portation networks. Ensuring that the societal ever increas-
ing demands are fulfilled in a safe, efficient, and sustainable
fashion is definitely not a simple task. From a mathemati-
cal standpoint, analysis and control design of such systems
are very challenging due to their large scale and fast dynam-
ics. Furthermore, these networks often have a combination
of continuous and discrete dynamics, i.e., hybrid dynamics,
which makes the problem even more challenging.

In order to tackle the control problem of networks with hy-
brid dynamics, we aim to integrate model predictive control
(MPC) and model-based reinforcement learning (RL) with
the intent of bringing the advantages of both approaches,
i.e., the outcome of such integration should have formal
guarantees and be of low on-line computational complex-
ity. These model-based techniques are explored under the
light of piecewise affine (PWA) models for their simplicity,
tractability, and capacity of representing hybrid phenomena.
In order to break down the problem, initial attention is de-
voted to small-scale PWA systems.

2 Background

In what follows, we motivate the integration of MPC and
model-based RL by exposing the main benefits and draw-
backs of each technique separately.

MPC is an optimization-based control approach that is well-
established method in the control community for its success
in process control industries and its capacity to handle com-
plex systems and constraints. Moreover, there is an abun-
dance of results concerning formal guarantees such as sta-
bility, safety, and performance. However, these guarantees
come often at the price of intense on-line computational re-
quirements.

RL is a general learning framework where the agent learns a
control policy based on its interaction with the environment.
Due to recent success in applications such as backgammon,
chess, and the game of Go, this area has received a consider-
able amount of interest. The main advantage of RL lies in its
capacity to learn complex policies and its low on-line com-
putational requirements. On the other hand, formal guaran-

tees are scarce, and, consequently, it is hard to ensure safety
and stability.

Past work that concerns the combination of MPC and
learning-based approaches can be divided in three main
groups: (i) on-line adaptation of the MPC prediction model;
(ii) use of MPC, as a backup controller, to provide safety
for an RL controller; and (iii) tuning of the cost and con-
straint functions of MPC with RL methods to improve the
controller’s performance [1]. However, there is little work
done on the integration of MPC and RL for constrained hy-
brid systems and networks. Hence, we aim to explore this
research gap, i.e., the intersection of MPC, RL, and small-
scale constrained PWA systems.

3 Methods

Next, we discuss possible manners of accomplishing the re-
search objective. The first research direction concerns the
direct integration of MPC and RL. In this setting, MPC is
used to decide the continuous actions and RL is employed
to determine the discrete actions. Alternatively, we present
other approaches that are either sequential or indirect. The
second research direction aims to reduce to the on-line com-
putational burden by dividing of the prediction horizon in
two parts: a shorter control horizon, controlled by MPC, and
a remaining horizon, driven by RL. As a result, the number
of optimization variables and on-line computational com-
plexity are reduced. The third alternative is to enhance the
training efficiency of RL by employing a fast MPC method
to provide initial maps from states to suboptimal inputs. Ini-
tially, the system is controlled by the MPC controller, but
one could gradually shift from the MPC to the RL controller
as the performance of the latter improves.
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1 Background

Performance and flexibility are typical trade-offs in mecha-
tronic systems. Linearly parameterized feedforward con-
trol has both performance and flexibility [1]. The choice of
parameterization should be determined by prior knowledge
such as sampled-data characteristics.

2 Problem formulation

The controlled system is shown in Figure 1. The goal is
to minimize the continuous-time tracking error e(t) using
the feedforward signal f [k] = Ψ[k]θ with parameter θ . For
instance, Ψ is parameterized as Ψ = [r,ξ r,ξ 2r] for a mass-
damper-spring system with a differentiator ξ . Typically, nth

order backward difference is used as nth order differentiator
ξ n

BD to design the feedforward parameterization [2] as

ξ n
BD =

(
1− z−1

Ts

)n

. (1)

This does not explicitly address the zero-order-hold charac-
teristic of the step-like input shape restriction.

3 Approach

The aim is to develop flexible feedforward control with in-
tersample consideration. The approach considers the feed-
forward parameterization with basis functions for flexibility
that are designed with sampled-data characteristics such as
zero-order-hold and multirate state tracking [3].

4 Results

The stable inversion of the nth order integrator discretized
by zero-order-hold is used as nth order differentiator ξ n

SI to
design the feedforward parameterization as

ξ n
SI =

{
Z

(
1− e−sTs

s
· 1

sn

)
z
}−1

. (2)

The experimental result in the single inertia system G(s) =
1

Js2 with the acceleration feedforward parameterization is
shown in Figure 2. The sampling time is Ts = 20ms. It
shows that the feedforward parameterization using stable in-
version ΨSI [k] = ξ 2

SIr[k + 1] outperforms that using back-
ward difference ΨBD[k] = ξ 2

BDr[k+1].

G(s)C[z] HZOH S
+

−
S

r(t) r[k]
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f [k]
+

+

+

−

Figure 1: Controlled system discretized by zero-order-hold
HZOH and sampler S . The discrete-time signal ( )
can be controlled and the continuous-time signal ( )
is the performance variable.
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Figure 2: Experimental result of a reference tracking problem,
with a parametric feedforward using stable inversion
( ), that outperforms backward difference ( ),
reducing RMS and MAX errors by a factor of two.

5 Ongoing research

The ongoing research focuses on extending the feedforward
parameterization that considers higher-order characteristics.
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1 Introduction and problem statement

In recent years, Machine Learning (ML) has been success-
fully used in various applications. In traditional ML, train-
ing data is centrally held by one server executing the learn-
ing algorithm. Federated learning (FL) has been recently
presented as a decentralized ML algorithm that can scale
to thousands of participants [1]. Its core concept is to train
models on separate datasets distributed across clients, which
preserves local data privacy to a certain extent. The idea
behind FL is to train local models on clients’ devices and
then exchange models instead of raw data among clients and
servers to achieve a global model. Servers then aggregate
clients’ models and send the aggregation back to clients to
iterate the learning algorithm. The process is repeated until
convergence is reached. Although FL provides some privacy
level for clients’ data, information about clients can still be
inferred from the model updates.
In recent years, various privacy-preserving schemes have
been used to address privacy leakage in FL. However, they
often provide privacy at the expense of model performance
or system efficiency, and balancing these tradeoffs, is a cru-
cial issue in implementing private FL.

2 Methodology

To address aforementioned issues, in this work, we propose
a Privacy-Preserving Federated Learning (PPFL) framework
that it is computationally efficient, provides the same level
of accuracy and convergence rate as the standard FL, and re-
veals no information about the clients’ data.
The idea is to design a multiplicative random encoding ma-
trix that extends the dimension of the parameter space of the
global model (an immersion) and develop a modified learn-
ing algorithm that uses the distorted global model and con-
verges to an affine transformation of the original training
model. We also add randomness by exploiting the kernel
of the encoding matrix, and recover the undistorted optimal
model by using the left invertibility of the transformation.

Let wt be the global model at the t-th iteration of FL and
wt

i the local updating model of i-th client. Consider a full
rank matrix M ∈Rn×m(m > n), with right inverse G ∈Rm×n

(MG = I), and a matrix N ∈Rm×(m−n) expanding the kernel
of M (MN = 0). The distorting multiplicative random ma-
trix At for t-th iteration is defined as At = G+NRt , for some
random matrix Rt . Then, for every At , we can conclude that
MAt = I. Server uses matrix At to encode the global model
wt , as w̃t = Atwt , and then, in the next iteration, multiply it

Figure 1: Flowchart of proposed PPFL.

by M to decode it.
Generally, in FL clients employ distributed Stochastic Gra-
dient Descent (SGD) for training local ML models. We also
distort the loss function used in SGD by output regulation
such that it uses the distorted global model and converge to
an affine transformation of the original trained model. Fur-
thermore, we consider a third party as an aggregator that in-
terfaces between clients and the server. The aggregator takes
the average of the updated models from clients and sends it
to the server so that server cannot access any local models.
Besides, since the aggregator does not have access to the
original updated models, it is not required to be trusted.
The flowchart of the algorithm is shown in Figure 1. The
algorithm is summarized in four steps:
1) In the hand-shaking phase, server sends the modified
SGD algorithm and the random initial model to clients.
Also, in each iteration, server encodes the global model as
w̃t = Atwt and sends it to clients to update.
2) Clients employ the modified SGD to update the distorted
model w̃t . They send the updated models to the aggregator.
3) Aggregator takes average of updated models from clients
and send the aggregated model to the server.
4) Finally, server decodes the model by multiplying it by M.
The process is repeated until convergence is reached. In the
last iteration, the server has access to the exact model with a
non-privacy-preserving federated learning model.
Therefore, this mechanism provides privacy for local and
global models in all iterations of FL without degrading the
final model and convergence rate of FL.
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1 Background

Despite many efforts in recent years, safe autonomous
navigation in the presence of humans remains a highly
challenging task. Traditionally, this problem is tack-
led by separating it into a forecasting problem and a
planning problem. However, this strategy may lead to
overly conservative and defensive behavior, commonly
referred to as the frozen robot problem [1]. In dense
traffic situations, for instance, such a vehicle will strug-
gle to merge into lanes efficiently or be unable to cross
a condensed junction.

2 Methodology

Early work on social navigation has shown that the
frozen robot problem can be solved by modelling vehi-
cles as a team of cooperative players engaging in joint
collision avoidance. Following this line of research, we
have introduced a novel framework in [2] for controlling
autonomous vehicles in general traffic situations which
accounts for the mutual interactions between the con-
trolled vehicle and other road users. More specifically,
the navigation problem is modelled as a game consisting
of M players, where each player ν ∈ A := {1, 2, . . . ,M}
is assumed to optimally decide upon their input vari-
ables uν ∈ IRnν with respect to a receding horizon op-
timal control cost Jν(uν , u−ν) subject to coupled con-
straints uν ∈ Uν(u−ν), i.e., each road user is assumed
to solve

minimize
uν∈Uν(u−ν)

Jν(uν , u−ν), ν ∈ A, (1)

where u−ν := (ui)i∈A\{ν} represents the input variables
of all other players. In autonomous driving, these cou-
pled constraints naturally consist of shared (collision
avoidance) constraints and additional player-specific
constraints. By imposing some additional structure on
the cost functions of the different interacting players,
this problem can be specialized to a generalized poten-
tial game, for which a continuous potential function P
exists representing the preferences of all players. As a
result, an optimal solution of the game, i.e., a gener-
alized Nash equilibrium, can be obtained by solving a
single optimization problem

minimize
u∈U

P(u), (2)

where u := (ui)i∈A represents the input variables of all
players. By solving optimization problem (2) repeat-
edly within a model predictive control scheme, this
game-theoretical formulation allows the controlled ve-
hicle to efficiently cooperate with other road users,
while safety guarantees follow from the imposed col-
lision avoidance constraints.

The controlled vehicle is required to have access to
the (implicit) objective function and constraints of the
other road users. However, this information is in gen-
eral unknown. Moreover, different drivers behave dif-
ferently on the road, and the behavior of a single driver
might even change over time. This issue is adressed in a
data-driven manner: the human objective function and
constraints are parametrized, and the parameters are
updated in an online fashion by adapting standard in-
verse optimal control methodologies such as [3] to the
considered game-theoretical framework. More specifi-
cally, the parameters are updated by minimizing the
residual of the optimality conditions of the game given
human observations. This approach enables the con-
trolled vehicle to learn not only cost function but also
constraint parameters from expert demonstrations, as
opposed to traditional inverse reinforcement learning
strategies [4].

3 Numerical experiments

To verify the practical usability of the devel-
oped methodologies, extensive numerical simulations
in various traffic scenarios have been performed.
The source code of the driving simulator and
videos of a merging experiment are available at
https://brechtevens.github.io/GPG-drive/.
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1 Abstract

We study the stochastic stability of perturbed best-
response dynamics for networked coordination games on
tree graphs. Consider a network of agents adopting a strat-
egy from their given strategy sets following perturbed best
response dynamics. When the network topology is a tree,
we show that each Nash equilibrium of a networked coor-
dination game is a stochastically stable state of the corre-
sponding perturbed best response dynamics.

2 Problem Formulation

Consider a network of N agents and denote the network
by an undirected graph G = (I ,E ) with I := {1,2, · · · ,N}
and E being the node set and edge set respectively. Each
agent i, when activated, plays a 2-player coordination game
with each of its neighbors by choosing a strategy from the
binary strategy set X = {0,1} and receives respectively a
payoff according to the payoff matrix

E i :=
( 0 1

0 1 0
1 0 1

)

For this activation event, its payoff is the sum of those earned
against all its neighbors and we denote this payoff relation-
ship by ri : X N → R.

2.1 Best response decision rule
At each time t, one agent is chosen from I at random

to update its strategy according to the best response decision
rule. More specifically, denote the strategy of agent i and
the joint strategy of all the agents at time t by xi(t) and x(t)
respectively; the asynchronous best response dynamics can
be represented by





xi(t +1) = xi(t) if i /∈ ∆(t)
xi(t +1) ∈ argmax

xi∈A i
ui(xi,x−i(t)) if i ∈ ∆(t) (1)

where {∆(t)}t≥0 is a sequence of random subsets of I ,
and x−i(t) := (x1(t), · · · ,xi−1(t),xi+1(t), · · · ,xN(t)) repre-
sents the joint strategy of all the agents other than i.

Denote the neighborhood of agent i by N i and define
ni = |N i|. The number of i’s neighbors choosing strategy
0 is denoted by ni

0. According to its payoff matrix E i, i’s
payoff is calculated by

{
ui(0,x−i) = ni

0

ui(1,x−i) = ni−ni
0

(2)

We assume that in the special scenario when agent i receives
the same payoff no matter which strategy is chosen, this
agent sticks to its previous strategy. Then, the argmax com-
putation in (1) can be rewritten as

xi(t +1) =





0 if ni
0(t)

ni(t) >
1
2

1 if ni
0(t)

ni(t) <
1
2

xi(t) if ni
0(t)

ni(t) =
1
2

(3)

2.2 Perturbed best-response dynamics
Suppose that at each time, when an agent is chosen to

update its strategy, there exists a small probability ε > 0 with
which the agent chooses a strategy randomly. This is some-
times referred to as mutation or perturbation. Then, the per-
turbed best-response dynamics define a Markov chain. As-
sume there is a unique stationary distribution for the Markov
chain. When the probability ε becomes arbitrarily small, the
joint actions, which can still be observed with positive prob-
ability in the long run, are called stochastically stable.

3 Result

Theorem 1 For the networked coordination game on a tree,
every Nash equilibrium is stochastically stable.
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1 Motivation

In [1], the notion of passivity is used for group coordination.
The control objective is to steer the differences of output
variables of neighboring agents to a prescribed compact set.
By extending this idea to formation control, this work pro-
poses a passivity approach in port-Hamiltonian (pH) form
for formation stabilization and velocity tracking. The con-
trol law consists of two parts, where the internal feedback is
to track the velocity and the external feedback is to achieve
formation stabilization. A necessary condition to achieve
convergence to the target set is the linear independence of
the columns of the incidence matrix of an underlying inter-
action graph. However, for formation control, this condition
is often not satisfied, for example in the displacement-based
formation of cyclic graphs. Also in the case of rigid for-
mations, the underlying graph usually contains cycles. The
objective of this work is to extend the passivity approach to
displacement-based formation and rigid formation in case of
cyclic graphs.

2 Main results

We consider a group of N agents coupled by an underlying
graph with M edges, while each agent is modeled in pH
form as a single point mass in Rd.



q̇

ṗ


 =




0 INd

−INd −Dr






∂H
∂q (p)

∂H
∂p (p)


+




0

INd


u

y =
∂H

∂p
(p)

(1)

where q ∈ RNd, p ∈ RNd, u ∈ RNd, and y ∈ RNd is the
position, momentum, input, and output, respectively. Dr ∈
RNd×Nd is a positive semi-definite dissipation matrix. The
Hamiltonian consists of the kinetic energy associated with
the movement of the mass and takes the following form H =
1
2

∑N
i=1 p

T
i M

−1
i pi, where Mi = miId.

The coordination objective for the group behavior consists
of two parts. One is that the velocity of each agent converges
to a prescribed common value, i.e.,

lim
t→∞

|q̇i(t)− v∗(t)| = 0.

The other is that the position difference variables associated
with the edges

z = (BT ⊗ Id)q (2)

converge to a prescribed compact set Ξ ⊂ RM×d, where
Ξ = {z∗1 , z∗2 , ..., z∗M} and z∗j , j = 1, 2, ...,M is the pre-
scribed difference variable associated with edges j. B is the
incidence matrix.

For displacement-based formation, the velocity tracking is
achieved by internal feedback, which is given by

uv
i = −Dr

i v
∗ −Dt

iM
−1
i p̄i. (3)

Furthermore, the formation stabilization is achieved by ex-
ternal feedback, following directly as

uf = −(B ⊗ Id)z̄ − (B ⊗ Id)D
f (BT ⊗ Id)M

−1p. (4)

The control law for velocity tracking of the rigid formation
is the same as (3). Here, we only give the control law for for-
mation stabilization. For distance-based formation, it takes
the form as

ud = −(B ⊗ Id)
∂Hd

∂z

= −(B ⊗ Id)(blkdiag(z
T
1 , z

T
2 , ..., z

T
M ))T ed.

(5)

For bearing-based formation, it is given by

ub = −(B ⊗ Id)
∂Hb

∂z

= −(B ⊗ Id)blkdiag(
Ps1

||z1||
, ...,

PsM

||zM || )(s− s∗)
(6)

3 Conclusion

In this work, a passivity approach in pH form for for-
mation stabilization and velocity tracking is proposed.
For displacement-based formation, by choosing the proper
Hamiltonian function for formation stabilization, the pro-
posed approach can be applicable for not only the acyclic
graphs but also the cyclic graphs. For distance-based forma-
tion, by establishing the relationship between infinitesimal
rigidity and time derivative of the Hamiltonian, the local
convergence of the proposed formation system is guaran-
teed. For bearing-based formation, the almost global con-
vergence can be obtained since the infinitesimal bearing
rigidity is sufficient to global bearing rigidity.
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1 Introduction

Innovation diffusion is a fundamental phenomenon in hu-
man societies. Network coordination games have been ex-
tensively used to capture salient features of such diffusion
processes and study their time evolution [1]. Through these
studies, two notable factors have been identified as key to al-
lowing successful innovation diffusion: relative advantage
of the innovation with respect to the status quo and presence
of a sufficiently large number of innovators. However, many
important innovations lack these two key ingredients [2].

Dynamic norms have recently emerged as a powerful
method to encourage individuals to adopt an innovation by
highlighting a growing trend in its uptake, and have been ex-
tensively studied in the social-psychology literature [3] and
observed in experimental evidence [4]. Here, we propose a
novel mathematical model for innovation diffusion that in-
corporates dynamic norms, and use it to gain analytical in-
sights into how such an individual-level mechanism can be
key to collectively unlock social diffusion. Some prelimi-
nary results are in [5], while further developments are in [6].

2 Innovation Diffusion Model

The game is played by a set V = {1, ...,n} of n ≥ 2 players.
At each discrete time-step, each player i ∈ V revises their
strategy xi(t) ∈ {0,1}, choosing between the status quo (0),
and the innovation (1). We denote by z(t) = 1

n ∑xi(t) the
total fraction of adopters of the innovation at time t. The
revision follows a stochastic mechanism. With probability
γ , individual i follows dynamic norms, selecting the strat-
egy whose fraction of adopters has increased in the previous
time-step; otherwise, i will play a coordination game with k
other individuals selected uniformly at random in the popu-
lation, denoted as Ni(t), receiving a unit payoff for coordi-
nating to the status quo and a payoff 1+α for coordinating
to the innovation. Here, α captures the advantage (if pos-
itive) or disadvantage (if negative) of the innovation with
respect to the status quo. Then, the individual follows the
best-response dynamics, that is,

xi(t+1)=





1 if ∑
j∈Ni(t)

(1+α)x j(t)> ∑
j∈Ni(t)

(1− x j(t)),

0 otherwise .
(1)

The parameter γ captures the individual’s sensitivity to dy-
namic norms.
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Figure 1: (a) Simulations with γ below and above the thresh-
old; (b) ζ ∗

k,α,γ as a function of γ . Parameters: k = 3, α = 0.

3 Results

We consider a scenario in which the system is initialized in a
status quo consensus (xi(0)= 0, ∀i∈V ), and a fixed fraction
of innovators ζ ∈ (0,1] starts adopting the innovation at t =
1. Given the random times Sε := inf{t > 0 : z(t) ≥ 1− ε}
and Fε := inf{t > 0 : z(t)≤ ε}, we say that social diffusion is
guaranteed if P[Sε <Fε ]→ 1 as n→∞, for any ε > 0; while,
if the opposite occurs, we say that status quo is maintained.

Through a rigorous analysis of the dynamical system, we
demonstrate that sensitivity to dynamic norms is indeed key
in favoring social diffusion. Specifically, we prove that if
γ trespasses a threshold that can be analytically character-
ized as a function of α and k (see [5]), than social diffusion
is guaranteed for any fraction of initial adopters (Fig. 1a).
Below this threshold, social diffusion is guaranteed only if
ζ > ζ ∗

k,α,γ , where the threshold with respect to the fraction of
innovators ζ ∗

k,α,γ is monotonically decreasing in γ (Fig. 1b).
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1 Motivation

Designing energy management mechanisms for distributed
energy resources in the smart grid has been considered as a
potential solution for a renewable-power future. The smart
grid is typically composed of a variety of new participants,
such as micro-grid, aggregator, prosumer, and so on. This
heterogeneous nature of the smart grid motivates the adop-
tion of game theory as an analytical tool to model the behav-
iors of these participant [1]. Another important problem is
to design algorithms that enable these participants to reach
a certain desired game result. In the control community,
designing algorithms for equilibrium-seeking problems has
gained high research interest. Even though these algorithms
perform well in efficiency and convergence, some key tech-
nical issues should be emphasized when implementing them
into the smart grid, such as privacy and robustness issues.

2 Problem Formulation

We consider a scenario where there is a supply deficit or
surplus in power system and distributed energy resources
can be utilized to meet this mismatch between power sup-
ply and demand. A fully decentralized energy management
framework is designed to aggregate these resources for grid
flexibility services, as shown in Fig.1.

Figure 1: The decentralized energy management framework

The set of aggregators is denoted by I = {1,2, ..., I}, each
aggregator aims to maximize revenue of providing flexibil-
ity in wholesale electricity market,

max
0≤xi≤xi

Ji(xi, pi,x−i) =−xi pi + l(s)xi (1)

where xi is the flexibility response of aggregator i, l(s)
is the price paid by wholesale market to aggregators with
s = 1

N ∑i∈I xi, pi is the price paid by aggregator i to pro-
sumers, xi is the maximum available flexibility.

Each prosumer’s goal is to maximize its revenue by altering
its demand or supply given the price pi proposed by aggre-
gator i.

max
xi j≥0

Ui j(xi j) = xi j pi − fi j(xi j) (2)

where xi j is the flexibility response of prosumer j, fi j(xi j) is
cost function.

3 Main result

We propose a fully distributed algorithm in discrete-time
that steers the players to the Nash Equilibrium(NE) with
fixed step sizes. Each player exchanges and maintains only
an estimate of the aggregate, but not their true action infor-
mation.

Algorithm 1 Distributed algorithm

Initialization: All aggregators i ∈ I initializes p0
i , σ0

i ∈
Rn, ψ0

i ∈ Rn, broadcast p0
i to prosumers and get the initial

response flexibility x0
i

Iterate until convergence:
pi(k+1) = pi(k)− τiki fi(xi(k),σi(k))

αi
xi j(k+1) = argmaxUi j(xi j) = xi j pi(k+1)− fi j(xi j)
xi(k+1) = ∑xi j(k+1)
ψi(k+1) = ψi(k)+ vi(∑(σi(k)−σ j(k)))
σi(k+1) = σi(k)+βi(−σi(k)+xi(k)−2ψi(k+1)+ψi(k))

where fi(xi,σi) = ∇xiJi(xi,y)|y=σi +
1
N ∇yJi(xi,y)|y=σi

Theorem 1 If the mapping xi → fi(xi,σi) is µi-strongly
monotone and ℓi-Lipschitz continuous, and the mapping
u → fi(xi,σi) is ℓ̄i-Lipschitz continuous, µi > ℓ̄i, the graph
of information sharing network between aggregators is con-
nected, then there exit parameters ki, τi, vi, βi such that the
algorithm1 converges to the unique NE of the game.
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1 Introduction

Non-cooperative differential games were first introduced in
[1] within the framework of zero-sum games. The applica-
tion of differential games is far-reaching. Although most of
the literature has focused on determining the outcome of a
game given its objective, recently, an increasing interest ap-
peared in the inverse problem, where, given the behavior, the
objective of a player needs to be found. In our work, we in-
troduce an algorithm that generates an objective function for
an equivalent game in the sense that it shares one of the NE
feedback laws with the original game. The algorithm com-
bines both inverse optimal control and reinforcement learn-
ing methods in the form of gradient descent updates.

2 Problem Formulation

Consider a pair of trajectories (xs,u1,s) where xs is a state
trajectory and u1,s is a control input trajectory of player 1,
i.e., u1,s = F1,sxs; xs ∈ Rn and ui,s ∈ Rmi for i = 1,2. F1,s is
known to be a feedback law that constitutes the NE pair for
the game with the known dynamics

ẋs(t) = Axe +B1u1,s(t)+B2u2,s(t) (1)

with A ∈ Rn×n, Bi ∈ Rn×mi and unknown cost functions

J1,s(x0,u1,u2) =
∫ ∞

0
{x⊤(t)Qsx(t)+u⊤1 (t)R1,su1(t)−

−u⊤2 (t)R2,su2(t)}dt =−J2,s(x0,u1,u2), (2)

where Qs =Q⊤
s ∈Rn×n,R1,s =R⊤

1,s ∈Rm×m and R2,s ∈R are
positive definite. Then, from Corollary 8.6 in [2], it follows
that for i = 1,2

ui,s(t) = Fi,sx(t) = (−1)iR−1
i,s B⊤

i Ksxs(t), (3)

where Ks is a unique symmetric solution of

−A⊤Ks −KsA+Ks(B1R−1
1,s B⊤

1 −B2R−1
2,s B⊤

2 )Ks −Qs = 0,
(4)

such that A−B1R−1
1,s B⊤

1 Ks +B2R−1
2,s B⊤

2 Ks is stable.
Assumptions: (A,B1) in (1) is controllable.
Inverse RL Goal: using the given trajectories (xs,u1,s) and
the system dynamics A,B1,B2, one aims to provide Q,R1,R2
of a cost function, that together with the given dynamics to
form a game where F1,s is a feedback law that constitutes the
NE pair.

3 Algorithm

The algorithm below has proven convergence and generates
a linear-quadratic zero-sum differential game with Q,R1,R2
where F1,s is a stabilizing feedback law that constitutes lin-
ear feedback NE pair.

Algorithm 1

1. Initialize R1 = R⊤
1 > 0 and R2 > 0. Initialize Q(0) =

Q(0)⊤ > 0 such that (A,
√

Q(0)) is observable for
known A and set i = 0. Solve (4) with respect to K(0).

2. Estimate Fo using the observed trajectories as

F̂o =−ûox̂T
o (x̂ox̂T

o )
−1.

3. Compute

F(i) =−R−1B⊤K(i), s(i) = F(i)−Fo.

4. Update K(i) to K̄(i) as

K̄(i) = K(i)+α
(

s(i)⊤R−1B⊤+BR−1s(i)
)
= K(i+1).

5. Perform evaluation of Q(i+1) as

Q(i+1)=−AT K̄(i)−K̄(i)A+K̄(i)(BR−1B⊤−γ−2DD⊤)K̄(i).

6. Set i = i+1. Perform steps 3-5 till s(i)⊤s(i) < ε where
ε > 0 is a small constant.

References

[1] R. Isaacs, Karreman Mathematics Research Collection,
Society for Industrial, and Applied Mathematics. Dif-
ferential Games: A Mathematical Theory with Applica-
tions to Warfare and Pursuit, Control and Optimization.
SIAM series in applied mathematics. Wiley, 1965.

[2] J.C. Engwerda. LQ Dynamic Optimization and Differ-
ential Games. John Wiley & Sons, 2005.

183



Book of Abstracts 41st Benelux Meeting on Systems and Control

Stochastic barrier functions for safety verification of
autonomous vehicles and human agents

1Frederik Baymler Mathiesen, 1Luca Laurenti, 2Simeon Calvert
1Delft Center for Systems and Control 2Department of Transport & Planning

Delft University of Technology, The Netherlands
{f.b.mathiesen, l.laurenti, s.c.calvert}@tudelft.nl

1 Introduction

One major bottleneck for the wide-spread adoption of au-
tonomous vehicles is the lack of safety guarantees, with
existing approaches either requiring an enormous amount
of data or being overly conservative [1]. This problem
is made extremely challenging by the presence of human-
driven vehicles because humans are neither deterministic
functions nor reward-maximizing agents. To give non-trivial
safety guarantees with humans-in-the-loop, we model hu-
mans probabilistically and compute probably approximately
correct-like bounds [2]: with a given level of confidence δ ,
synthesize a controller π such that the probability of safety
P(xk ∈ Xs,∀k ∈ [0,H]) where xk and Xs denote the state and
the safe set is larger than 1− ε in a finite horizon H.

2 Method

Consider the merging scenario in Figure 1. The two vehicles
are one human h and one autonomous agent a where the
state of each vehicle is position and velocity [p,v]T , denoted
xh and xa respectively, and the action u is the acceleration.
The discrete-time dynamics g(xe,uk), e ∈ {h,a} are

pk+1 = pk + vk ·∆t +uk ·∆t2 (1)
vk+1 = vk +uk ·∆t (2)

The safe set is the set of states where the distance between
the vehicles d(x) = |pa − ph| is larger than a threshold ds.

Xs = {x | d(x)≥ ds} (3)

To determine the action uk for the autonomous vehicle, we
synthesize a deterministic controller π(x). The human be-
havior is modeled with a Bayesian Neural Network (BNN)
f (x,w) to predict the action. The weights in a BNN are
probability distributions, hence the human behavior is prob-
abilistic. We let F(x,w) denote the composition of the au-
tonomous controller, human behavior, and vehicle dynamics

F(x,w) =
[

g(xh, f (x,w))
g(xa,π(x))

]
(4)

To compute a lower bound 1− ε for the probability P(xk ∈
Xs,∀k ∈ [0,H]), we find a barrier function B(x) satisfying [3]

1
N

N

∑
i=1

B(yi)≤
B(x)

α
+β ∀x ∈ Xs ∀yi ∈ Yi (5)

where α,β are decision variables and the variable yi repre-
sents the next state given a BNN weight sample wi. The set
Yi = {yi | Al

ix+ bl
i ≤ yi ≤ Au

i x+ bu
i } over-approximates the

next states where the affine bounds are piecewise linear re-
laxations on F(x,w) using linear bound propagation [4]. The
empirical mean 1

N ∑N
i=1 B(yi) approximates E[B(F(x,w)) |

x], and this approximation introduces the confidence level
δ and is affected by the number of samples N.

By modeling human behavior with a BNN and finding a
stochastic barrier function, we can guarantee a lower bound
for the safety probability 1− ε with the given confidence δ .

Figure 1: Mixed-
autonomy two vehi-
cle merge scenario.
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1 Introduction

With the advancement of control and planning algorithms
for autonomous driving, a challenge still remains in the
transfer from simulation to the real world. Manual tuning
to validate the control design requirements in a physical en-
vironment is time-consuming and expensive. However, sim-
ulations are often fast to validate the algorithms. Neverthe-
less, this often comes at the expense of over tuning in sim-
ulation hindering transferability to the real world. In this
work, we propose a sim2real method to transfer and adapt
a nonlinear model predictive control (NMPC) from simula-
tion to the real target system based on an executable digi-
tal twin (xDT). The DT is the high fidelity simulator of the
vehicle dynamics, executable online in the control parame-
ter randomization and learning process. Control parameters
adapt 1) to a changing real-world environment and 2) to-
wards improved performance. The performance metric is
not required to be differentiable nor analytical with respect
to the control parameters and dynamics are not linearized.

2 Automatic control tuning using xDT

We first exploit the Unscented Kalman Filter (UKF) to gen-
erate multiple sample points with a Gaussian distribution
around the estimated parameter’s mean [1]. We use this
method to estimate the control parameters resulting in a
quantifiable improved performance in a highly non-linear
environment. State evolution dynamics are replaced by the
xDT. The DT is sampled with the same control architecture
as on the real car, but with the distributed sample points.
The algorithm compensates for model mismatches and noise
by calculating a Kalman gain Kk pointing in the direction
of parameters that improves the real vehicle performance.
New set of parameters θK+1 are computed with new mea-
surements:

θK+1 = θK +Kk(hre f −hmeas(θK)). (1)

hre f and hmeas are vector valued reference and mea-
sured performance. For example, with hmeas =
[10eVel ,10eLAT ,Texec,NMPC], the algorithm adapts the
controller parameters such that deviation from reference
velocity and centerline, and NMPC execution time are
reduced. The xDT is randomized with different parameters
than the real car, and adaptation is online and on-the-go.

Figure 1: Control parameter adaptation on an xDT

Figure 2: Parameter evolution and Infinity norm of tracking error

3 Test case on a double lane change

We test the algorithm on 4 successive double lane changes of
12s each, at 80 kph. We formulate a path following NMPC,
in presence of model mismatches and output noise. The pa-
rameters to be updated, every 3s, are the Q and R matrices
in the optimal control problem cost term:

lk(xk,uk) = (x(k)−xre f (k))T Q(x(k)−xre f (k))+u(k)T Ru(k) (2)

Different to prior work, we adapt the covariance matrices on
the go, as well as the Gaussian spread such that the Q and R
matrices used in sampling the xDT are positive definite, and
the Gaussian distribution around the mean is conserved. In
Figure 2, peaks in path tracking error occur as the car per-
forms the lane change, but both norms follow a decreasing
trend with time (left to right). The weights on lateral devia-
tion QeLAT and velocity error QeV x adapt on-the-go.
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1 Introduction

Automated vehicles (AVs) have become widely popular
since they have several potential benefits such as increased
safety, efficiency, and comfort. To reach full automation, an
AV must anticipate other road user’s motions in the driving
environment through motion prediction. The term motion is
often used interchangeably to refer to different types of mo-
tion, as summarized in Fig. 1. To build motion prediction
models, the adoption of deep learning methods has led to
significant improvements in the field [1, 2], yet many open
challenges still remain.

Body Pose Action Trajectory Scene

Motion Prediction

Will cross? Yes/No

Figure 1: Overview of motion prediction types

2 Open Challenges in Trajectory Prediction

Current challenges in trajectory prediction can be grouped in
three categories: method, data, and evaluation challenges.

Method Challenges. Depending on the modeling approach,
trajectory prediction methods can be classified into physics-,
pattern-, and planning-based methods, each with their own
strengths and weaknesses [1].
Data Challenges. Despite the existence of several public
datasets [1, 2], various limiting factors persist, such as semi-
automatic annotations potentially leading to noisy ground
truth, trajectory length being insufficient to evaluate long-
term predictions, data for uncommon driving behavior being
scarce, and often lacking relevant contextual information.
Evaluation Challenges. With current evaluation practices
it is not possible to assess a model’s suitability for different
situations due to the lack of a standardized benchmarking
procedure [1], among other difficulties such as the plethora
of existing metric names and formulations [2], or the ex-

True Trajectory
Accurate Prediction
Inaccurate Prediction

Figure 2: Example scenario where a model that is accurate on
average fails in a safety-critical situation.

clusion of relevant evaluation criteria (e.g. run-time, robust-
ness, and generalization). Additionally, predictions are often
evaluated over all trajectories, hindering the identification
of a model’s shortcomings as exemplified in Fig. 2, where
predictions that are highly accurate in most cases fail in a
safety-critical scenario.

3 Results & Future Work

After a review of the main open challenges in trajectory
prediction, we will present preliminary results on scenario-
based assessment of prediction models for autonomous driv-
ing, addressing the issue shown in Fig. 2 and allowing a
transparent assessment of a model’s suitability for differ-
ent situations. Future work will focus on the development
of a benchmarking procedure for motion prediction models
that covers all relevant aspects. To that end, we will focus
on relevant scenarios currently underrepresented in available
datasets, fair comparison of models of different natures, rel-
evant prediction horizons, and additional metrics to evaluate
a model’s robustness and generalization capabilities.

Acknowledgement: This work was supported by the
SAFE-UP project under EU’s Horizon 2020 research and
innovation programme, grant agreement 861570.

References
[1] A. Rudenko, A. et al., “Human motion trajectory pre-
diction: a survey”. The International Journal of Robotics Re-
search, 39(8), 895–935, 2020

[2] A. Rasouli, “Deep Learning for Vision-based Predic-
tion: A Survey”, arXiv preprint arXiv:2007.00095, 2020.

186



Book of Abstracts 41st Benelux Meeting on Systems and Control

Link manipulation of mixed-vehicle cyclic platoon: A stability
perspective

Woohyun Jeong1,2, Yoonsoo Kim1, Alain Vande Wouwer2

1Graduate School of Mechanical and Aerospace Engineering
Gyeongsang National University, Repulic of Korea

2System, Estimation, Control and Optimization (SECO)
University of Mons, Belgium

1 Introduction

This paper discusses about the network stability margin of
several vehicles (including human vehicles (HVs) and an
autonomous vehicle (AV)) moving on a ring roadway or
a cyclic platoon. This cyclic platoon has an information-
exchange structure such that the (i+ 1)th vehicle can use
the information of its predecessor (the ith vehicle), where
i = 1,2, . . . ,N, N + 1 = 1, and N is an odd number. The
stability of cyclic platoon or ring stability is considered in
[1], where the concept of strong/weak ring stability is pro-
posed. However, the quantitative degree of ring stability is
still unclear. Motivated by the concept of network stabil-
ity margin introduced in [2], we consider in this study link
manipulation to improve the network stability margin of a
cyclic platoon. By link manipulation, we mean rewiring a
link (altering a direction of information-flow) and adding an
extra link to the platoon, for the purpose of minimizing the
change to the existing information flow. Furthermore, we
also consider the effect of AV location on the stability of the
platoon. As a result, a link manipulation scheme minimiz-
ing the largest cycle length improves the network stability
margin the most.

2 Problem statement and Method

As shown in Figure 1, a cyclic platoon C is initially given
which has an information-exchange structure LC or Lapla-
cian matrix such that a vehicle receives and utilizes the in-
formation of its predecessor. It is assumed that each of the
vehicles’ dynamic characteristics in the platoon can be de-
scribed by an identical transfer function Tveh(s). This study
then considers finding an optimal link manipulation scheme
(adding an extra link after rewiring a link) that modifies the
information-exchange structure, so that the network stability
margin α∗ defined in [2] is maximized. This α∗ can be in-
terpreted as gain and phase margins for SISO (Single-Input-
Single-Output) systems, and it is in general determined by
both LC and Tveh(s) for MIMO (Multi-Input-Multi-Output)
systems. Examples of link manipulation are shown in Figure
1.

Figure 1: Link manipulation of a cyclic platoon with N = 5.

3 Result

It can be shown that α∗ decreases with the number of vehi-
cles N in the platoon, so do λ2 and 1/|C|. Here, λ2 and |C|
denote the second smallest eigenvalue of LC and the largest
cycle length in C, respectively. Therefore, it is desired to
minimize λ2 or |C| for the purpose of maximizing α∗, which
can be achieved via the link manipulation, resulting in two
symmetric HV-cycles of length (N −1)/2 sharing one node
at which the single AV is located (e.g. C(3,3) in Figure 1).
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1 Abstract

This abstract discusses the requirement of autonomous driv-
ing of commercial vehicle specifically at distribution centers
and outlines how a lab setup is further used to test such au-
tonomous driving application.

2 INTRODUCTION

Within the logistic sector, heavy vehicles have been widely
used for road freight transport due to their capability of car-
rying large cargo loads. The business in the logistic sector
can further take competitive advantage of the rapid inno-
vations in connected and autonomous transport by imple-
menting autonomous driving of commercial vehicles in a
confined environment, e.g. a distribution centre (DC), ship
yards, etc; where handling of goods can be made more ef-
fective and efficient. Additionally, at these constrained en-
vironment drivers experience tedious manoeuvring task and
are prone to accidents due to space limitation. Thus, au-
tomation of these vehicles specifically for parking/docking
manoeuvre is necessary [1].

3 Low Speed Autonomous Driving Tractor Semi-trailer

The main layers of autonomous vehicles (AV) are the plan-
ning, perception and control, where in system modelling is
an important phase necessary before all the above mentioned
layers (Figure 1).

Figure 1: steps toward automated driving

The system under consideration in this study is a complex
vehicle, of the type tractor semi-trailer (Figure 1). The com-
plexity of the vehicle is due to the mechanical joint (articula-
tion point) present between the tractor and semi-trailer, that
creates large swept path while driving forward and causes

semi-trailer instability while driving in reverse. Specifically,
at the DC where driving space is limited and the accuracy
requirement while reversing the vehicle between the dock-
ing aisle are quite high, these vehicles need to be driven at
large steering angle which lead to tire scrubbing. Hence, the
requirement to understand the behaviour of these vehicle on
position level is crucial.

4 Testing and Lab Application

In order to understand the behaviour of the vehicle for low
speed and large steering manoeuvre, real world test were
conducted at DPD distribution in Oirschot, the Netherlands.
Pre- defined forward driving and reverse driving manoeu-
vres were performed at low speed and special emphasis was
given to docking and parking manoeuvres. All the tests were
performed with both an unloaded and loaded (12 ton) semi-
trailer.

Figure 2: TU/e Lab setup

Testing the vehicle for every small development can be time
consuming and require a lot financial investment, addition-
ally, testing autonomous controller in live environment can
be dangerous. Hence, to test autonomous driving applica-
tion, a 1:13 scaled setup of a distribution centre and tractor
semi-trailers at the Eindhoven University of technology is
used (Figure 2).
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1 Introduction

Congestion on the road is a problem that most of us know all
too well, and that should be avoided if at all possible. Ideally
road networks are designed in such a way that congestion,
and consequently travel time, is minimized for all users.
Breass’s paradox(BP) is the phenomenon that occurs when
removal of one or more roads from a network decreases the
travel time experienced by the users of the network. Worsen-
ing performance by addition of a road to the network is truly
the epitome of innefficiency, and we would of course want
to prevent this from happening. Unfortunately, the question
of whether or not a network suffers from BP is complex, and
computationally hard to answer. Finding the subset of roads
in a network that minimizes travel time is for instance an NP
problem [1]. Furthermore, The occurence of BP depends on
the total amount of traffic, called the demand, traversing the
network. A network subject to BP at one level of demand
may not be subject to BP at a different level [2]. In our work
we focus on this last aspect of BP. We look at the effects of
varying demand, which is the total amount of traffic travers-
ing the network, on the paradox, and try to leverage these
results to find sufficient conditions for the occurence of BP.

2 Model

The model we use is that of a routing game. The net-
work is described by a directed, acyclic graph G = (V ,E ),
with an associated origin-destination(OD) pair (vo,vd) ∈
V ×V . The set of all paths from vo to vd we denote P .
Any driver enters the network at vd and needs to choose
a path p ∈ P in order to arrive at vd . A total demand
D ≥ 0 must be routed in this way, leading to a flow vec-
tor f ∈FD := { f ∈ R|P|≥0 | ∑r∈P fr = D}. Letting fp de-
note the amount of traffic traversing path p, the amount of
traffic traversing edge ek is given by ∑r∈P( fr). To each
edge el ∈ E we associate a non-decreasing, continuous cost
function Cek(·). The cost of traversing ek is then given by
Cek( fek). The cost of traversing the path p is subsequently
given by Cp( f ) :=∑ek∈p Cek( fek). We assume that the routed
flow is in Wardrop equilibrium(WE):

Definition 2.1. Let P , {Cek}ek∈E and D ≥ 0 be given. A
flow f ∈FD is said to be in Wardrop equilibrium if for all
p ∈P such that fp > 0 we have

Cp( f )≤Cr( f ), ∀r ∈P.

An essential step in our work is characterizing how the WE
changes as the demand increases. This we will discuss in
more detail during the talk.

3 Results

The following result allows us to identify paths which are
in some way either ’useless’ meaning that no flow ever tra-
verses that path, or ’harmful’ in that they cause BP.

Theorem 3.1. For a given P and {Cek}ek∈E , let WD denote
the set of WE when the demand on the network is D ≥ 0.
If for some p ∈P and all f D ∈ WD we have fp = 0, then
either f T

p = 0 for all T ∈ [0,D] and all f T ∈WT , or the path
p causes Breass’s paradox for some 0 < T < D.

We have also proven the following results, which is a gen-
eralization of earlier results obtained for a specific network,
the Wheatstone network, which is the quintessential exam-
ple of a network subject to Breass’s paradox.

Theorem 3.2. Let P be given, and the functions {Cek}ek∈E
be affine. There is a lower bound D− > 0 and an upper
bound D+ < ∞ such that BP can only occur on the interval
(D−,D+).
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1 Abstract

Mobility-as-a-Service (MaaS) is an emerging type of service
that allows users to plan, book and pay for multiple types
of mobility services through a common digital channel [1].
Newly developed algorithms can compute a wide variety of
instances. [2] proposes an algorithm to route in real-time ve-
hicles for thousands of daily requests; [3] shows a method
to optimize the fleet sizes and vehicles distribution. Due
to a strong coupling between AMoD systems and charging
infrastructure, charging stations siting is investigated in [4]
through a Linear Programming approach. In [5] Salazar et
al. explore intermodal AMoD systems, where AMoD op-
erators are coupled with public transport. Usually, vehicles
that are adopted to provide this service are commercial ve-
hicles. Few papers in literature focus on the optimization
of the design of a fleet specifically for AMoD applications.
In [6], the authors show a method to jointly optimize the
number of vehicles in a fleet and their class capacity (i.e.,
number of seats) in an AMoD ride-sharing environment. To
the best of the authors’ knowledge, no optimization model
exists that studies the trade-off between number of vehicles
in a fleet and their battery size, while taking into account the
surrounding charging infrastructure. When optimizing the
number and composition of electric vehicles of a fleet, there
is a clear trade-off between the number of vehicles and their
autonomy. Intuitively, the larger the battery, the lower the
daily charging trips, the higher the daily availabilty, but the
higher the consumes due to heavier vehicles. Moreover this
decision is strictly coupled with the presence of charging in-
frastructures in the area. The contributions of this paper are
twofold. First, we present a linear formulation to jointly op-
timize the number of electric vehicles in a fleet, their battery
size and the operational costs. In fact, the objective function
is expressed as a linear combination of operational costs of
the fleet, as well as initial costs, and profits generated by
serving requests. Thanks to the linear formulation, optimal-
ity is guaranteed and the problem can be solved with com-
mercial solvers. Second, we display a real-world case study
of New York City (NYC) and yellow taxi data, which al-
lows us to quantify the general benefits of jointly optimized

E-AMoD with respect to the surrounding charging infras-
tructure. In particular, we show that a vehicle’s range heav-
ily affects operation and routing decisions and, thus, system
efficiency. Our studies reveal that a balance between bat-
tery size, fleet size and presence of charging stations can
yield significant benefits compared to a system that was not
jointly optimized.
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1 Introduction

Real-world systems are always uncertain. Their increasing
complexity, sophistication, and connectivity generate fur-
ther sources of uncertainty that is characterized by deter-
ministic (worst-case) or stochastic models. The latter as-
sume existence of a probability distribution, which is typi-
cally inferred from data. To build such data-driven models,
we need to account for limitations induced by the fact that
data may be corrupted or only available at small amounts.
These aspects influence the accuracy of inferences about the
underlying probability distributions and their usefulness for
decision making. To overcome these issues, it is required to
derive reliable probabilistic models of the uncertain compo-
nents from the available data under the least possible amount
of conservativeness.

2 Problem formulation

The central problem in stochastic optimization is to take op-
timal decisions in problems affected by randomness. A typ-
ical stochastic optimization problem has the form

inf
x∈X

EPξ

[
f (x,ξ )

]
(1)

where f is the objective function, x is the decision variable,
and ξ ∈ Rd is a random variable with distribution Pξ . In
practice, as Pξ is often unknown, it is approximated by the
empirical distribution PN

ξ := ∑N
i=1 δξ̂ i of i.i.d. samples. Yet,

for small amounts of data, this approach may become in-
sufficient, as the approximation PN

ξ may exhibit significant
deviations from Pξ . To address this issue, uncertainty in the
distribution is considered as

inf
x∈X

max
Pξ∈PN

EPξ

[
f (x,ξ )

]
, (2)

which is a distributionally robust optimization problem
[1, 2, 3], where PN is an ambiguity set of distributions that
is informed by the samples and contains plausible models
for the true distribution. A convenient choice of ambigu-
ity sets for such problems are balls in the Wasserstein met-
ric centered at the empirical distribution PN

ξ . For compactly
supported distributions, choosing the radius

εN(β ,ρ) :=
(

ln(Cβ−1)

c

) 1
q ρ

N
1
q
, q := max{2p,d}, (3)

𝑃true

𝑁2 ≫ 𝑁1𝑁1

Figure 1: High-dimensional hyperrectangles shrink much faster
with the number of samples compared to Wasserstein
ambiguity balls.

where d ̸= 2p and ρ is the diameter of the support of Pξ ,
guarantees that the ambiguity ball contains the true distri-
bution with probability at least 1−β . However, (3) implies
that for high-dimensional random variables, the radius de-
creases with the excessively slow rate of the order of N− 1

d .

3 Ambiguity hyperrectangles

To address the conservative decrease rate in (3), we ex-
ploit independence of lower-dimensional components of
the random variable ξ = (ξ1, . . . ,ξn). We build a lower-
dimensional ambiguity ball for each component and con-
struct an ambiguity hyperrectangle by taking all product
measures across the individual distributions from the n balls.
Such a rectangle shrinks at the faster rate N

−1
q⋆ with the num-

ber of samples, where q⋆ := max{qk,k = 1, . . . ,n}, qk :=
max{2p,dk} for dk ̸= 2p and dk is the dimension of ξk. The
ambiguity hyperrectangle is much smaller than the original
ambiguity ball and contains the true distribution with the
same confidence (cf. Figure 1).
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1 Introduction

Multi-objective model-based optimization is a useful tool
in chemical process design since different conflicting ob-
jectives are usually present (e.g. maximal productivity and
minimal energy consumption). Solving such problems in-
creases the computational cost of the optimization signifi-
cantly. Robustification of constraints regarding parametric
uncertainty is important as safe operating conditions are de-
sired in these processes. Uncertainty propagation will also
contribute to a higher computational cost. The methodology
provided will attempt to reduce the overall computational
cost by integration of the uncertainty into existing scalariza-
tion techniques for multi-objective optimization. The con-
structed ellipsoids will also serve as a visualization of the
uncertainty on objective performance.

2 Pareto ellipsoid criterion

The scalarization method used in the novel Pareto based al-
gorithm is based on NBI [2]. Significance of the Pareto
points is guarantueed using the Divide and Conquer con-
cept presented in [1]. We expand upon this D&C concept
by using the expectation and covariance matrices for model
outputs. These matrices can be generated using uncertainty
propagation methods. In this study, the sigma points method
[3] is used.

Pareto ellipsoids are defined for a given confidence level us-
ing a backoff parameter derived from a χ2 distribution. The
expectation gives the location, the covariance matrix gives
the size and rotation of the ellipsoids. With these ellipsoids,
a new significance criterion can be defined within the D&C
concept. The Pareto ellipsoid significance criterion is de-
fined as follows:
A Pareto point is considered insignificant if the Pareto point
falls within the Pareto ellipsoid of a neighboring Pareto
point or if one of its neighboring Pareto points falls within
the Pareto ellipsoid of the Pareto point.

Using this new criterion, a new Pareto ellipsoids based al-
gorithm is defined and implemented for (bio-)chemical case
studies.

1BioTeC+, KU Leuven, Belgium
2jan.vanimpe@kuleuven.be

3 Results

The proposed algorithm is used within four case studies. For
comparison purposes, the D&C and NBI methods are also
implemented. One of the case studies using the Pareto ellip-
soid significance criterion is shown in Figure 1 as an exam-
ple. All case studies show a reduction in Pareto points when

Figure 1: Example of Pareto ellipsoids

using the Pareto ellipsoids based algorithm, which therefore
result in a lower computational cost. The uncertainty is also
visualised, to be interpreted by a decision maker.
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Abstract

A Model Predictive Control (MPC) is a model-based con-
trol framework that enforces constraints satisfaction by com-
puting, at each time instant, a sequence of future con-
trol actions. Such a computation is based on a receding-
horizon minimization problem, whose computational com-
plexity can be intense for nonlinear applications where nei-
ther global optimally nor feasibility can be ensured. Instead
of implementing an MPC that resorts to “common” algo-
rithms to find a minimal solution, this work proposes the
use of a modified Artificial Bee Colony approach to solve
such a complex optimal problem.

In the case of linear systems subject to convex constraints
such minimization is quite straightforward and requires to
find a gradient at each time instant. However, for a non-
linear system, finding a global optimum is not ensured and
solving algorithm can be quite time-consuming due to the
intensiveness of such an optimal problem. In this case, one
can solve the optimization problem by making use of an Ar-
tificial Bee Colony (ABC) approach [1].

An ABC consists of a swarm-based zero-order technique
that is able to find the optimal value of a function based on a
“search” algorithm that makes use of 3 sets of bees, namely:
Employed bees, Onlooker bees and Scout bees. The Em-
ployed bees, are randomly assigned as possible solutions of
the system, xi j, such that

xk
i j=xk

min, j + random[0,1]
(

xk
max, j − xk

min, j

)
(1)

where i stands for the solution and j for the parameter of
such solution at time k.

Upon all the Employed bees have proposed a solution, those
solutions are evaluated Ji until time k+1.

Ji=∑(Re f − f (xi j))W1 (Re f − f (xi j))
T

(2)+∑(∆xi j)W2 (∆xi j)
T

where Re f stands for the reference of each parameter j,
f (xi j) stands for the function which defines the problem, and
W1 and W2 stands for weight matrices for the error and con-
trol effort respectively. Then, a fitness relation between all
the evaluated Employed solutions determines a probability

of obtaining a minimum

f iti=
1

1+ Ji
(3)

Pi= f iti/
N

∑
i=1

f iti (4)

Once a minimum is selected, Onlooker bees are sent towards
that solution to explore the surroundings. By sending the
Onlooker bees, the algorithm verifies whether the solutions
provided by the Employed bees can be further improved or
not, thus aiming at finding a global minimum. It is also
worth highlighting that in this step one can consider an hy-
brid method, if the computational capabilities allow it, that
accelerates the convergence of the Onlooker bees solutions
by calculating the function gradient using the Onlooker bees
definition as:

v+i j=xi j +∆xi j (5)

v−i j=xi j −∆xi j (6)

where superscript “+” stands for the proposed solution i of
the parameter j plus a fixed variation in parameter j, and
the superscript “−” stands for the proposed solution i of the
parameter j plus a fixed variation in parameter j. This modi-
fication to the classical Onlooker bee definition proposed by
[1] allows to create a gradient vector around solution i. It is
worth to mention that to generate the gradient it is required
to evaluate (2) 2n+ 1 times using the solutions generated
by the Onlooker bees, where n is the amount of parameters
j of the solution. Once all Onlooker bees are evaluated, a
greedy selection is performed where a new Employed bee is
selected as the best as the best Onlooker bee found and new
Onlooker bees are defined using (5) and (6). This process
for the Onlooker bees stops when a minimum variation of Ji
is reached or a maximum number of iterations.

The last set of bees (Scout), create a new group of solutions
using (1) while replacing all the Employed bees that did not
meet the probability (4) in order to repeat the process un-
til a tolerance limit is achieved. Hence, the ABC approach
requires to solve several time the same problem, which can
be computationally expensive but easier to implement in de-
vices with reduced computational capabilities. Furthemore,
one of the main appeals of this approach is that the computa-
tional burden can be reduced by distributing the calculations
of the Employed and Onlooker between different processing
devices or cores.
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1 Introduction

The increasing complexity of the models used in disciplines
such as model predictive control necessitates optimization
solvers that can handle large and usually nonconvex opti-
mization problems. This work proposes such a solver, with
a focus on nonlinear model predictive control (NMPC).

2 Solution techniques for NMPC

Popular traditional techniques for solving NMPC problems
are sequential quadratic programming (SQP) and interior
point (IP) methods. In the context of model predictive con-
trol, where each time step requires the solution of a mini-
mization problem, SQP can be advantageous because of its
warm starting capabilities: the solution of the previous time
step (or a shifted version thereof) can be used as the initial
guess for the current problem. Given that the solutions of
successive time steps are often quite similar, faster conver-
gence can be achieved compared to random or fixed initial
guesses. Interior point methods are harder to warm start, but
robust state-of-the-art implementations such as IPOPT make
it an attractive general-purpose solver.
A third class of algorithms for constrained optimization are
the augmented Lagrangian methods (ALM) [1], where a
subset of the constraints are replaced by an exact penalty
term. The result is the so-called augmented Lagrangian
function. When successively minimized by an inner solver,
and by appropriately updating the Lagrange multipliers and
penalty factors, convergence to a solution of the original
problem can be achieved under mild conditions. Augmented
Lagrangian methods inherit many of the favorable properties
of the inner solver, and can take advantage of warm starting.

3 Contributions

This work presents ALPAQA [2], a new software package
for constrained nonconvex optimization. The algorithms
used by ALPAQA are based on the matrix-free PANOC
algorithm [3], which handles nonconvex optimization
problems with constraints that allow efficient computation
of the proximal operator, such as box constraints. An
augmented Lagrangian method is used to allow for more
general constraints. PANOC combines the global conver-

gence properties of first-order methods with the superlinear
convergence of quasi-Newton methods. Thanks to the
matrix-free, limited memory BFGS implementation, it is
applicable to both large-scale problems and in real-time
embedded environments. Concretely, ALPAQA solves
general nonconvex nonlinear programs of the form

minimize
x

f (x)

subject to x≤ x≤ x

z≤ g(x)≤ z,
(P)

with the objective function f : IRn → IR and the constraints
function g : IRn→ IRm possibly nonconvex.

ALPAQA is published as an open-source C++ library and is
accessible through an easy-to-use Python interface that pro-
vides integration with the CasADi package for the compu-
tation of derivatives and the formulation of optimal control
problems and other NLPs.

Furthermore, the authors propose two modifications to
improve the practical performance and robustness of the
PANOC algorithm [4]: the first improvement exploits the
structure of the derivatives of the objective function when
applied to box-constrained problems; the second improve-
ment modifies the PANOC line search condition to be able to
reject quasi-Newton steps that harm practical convergence.

Experiments demonstrate the effectiveness of these modifi-
cations for model predictive control problems and a larger
set of NLP benchmarks.
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1 Introduction

We perform the first tight convergence analysis of the gra-
dient method with fixed step sizes applied to the class of
smooth hypoconvex (weakly-convex) functions, i.e., smooth
nonconvex functions whose curvature (i.e., maximum Hes-
sian eigenvalue) belongs to the interval [µ,L], where µ <
0. The results fill the gap between convergence rates for
smooth nonconvex and smooth convex functions.

The convergence rates were identified with the help of the
performance estimation framework (PEP) [1, 2] adapted to
hypoconvex functions. We provide mathematical proofs for
a large range of step sizes and prove that the convergence
rates are tight when all step sizes are smaller or equal to
1/L. Finally, we identify the optimal constant step size that
minimizes the worst-case of the gradient method applied to
hypoconvex functions.

2 Contributions

Let hi be the i-th (normalized) step size of the gradient
method (1), which is known to converge for all hi ∈ (0,2).

xi+1 = xi −
hi

L
∇ f (xi) (1)

We prove:

• the first upper bounds of the convergence rates for the
gradient method on hypoconvex functions with step sizes
in (0, h̄], where h̄ ∈ [ 3

2 ,2) is a threshold with an analytical
expression depending on the ratio κ between µ and L.

Theorem 1. Let f ∈ Fµ,L(Rd) be a smooth hypoconvex
function, with L> 0 and µ ∈ (−∞,0). Let κ := µ/L, h̄(κ) :=
1+κ−

√
1−κ+κ2

κ and N iterations of the gradient method (1)
with hi ∈

(
0, h̄(κ)

]
, i ∈ {0, . . . ,N − 1}, generating the se-

quence x1, . . . ,xN starting from x0. Assume that f has a
global minimum f∗ and f (x0)− f∗ ≤ ∆, where ∆ > 0. Then

min
0≤i≤N

∥∇ f (xi)∥2 ≤ 2L( f (x0)− f∗)

1+
N−1
∑

i=0

[
2hi −h2

i
−κ

2min
(

1, 1
hi

)
−(1+κ)

]

• the tightness of the upper bounds for step sizes hi ∈ (0,1],
by constructing a worst-case function example.

• the tight convergence rate for the gradient method on
smooth convex functions with step sizes hi ∈ (0, 3

2 ].

From our findings we deduce:

• the optimal constant step size recommendation, which
minimizes the worst-case upper bound with respect to κ .

• the existence of three worst-case regimes with respect
to intervals of a constant step size h:
(i) h ∈ (0,1], (ii) h ∈

(
1, h̄
]

and (iii) h ∈
(
h̄,2
)
.

Following extensive numerical simulations, we conjecture:

• the upper bound for the gradient method on convex func-
tions with constant step size h ∈ ( 3

2 ,2).

• a partial description of the upper bound of the third
regime corresponding to h ∈ (h̄,2).

Our results complement and extend the recent analysis of
[3], also performed using the performance estimation frame-
work, that establishes tight rates for the gradient method in
the case of smooth nonconvex functions (corresponding to
the special case of hypoconvex functions µ =−L).
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1 Abstract

After the first detection of gravitational waves in 2015, a
new window in scientific exploration was widely open. This
detection was only possible with gravitational-wave detec-
tors operating in ultra-stable environments. Moreover, to
guarantee good performance of such detectors ground mo-
tion active isolation is a must. An active isolation ap-
proach was successfully implemented in LIGO’s position-
ing platforms[1][2] where it was possible to obtain ampli-
tude spectral densities lower than 10−12 m/

√
Hz for verti-

cal and longitudinal seismic isolation at frequencies around
1Hz. However, actively isolating in lower frequencies is
still remarkably challenging. Precision Mechatronics Lab-
oratory (PML) in University of Liege (ULiege) and Univer-
sité Libre de Bruxelles (ULB) is addressing theoretically and
validating experimentally this low frequency active control
problem.

High precision displacement vacuum inertial sensors[3] are
placed on top of a six degree of freedom platform. Six in-
ertial sensors are used for measuring displacement in the
vertical direction and three for displacement in horizontal
direction. Resonance frequencies of vertical and horizontal
sensors are 0.3 Hz and 0.7 Hz respectively with resolution
of 2× 10−13 m/

√
Hz at 1 Hz for the two kind of sensors.

Sensors’ signals are then feedbacked into six voice coil ac-
tuators (three horizontal and three vertical) integrated below
the platform. Actuators and sensors are placed in a quasi-
collocated architecture facilitating the controllability of the

plant. Low resonance frequencies and noise-to-signal ratios
of the developed inertial sensors are allowing active control
in frequencies as low as 0.01 Hz.

References
[1] F. Matichard, B. Lantz, K. Mason, R. Mittleman, B.
Abbott, S. Abbott, E. Allwine, S. Barnum, J. Birch, S. Bis-
cans et al. Advanced LIGO two-stage twelve-axis vibration
isolation and positioning platform. Part 1: Design and pro-
duction overview, Precision Engineering,40:273-286, 2015.

[2] F. Matichard, B. Lantz, K. Mason, R. Mittleman, B.
Abbott, S. Abbott, E. Allwine, S. Barnum, J. Birch, S. Bis-
cans et al. Advanced LIGO two-stage twelve-axis vibration
isolation and positioning platform. Part 2: Experimental in-
vestigation and tests results, Precision Engineering,40:287-
297, 2015.

[3] B. Ding. Development of High Resolution Interfer-
ometric Inertial Sensors. PhD thesis, Université libre de
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1 Introduction

The ability to significantly participate in the frequency reg-
ulation and provide valuable ancillary services to the Trans-
mission System Operator (TSO) is one of the present wind
farm (WF) challenges, due to imprecision in wind speed
forecasting and insufficient power reserve in certain operat-
ing conditions notably. In this work, the feasibility of WFs
to participate in the utility grid through yaw control, is as-
sessed. First, an advanced wake model is developed and a
systematic approach is proposed to estimate its parameters
from data generated via the FAST.Farm simulator. Next, a
distributed yaw optimization algorithm is proposed so that
an adequate trade-off between precision and computing time
is reached. Following, the power gain resulting from yaw
control is assessed for all the wind directions through simu-
lations using the wake model. Finally, the worse duration of
the wake transient associated to yaw control is evaluated.

The novel approach of this research is to view the wake redi-
rection through yaw optimization as a surplus power reserve,
enabling WF operators to be part of the grid frequency reg-
ulation. But each TSO has its own frequency control speci-
fications. Since this work is part of the Belgian PhairywinD
project[1], the specifications of the Belgian TSO, named
ELIA, are considered. Besides, only the requirements of
the secondary frequency regulation are taken into account,
because the yaw actuator is not fast enough for the primary
frequency regulation. There are two key requirements: the
power bid must be higher than 1MW , and it must be deliv-
ered at latest after 15min of response time.

2 Application and results

The investigation of the possibility to succeed ELIA re-
quirements through yaw optimization control is performed
based on the layout of the Belgian Mermaid offshore WF
made of 28 wind turbines (WTs), with 5MW nominal power
each. Thanks to the wake model and the proposed yaw
optimization algorithm, the WF produced power can be
maximized by controlling the yaw angle of each WT for a

given wind speed and direction. Figure 1 depicts the power
gain through yaw optimization for the wind speed range
U0 ∈ [7.85;10.24]m/s corresponding to the operation zone
2 of the WT, in all the wind directions. Zone 2 is consid-
ered because the wfake model has been validated only in the
maximum power point tracking (MPPT) zone. The results
show that the requirement for secondary frequency control
defined by ELIA can be accomplished through yaw opti-
mization in terms of power reserve, in almost all the wind
speeds and directions. Finally, assessing the duration of the
wake transient associated to yaw control, it has been shown
that the yaw system is fast enough for ELIA time response
requirement.

Figure 1: Mermaid power gain rose in MW , depending on the
wind speed
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1 Introduction
In recent years, the Linear Parameter-Varying (LPV) frame-
work has become increasingly useful for analysis and con-
trol of time-varying systems. Generally, LPV control syn-
thesis is performed in the continuous-time (CT) domain due
to significantly more intuitive performance shaping methods
in CT, see [1]. However, the main complication of CT syn-
thesis approaches is the successive implementation of the
resulting CT control solutions on physical hardware. In the
literature, several discretization methods have been devel-
oped for LPV systems, see [2]. However, most of these ap-
proaches necessitate heavy nonlinear operations introduced
by the discretization of these time-varying matrices or can
introduce significant approximation error, thereby severely
limiting implementation capabilities of CT LPV control so-
lutions. Alternatively, the w′ discretization approach has
been introduced in the LTI case to allow for preservation
of the CT control, see [3]. Based on these observations, this
paper aims at extending the w′ discretization approach to
LPV systems, such that implementation of CT LPV control
solutions on physical hardware is simplified.

2 Approach
Consider a CT LPV state-space (SS) representation, denoted
by G, which is given by:[

ẋ(t)
y(t)

]
=

[
A(p(t)) B(p(t))
C(p(t)) D(p(t))

][
x(t)
u(t)

]
, (1)

where p : R→ P ⊆ Rnp corresponds to the scheduling vec-
tor, x : R→ X ⊆ Rnx is the state variable, u : R→ U ⊆ Rnu

denotes the control input and y : R→ Y ⊆ Rny corresponds
to the output signal. In order to transform the CT LPV SS
representation (1) to the w′ domain, the frequency domain
filter:

w′ =
2
Ts

z−1
z+1

, (2)

is reformulated into an equivalent time-domain operator r:

r =
2
Ts

q−1
q+1

, (3)

where q corresponds to the shift operator and Ts is the sam-
pling time. Moreover, the system represented by (1) is ex-
pressed in the w′ domain as:[

rx(k)
y(k)

]
=

[
A(p(k)) B(p(k))
C(p(k)) D(p(k))

][
x(k)
u(k)

]
, (4)

where the CT LPV SS matrices are preserved by defining
the r−1 operator, see Figure 1, which corresponds to:[

ξ (k+1)
x(k)

]
=

[
I 2I

Ts
2 I Ts

2 I

][
ξ (k)
rx(k)

]
(5)

Figure 1: Block interconnection of the w′ implementation, where
the white area denotes the r−1 operator and Σ(p(k))
corresponds to the equivalent dynamics, which is used
to remove the algebraic loop that is introduced by the
r−1 operator.

From the structure of the r−1 operator, it is observed that
it is identical to the Tustin operator, see [2]. Nonetheless,
the proposed approach allows for discrete-time implementa-
tion using the CT LPV system matrices, thereby both pre-
serving physical insight and simplification of the implemen-
tation procedure of CT LPV control solutions on physical
hardware. In order to remove the algebraic loop that is intro-
duced by the r−1 operator, see Figure 1, subsystem Σ(p(k))
is introduced, which is given by:[

ξ (k+1)
x(k)

]
=

[
I +Φ(p(k))A(p(k))Ts 2Φ(p(k))

Φ(p(k)) Ts
2 Φ(p(k)) Ts

2

][
ξ (k)
ū(k)

]
, (6)

where Φ(p(k)) = [I − A(p(k)) Ts
2 ]

−1. Moreover, the full dis-
cretized system, denoted by Gd , is given by:

Gd =C(p(k)) ·Σ(p(k)) ·B(p(k))+D(p(k)), (7)

where det
(

I −A(p(k)) Ts
2

)
̸= 0 ∀ p ∈ P.

3 Conclusions
It is observed that application of the w′ discretization is
equivalent with the Tustin discretization using the CT LPV
SS matrices. Furthermore, implementing the w′ discretiza-
tion via the r−1 operator simplifies the implementation pro-
cess of CT LPV control solutions on physical hardware
while the physical interpretation of the CT LPV control so-
lution is preserved.
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1 Introduction

Scalar transport (e.g. heat or mass) plays an important
role in many different fields, such as physics and chem-
istry. For example, the efficiency of a nuclear fusion reactor
is mainly determined by how much heat the core plasma
(fuel) loses to the reactor wall [1]. Therefore, engineers and
physicist are interested in reducing the transport. Another
example is given in the field of hydrology, where heat is
used as a tracer to determine the magnitude and direction
of vertical ground water fluxes across streambeds to iden-
tify hot spots for contaminants and nutrients [2]. Typically,
these transport phenomena are modeled around an operating
point by a linear one-dimensional parabolic partial differ-
ential equation (PDE), commonly known as the advection-
diffusion-reaction equation. However, in most physical sys-
tems the (exact) parameters dictating the transport are un-
known. Hence, data-driven estimation of the unknown phys-
ical parameters is necessary to complete the model such that
it can be used for simulation, analysis, prediction, and con-
trol. Here, our goal is to estimate these unknown physical
parameters utilizing uncertain measurement data.

2 Problem Formulation

Consider the following 1D linear parabolic partial differen-
tial equation

∂T
∂ t

= D(x)
∂ 2T
∂x2 +V (x)

∂T
∂x

+K(x)T +P(x)s(t), (1)

that governs the temperature T (x, t) in the spatial domain
x ∈ [0,L] and time t. The functions D(x), V (x) and K(x)
represent the unknown physical parameters for the diffusiv-
ity, convectivity and reactivity. The input consists of the un-
known spatial deposition profile P(x) and the known mod-
ulation signal s(t). Furthermore, the boundary and initial
conditions are considered to be unknown.

The goal is to simultaneously estimate D(x), V (x), K(x) and
P(x) based on s(t) and the uncertain measurements y(t) =
col
(
T (x1, t), . . . ,T (xM, t)

)
+ v(t) on M > 2 locations, where

v(t) is a sequence of zero mean, identically distributed, in-
dependent random variables.

3 Methodology

In [3], we introduce a method to estimate spatially vary-
ing transport parameters by rewriting the problem as a lin-
ear least squares problem. This brings the advantage of a
closed-form solution, thus a low computational cost, but the
disadvantage of a high sensitivity to measurement uncer-
tainty resulting in biased estimates. To properly deal with
measurement uncertainty, a maximum likelihood approach
has been developed.

We mainly follow the methodology from [3] that now results
in a linear errors-in-variables problem. Then, the maximum
likelihood solution is obtained by optimizing a nonlinear
cost function using minimization techniques such as Gauss-
Newton or Levenberg-Marquardt. In this way, we keep the
advantage of the linearity of the problem as we have sim-
ple analytic expression for the derivatives, but also handle
uncertainty in an optimal way.

4 Results

Using the maximum likelihood solution significantly re-
duces the error of the estimated transport parameters with re-
spect to the closed-form solution, albeit with a significantly
higher computational cost.
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Introduction

The transport of scalar quantities such as heat or mass
is a process relevant in many fields of study. In 1D, this
transport is governed by the following equation:

∂

∂t
z(r, t) = −∇rq(r, t) + s(r, t), (1)

where z represents a (vector of) physical parameter(s)
as a function of space r and time t, q represents the
corresponding flux(es) and s is the collection of sources
and sinks [2]. We use this equation to model the trans-
port of heat in the core of a nuclear fusion reactor
since the efficiency of the reactor depends strongly on
the rate of heat loss from the reactor core. Hence,
we wish to gain insight in the heat flux q(r, t) =
−D(r)∇rz(r, t) − V (r)z(r, t), where z represents tem-
perature and the heat flux is described in terms of a
diffusive-convective model with diffusivity D and con-
vectivity V . Note that our approach is also applicable
to mass transport or any other scalar transport.

Problem statement

The specific problem we are interested in is to find
spatial profiles for D and V based on spatially and
temporally resolved measurements of z. For our ap-
plication, we can assume that the distributed input
is time-independent. Hence, it can be described by
s(r, t) = P (r)u(t). Since, in practice, P (r) is not known
exactly, we will also resolve P (r) from the measure-
ments of z. Our approach to resolve the spatial depen-
dencies of D,V and P revolves around reformulating
(1) in terms of the flux q and fit this to a diffusive-
convective formulation of the flux. Hence, we call our
method the ’flux fit’ method [1].

Method

Our approach is based on the following: (i) we apply
perturbation analysis to linearize the system by mod-
ulating a source term ũ in time with a well known

waveform and frequency; (ii) the resulting fluctuations
z̃ are measured with sufficiently high spatial and tem-
poral resolution; (iii) we analyze the measurements in
the frequency domain; (iv) we assume cylindrical ge-
ometry, with r the radius of the cylinder; and (v) we
parametrize the unknown profiles P,D and V in terms
of a set of parameters β =

[
βP , βD, βV

]
. This allows

us to reformulate (1) in terms of a perturbed flux:

Q̃S(r, ω, β
P ) =

1

r

∫ r

0

r′
(
P (r′, βP )Ũ(ω)− iωZ̃(r′, ω)

)
dr′,

(2)

where the source modulation Ũ(ω) = F{ũ(t)} and
Z̃(r, ω) = F{z̃(r, t)} are well known (measured) quanti-
ties. F represents the Fourier transform. The diffusive-
convective model for the flux is written as:

Q̃T(r, ω, β
D,V ) = −D(r, βD)

∂

∂r
Z̃(r, ω)−V (r, βV )Z̃(r, ω).

(3)
The unknown parameters β can be found through the
minimum of the cost function, given by:

χ2 = min
β

∣∣∣
∣∣∣Q̃S(r, ω, β

P )− Q̃T(r, ω, β
D,V )

∣∣∣
∣∣∣
2

, (4)

where the residual is denoted by χ2.

Results

We have applied and compared this method to other
numerical methods to resolve D,V and P from mea-
surements within the context of nuclear fusion. We
show that estimates of P with our flux fit method are
in remarkable agreement with the other methods. We
also show that the accuracy of the estimation of P is
crucial to the accuracy of the estimations of D and V .
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Figure 1: A diffusively coupled network with a target subnetwork
(red) and its neighbour dynamics (orange).

1 Diffusively coupled network

A diffusively coupled network is characterized by symmet-
ric interconnections and therefore, it is typically depicted by
an undirected graph. This network is described by the poly-
nomial model

A(q−1)w(t) = B(q−1)r(t)+ v(t), v(t) = F(q)e(t), (1)

with node signals w(t); excitation signals r(t); white
noise process e(t); symmetric polynomial matrix A(q−1) =

∑na
k=0 Akq−k with A0 full rank (typically not equal to I) and

A−1(q−1) stable; polynomial matrix B(q−1) = ∑nb
k=0 Bkq−k;

and monic, stable and stably invertible rational matrix F(q)
[1]. The symmetry of the diffusive couplings is incorporated
in the model (1) by the symmetry of A(q−1).

A subnetwork contains the full information on how a se-
lected set of node signals interacts. Figure 1 shows a diffu-
sively coupled network with a subnetwork indicated in red.

2 Identification set-up

The identification of a subnetwork really becomes a local
problem as only the node signals of the subnetwork and
their neighbour node signals need to be measured. The un-
measured node signals can be discarding from the network
model by eliminating them from the representation through
an immersion procedure that preserves the network model
structure [1]. This means that the A(q−1)-polynomial of the
immersed network, indicated by Ă(q−1), remains to be sym-
metric. Figure 2 shows the immersed network correspond-
ing to the network in Figure 1.

1This project has received funding from the European Research Coun-
cil (ERC), Advanced Research Grant SYSDYNET, under the European
Union’s Horizon 2020 research and innovation programme (grant agree-
ment No 694504).
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Figure 2: The immersed network resulting from immersing the
blue nodes from the network in Figure 1.

3 Consistent subnetwork identification

The complete immersed network is consistently identified
by the convex multi-step algorithm for full network identifi-
cation in [1] if the following conditions are satisfied:

1. The true system is in the model set.
2. At least one excitation signal is present.
3. Φr(ω)≻ 0 for a sufficient number of frequencies.
4. The polynomials Ă(q−1) and B̆(q−1) are left coprime.
5. There exists a permutation matrix P such that[

Ă0 Ă1 · · · Ăn̆a B̆0 B̆1 · · · B̆n̆b

]
P =

[
D R

]
,

with D a square and diagonal matrix.
6. There is a parameter constraint on Ă(q−1) or B̆(q−1).

Here, we can choose a custom parameter constraint, which
means that we identify a scaled version of the immersed net-
work. This scaling is corrected in the identification of the
target subnetwork by an additional parameter constraint.

The target subnetwork is consistently identified from the
identified immersed network under the condition that

7. There is a parameter constraint on A(q−1) or B(q−1)
of the target subnetwork.

Result: Conditions and an algorithm for consistent iden-
tification of a subnetwork.
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1 Abstract

The transition to sustainable energy and mobility is not
progressing fast enough to meet objectives set by world
leaders. The NEON research program (New Energy
Outlook for the Netherlands [1]) aims to address this
problem by investing in innovative methods to accelerate
this process in The Netherlands. Our focus is on electric
mobility, which helps keep our cities less polluted and
significantly reduces CO2 emissions. Despite their growing
number, electric vehicles still account for a small share
of the total amount of cars [2] due to a larger upfront
cost compared to petrol cars. In an effort to speed up
the transition, we seek to reduce the vehicles’ total cost
of ownership (TCO), composed of the initial cost of the
vehicle, and the cost of operations during its lifetime (energy
usage and maintenance). In order to reach this goal,
we employ a concurrent design optimization methodology
that combines module-based product-family strategies with
powertrain design. In particular, we leverage modularity and
standardization of components in a fleet of electric vehicles
to lower their production costs, while simultaneously
minimizing consumption.

Module-based product-family strategies have been widely
studied and employed by many industrial players to generate
savings in research and development, quality control,
interface design and integration. Besides, they allow for
a more efficient development of differentiated products,
increasing flexibility and responsiveness in manufacturing
processes, reducing testing and certification times [3].
Traditionally, in a module-based product family, new
products are instantiated by adding, substituting, and
removing one or more functional modules [4], such as the
battery pack or the electric motor. We speak of horizontal
leveraging when more products share the same module
for different applications while vertical leveraging involves
scaling components to attack different market niches (Fig.
1).

Ver�cal leveraging

Horizontal leveraging

Figure 1: Leveraging strategies in a family of vehicles.

We introduce a framework consisting in designing optimal
single-sized modules for the whole family of vehicles,
using multiple copies of the same module instead of
scaling in order to take full advantage of economy-of-scale
strategies (Fig. 2). The module size is determined by
employing a convex model of the vehicle consumption,
taking into account the impact of changing components’
sizes and multiplicity to find the optimal compromise
between component and operational costs. The problem is
framed as a convex second-order conic program, providing
a solution that is guaranteed to be globally optimal.

Figure 2: Concurrent design optimization of electric motor and
the battery size in a fleet of battery electric vehicles.

Preliminary results show that the sum of component and
operational cost, without considering benefits introduced by
economy-of-scale and learning curves, only account for an
increase of 3% of the TCO: a small percentage, compared to
the potential savings. This is due to the fact that a module
may be slightly oversized for one of the vehicles to satisfy
the whole fleet at best. However, this comes together with
an increase in performances, like shorter acceleration time
or higher top speed. For these reasons, we believe this
methodology has the potential to cut down production costs
and accelerate the transition to electric vehicles.
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1 Introduction

In recent years, Lithium-Ion (Li-Ion) battery technologies
have been implemented in various applications including
Battery Electric Vehicles, Hybrid Electric Vehicles, power
tools and, the replacement of the traditional Lead-acid Start-
ing, Lighting, Ignition battery with a Li-Ion equivalent. The
implementation of a Li-Ion SLI battery brings about a set
of requirements that ensure performance as well as safety in
application [1].
Upon implementing a Li-Ion battery under dynamic, high-
current applications, the response of the battery becomes
complex in comparison to conventional batteries used in en-
ergy storage solutions or Battery Electric Vehicles. This
makes estimating the State-Of-Health (SOH) more chal-
lenging. In this work, we will apply Incremental Capacity
Analysis (ICA) and Gaussian Process Regression for esti-
mating the SOH.

2 Battery Simulation Model

Commercial software solutions were compared to model
the Li-Ion battery on which SOH estimation would be ap-
plied, namely Siemens Simcenter Amesim and BaSiS Bat-
tery Simulation Software. To develop a SOH estimation al-
gorithm, a Li-Ion battery model was developed in Siemens
Simcenter Amesim. Cycling data was generated for a single
cell under dynamic, high-current applications, at varying op-
erating temperatures.
In order to test the developed SOH algorithm, a 12V Li-
Ion battery was simulated in Siemens Simcenter Amesim.
The model consisted of four series connected cells, with
a thermal super-component connected to each cell. The
battery was charged under a Constant-Current Constant-
Voltage charge regime and underwent dynamic, high-current
discharge.

Figure 1: Incremental Capacity Analysis performed on charge
data of simulated 12V Li-Ion battery

3 State-Of-Health Algorithm

ICA is the ratio of the change in capacity to change in volt-
age. ICA (Figure 1) was performed on the charge data of
the simulated cell after which significant features were ex-
tracted. The features utilised to indicate the ageing of the
cells were peak height, peak position and peak area. By
training and testing the SOH model using Siemens Simcen-
ter Amesin, the SOH model was found to estimate battery
SOH efficiently at a temperature range of 25◦C to 45◦C [2].
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1 Introduction
Given the explosive demand for the electrification that cur-
rently exists, cell-level measurements, such as cell voltage
and temperature, and estimations of the states inside battery
packs, such as the State of Charge (SoC), are increasingly
important. As these quantities are used for monitoring the
operational limits of the battery pack, an accurate value is
required for these by the battery management system. How-
ever, measuring all individual cell temperatures in a large
battery pack can be an involved and costly procedure due to
the required electronics. Furthermore, estimating the SoC
without taking the temperature of each cell into account can
lead to a errors in case of a non-uniform spread of tempera-
tures inside the battery pack, so the accuracy of SoC estima-
tion can be improved by knowing the temperatures on every
individual cell. The downside of such an approach however
is that this can be computationally heavy when using the ap-
proach normally used for SoC estimation [1].

2 Combined Estimation
A solution for this is to estimate both SoC and temperature
using a combined thermal and electrical model for every
individual cell inside the battery pack. This combined ap-
proach makes use of an empirical model to represent the
electrical behaviour of the battery cells, this model is de-
pendent on both SoC and temperature. Coupled to this, is a
battery-pack thermal model, which uses a lumped-parameter
model that represents the heat generation from the cells,
as well as thermal conduction, convection and heat trans-
port between cells. Together these models are embedded in
an Extended Kalman Filter with Cross-correlated noise and
Forgetting (EKF-CF), in which the model residual is used as
noise covariance [2].

3 Results
Through the presented approach, we have estimated SoC
and temperature using experimental data. This experimen-
tal data was acquired on a scaled-down battery pack with 9
parallel-connected cells using a realistic load profile, com-
ing from a vehicle drive cycle, that excites the battery pack
both electrically and thermally. Different cases have been
considered in this work, ranging from completely ignoring
temperature effects in the estimation (Case 0), measuring all
cell temperatures (Case 1), estimating all cell temperatures
(Case 2 and 3) and partial temperature estimation of cell
temperatures with a limited number of measurements (Cases
4 and 5) [2]. The results are summarised in Table 1 and Fig-

ure 1. From these results, it can be concluded that both SoC
an temperature can be reliably estimated with only a lim-
ited number or no temperature sensors. As a result of this,
the presented approach could be used to reduce the number
of required sensors, or to increase the fault tolerance of the
battery pack.

Table 1: Estimation error of the estimation scenarios

Case Scenario SoC RMSE T RMSE
0 No T Dependency 1.54 -
1 All Cell T Measured 0.73 -
2 All Cell T Estimated, No Model 0.74 4.17
3 All Cell T Estimated 0.69 1.26
4 Hybrid 1: Centre Cell Meas. 0.75 0.50
5 Hybrid 2: Diagonal Cells Meas. 0.72 0.45

(a) SoC errors

(b) Temperature errors
Figure 1: Averaged estimation (SoC, T) errors for Estimator
variants 0 to 5.
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1 Introduction

The passivity-based control (PBC) is a well-established
technique that offers a constructive approach for stabilizing
a large class of complex systems [1]. Customarily, the con-
trol parameters of PBC approaches are selected such that its
closed-loop system is stable. For instance, in [1, 2, 3] we
find results on L2 stability, asymptotic stability, and input-
to-state (ISS) stability. However, certain applications re-
quire other specific performance indices rather than stabil-
ity. For instance, it is essential to ensure a prescribed perfor-
mance (e.g., overshoot, gain margin, rate of convergence)
to solve a task from applications involving mechanical sys-
tems that require high precision (e.g., aerospace, biomedics,
semiconductor, among other industries).

In this abstract, we briefly summarize a tuning methodology
for a class of PBC approaches which in closed-loop with a
standard mechanical system result in some particular target
dynamics that preserve the mechanical structure.

2 The tuning approach

Define x := col(q, p), where q, p ∈ Rn are the generalized
positions and momenta vectors, respectively. Moreover, as-
sume that a perturbed mechanical system has the following
port-Hamiltonian structure

ẋ = (Jd(x)−Rd(x))∇Hd(x)+d(t,x) (1)

with d : R≥0 ×Rn ×Rn → R2n being the disturbance vector
and

Jd(x) :=


 0n×n M−1(q)Md(q)

−Md(q)M−1(q) J2(x)




Rd(x) :=


0n×n 0n×n

0n×n Dd(q, p)




Hd(x) :=
1
2

p⊤M−1
d (q)p+Ud(q),

(2)

where Md : Rn → Rn×n is the desired inertia matrix that
is positive definite; Ud : Rn → R+ is the desired po-
tential energy which has a strict minimum at q⋆ ∈ Rn;

1The work of C. Chan-Zheng is sponsored by the University of Costa
Rica.
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Hd : Rn ×Rn → R+ is the desired Hamiltonian with a strict
minimum at (q⋆,0n); Dd : Rn × Rn → Rn×n is the desired
damping matrix that is positive semi-definite; and J2 : Rn ×
Rn → Rn×n is skew symmetric.

Some PBC methodologies encountered in the literature that
obtains the target dynamics in (1)-(2) can be found in [2, 4,
5].

We aim to exploit the ISS property (see [6]) in a quantitative
manner. In other words, we provide an expression, obtained
via a ISS analysis of (1)-(2), for the stability gain margin that
is in terms of the control parameters, i.e., Md(q, p), J2(q, p),
Dd(q, p), Hd(q, p). Here, we define the stability gain margin
gm ∈ R+ as the maximum permissible growth of the norm of
the disturbance with respect to the norm of the trajectories
in which the closed-loop system remains ISS, i.e.,

∥d∥
∥x∥ ≤ gm

We expect to apply the tuning methodology to prescribe the
desired gain margin for an underactuated mechanical sys-
tem.

References
[1] A.J. van der Schaft. L2-Gain and Passivity Tech-
niques in Nonlinear Control. Springer International Pub-
lishing, 2017.

[2] P. Borja, R. Ortega, and J. M. A. Scherpen. New Re-
sults on Stabilization of port-Hamiltonian Systems via PID
Passivity-based Control. IEEE Transactions on Automatic
Control, pages 1–1, 2020.

[3] A. Donaire and T. Perez. Dynamic positioning of ma-
rine craft using a port-Hamiltonian framework. Automatica,
48(5):851–856, May 2012.
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1 Background

The economic value of high-tech production equipment
is proportional to its productivity. A key enabler for high
productivity in manufacturing machines are positioning
systems. The accuracy and speed of these positioning
systems rely on an excellent and refined mechanical design
in conjunction with effective control algorithms. Despite
excellent mechanical system design and advanced control
strategies, high-tech production equipment still undergoes a
significant amount of downtime. To minimize this down-
time, fault diagnosis systems are essential which facilitate
effectively scheduled and targeted maintenance such that
productivity is maximized [1].

2 Problem

Many fault diagnosis systems are based on parametric first
principle models of the system. However, a complete and
perfectly accurate mathematical model is never available,
and the characteristics of the disturbances and noise are typ-
ically unknown. Hence, there is always a mismatch between
the actual process and its mathematical model, even in the
absence of faults. These discrepancies cause fundamental
difficulties in fault detection and isolation (FDI) applica-
tions. The effect of modeling uncertainties is therefore a
crucial point in the model-based FDI concept, and the solu-
tion of this problem is the key for its practical applicability.
The aim is to explicitly take model uncertainty into account,
such that a robust FDI system can be designed that provides
performance guarantees when implemented on the true sys-
tem.

Figure 1: Generalized structured singular value, µg, analysis test
(left) and closed-loop configuration for fault detection
by means of the residual signal ε (right).

3 Approach

The proposed approach integrates prior information, i.e.,
models that are available from controller design, with pos-
terior information in the form of experimental input/output
data during normal operating conditions. The fault diagnosis
system is designed by explicitly taking uncertainty and dis-
turbances into account, while guaranteeing a specified fault
sensitivity. To this end, the problem is posed as an H∞/H−
optimization problem, which builds upon well-established
theory adopted from the field of advanced motion control,
i.e., the generalized structured singular value µg [2] and
µ synthesis [3], see Figure 1. The approach is evaluated
through a numerical analysis.

4 Results

It is shown that effective robust fault diagnosis systems can
be synthesized by means of LMI optimization, solving the
H∞/H− problem. By means of a numerical case study, re-
sembling a next-generation positioning system, its effective-
ness is illustrated. The fault diagnosis system guarantees
specified performance criteria, which are analyzed using the
generalized structured singular value µg [2].

5 Outlook

The main focus of this abstract lies in the generation of use-
ful residual signals. In the future, more emphasis will be
put on fault isolation. In addition, the proposed robust fault
diagnosis filters will be implemented on a next-generation
wafer stage.
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1 Problem Statement

Consider the general n-degree-of-freedom serial rigid robot
manipulator, whose dynamics are modeled as

B(q)q̈+C(q, q̇)q̇+g(q) = τ, (1)

where q, q̇, q̈ ∈ Rn are the vector of joint positions, veloci-
ties and accelerations, respectively; B(q) ∈Rn×n is the iner-
tia matrix, C(q, q̇) ∈ Rn×n is the centripetal-Coriolis matrix,
g(q) ∈Rn is the gravity vector, and τ ∈Rn is the control in-
put vector. Typically, these systems are subject to joint range
constraints and maximum joint velocity constraints. Typi-
cally, actuator saturation has been modeled as a constraint
on the input, i.e. τmin,i ≤ τi ≤ τmax,i, i = 1, . . . ,n, for some
lower and upper actuator limits τmin,i, τmax,i ∈R, i= 1, . . . ,n.
However, as proven in [2], modeling input saturation as a
constraint entails a loss of performance in some cases, and
should instead be modeled as intrinsic nonlinearities of the
system. Doing so, allows us to re-write (1) as

B(q)q̈+C(q, q̇)q̇+g(q) = σ(τ), (2)

where σ : Rn → Rn is a generalized saturation function.

In this work we propose a saturation-aware trajectory-based
Explicit Reference Governor (ERG) scheme to control the
system (2).

2 Control Scheme

The control scheme proposed in this work decouples the
stabilization of the system and the satisfaction of the con-
straints [1]. An inner loop controller pre-stabilizes the sys-
tem, in this paper we use a PD with gravity compensation.
A governing unit modifies the reference fed to the system
in such a way that constraints are fulfilled at all times by
continuously manipulating the derivative of the applied ref-
erence as the product of two terms: the Navigation Field
(NF) ρ , and the Dynamic Safety Margin (DSM) ∆. More
formally.

3 Results

To show the efficency of our approach, we compare the
proposed control strategy with constraints control strategies
proposed in [2] and in [1]. As shown in Fig.1, the pro-
posed control scheme is able to drive the robot from the
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Figure 1: Time evolution of the position/velocity/torque
joint #1.

initial to the desired configurations while fulfilling the ve-
locity and position constraints. Moreover, it can be seen
that our scheme outperformed the Constrained ERG imple-
mented in [1] both in performance and computational times,
Tab.1. However, even if the study shows that the RG strate-
gies exhibit a higher performance than the ERG strategies,
from a computational point of view, the ERG schemes pro-
vide a significant lower cost.

Control Strategy Avg. Time [ms]
Constrained RG [2] 0.1768

Saturated RG [2] 0.1627
Constrained ERG [1] 0.0152

Saturated ERG 0.0141

Table 1: Average computational times
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1 Background

In this work, a control design method is proposed for simul-
taneous shaping of poles and zeros of a linear time-invariant
system, motivated by the application of non-collocated vi-
bration suppression in multibody systems. The phenomenon
of non-collocated suppression arises in situations, wherein
it is either not possible or infeasible to attach an absorber
directly onto the target mass whose vibrations are to be
suppressed. The control effort must instead be applied re-
motely from the target mass, which explains the term ’non-
collocated suppression’. In the spring-mass-damper system
model shown in Figure 1, the system is excited by an ex-
ternal harmonic force f of frequency ω and the target mass
is m1. This is a typical case of non-collocated suppression
since the control input u for suppressing vibrations at m1 is
not applied locally but instead applied remotely at m2. This
requirement of completely suppressing vibrations of a pre-
scribed frequency at a target location, coupled with achiev-
ing any higher level control task, thereby leads to a multi-
objective controller design problem.

2 Mathematical Formulation

Consider the state-space model of an LTI system as:

ẋ(t) = Ax(t)+B f (t)+B1u(t)

y(t) =Cx(t).
(1)

where u(t) = Ky1(t−τ) and y1(t) =C1x(t). Here, A ∈Rn×n

is the system matrix, B∈Rn×1 is the input matrix describing
where the excitation force f (t) acts and C ∈R1×n is the ma-
trix corresponding to the position of the target. The matrices
B1 ∈Rn×p and C1 ∈Rq×n denote the controller input matrix
and the sensor output matrices respectively, K ∈Rp×q repre-
sents the controller gain matrix to be determined and τ > 0
represents a non-negligible delay due to measurement lag.

A complete suppression of vibrations at the target can be
translated into the presence of zeros of the transfer function
from f to y. This requirement, along with maximizing the
decay rate of the solutions to improve the stability margin of
the closed-loop system can be translated into a constrained

Figure 1: Force f (t) is the external excitation force of frequency
ω and mass m1 is the target mass.

optimization problem in K:

min
K∈Rp×q

α(K)

s.t. hi(K) = 0, i = 1, . . . ,m
(2)

where α(K) is the spectral abscissa function,

α(K) : = sup
{

ℜ(λ ) :
∣∣∣λ I −A−B1KC1e−λτ

∣∣∣= 0
}

and the constraints hi(K) = 0 impose zeros at the target fre-
quencies.

3 Solution

Problem (2) is challenging since the objective function is in
general a non-smooth, non-convex function, while the con-
straint functions are multi-variable polynomial functions in
K. This work presents a method for solving the above op-
timization task by converting the constrained optimization
problem into an unconstrained one by elimination. Due
to the polynomial equation in K, the constraints cannot be
eliminated easily. To circumvent this difficulty, two meth-
ods are presented here, which exploit the property that in
general, the constraints are affine in a subset of the controller
parameters.
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1 Introduction

Vibration isolation systems are designed to attenuate
the sensitivity to direct and indirect disturbances on a
vibration sensitive payload. Direct disturbances act on
the sensitive payload, and indirect disturbances work
through the vibration isolation system on the sensitive
payload. For passive vibration isolation systems with
a fixed mass, there is a trade-off between the sensitiv-
ity to these direct and indirect disturbances, which is
determined by the suspension frequency and relative
damping [1].
A major justification for the use of active vibration
isolation systems (AVIS) is the circumvention of this
trade-off [1]. However, the performance of AVIS is still
depending on the suspension frequency when taking
into account the sensor and actuator noise [2]. These
additional noise sources affect performance though the
system dynamics as well as the controllers, which mo-
tivates the development of a combined optimization
method for both mechanical and control design. This
method extends on [2] by implementing a constrained
H2 controller.

2 Method

The AVIS can be described with the following state
space model in generalized plant format
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ã1



=




1
m1

−k1

m1

−d1

m1

0 1 0
0 0 0
0 0 0
1

m1

−k1

m1

−d1

m1






Fa

ε
ε̇


+




0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
1 0 1 0 0
0 0 0 1 0







a0
Vd

n0

n1

Va



,

(1)

where x1 is the position of the sensitive payload, x0

the position of the floor, ε = x1 − x0, Vd the direct
(voltage) disturbance, n0 and n1 the sensor noises of the
accelerometers which measure ẍ0 and ẍ1 respectively.
The system is parametrized by the suspension stiffness
k1, damping d1, mass of the sensitive payload m1, and
actuator pole ωa. Further, Va is the actuator voltage,

Figure 1: ‖x1‖2 for three controllers and varying ωn.

being the controlled input, and the ·̃ symbol is used for
a measured signal.
A frequency dependent input scaling matrix is used to
impose the relevant input spectra for noise sources
and floor vibration. The constraints are implemented
by using relative weighing of the output channels
[a1, ε, Va]

T . The optimal weights are iteratively de-
termined using a bisection algorithm. The constraints
are based on the thermal limit of the actuator, and the
allowable stress in a parallel leafspring setup.

3 Results and Conclusion

An illustrative example of the optimal design method
is given as a variation over the suspension frequency
ωn. Here, the relative damping of the system is kept
constant. In figure 1, ‖ẍ1‖2 is given for the constrained
H2 controller, and is compared to the unconstrained H2

and a physics based controller [2]. The physics based
controller consists of a disturbance feedforward and a
skyhook damper feedback controller, where the relative
damping of the closed loop suspension is kept constant.
In figure 1, the optimal mechanical design depends on
the used control method. Taking into account this in-
teraction yields a significant performance improvement.
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1 Introduction

The inherent lack of backlash and friction in flexure mech-
anisms makes them ideal for high precision applications.
However, these flexure mechanisms also have low internal
damping, resulting in undamped vibrations. These vibra-
tions do not only occur in the desired movement direction of
the mechanism, but also in support directions. In this work
we propose to include active material in the flexure mecha-
nism, such that the support vibrations can be damped.

2 A cross hinge case

We consider a model of a cross-hinge that has been de-
signed as an actuator suspension, inspired by [1]. An alu-
minium payload is suspended between two cross flexure
pivot hinges, as shown in Figure 1. The payload is actuated
by a moment τ and the rotation θ is measured. The rotation
of the hinge is controlled by a PID-controller with a cross-
over of 300 rad/s and a phase margin of 45◦. The center of
mass of payload is slightly offset from the rotation axis of
the hinges. As a result, actuation of the rotation of the hinge
also results in slight excitation of a modeshape correspond-
ing to translational movement of the end-effector mass. The
corresponding modeshape is shown in Figure 1.

By adding piezoelectric patches to either side of the leaf
springs, we can use active damping to suppress the un-
wanted modeshape. In figure 1 the patches are drawn with a
pink color. Due to the limited allowable strain in the patches,
they are only included at the base of the leaf springs. For
each pair of patches, we use a positive position feedback
controller [2]. The controllers are tuned to 630 rad/s, the
resonance frequency of the unwanted parasitic modeshape
under 15◦ rotation.

3 Results

In order to investigate the excitation of these parasitic
modes, we take a look at the linearised closed-loop trans-
fer from reference θre f to vertical position of the center of
mass of the hinge zcom, for various nominal rotations. The
resulting vibration transfer with and without active control
are visualised in figure 2. It can be seen that with larger
nominal deflection, the resonance peak is increasingly sup-
pressed. Hence, supression of the problematic resonance in
deflected state is achieved.

Figure 1: The flexure suspended mass under 15◦ deflection. The
dashed lines indicate a vibration mode that has dropped
significantly in frequency due to deflection.
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University of Sousse, Cité Taffala (Ibn Khaldoun), 4003 Sousse, Tunisia

c: Laboratoire d’Automatique, University of Mons, Boulevard Dolez 31, B-7000 Mons, Belgium
Email: judicael.mohet@unamur.be, anthony.hastir@unamur.be,

dimassihabib2013@gmail.com, joseph.winkin@unamur.be
and alain.vandewouwer@umons.ac.be

In this work, we build an observer for a linear reaction-
convection-diffusion (RCD) system subject to a bounded
disturbance φ(t), on the basis of a single measurement
y(t) = z(0, t). Due to the external disturbance, a sliding
mode control law is used, [4]. In this talk, we deal with
a continuation and improvements of the results obtained in
[1]. In particular, we consider a new control law in order to
avoid the on-line computation problem of the control. With
e = z− ẑ denoting the state estimation error, the errors dy-
namics are described by the partial differential equation

e′t = De′′xx− e′x− k0e+φ −u, x ∈ [0,1], t > 0,

with initial condition e(x,0) = e0(x) and boundary condi-
tions De′x(0, t) = e(0, t) and e′x(1, t) = 0.

Our main contributions are the proof of the generation of
a strongly continuous (C0) and compact semigroup on the
Sobolev space H 1(0,1) and the proof of the sliding move-
ment (for a given initial error profile), despite the perturba-
tion and the discontinuity of the input. We also improve the
control law and prove the exponential stability of the error
dynamics thanks to a new Lyapunov function. Finally, a
comparison between the early and late lumping approaches
is carried out.

We work on the space of absolutely continuous scalar and
square integrable functions on [0,1] whose first derivative
is square integrable. This is the Sobolev space denoted by
H 1(0,1). Since H 1(0,1) ⊂ L2(0,1), we are able to prove
that the RCD dynamics operator

−A = D
d2

dx2 −
d
dx
− k0I

is the infinitesimal generator of a C0 and compact semigroup
on H 1(0,1). Thanks to [3, Corollary 3.1], it follows that,
for all initial errors e0 ∈ D(−A)∩ kerC, where C is the ob-
servation operator given by Ch = h(0) for all h ∈H 1(0,1),
there exists a viable generalized solution in the sense of [3,

Definition 2.1], for the error dynamics of the RCD system,
whenever e0 is in the ball of radius ρ−L

α , where α > 0, L is a
bound on the disturbance and ρ is a design parameter of the
sliding mode input u(t) = ρ e(0,t)

|e(0,t)| .

It is reported that the function

V (t) =
D
2
(
e′z(0, t)

)2
+

1
2

∫ 1

0

(
e′z(s, t)

)2 ds

is a Lyapunov function for the RCD error model. Moreover,
we establish the exponential stability of the RCD error sys-
tem and show that the error trajectory tends to 0 uniformly
and exponentially fast.

From the numerical point of view, the early lumping ap-
proach consists in an approximation of the PDE before de-
signing the control law, whereas the discretization is done at
the end of the process for the late lumping approach. The
method described in [2], which is based on early lumping,
was used for numerical simulations. It turns out that the
results obtained in both case are very close. Finally, each
method exhibits the exponential stability of the errors dy-
namics.
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1 Introduction

For highly non-linear dynamics and/or non-Gaussian dis-
tributed states, standard filters for state estimation lose their
optimality or in extreme cases, fail altogether. In this work, a
sampling-free filter is proposed that iteratively linearises the
non-linear observation function without explicitly deriving
the Jacobian.

2 Iterative Bayesian updating

Assume a continuous non-linear dynamical system,

ẋxx = f (xxx, t), (1)

which is observed at discrete time moments k with an obser-
vation function h(·),

yyyk = h(xxxk)+wk. (2)

A general version of the Kalman filter is based on the con-
ditional expectation of the random variable xxxk given a mea-
surement yyyk [1], and can be written as:

xxxk
a(ω) = xxxk

f (ω)+φ(ŷyyk)−φ(yyy(xxxk
f (ω))), (3)

in which the map φ approximates the previously mentioned
conditional expectation, φ(yyy) ≈ E(xxx|yyy), and xxxk

f (ω) repre-
sents our prior knowledge (i.e. uncertainty) on the state es-
timate.

Further assumptions on the map φ , such as linearity, as well
as possible approximations of the highly nonlinear functions
f (·) and h(·) in equations (1) and (2) will result in different
types of filters. Two special cases of this are the classical
and the ensemble Kalman filters [1], although many more
exist.

In this work, a linear approximation of the observation func-
tion is made using an ensemble, i.e. Ĥ ≈ h(·). Subsequently,
this approximation is updated by iteratively adjusting its lin-
earisation point such that an unbiased filter is obtained.

Furthermore, the sampling based approximation of h(·) can
be replaced using polynomial chaos expansions [3]. This
results in a sampling-free filter, suitable for non-linear dy-
namics and non-Gaussian distributed states.

Figure 1: State estimation of the Lorenz 84 problem. ( ) Truth;
( ) Estimated mean; ( ) 90% confidence interval;
( ) Linearisation point.

3 Results

The sample based iterative filter is applied on the Lorenz 84
[2] problem with nonlinear observations (Figure 1). As can
be seen, the filter is able to track the the states of the system.
Similar results are obtained for the sampling-free iterative
filter, however, this filter requires more frequent measure-
ments for accurate approximation of the observation func-
tion.
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1 Introduction

The detection, isolation, and/or estimation of faults is a cru-
cial functionality to ensure the safety and efficiency of auto-
mated systems. Linear parameter-varying (LPV) fault detec-
tors/estimators are often used to detect, isolate and estimate
faults occurring in non-linear systems, for which the non-
linearity can be captured in scheduling parameters. By ap-
proaching fault diagnosis of the non-linear system through
linear systems theory, a generic and computationally effi-
cient approach can be developed, making it highly relevant
for safety-critical applications.

2 Problem statement

Consider a parameter-varying model as follows:

H(wk,q)[x]+L(wk,q)[z]+F(wk,q)[ f ] = 0,

where q represents the shift operator (i.e., q[x(k)] = x(k +
1)) and x,z, f ,w represent discrete-time signals indexed
by the discrete time counter k. Here, x contains un-
known signals (e.g., disturbances and unmeasured states),
z represents the known signals (e.g., inputs/measurements)
and f represents the fault(s) of interest. The matrices
H(wk,q),L(wk,q),F(wk,q) are parameter-varying polyno-
mial functions in the variable q, depending on the param-
eter signal w. Finally, w represents a scheduling parameter
of which the explicit relationship with time is unknown a
priori, but the parameter is measurable in real-time. The
main research challenge is formulated as finding a polyno-
mial function N(wk,q), which maps the known signal z to
the fault(s) of interest, f , while decoupling any effect of the
unknown signal x.

3 Proposed solution

To find the polynomial N(wk,q), the following three contri-
butions have been proposed [1]:

(i) Parameter-varying filter synthesis: We propose a
novel parameter-varying polynomial decomposition
for LPV dynamical systems, which paves the way for
a convex reformulation of the isolation/estimation fil-
ter at each time instance.

Figure 1: Performance of the baseline time-invariant and the pro-
posed parameter-varying filter.

(ii) Isolability conditions: We offer the existence con-
ditions of an isolation filter via a novel polynomial
time-varying matrix construction. This allows for a
tractable evaluation of isolability for LPV systems.

(iii) Analytical solution: We further propose an arbitrar-
ily accurate approximation for the original program of
the filter design whose solution is analytically avail-
able. This allows for implementable real-time fil-
ter synthesis while using valuable practical consider-
ations in the context of LPV systems.

The estimation filter is demonstrated on offset estimation
for the steering system of an automated vehicle. The re-
sults (Fig. 1) show that the LPV filter outperforms a time-
invariant baseline and decouples the effect of the parameter
variations and disturbances while performing well under the
presence of noise.
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1 Introduction

This paper studies contraction analysis of switched systems
that are composed of a mixture of contracting and noncon-
tracting modes. The first result pertains to the equivalence of
the contraction of a switched system and the uniform global
exponential stability of its variational system. Based on
this equivalence property, sufficient conditions for a mode-
dependent average dwell-time based switching law to be
contractive are established. Correspondingly, LMI condi-
tions are derived that allow for numerical validation of con-
traction property of switched linear systems, which include
those with all unstable modes.

2 Problem formulation

Consider switched systems in the form of

ẋ(t) = fσ(t)(x(t), t), x(t0) = x0, (1)

where x(t) ∈ X ⊆Rn is the state vector, t0 ∈R is the initial
time and x0 ∈ X is the initial value. For a switched system
given by (1), it is called contracting if there exists positive
numbers c and α such that for all solutions x1(t), x2(t) of
(1) we have ∥x1(t)− x2(t)∥ ≤ ce−αt∥x1(t0)− x2(t0)∥. The
objective of this paper is to propose a sufficient condition
that guarantees the switched system (1) is contracting with
respect to switching law σ(t) when not all modes of (1) are
contracting, including the case where none of the modes is
contracting.

3 Main Result

The family of (time-varying) linear switched system

ξ̇ (t) = Fσ(t)(x(t), t)ξ (t), ξ (t0) = ξ0 ∈ Rn (2)

with Fp(x(t), t) = ▽x fp(x(t), t) and x(·) be any given solu-
tion trajectory of (1) is called uniformly globally exponen-
tially stable (UGES), if there exist positive numbers c, α
(independently of the chosen solution x(·)) such that for
every solution ξ (t) of (2) the following inequality holds
∥ξ (t)∥ ≤ ce−αt∥ξ (t0)∥.

Proposition 1 For a given switching signal σ(t), the system
(1) is contracting if, and only if, the family of systems (2) is
UGES.

Theorem 1 Consider switched nonlinear system (1) with
switching signal σ : [0,∞)→M and corresponding switch-
ing times S := {t0, t1, . . . , ti, . . .}. Assume that we can clas-
sify each mode p as being either stable or unstable, i.e.
assume M = S ∪̇U and, correspondingly, assume the
switching signal σ has a MDADT τap > 0 for each stable
mode p ∈ S and a MDALT τap > 0 for each unstable mode
p ∈ U . Furthermore, assume that for each mode p ∈ M
there exist vp ≥ vp ≥ 0 and a continuously differentiable
function Vp :Rn×Rn×R≥0 →R≥0 such that for all (x,ξ , t),
vp∥ξ∥2

2 ≤ Vp(x,ξ , t) ≤ vp∥ξ∥2
2,∀p ∈ M , and V̇p(x,ξ , t) ≤

ηpVp(x,ξ , t),∀p ∈ M , with ηp ≥ 0 if p ∈ U or ηp < 0 oth-
erwise. Finally, assume that for every p ∈ M , there exists
µp > 0 such that Vσ(ti)(x,ξ , ti) ≤ µσ(t−i )Vσ(t−i )(x,ξ , ti),∀ti ∈
S . Then the switched nonlinear system (1) is contracting if

τap > τap :=− ln µp
ηp

, ∀p ∈ S ,

τap < τap :=− ln µp
ηp

, ∀p ∈ U .

}
(3)

4 Simulation Results

In this numerical example, we apply our main results to the
synchronization problem of one-way coupled identical os-
cillators, whose dynamics take the form

ẇ = f (w(t), t), (4)

ẋ = f (x(t), t)+uσ(t)(w(t))−uσ(t)(x(t)), (5)

where w(t),x(t) ∈ Rn is the state vector, f (w(t), t) is the
dynamics of the uncoupled oscillators, and uσ(t)(w(t))−
uσ(t)(x(t)) is the switched coupling force.

-500 -400 -300 -200 -100 0 100 200

W
1
/X

i1

-100

-50

0

50

100

150

200

250

300

350

W
2
/X

i2

W

X
1

X
2

X
3

215



Book of Abstracts 41st Benelux Meeting on Systems and Control

Efficient Abstraction of Switched Stochastic Systems Driven by
Neural Networks

Steven Adams
TU Delft

S.J.L.Adams@tudelft.nl

Luca Laurenti
TU Delft

L.Laurenti@tudelft.nl

Morteza Lahijanian
University of Colorado Boulder

Morteza.Lahijanian@colorado.edu

1 Introduction

With the explosive growth of available data and comput-
ing resources, data-driven system identification has yielded
impactful results across diverse disciplines, including con-
trol. Nevertheless, it is an open problem how to control
with provable guarantees unknown non-linear dynamical
systems against complex temporal logic specifications. Ex-
isting data-driven frameworks are generally limited to linear
systems.

An approach to formal verification relies on the abstrac-
tion of the continuous-space stochastic models into discrete-
space Markov processes. This approach requires well speci-
fied systems and lacks scalability to complex models, more-
over, it is unclear how to derive abstractions of dynamical
systems driven by neural networks. This paper introduces a
scalable theoretical and computational synthesis framework
for switched stochastic systems driven by neural networks
(NN) in the continuous dynamics.

2 Problem Formulation

We consider the following continuous-domain, discrete-
time switched stochastic process

xk+1 = fuk(xk)+Gwk, (1)

where xk ∈ Rn, uk ∈ U , and U is a finite set of modes.
For every u ∈ U, fu : Rn → Rn is a feed-forward NN. The
noise term wk is a vector of independent random normal
distributed variables. The combination of NNs, known to
be universal function approximators, and the inclusion of
noise, make Process (1) a rich model.

We are interested in solving the following problem: Given a
stochastic process of the form (1) and a linear temporal logic
formula defined over finite traces (LTL f ) [1], find an optimal
switching strategy that guarantees satisfaction of the LTL f
formula with a probability greater than a given threshold.

3 Overview Approach

We approach the above problem by abstracting Process
(1) using a finite-state Interval Markov decision process
(IMDP) [2], whose interval-valued transition probabilities
enable formal stochastic modeling. Due to the NNs highly
non-linear nature, bounding the transition kernel of a NN-
driven system is non-trivial and potentially computational

expensive. We develop an efficient bounding procedure in
which we employ Interval- and Linear Bound Propagation
(IBP/LBP) techniques [3] and use the linearity of the ad-
ditive Gaussian noise to evaluate in parallel the bounds for
sorted batches of states per dimension. Next, we synthe-
size a strategy on the IMDP that maximizes the satisfaction
probability of the LTL f specification.

4 Experimental Validation

Figure 1 provides an illustration of the control synthesis
problem for a 4 mode system learned from a non-linear data
set with additive noise. The LTL f is, ‘eventually reach the
black box’ with a probability threshold ε = 0.05. We plot
in green all states that satisfy the specification (lower bound
> 1− ε), in red those with a probability smaller than ε (up-
per bound < ε) and in yellow states for which, due to uncer-
tainty, we cannot claim if they satisfy or not the specification
with a confidence epsilon.

Figure 1: State classification for a system learned from a nonlin-
ear data set under optimal switching strategy.
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1 Introduction
Consider the class of switched systems where each mode is
a discrete-time nonlinear singular system without input of
the form

Eσ(k)x(k+1) = Fσ(k)(x(k)), (1)

where k ∈ N is the time instant, x(k) ∈ Rn is the state,
σ : N → {0,1,2, ...,p} is the switching signal determining
which mode σ(k) is active at time instant k, Ei ∈ Rn×n

are singular with a constant rank i.e. rankEi = r < n, and
Fi(x) = ( f1,i(x), f2,i(x), ..., fn,i(x))⊤ are vector valued func-
tions of nonlinear functions with f j,i : Rn −→ R. Define
Si := {x ∈Rn : Fi(x)∈ imE}. From basic algebra, there ex-
ist invertible matrices Si,Ti ∈Rn×n such that SiEiTi =

[ Ir 0
0 0

]
.

By using the state transformation T−1
σ(k)x(k) =

(
v(k)
w(k)

)
, v ∈

Rr, w ∈ Rn−r, system (1) can be rewritten as[
I 0
0 0

](
v(k+1)
w(k+1)

)
= Sσ(k)Fσ(k)

(
Tσ(k)

(
v(k)
w(k)

))

=:
(

Gσ(k)(v(k),w(k))
Hσ(k)(v(k),w(k))

)
(2)

Inspired by the one-step map for linear switched singular
systems in [1], in this study, we formulate the one-step func-
tion for nonlinear switched singular systems under the fol-
lowing assumptions:

Assumption 1.1. For each i∈{0,1, ...,p}, Si is a subspace.

Assumption 1.2. Si ∩kerE j = {0} ∀i, j ∈ {0,1, ...,p}.

Remark 1.3. Since Si is a subspace, the nonlinear alge-
braic constraint Hi(v,w) = 0 is equivalent to a linear alge-
braic constraint. Hence, the nonlinearity appears now only
on Gi(v,w). However, we believe that the one-step function
proposed in this study could be generalized for cases with
Si is not necessarily a subspace; this is our ongoing work.

2 Nonswitched Systems
We discuss in this section the solution for nonswitched cases
of (1) of the form

Ex(k+1) = F(x(k)), k = 0,1, ... (3)
where E ∈ Rn×n is singular. Recall S = {x ∈ Rn : F(x) ∈
imE}, and suppose that Assumptions (1.1)-(1.2) hold.

Lemma 2.1. System (3) has a solution with initial condition
x(0) = x0 ∈Rn if, and only if, x0 ∈ S . Its solution is unique

and satisfies
x(k+1) = Φ(x(k)) = ΠkerE

S E+F(x(k)) ∀k ∈ N. (4)

where E+ is a generalized inverse of E and ΠkerE
S is the

(unique) projector onto S along kerE.
Proof sketch: By a state transformation as in (2), system
(3) can be rewritten as(

I 0
0 0

)(
v(k+1)
w(k+1)

)
(k+1) =

(
G(v(k),w(k))
H(v(k),w(k))

)

and by Assumption 1.2, 0 = H(v(k),w(k)) has a solution,
and thus (3) has a solution. From (3),

x(k+1) ∈ E−1(F(x(k))) = {E+F(x(k))}+kerE (5)
and x(k+1) must also satisfy

x(k+1) ∈ {x ∈ Rn : F(x) ∈ imE}= S . (6)
By Assumption 1.2 and the projector lemma in [1], x(k+1)
satisfies (4) uniquely.

3 Switched Systems
Based on the one-step function for nonswitched systems, we
have the following theorem about the the one-step function
for switched systems of the form (1).

Theorem 3.1. System (1) under Assumptions 1.1-1.2 has a
solution with initial condition x(0) = x0 ∈Rn if, and only if,
x0 ∈ Sσ(0). Its solution is unique and satisfies

x(k+1) = Φσ(k+1),σ(k)(x(k)), ∀k ∈ N (7)
where Φi, j is the one-step function from mode- j to mode-i
given by

Φi, j(x(k)) := ΠkerE j
Si

E+
j Fj(x(k)) (8)

where E+
j is a generalized inverse of E j and ΠkerE j

Si
is the

(unique) projector onto Si along kerE j.
Proof sketch: The proof is a straightforward generalization
from the proof for nonswitched systems by replacing (5)-(6)
with

x(k+1) ∈ E−1
j (Fj(x(k))) = {E+

j Fj(x(k))}+kerE j,

x(k+1) ∈ {x ∈ Rn : Fi(x) ∈ imEi}= Si

respectively.
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Judicaël Mohet
Department of mathematics
University of Namur and naXys
judicael.mohet@unamur.be

Charles Monnoyer de Galland
ICTEAM
UCLouvain
charles.monnoyer@uclouvain.be

Lars Moormann
Control Systems Technology
Eindhoven University of Technology
l.moormann@tue.nl

Sarvin Moradi
Dept. of Electrical Engineering
Eindhoven University of Technology
s.moradi@tue.nl

Wannes Mores
BioTeC+
KU Leuven
jan.vanimpe@kuleuven.be

Christian Mugisho Zagabe
Department of Mathematics
University of Namur
christian.mugisho@unamur.be
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Welcome

The Organizing Committee has the pleasure of
welcoming you to the 41st Benelux Meeting on
Systems and Control, at ULB, Brussels, Belgium.

Aim

The aim of this meeting is to promote research
activities and cooperation between researchers in
Systems and Control. It is the forty-first in a
series of annual conferences that are held alter-
nately in Belgium and The Netherlands. The
meeting is organized by UMons and ULB.

Scientific Program Overview

1. A plenary lecture by David Howey (Univer-
sity of Oxford, UK) on Data-driven battery
health diagnosis in real-world applications.

2. A plenary lecture by Nicanor Quijano (Uni-
versidad de los Andes, Colombia) on The
Role of Population Games and Evolution-
ary Dynamics in Control.

3. A plenary lecture by Ilya Kolmanovsky
(University of Michigan, USA) on Perspec-
tives, Challenges and Opportunities in Con-
trol of Systems with Constraints.

4. A Mini-course by Mouhacine Benosman
(Mitsubishi Electric Research Laboratories
(MERL)) on A hybrid approach to con-
trol: classical control theory meets machine
learning theory.

5. Contributed short lectures. See the list of
sessions for the titles and authors of these
lectures.

Directions for speakers

For a contributed lecture, the available time is 20
minutes. Please leave five minutes for discussion
and room changes, and adhere to the indicated
schedule. In each room beamers are available.
When using a beamer, you have to provide a note-
book yourself and you have to start your lecture
with the notebook up and running and the exter-
nal video port switched on.

Registration

The registration fee includes:

� Admission to all sessions.

� The final programme and plenaries booklet.

� Coffee and tea during the breaks.

� In the case of an accommodation arrange-
ment: lunch and dinner on Tuesday, break-
fast, lunch, and dinner on Wednesday, and
breakfast and lunch on Thursday.

� In the case of a “one day” arrangement:
lunch, reception and dinner on Tuesday,
lunch and dinner on Wednesday, and lunch
on Thursday.

� Free use of a wireless Internet connection
(WiFi) wherever technically available.

The registration fee does not include:

� Cost of phone calls

� Special ordered drinks during lunch, dinner,
in the evening, etc.

Organizing Committee

The Organizing Committee of the 41st Benelux
Meeting consists of

� Alain Vande Wouwer
UMons

� Michel Kinnaert
ULB

� Emanuele Garone
ULB

� Laurent Dewasmes
UMons

� Guilherme A. Pimentel
UMons

� Erjen Lefeber
TU/e

� Pascale Lathouwers
ULB

� William Van Hoeck
UMons

� Laurent Catoire
ULB
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Scientific Committee

The Scientific Committee of the 41st Benelux
Meeting consists of

� Pierre-Antoine ABSIL
UCLouvain

� Bart DE SCHUTTER
TUDelft

� Julien HENDRICKX
UCLouvain

� Clara IONESCU
UGent

� Karel KEESMAN
WUR

� John LATAIRE
VUB

� Mia LOCCUFIER
UGent

� Ivan MARKOVSKY
VUB

� Alexandre MAUROY
UNamur

� Wim MICHIELS
KULeuven

� Henk NIJMEIJER
TU/e

� Jacquelien SCHERPEN
RUG

� Jan SWEVERS
KULeuven

� Paul VAN DEN HOF
TU/e

� Arjan VAN DER SCHAFT
RUG

� Jan VAN IMPE
KULeuven

� Holger VOOS
UNI LU

� Steffen WALDHERR
KULeuven

� Joseph WINKIN
UNamur

Sponsor

The meeting is supported by the following orga-
nizations:

� Fonds de la Recherche Scientifique - FNRS

� Fondation Wiener Anspach

� UMons/SECO

� ULB

Conference location

The address of ULB is

Université Libre de Bruxelles
Campus du Solbosch, Bâtiment U
Brussels - Belgium

Best Junior Presentation

Award

Continuing a tradition that started in 1996, the
41st Benelux Meeting will close with the an-
nouncement of the winner of the Best Junior Pre-
sentation Award. This award is given for the best
presentation, given by a junior researcher, and it
consists of a trophy that may be kept for one year
and a certificate. The award is specifically given
for quality of presentation rather than quality of
research, which is judged in a different way. At
the meeting, the chairs of sessions will ask three
volunteers in the audience to fill out an evaluation
form. After the session, the evaluation forms will
be collected by the Prize Commissioners who will
then compute a ranking. The winner will be an-
nounced on Thursday, July 7, in room UB5.132,
at 13:00. The evaluation forms of each presenta-
tion will be returned to the junior researcher who
gave the presentation. The Prize Commission-
ers are Dr. Mihaela Sbarciog and Prof. Maarten
Schoukens.

The organizing committee counts on the co-
operation of the participants to make this contest
a success.

Website

An electronic version of the Book of Abstracts can
be downloaded from the Benelux Meeting web-
site.
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