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SIMULATION AND CONTROL AT THE BOUNDARIES 

BETWEEN HUMANS AND ASSISTIVE ROBOTS

HOLLY E. WARNER

ABSTRACT

Human-machine interaction has become an important area of research as progress 

is made in the fields of rehabilitation robotics, powered prostheses, and advanced ex­

ercise machines. Adding to the advances in this area, a novel controller for a powered 

transfemoral prosthesis is introduced that requires limited tuning and explicitly con­

siders energy regeneration. Results from a trial conducted with an individual with 

an amputation show self-powering operation for the prosthesis while concurrently 

attaining basic gait fidelity across varied walking speeds.

Experience in prosthesis development revealed that, though every effort is made to 

ensure the safety of the human subject, limited testing of such devices prior to human 

trials can be completed in the current research environment. Two complementary 

alternatives are developed to fill that gap. First, the feasibility of implementing 

impulse-momentum sliding mode control on a robot that can physically replace a 

human with a transfemoral amputation to emulate weight-bearing for initial prototype 

walking tests is established. Second, a more general human simulation approach is 

proposed that can be used in any of the aforementioned human-machine interaction 

fields.

Seeking this general human simulation method, a unique pair of solutions for 

simulating a Hill muscle-actuated linkage system is formulated. These include using 

the Lyapunov-based backstepping control method to generate a closed-loop tracking 

simulation and, motivated by limitations observed in backstepping, an optimal con­

trol solver based on differential flatness and sum of squares polynomials in support of 

receding horizon controlled (e.g. model predictive control) or open-loop simulations.
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The backstepping framework provides insight into muscle redundancy resolution. The 

optimal control framework uses this insight to produce a computationally efficient ap­

proach to musculoskeletal system modeling. A simulation of a human arm is evaluated 

in both structures. Strong tracking performance is achieved in the backstepping case. 

An exercise optimization application using the optimal control solver showcases the 

computational benefits of the solver and reveals the feasibility of finding trajecto­

ries for human-exercise machine interaction that can isolate a muscle of interest for 

strengthening.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Advancing simulation and control methodologies have expanded the realm of 

human-machine interaction. Among the varied applications of this field, assistive 

robotics is particularly inspiring. Some systems that fall within this category in­

clude advanced exercise machines [16, 97], powered prostheses [22, 75, 109, 155], and 

rehabilitation robots [3, 65].

The nature of boundaries between humans and assistive robots can be classified in 

two ways: (1) a measure of seamless integration and (2) a barrier providing support 

for system development and human safety. For the first case consider a powered 

prosthesis. It is perhaps the most intimate, daily-use application of human-robot 

interaction. In this context it is desirable for the boundary between the human and 

assistive robot to become increasingly blurred, signaling movement toward better 

emulation of the natural system that the robot is replacing. Regarding the second 

case, a trend toward developing intermediate machines to replace the human in early 

trials, such as gait emulators for lower-limb prostheses, suggests a recognized need 

to broaden the boundary between ideation and human trials [10, 26, 27, 73, 74]. Such 
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testing iterations should support development by increasing repeatability [35] and 

promote the examination of extreme conditions, among other benefits.

1.2 Problem Statement

This dissertation focuses on two unique but not entirely independent problems. 

The first question is exclusively related to powered above-knee prostheses. The 

current state of the art for individuals with above-knee amputations offers passive 

prostheses that produce a variable damping and stiffness at the joint. These solu­

tions are inadequate to replicate able-bodied gait, leading to ongoing health con­

cerns [29, 105, 115]. While efforts are being made to improve prosthesis performance 

by adding active components such as motors, two of the foremost obstacles barring 

powered prostheses from progressing toward becoming mainstream solutions for indi­

viduals with transfemoral amputations are control complexity and insufficient battery 

life [121]. The second challenge undertaken by this dissertation initially arose from 

observing the limited capacity to test ideas in the field of prosthetics prior to hu­

man trials [31]. Further investigation revealed a more general deficit in simulation 

methods for human and machine interaction. This shortcoming limits opportunity for 

pre-prototype study, including optimization, and induces increased safety hazards.

1.3 Specific Aims

Objective 1: To design a simplified powered prosthesis controller and 

prototype with energy regeneration. A powered prosthesis design and related 

controller will be developed with a focus on achieving natural gait, control simplic­

ity, and energy regeneration. The resulting prosthesis will be tested by a volunteer 

with an amputation. Gait efficacy and energy usage will be evaluated against passive 

prosthesis data and published able-bodied data.
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Objective 2: To extend impulse-momentum sliding mode control to em­

ulate weight-bearing walking gait with a robot for prosthesis mechanical 

testing. Research on an impulse-momentum sliding mode controller recently intro­

duced in the literature will be continued. The specific application of a prosthesis test 

robot motivates the concept such that a realistic gravity and inertia component can 

be experienced by the prosthesis being tested. This control law is active when the 

prosthetic foot contacts the ground. Control is given to a tracking controller during 

the non-contact phase. The control system will be extended from a vertical stomping 

motion to walking gait by development of an improved control switching law.

Objective 3: To develop a framework for closed-loop muscle-actuated link­

age simulation of a human. An intermediate model defined as a two-muscle actu­

ated mass system will be considered to expound upon the implications of redundant, 

antagonistic muscle actuators. A simulation environment where, for example, a hu­

man arm or leg can be constructed as a robotic linkage actuated under backsteppping 

control by Hill muscle models will be then developed. Two methods of resolving mus­

cle redundancy will be investigated. Application to an arm model will be validated 

against a published simulation.

Objective 4: To establish an efficient open-loop musculoskeletal system 

solver. A novel parameterization based on differential flatness and sum of squares 

polynomials of muscle-actuated linkage dynamics will be developed. The method will 

be evaluated by comparison to published data and application to an optimal exercise 

problem.
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1.4 Dissertation Organization

Each chapter begins with the relevant literature review and further motivation 

for the individual topics.

Part 1 relates the design and validation of a powered prosthesis, Objectives 1 and 2.

• Chapter II details the development of the prosthesis control method from 

impedance control fundamentals while explicitly considering energy regenera­

tion (Objective 1). The prototype hardware is also introduced.

• Chapter III presents Objective 2, impulse-momentum sliding mode control 

based gait emulation, considering both theory and implementation.

• Chapter IV completes Objective 1 by describing the walking trials conducted 

with an individual with an amputation and examines the results.

Part 2 develops simulation methods for human-machine interaction systems, Objec­

tives 3 and 4.

• Chapter V chronicles the construction of a closed-loop human simulation 

including muscle dynamics under backstepping control. Special attention is 

given to the resolution of actuator (muscle) redundancy. Results suggest the 

necessity of prediction for control.

• Chapter VI considers an optimal control solver for musculoskeletal dynamics 

that can be used for open-loop human-machine interaction studies or prediction 

for control. The model is validated against published electromyography data, 

and application to an optimal exercise problem is explored.
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PART 1:

POWERED TRANSFEMORAL PROSTHESIS CONTROL AND EXPERIMENTS
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CHAPTER II

POWERED PROSTHESIS WITH FORCE-MODULATED IMPEDANCE AND 

ENERGY REGENERATION

2.1 Introduction

Passive prostheses of various forms have long provided mobility to individuals 

with transfemoral amputations, from the “peg leg” of the past to the mechanical 

knees or micro-processor managed variable damping knees of today [50]. Though 

progress has been made, regardless of the form, all of these prostheses lack an integral 

component of the natural leg, namely the muscles. Passive prostheses do not provide 

a means of joint actuation. The result is energetically costly and asymmetric gait. 

One study reports that individuals with transfemoral amputations walk at one-half of 

the speed of able-bodied individuals while exerting 65% more energy [142]. This leads 

to inactivity, in general, for people with a transfemoral amputation. Consequentially, 

they are prone to certain health risks. In the case of individuals with amputations due 

to vascular causes (artery disease, diabetes, etc.), these conditions already existed and 

become more prominent. These individuals are 50% more likely to lose the opposite 

leg in two to three years; within less than five years of an amputation, they are 55% 

more likely to lose their lives. Perhaps less shocking but still considerable concerns
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for all those with such an amputation are the health issues resulting from asymmetric 

gait (limping) such as osteoarthritis, back pain, and others that reduce quality of 

life over time [29, 115]. It is generally assumed that these risks should decrease as 

prosthesis development moves closer to emulating the natural leg. Accordingly, the 

appropriate next step in the development of prostheses would be integrating powered 

actuation, replacing the missing muscles [44, 89].

The creation of powered prostheses opens wide the question of control, for which 

options abound. Perhaps the most common and broadly successful approach in the 

current literature is impedance control with a finite-state machine to vary gains [6, 

38,47,68,69,77,119-122,141]. Typically, the gait cycle is divided into segments, 

each of which have a minimum of three gains—an associated stiffness, spring equi­

librium parameter, and damping. For varying the speed or task, such as traversing 

slopes or stairs, a look-up table associating sets of gains with each pre-programmed 

speed or task is generated. In addition to tuning these gains, switching laws must 

be assigned, and user intent recognition must be established. Some work has added 

further variation to the gains by scaling them according to real-time kinematic or 

kinetic measurements [25, 110]. Indeed, tuning the gains associated with these meth­

ods quickly becomes excessive, particularly considering that the true end-user of the 

control interface is not the design team but rather the clinical team.

Alternatives to impedance control have also been studied, primarily stemming 

from the field of bipedal robotics. In purposeful contrast to the finite state impedance 

controllers, this work tends toward unifying controllers, at most breaking the gait cy­

cle down into only swing (off contact) and stance (ground contact) phases. Control 

laws like the one described in [154] based on recreating human-like trajectories have 

found good success in transitioning from the discipline of bipedal robotics to prosthe- 

ses. However, it seems likely that this method will suffer from increased complexity 

upon expanding the catalog of desired motions beyond walking gait. Alternatively, 
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reference [32] summarizes work done on control based on a single phase variable, the 

center of pressure of the prosthetic foot. Concerns regarding robustness are identified 

by this work; for example, if a person shifts too far forward while standing, the knee 

will be activated to flex. Considering the same concept with thigh angle as the phase 

variable, these concerns are not mentioned, but increasing complexity upon adding 

activities once again becomes relevant [23, 93]. While the current state of these con­

trollers allows for some variation such as changes in speed and in some cases incline, 

they are generally limited to one periodic motion.

A second question arises when looking toward powered prostheses; that is, they 

require an embedded power source. With recent advances in battery technology, 

powered transfemoral prostheses have entered the realm of marginal feasibility, hence 

the market currently offers limited options. For the Power Knee up to 12 hours 

of operation are possible [86]. However, this is dependent on the level of activity, 

and actual operation times have been reported to be between 5 and 7 hours [33]. 

Similarly, the EmpowerTMMP Foot reaches about eight hours maximum [87]. Within 

the research realm several platforms have been presented as well. For example, the 

Vanderbilt prosthesis, including both powered knee and ankle joints, provides about 

1.8 hours of walking activity or 9-12 km [119, 121]. For an active individual these 

designs, while providing increased ability to complete some previously unattainable 

tasks such as climbing stairs with alternating feet and perhaps reducing energy for 

many activities of daily living, limit the individual using the device by requiring 

constant attention to the prosthesis’ power requirements. Frequent recharging, which 

requires hours, or carrying spare batteries is an unpleasant consequence of these 

benefits.

In referring to able-bodied gait, the answer as to how to extend prostheses’ power 

storage longevity seems evident. In [143] power flows for both the knee and ankle 

are analyzed for several walking speeds. Indeed, for a portion of the gait cycle the 

8



knee acts as a brake, absorbing energy. Much of this energy is dissipated as heat in 

the surrounding tissues, and some is stored in the tendons, which act in a spring-like 

manner. Because neither of these options must occur in a prosthetic knee, it seems 

prudent to strive to recover this energy, a process termed energy regeneration. An 

attempt to do just this is documented in the 1980’s by a series of dissertations and 

theses from the Massachusetts Institute of Technology (MIT) [45, 106, 123]. However, 

the capacitor technology at that time limited the prosthesis’ feasibility. More recently, 

efforts toward realizing energy regeneration in prosthetic leg joints have been revis­

ited. Through the use of various mechanisms energy regeneration for the purpose 

of actuator augmentation has been realized [39, 103]. Looking at electrical energy 

recovery, [130] recognizes the opportunity for energy regeneration and identifies an 

allowable range for knee joint damping. These findings are secondary to the goals 

of these projects, however, and appear to have limited further development, leav­

ing energy regeneration in prostheses in practically the same state as it was in the 

1980’s [67].

The described state of the literature regarding powered transfemoral prostheses 

suggests that two features of prosthesis design be explicitly addressed in the develop­

ment of such a prosthesis; these are simplified control and energy regeneration. Within 

the context of a broader prosthetics project at Cleveland State University (selected 

publications: [20, 24, 55, 100, 141]), one such design was developed and taken through 

the prototyping and initial testing stages by the author in collaboration with Poya 

Khalaf. This chapter develops the theory behind this prosthesis and its prototyp­

ing, which has been published in [59]. Chapters III and IV focus on the design and 

implementation of mechanical and human tests completed with this prosthesis and 

evaluate its performance.
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Figure 1: Prosthetic knee mounted between a typical socket and an Ottobock Triton
Vertical Shock foot © 2018 ASME [59]

2.2 Energy Regenerative Prosthesis Model

The prosthetic knee joint actuated by a DC motor through action of a lead screw 

is shown in Figure 1. This system, including the human, can be modeled as a four 

degree of freedom robot with equation of motion

D0(q)q + C(q, q)q + Ro(q, q) + g(q) + Text = T, (2-l)

where D0(q) is the inertia matrix, C(q, (?) is the Coriolis matrix, R0(q, q) is the damp­

ing, which could be nonlinear, g(q) is the gravity vector, Text is a vector of external 

forces and moments when reflected to the individual joints, and t is a vector of the 

input forces and torques. The vector of four generalized coordinates q represents the 

horizontal, vertical, and rotational degrees of freedom of the human hip and the de­

gree of freedom causing flexion of the prosthetic knee, as depicted on the far left side 

of Figure 2. The ankle is passive, composed of a leaf spring and rubber damper, and 

accordingly, is not identified as an additional degree of freedom.
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q1

q2

Transmission: nT4

Vmotor. r .Vcap

R

C

Figure 2: System schematic including prosthesis and regenerative drive (lead screw, 
DC motor, armature resistance, motor driver, and supercapacitor power storage)

While the human controls the first three degrees of freedom, the knee is driven 

by an actuator; see Figure 2. Moving from left to right, the prosthesis body and 

screw transmission with ratio n are shown. The screw is driven by a DC motor with 

damping b, inertia m, and torque constant a. The armature resistance R is in series 

with the motor driver, which is ideally modeled by its duty ratio r as Vmotor = rVcap 

with r E [-1,1]. Parameter r is used as the final control input. Motivated by their 

successful use in motor vehicles, a bank of supercapacitors, denoted by capacitance 

C, are used as the sole power storage unit for the system [19]. Particularly when 

excess energy becomes available from the knee, the storage element must be capable 

of receiving it quickly. Supercapacitors provide a means of exchanging energy rapidly 

when compared with batteries [12].

Under this drive system, the four degrees of freedom can be categorized according 

to their energy sources based on the framework developed in [56-58,95]. The first 

three degrees of freedom are under the control of the human, who also provides energy 

to the system. They are termed fully active. In contrast, the fourth degree of free­

dom is semiactive; it contains an internal means of storing energy (supercapacitors), 

allowing it to capture energy transmitted through the system and release energy to 

the system.

11



The actuator dynamics can be written as

t4 = —mn2q4 — bn2 +
(an)2 \

R J
q4 + anrVcap 

R
(2.2)

Augmenting the equation of motion (2.1) with (2.2) yields the final model

D(i)q + C («, q)q + R(q,q) + g(q) + Text = u, (2.3)

where matrix and vector elements are updated as follows:

D[4,4] = Do[4,4] + mn2q4 (2.4) 

R[4] = R0[4] +
(an)2 

R
(2.5)

and the control vector u is determined by the human for the first three degrees of 

freedom and is
anr

u4 VC VcapR
(2.6)

for the fourth degree of freedom. Clearly, this is not the typical case of modulating the 

motor’s voltage from an external supply with constant voltage. Rather, the source is 

internal and varying, another feature of a semiactive degree of freedom. By applying 

semiactive virtual control as described in [56, 57, 95, 100], any control law, termed the 

virtual control law td, can be selected for u4. Setting u4 equal to Td and solving for 

the parameter r, which can be modulated, gives a virtual matching law 

r= R T d 

anVcap
(2.7)

correlating r to the virtual control for any combination of motor and transmission 

parameters. According to [95], as long as the virtual matching law has a solution, any 
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properties, for example stability, held by the virtual control law will be transmitted to 

the system. The matching law for the knee always has a solution if there is sufficient 

capacitor voltage and accurate knowledge of parameters a, n, and R.

While considering the system dynamics, a measure of the energy regenerated at 

the knee joint can be developed. It is reported in [58], starting from integrating the 

capacitor power between times t1 and t2

AE =
t2

t1

Vcapicap dt, (2.8)

where icap is the capacitor current, that the energy stored under a chosen virtual

control law for a semiactive system is

AE = t d'h - dt. (2.9)

Positive AE indicates energy regeneration. It can be seen that the integrand is 

the difference between the mechanical power at the joint and the electrical losses 

(of form i2 R) and is only dependent on the parameters associated with the motor 

and transmission, the chosen control law, and the trajectory of the knee.

2.3 Force-Modulated Impedance Control Method

Based on the successful trials reported in the literature, the virtual control law 

td was selected as an impedance type controller. The concept of impedance control 

can be summarized as controlling the dynamic interaction between the controlled 

device and the environment, in this case the human-prosthesis and prosthesis-ground 

interfaces [41-43]. For example, if the selected impedance is just of a stiffness type, 

increasing displacement of the joint would result in an increasing force response from 

the device; it would feel like a spring. Similarly, inertia and damping features can be 

generated.

13



Reference [118] identifies the action of the knee to be sufficiently modeled by a 

combination of stiffness and damping. The ability to select a suitable design for the 

physical prosthesis’ weight and mass distribution also supports that including inertia 

is unnecessary. Accordingly, the proposed control law is constructed as a combination 

of stiffness and damping terms

F
T = -(Bh + B )q4 Kq-- - Ks(q4 - q4 ) (2.10)Fs

where Bh and B are damping coefficients, F is the shank force, Fs is a constant for 

normalizing, K and Ks are stiffness coefficients, and q4 is the equilibrium point for 

spring Ks . Each of these terms and the rationale for their selection will be explained 

by separating the gait cycle into stance (contact) and swing (off-contact) phases.

For stance phase the control law is dominated by theK stiffness term because

the knee is near its equilibrium point andK by tuning is large relative toKs

F
Td «-F-KQ4. (2.11)

It was hypothesized that a measurement representative of the force between the foot 

and ground could modulate the stiffness of the knee, making the impedance a contin­

uous function of the gait kinematics and kinetics as was suggested rather generally at 

the conclusion of [136]. Practically, it would at minimum distinguish between contact 

and off-contact. More broadly, it can be observed that as the prosthetic foot contacts 

the ground, the opposing leg is unloading, implying an increase in force through the 

prosthetic leg. The reverse effect occurs when unloading the prosthetic leg. There­

fore, increased force applied to the prosthesis by its user yields increased support. 

This modulation leads to predictable powered knee actuation, yet allows the knee to 

soften as needed to prepare for swing. To generate such a measurement internal to 

the prosthesis system, the force transmitted through the shank F was used. Dividing 
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this measurement by normalization factor Fs , which is the force associated with the 

user’s full weight under static conditions, allows smooth modulation of K . The final 

result is that for increased knee flexion and increased contact force, the knee will 

provide greater torques to straighten the prosthesis. This result is distinctly different 

from the slow sinking motion generated by a passive hydraulic knee. Extending this 

concept beyond gait, one could conceive that climbing stairs with alternating legs 

might become possible in this framework.

When the prosthesis is in swing phase, the foot is no longer in contact with the 

ground, and F is zero, leading to the reduction of the control law (2.10) to

Td = -(Bh + B)q4 - Ks(q4 - q4). (2.12)

The gain Ks defines a spring that applies force to move the knee back to equilibrium 

q^, typically full knee extension. While this term is technically active in both stance 

and swing phases, it is typically small or zero because the purpose of this term is to 

provide the individual with aid in extending the knee, if needed. The kinetic energy 

of the knee at the beginning of swing phase should provide for the majority of the 

energy required for the extending motion. However, in the case that the use of Ks 

is required, it can be checked using (2.9) that, under the assumption of periodicity, 

the only energy usage by this portion of the control law is associated with the i2R 

portion of (2.9).

Gain Bh was included for practical purposes. The prosthesis design includes a 

hard stop at full extension. To prevent jarring of the individual wearing the device, 

some additional damping was included according to

b
h, q4 < qthreshold

0, q4 ^ qthreshold

(2.13)
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just at the end of the swing phase, as determined by qthreshold . Energy usage for 

this purpose could be avoided if an insert were designed for the prototype system to 

provide the same effect.

Returning to the idea of energy regeneration, swing phase has limited energy 

usage and significant energy availability [143]. The damping term B is included to 

capture this energy. Under the assumption that Td ~ —Bq4, substitution of this term 

into (2.9) gives 
t2

AEs = — B + ^—B2 fidt. (2.14)
Jtl \ (an)2 4

Clearly, energy regeneration takes place when — (an)- < B < 0, leading to the con­

clusion that the coefficient B must be negative. Negative damping would reduce the 

physical system’s overall damping. Assuming that negative damping in the given 

range will not cause system instability and that the maximum energy regeneration is 

independent of q4, differentiating (2.14) with respect to B, setting it equal to zero, 

and solving for B gives the optimal value

B • = — (On-. (2*15)
2R

Using this value for the damping gives the optimal amount of energy regenerated

ae:=/t- (an)- .¡-dt. (2*16)
t1 4R

Tuning the controller requires the selection of the following five gains and param­

eters: bh, .threshold, K, Ks, and q£* The value of B is determined based on system 

parameter measurements from (2.15). In addition to reducing the number of pa­

rameters by potentially an order of magnitude relative to prior work, the remaining 

parameters are intuitive to tune. Virtual damping bh is chosen such that it is slightly 

larger in magnitude than the value calculated for B so that it overrides the negative 
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damping. The distance qthreshold from full extension where the hard stop prevention 

damping becomes active is selected as the smallest value where the hard stop is no 

longer evident; for the prosthesis prototype this condition was associated with noise 

reduction and the comfort of the individual wearing the device. In general qthreshold 

is a few millimeters of screw travel. The value of K determines how supportive the 

knee feels. It is selected based on the user’s feedback. Ks and q^ are adjusted until 

the knee fully extends under the individual’s control. For the trial conditions Ks was 

able to be set to zero.

2.4 Prosthesis Prototype

A prosthesis capable of controlled powered actuation and energy regeneration 

was constructed from off-the-shelf components to provide preliminary testing of the 

previously presented ideas. A schematic of the overall test system setup is provided in 

Figure 3. The body of the prosthesis supports the user’s weight and includes standard 

pyramid adaptors for connection to the individual’s socket and selected foot. To 

reduce power usage, the knee is capable of self-locking at equilibrium (q4 = q4 = 0) 

if the individual wearing it so chooses by shifting his or her center of mass. For the 

tests completed, an Ottobock Triton Vertical Shock foot was used. To provide shank 

force feedback, the foot was instrumented with two strain gauges; see Figure 4. The 

strain gauge signals were processed by custom built circuitry. First, the signal was 

passed to a Wheatstone bridge. The positive and negative outputs of the bridge were 

sent to an operational amplifier voltage follower. The outputs of these two voltage 

followers were processed by an operational-amplifier differential amplifier, resulting 

in a scaled difference. Lastly, this signal was given to a second order low pass filter 

constructed with an operational amplifier. The output of this filter was used as the 

final force measurement signal.

To calibrate the force measurement, the foot was initially connected to a short rod
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iMotor

Figure 3: Schematic of the experimental setup for the prosthesis prototype. Solid 
lines signify power transmission. Dotted lines denote signal transmission

Figure 4: Ottobock Triton Vertical Shock foot instrumented with two strain gauges
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with a calibrated load cell at the opposite end. Forces emulating gait at magnitudes 

up to full body weight were manually applied through the load cell and rod fixture to 

generate dynamic calibration data. A least squares fit was performed for this data, 

resulting in a formula for the shank force that was composed of a linear sum of the 

individually scaled signals. The result of this calibration was in good agreement with 

the load cell output when plotted in real time, dynamically validating the shank force 

measurement.

Having established the prothesis’ structure, the actuation system can be ad­

dressed. A 12 V DC motor drives a lead screw via a 1:1 belt transmission (UL­

TRAMOTION). The shortening of the screw causes knee flexion by use of a four 

bar crank-slider linkage. Motor position is measured by an optical encoder, which is 

kinematically related to knee flexion angle. For calculation of the virtual damping 

B, the motor resistance and torque constant are R = 0.27 Q and a = 0.031 Nm/A, 

respectively. A transmission ratio of n = 989.5 rad/m is associated with the screw.

The motor voltage is modulated by a SyRen 10 Amp four-quadrant motor driver 

from DimensionEngineering. Power is supplied to the driver from 4 Maxwell 2.7 V, 

650 F supercapacitors (BCAP0650 P270 K04) connected in series by balancing cir­

cuitry (BKIT-MCINT). The voltage of the capacitors is measured in real time for use 

in the virtual control matching law. Much like the strain gauge signal, the measure­

ment passes through individual voltage followers for the positive and negative leads 

and then is processed by a differential amplifier circuit built with an operational 

amplifier. To provide for analyzing the system’s energy regeneration capacity, the 

current flowing between the capacitors and the motor driver and the current flowing 

between the motor driver and the motor were measured separately.

Control prototyping was implemented by use of a dSPACE DS1104 data acqui­

sition board and ControlDesk software system. This system interfaces easily with 

MATLAB Simulink, where the controller was encoded. An output analog voltage sig­
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nal was generated according to the motor driver’s specifications to correspond with 

the desired control signal. All necessary feedback and evaluative measurements were 

taken and recorded using the analog to digital capabilities of the dSPACE system; 

each measurement (except q4) was digitally filtered with a 24 Hz cutoff frequency. 

Note that this system implies that the prosthesis is currently only operational on a 

tether, by which it also connects to the capacitor power supply.

2.5 Remarks

A prototype powered knee prosthesis was developed with particular attention to 

a unifying control strategy and energy regeneration. The control law requires few 

tuning parameters while maintaining the impedance foundation that has been so 

successful in the literature. This controller explicitly considers energy regeneration, 

providing tuning guidelines to accomplish this goal. Additionally, the prototype itself 

was designed to make energy regeneration possible.
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CHAPTER III

IMPULSE-MOMENTUM SLIDING MODE CONTROL AND 

APPLICATION TO A PROSTHESIS TEST ROBOT

3.1 Introduction

Lower-limb prosthesis prototype testing, as previously referenced, is an area re­

ceiving attention in the literature. These applications [10, 26, 27, 73, 74, 98, 99] utilize 

control methods that are linear, including various combinations of proportional, in­

tegral, and derivative terms; nonlinear, such as sliding mode control; and one that is 

unspecified, though the description suggests a form of tracking control.

One example from among these systems has been constructed at Cleveland State 

University (CSU) in collaboration with The Cleveland Clinic. The details of this 

single-legged prosthesis test robot can be found in [98, 99]. It consists of two degrees 

of freedom, vertical hip displacement and thigh rotation. Any prosthesis of interest 

with standard connections can be installed and be made to walk along a treadmill 

with this system. Figure 5 shows the system configured with the prosthesis described 

in Chapter II.

Prior work with the hip robot has used a sliding mode controller to provide accu­

rate tracking of pre-recorded human hip trajectories. This approach, while valuable
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Figure 5: CSU prosthesis test robot walking with the prosthesis presented in Chap­
ter II

for studying the kinematic response of a prototype, makes it difficult to collect data 

consistent with the dynamic forces that a lower-limb prosthesis would experience. 

Tracking controllers in general use as much force or torque as needed to make a given 

joint follow the desired trajectory. The result can be environmental impact forces, 

ground reaction forces in this case, that are unnatural.

To improve the contact forces associated with the CSU test robot, one work 

reports adapting the kinematic reference trajectory by evolutionary optimization with 

the error between a reference ground reaction force and the actual machine-generated 

ground reaction force as the cost function [14, 15]. This process was stated to emulate 

the adaptation required from an individual with an amputation to walk with the 

prosthesis being tested and match able-bodied ground reaction force. Several features 

discourage the generalized use of this work, however. First, the adjustments made 

to the trajectories are likely dependent on the prosthetic knee and ankle/foot being 

tested; different combinations will lead to alternative trajectories. Long operation 

times are cited in this work to accomplish convergence, making it difficult to switch 
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prostheses. Second, it cannot be expanded to emulate individuals with differing body 

weights without first collecting new able-bodied data. Finally, it assumes that ground 

reaction force is the key to improved prosthetic gait. The opposite possibility is that 

improved prostheses lead to more natural ground reaction forces for those who use 

them. For a purely tracking solution to gait emulation, as previously described, this 

possibility is difficult to assess.

Gait studies provide an alternative option for attaining more natural ground re­

action forces. Human gait is attributed to controlled falling behavior where the next 

foot is placed to halt the fall [135]. To achieve a fall-like condition, it seems sufficient 

to focus on the vertical axis of the robot, as this is the primary force-generating degree 

of freedom; it represents the weight of the body settling onto the prosthetic leg. It 

is proposed that by controlling this degree of freedom such that it appears as a pure 

mass during the ground contact portion of the gait cycle, human motion should be 

better achieved by the hip robot.

An established method, impedance control, that seeks to control the dynamic 

relationship between forces and tracking was initially experimented with to improve 

the motion of the test robot in this manner [41-43]. Typical implementations of 

impedance control within a robotic system require accurate force feedback. Due to 

issues with obtaining a sufficiently reliable force reading and the lack of robustness 

perceived in the attempted impedance control, an alternative control method was 

sought.

Work by Richter, Mobayen, and Simon [96] describes the early development of 

a sliding mode control approach to this problem. A purely vertical trajectory that 

emulates weight for a period and then lifts the leg for a period is considered. This 

cycle is split into contact and off-contact phases. Under the contact phase this work 

introduces impulse-momentum sliding mode control, which allows for weight emu­

lation. For the off-contact phase a terminal sliding mode control for tracking the 
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vertical displacement of human gait reference data is applied.

Implementation of sliding mode control requires that a discontinuous function 

propel system states to a selected switching (sliding) surface where they must re­

main [21, 131]. This reaching process is robust to matched disturbances, and once 

the states arrive at the sliding surface, the system takes on lower-order dynamics and 

insensitivity to matched disturbances. For a tracking problem the sliding surface is 

commonly composed of a linear combination of the tracking error and derivatives of 

that error [113]. Under these circumstances, the behavior of the error is asymptotic 

convergence to zero, which might be too slow when switching back to tracking from 

the impulse-momentum sliding mode controller. Also, traditional sliding mode con­

trol is prone to chattering during reaching due to the discontinuous, high-frequency 

switching function. The method titled terminal sliding mode control improves upon 

these shortcomings [134]. By use of nonlinear, non-smooth differential equations for 

the error in the sliding mode and an extended switching law, the convergence time 

becomes finite. This eases alternating between the contact and off-contact controllers 

and reduces the opportunity for chattering.

Motivated by [96], the continuation of that work toward walking is discussed in 

this chapter. This chapter presents the detail of [96] along with the relevant simula­

tion and experimental results for vertical motion alone in preparation for walking. A 

method to generate walking gait is then introduced and used to experimentally test 

the prosthesis prototype of Chapter II. These experiments show consistency in the 

response of the prosthesis but that the hip robot control requires additional develop­

ment to better emulate human gait. Directions for improving and then extending of 

the impulse-momentum sliding mode control conclude the chapter.

3.2 Test Robot Vertical Degree of Freedom Model

The vertical axis of the test robot can be described by Figure 6. The motor driver
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Figure 6: Vertical drive mechanism of the prosthesis test robot

is configured for torque control. The motor actuates a screw which initiates motion 

of the carriage along guiding rails. For this system the equation of motion is

mx + 6(x,x) = ku — Fe, (3.1)

where x is the vertical position coordinate, 6(x,x) represents the uncertainty asso­

ciated with the friction within the mechanism, k is a constant containing the motor 

drive constant and transmission ratio, u is the control input, and Fe is the force 

generated by contact with the environment. Note that the control input has been 

augmented for gravity compensation u = u! + mkg such that u0 is the varying portion 

of the control input. Boundedness is assumed for the uncertainty 6

|6(x,x)| < A, (3.2)
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Parameter Value 
m 146 kg

k 600 N/V
Ff 83 N
b 2570 Ns/m

Table I: Prosthesis test robot parameters [96]

where A is a known constant. Additionally, it has been identified for the test robot 

that the friction follows

5(x, X) = Ff sign(x) + bx + 50 (x, X), (3.3)

where 50(x, X) is the remaining uncertainty, overall tightening the uncertainty bound. 

The system parameters are given in Table I, where they are reported after reflecting 

to the vertical coordinate and accounting for gearing. In particular note that mass m 

includes the inertia of the rotary mechanism amplified by a large transmission ratio. 

The actual vertical carriage mass is significantly less.

3.3 Impulse-Momentum Sliding Mode Control

It is desired that the controller during the contact phase emulate a pure mass 

under the influence of gravity and the contact force Fe . This can be described simply 

as

MX = W - Fe, (3.4)

where W = Mg . Use of these dynamics to create a sliding surface requires that one 

differentiation reveal the control input under typical sliding mode control. However, 

(3.4) has zero relative degree to the control input u. Alternatively, the impulse­
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momentum theorem realization of these dynamics provides a relative degree of one

Mx(t') — Mx(tI) = i (W — Fe(T))dT, 
tI

where ttI is the time of contact or impact. The sliding surface is then

s2
= Mx(t) + t (Fe(T) — W)dT — MirCtI) 

tI

(3.5)

(3.6)

Clearly, if s2 reaches zero and remains there, the system will emulate a pure mass 

under the influence of gravity and an environmental force.

According to the sliding mode control framework, a control law can be formed that 

will force s2 = 0 to occur in finite time and to then hold this condition regardless of the 

system uncertainty 6(x, x). To obtain this controller, the reaching law s = —n2sign(s2) 

is set equal to the time derivative of (3.6), and the acceleration x is eliminated by 

substitution of the system dynamics (3.1). All terms evaluated at time tI are absorbed 

into the uncertainty. Solving for the control input gives

U2 = — 1[r(n2sign(s2 ) — W ) + (r — 1)Fe], (3.7)

where r = m. The parameter n2 is used to tune the control law. To ensure stability 

of s2 under the Lyapunov function V2 = 2 s2 requires n2 △ △if n2 > 0 is assumed 

as shown by the Lyapunov derivative evaluated along the closed-loop trajectory of s2

after simplification

V2 = —S2(n2 sign(s2) — △)• (3.8)

By integration of the reaching law, it can be seen that for s2(tI) > 0 the reaching time 

tR follows tR < s2^). Similarly, for s2(tI) < 0, tR > s^I), leading to the conclusion 

that the reaching time is finite. Also, omitted steps imply tR > tI , which is consistent 

with the circumstances.
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Under the case where there is known information about the viscous damping in 

the system (5), the test robot can be modeled by adding damping with coefficient b 

as

mx + 50 (x, x) = ku — Fe — bx. (3.9)

If furthermore the desired behavior of the system includes damping, the goal dynamics 

are updated as

Mx = —Fe + W — Bx (3.10)

with B as the target damping. The sliding surface under these circumstances is

determined in the same manner as the undamped case.

s2 = Mx(t) + Bx
Zt

tI
(Fe(T ) — W )dr — Mx(tj ) — Bx(tI ). (3.11)

The resulting control law is then

U2 = —7 [r(n2sign(s2) — W ) + (r — 1)Fe + (Br — b)x]. (3.12)k

For these control laws the integral must be reset at the beginning of each contact 

period.

It is interesting to note that including an environmental damping within the 

external force Fe0 = Fe + Bx, substituting this into (3.11) in place of Fe, and shifting 

all damping terms to the integral identifies the damping as an external force because it 

returns the impulse-momentum description of the nondamped case with an additional 

impulsive term. This concept could be used to create virtual contact environments.

3.4 Terminal Sliding Mode Control

For the off-contact portion of the cycle a tracking controller is required to follow 

human hip vertical displacement reference data. Because of the switching occurring 
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between the two control methods, rapid convergence, preferably with a known finite 

time, is desirable. Terminal sliding mode control was selected for this task.

The test robot when off-contact, meaning Fe = 0, can be written in state space

form with x1 , x and x2 , x

b 6 k (3.13)
x 2 = - mx2 - m + mu

The foundation of terminal sliding mode control for such a system is from [83]. Here 

it is shown that for a specific form of Lyapunov function stability is attained in finite 

time. If this result is used to determine the control law to make the sliding function 

stabilize to zero, convergence by a known time can be enforced for the sliding function. 

Accordingly, a sliding function that is formed as a differential equation is defined

s1 = e + p + ^en (3.14)

on e = x1 — xd, the tracking error. The constants ^ > 0 and J ■ 0 are tuning 

parameters, and n € (0,1) affects the convergence time. Note that if s1 reaches zero, 

the error will also converge to zero. Greater detail regarding these results can be 

found in [81, 82, 96].

3.5 Switching Laws

Given the two control laws, one for contact and one for off-contact, a method of 

switching between them is required. A discrete value q will be used to represent the 

state of the system with q = 0 equivalent to off-contact and q = 1 for contact. When 

beginning from off-contact, it seems naturally sufficient to use the force Fe to engage 

the contact controller (impulse-momentum sliding mode control).

Transitioning back to off-contact, however, cannot be accomplished based on the 
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force unless the system bounces off of the environment, causing Fe to drop. This 

feature was taken advantage of to provide switching in simulation by implementing 

a hysteresis region to prevent rapid switching. While bouncing is practically possible 

for real-time experiments as well because the test robot operates on a treadmill and 

the belt is elastic with a high stiffness, it is not suitable for the final goal, which is 

emulating human gait. Accordingly, a dwell-time approach was taken here. Force 

sensing was used to activate the contact controller. It would remain active until a 

given period of time had passed at which point the off-contact controller would be 

engaged. This switching law can be written as

{
1, q = 0 and Fe > Fh and t^k > T0

D (3.15)
0, q = 1 and tcont > TD1 ,

where Fth is the force threshold, TD0 is the contact dwell time, and TD1 is the off-contact 

dwell time. The variables ttrack and tcont are timers for the off-contact and contact 

modes, respectively. They are reset after the system exits their associated control 

modes.

Stability of the switched system under the switching law (3.15) can be inferred 

based on the separate control systems. The individual controllers have been previously 

shown to be stable in their active regions. A finite period of activity is enforced by 

the switching law for the contact controller. Once this time has passed, the control 

is handed back to the off-contact controller, which provides finite time convergence 

to a trajectory. As long as the dwell period for tracking is sufficient for convergence, 

the off-contact controller will lead the system into making contact again, triggering 

the other controller and setting up a periodic cycle.

Extending beyond the solely vertical trajectory of [96], walking implies that the 

thigh rotation degree of freedom be reinstated. Under this case it is suggested that 

the periodic trajectory of the thigh could provide a suitable trigger without the use
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of dwell times. A candidate for this is suggested as

1, Fe > Fth and q2 > 0

q+ = 0, q2 > qd,th and q2 < 0 (3.16)

q, otherwise,

where q2 is the thigh angle coordinate, qd is the reference acceleration for the thigh 

angle, and qdth is a threshold selected near the maximum magnitude for the thigh 

angle acceleration when it is extended behind the vertical orientation. Because the hip 

trajectory follows a trajectory similar to - sin(t), this threshold corresponds to the 

reversal of the thigh after stance phase. q2 > 0 implies that the thigh is flexed forward 

of the vertical orientation. It is noted that the cyclic exchange between controllers 

under switching law (3.16) is guaranteed by the introduction of the reference data as 

it maintains a fixed timer, much like the dwell times previously used. However, this 

condition does not require specification by the operator and automatically matches 

the periodicity of the gait cycle.

3.6 Results and Discussion

According to [96], simulations were run without the use of the dwell-time switching 

rule. Rather, force alone was used. Then experimental tests were completed using the 

controller under the dwell time switching law. Building upon [96], preliminary results 

for the walking case will be described as well. The ground contact and prosthesis 

models proved insufficient in simulation to represent the actual system while walking. 

Though periodic motions were attained, the resulting trajectories were unrealistic. 

Therefore, only experimental results are given for the walking case.
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3.6.1 Simulations

Reference [71] describes one simulation with damping and one without. These 

primarily show the effects of a switching law without the dwell time. A mass of 

M = 40 kg was emulated. The hysteresis bound was set to 1 N with lower bound at 

0 N.

Without virtual damping the results show the effects of the leg bouncing off of the 

simulated treadmill surface. This, however, does allow the system to switch between 

controllers in a cyclic manner. The tracking controller converges when active (q = 0) 

in just over 0.1 s. The alternating sliding functions s1 and s2 effectively converge to 

zero.

The second case simulated included a virtual damping of 2500 Ns/m. The 

bouncing was completely eliminated. Rather, the system remained in contact mode 

for the remainder of the simulation under the force-only switching law. However, 

this provided proof that the force could be well regulated at just under 400 N 

(Mg = 40 kg x 9.81 m/s = 392.4 N).

3.6.2 Experiments

Several trials were run with the test robot system. The prosthesis described in 

Chapter II was connected to the hip robot for these tests. The knee was locked for 

the vertical displacement tests and then operated under the control presented in that 

chapter for the walking test. The shank force measurements from the strain gauges 

were used for Fe for each trial.

Reference [96] reports the vertical displacement test. For these trials the switching 

law including the dwell time was used. Emulation of M = 20 kg and M = 60 kg was 

attempted. A damping of B = 2500 Ns/m was used in both cases as it is known that 

the treadmill belt stiffness is quite high, about 37000 N/m. Tuning of the terminal 

sliding mode controller was completed by trial and error based on the initial tuning 
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from the simulation.

For each case the sliding functions neared zero. Accordingly, the force approached 

the desired virtual weight when in contact, and the terminal sliding mode controller 

quickly regained trajectory tracking during off-contact mode. Also, the dwell time 

switching law led to a consistent exchange of controllers.

Validation of the dynamics being emulated by the system was completed offline 

in [96]. By simulating the system (3.10) with the recorded data for Fe from the real­

time experiments, the trajectories expected from the virtual system were generated 

and showed good agreement with the measured trajectories. Results in terms of root 

mean square error for both cases (20 kg and 60 kg) are reported as less than 1 cm/s 

for velocity and 1 mm for position.

Considering the walking case next, the switching law was updated to depend on 

thigh trajectories (3.16). The thigh rotation degree of freedom was reactivated and 

the knee allowed to perform according to its independent control. It should also 

be noted that both the hip vertical and thigh rotary degrees of freedom were under 

traditional sliding mode control instead of terminal sliding mode control for this trial 

due to ease of tuning. Virtual mass M = 35 kg was emulated for this case, and the 

same damping was maintained.

Several features of the desired control can be identified in Figure 7. First, a cyclic 

transition between controllers is achieved as indicated by q. Second, the force, after 

initial impact, regulates near the desired value. However, the tracking appears very 

poor. This can be attributed to two sources. The desired trajectory is shifted by 

a bias term according to the operator’s judgement. The bias was not adjusted for 

this trial in the interest of focusing on the force regulation. Also, though it cannot 

be determined under the circumstances, the use of traditional sliding mode control 

could have an effect.

The discrete state q returns to the contact controller (q = 1) too quickly to match
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Figure 7: Top: Tracking performance for the vertical degree of freedom for the hip 
robot. qd is the desired trajectory, and q1 is the actual trajectory. The switching 
state q scaled by a factor of 1/10 is also shown. q/10 = 0.1 indicates that the contact 
controller is active. q/10 = 0 indicates that the tracking controller is active. Bottom: 
Shank force measurement Fe for emulating M = 35 kg

the gait cycle. This is because higher force readings occur when there is no ground 

contact but the prosthesis is in motion. The switch back to contact mode under these 

forces is delayed only by the condition on the thigh angle. Significant bouncing is 

also a notable feature of these results, and is indicated by the positive peak of q1. 

This is likely in part because the prosthetic foot makes initial contact with the heel 

as opposed to the complete sole. For heel-alone contact the foot is designed to allow 

a higher displacement of the leaf spring.

Periods during which the force oscillates about the desired value correlate with 

s2 ~ 0 as shown in Figure 8. The effects of poor tracking can be identified in the 

switching function s1, which approaches but does not reach zero when the off-contact 

controller is activated. The control signal spikes with each controller switch. With 

improved tracking this is anticipated to decrease. Chattering is evident in the control 

signal when either switching function approaches zero. For the off-contact controller 

this could be improved by reinstating the terminal sliding mode control.

The prosthesis prototype withstood all mechanical tests, supporting approxi­

mately 60 kg in the vertical displacement tests and approximately 35 kg in the walking
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Figure 8: Top: Control input u. Bottom: Sliding functions for the prosthesis test 
robot walking trial. s1 is associated with the off-contact tracking controller. s2 is 
associated with the contact controller. The switching state q scaled by a factor of 5 
is also shown. 5q = 5 indicates that the contact controller is active. 5q = 0 indicates 
that the tracking controller is active 

tests. Due to uncertainty regarding the accuracy of the shank force measurement un­

der these conditions, higher mass values were not tested in an effort to guarantee 

remaining within the physical limitations of the test robot.

3.7 Remarks

The development and results of [96] provided a foundation for controlling the 

one-legged prosthesis test robot to emulate the weight of a human settling onto the 

prosthetic leg during walking as opposed to pure-tracking induced contact forces. 

Reference [96] develops the vertical motion alone. Walking requires adding the thigh 

rotation and activating the prosthetic knee; it also introduces the dynamics associated 

with a different region of contact for the prosthetic foot. A switching law to induce 

walking motion was proposed, and preliminary experimental results under this law 

were given. Cyclic motion along with contact force regulation were obtained; however, 

the test results reveal a lack of off-contact tracking and poor switching timing. Even 

so, the prosthesis maintained steady operation under its independent controller. Due 
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to the inability of the hip under the current state of the proposed control to emulate 

more natural walking though, further analysis of the prosthetic gait was not pursued. 

Shifting the hip reference data and increasing the force threshold are anticipated to 

provide significant improvements. In addition, terminal sliding mode control should 

replace the traditional sliding mode control during the off-contact phase, reestablish­

ing the convergence guarantees. These adjustments should improve basic walking 

gait.

During the walking trial, it was observed that the test robot would occasionally 

enter a gait cycle involving pure toe or heel walking. Because the control has no 

means of identifying the difference, the measured shank force is indiscriminate, this 

pattern would continue for an extended period. If after completion of the previously 

identified steps to achieve better walking gait these patterns still arise, a method 

based on the strain gauge data could be developed to return the robot to a normal 

gait cycle. For example, the raw strain gauge measurements could be recalibrated to 

provide some information about the moments seen by the foot.

Lastly, it is proposed that the test robot can emulate walking on various surfaces, 

creating a virtual environment like sand. The impulse-momentum sliding mode con­

trol method does not require that the damping remain linear. Rather, a nonlinear 

model is possible. The control law could be extended for use with a model such as is 

derived in [18]. The limitations of this concept should be explored, and completion of 

such a study would significantly extend the capabilities of the hip robot and provide 

valuable insight into the response of prosthetic legs under various environments.
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CHAPTER IV

WALKING TRIALS WITH THE POWERED TRANSFEMORAL PROSTHESIS

4.1 Introduction

Two forms of human testing were completed with the prosthesis developed in 

Chapter II. The first was by an able-bodied individual by use of a bent-knee or 

bypass adapter. These tests were to confirm that individual features of the control 

law responded as expected. They were also used to find an initial tuning for the gains, 

primarily to identify their orders of magnitude. Following this early investigation, 

trials with a volunteer with a transfemoral amputation were conducted at the Louis 

Stokes Cleveland VA Medical Center. The experimental methods used during this 

study are described first. Gait analysis is then performed and followed by analysis 

of the prosthesis’ internal sensor data. Results show the feasibility of the control 

method and prototype design. Basic walking gait is attained alongside self-powering 

operation.

4.2 Experimental Procedure for Human Trials

The test protocol was approved by the Louis Stokes Cleveland VA Medical Cen­

ter’s institutional research board. Three constant walking speeds were tested, and
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Figure 9: Volunteer test subject wearing the prosthesis prototype (c) 2018 ASME [59]

one trial starting from standing, reaching the maximum speed comfortable to the test 

subject, and returning to standing was conducted. The three constant speeds were 

chosen as the test subject’s preferred speed while walking with his daily prosthesis 

(0.75 m/s) and 0.15 m/s above and below that rate. With exception of the variable 

speed trial, the same data was collected using both the test subject’s daily-use pros­

thesis and the prototype prosthesis. However, the prostheses were tested on separate 

days.

Figure 9 shows the 35-year-old male test subject (175.3 cm, 81.7 kg) with a 

transfemoral amputation of the right leg wearing the prosthesis. The volunteer for this 

study daily uses a Plie knee from Freedom Innovations and, as previously mentioned, 

an Ottobock Triton Vertical Shock foot. The Plie knee falls into the category of a 

microprocessor-controlled passive knee. For each test condition the subject’s daily 

foot and socket were used to conduct the tests. Adjustments were made by a certified 

prosthetist to fit and align each piece.

For at least fifteen minutes on two days prior to the data recording session the 

subject used the experimental knee to orient himself to its operation. During these
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Parameter Value
bh (Ns/mm) 2.5

qthreshold (mm) 2
K (N/mm) 200
Ks (N/mm) 0

q4 (mm) 0
B (Ns/mm) -1.743

Table II: Prosthesis control gains

trial sessions, controller tuning was completed starting from the gains established 

during bent-knee adapter testing and adjusting according to the test subject and 

prosthetist’s feedback. The final gain set as used for all trials is listed in Table II.

A 10-camera passive marker motion capture system with a 100 Hz sample rate 

(Vicon, Oxford Metrics, UK) recorded 26 markers placed on standard anatomical 

locations according to the Human Body Model (Motek Medical, Amsterdam, NL). 

The force plates of the split belt treadmill measured ground reaction forces for each 

side (Motekforce Link, Amsterdam, Netherlands). All gait data was post-processed 

with a second-order zero-lag Butterworth filter with a 6 Hz cutoff frequency [132].

4.3 Gait Data Analysis and Results

Inverse dynamics were computed in the sagittal plane for the leg segment on the 

amputation side according to the method of [145] from the marker and forceplate 

data. The data were time-normalized to percent gait cycle. Ensemble averaged 

profiles for hip, knee, and ankle angle, moment, and power across ten gait cycles for 

each speed tested and both prostheses are shown in Figure 10, which also includes a 

set of able-bodied data from [105] for comparison.

Gait with both the experimental and daily prostheses resulted in similar hip and 

knee angles for all speeds. These profiles also approximated the able-bodied data. 

In particular, one can see increased knee flexion angle amplitude with increasing 

gait speed [61]. Another feature of able-bodied knee kinematics, stance flexion [105,
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Figure 10: Kinematic and kinetic data for the hip, knee and ankle joints of an 
able-bodied control subject (black), a volunteer with an amputation wearing the 
experimental prosthesis (solid), and the same individual wearing his daily prosthesis 
(dashed) normalized over time. Data for the volunteer with an amputation represent 
an average of ten gait cycles each at 0.60 m/s (blue), 0.75 m/s (red), and 0.90 m/s 
(green). Control data is at 1.11 m/s and replicated from [105] (Public Domain). The 
gait cycle begins with foot strike. Toe off is marked by a black dashed line and de­
noted by TO. Positive angles and moments correspond to hip and knee flexion and 
ankle plantarflexion. Positive joint power indicates power production, and negative 
joint power is associated with power absorption
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143, 145], does not appear in Figure 10. This is typically associated with the knee 

absorbing some of the impact of ground contact and is inconsistent across passive 

and active knee prostheses for walking [47, 50, 105, 109, 118, 120]. Three possible 

explanations for this behavior include lack of trust in the knee prosthesis, effects of 

the prosthetic ankle, and gait habits built up by use of a passive prosthesis. Even 

though the proposed controller would provide support, lack of experience with the 

knee lends a measure of caution as knee buckling is a dangerous situation, particularly 

when one’s prosthesis is seen as unpredictable. The second possibility, the prosthetic 

ankle is the source, stems from data where individuals with transtibial amputations, 

those who require a prosthetic ankle alone and possess a natural knee joint, also do 

not walk with stance flexion [104]. Lastly, most passive prostheses naturally collapse 

at a slow rate when flexed. To straighten the knee requires the effort of the healthy 

side. It follows that stance flexion is simply a waste of energy when walking with 

a passive prosthesis, leading to habitual gait patterns avoiding it. Regardless of the 

cause or combined causes, the controller of the experimental prosthesis theoretically 

supports stance knee flexion, and it would likely require training and more experience 

with the prosthesis for the volunteer to consistently demonstrate it. For example, 

reference [121] has shown stance flexion for one subject using a powered prosthesis; 

whether this is due to intensive control tuning or his experience is unclear. The top­

right plot of Figure 10 shows that the ankle kinematics are consistent with prosthetic 

gait. Because it is a passive spring, it is missing the major plantarflexion action 

during early swing; rather, it returns to equilibrium.

Analyzing the joint kinetics, one can see that the hip moments significantly differ 

from the able-bodied case but are similar in shape between both prostheses. The 

negative moment during stance phase might indicate an attempt to keep the knee 

locked for this period, preventing the aforementioned knee stance flexion. The pros- 

theses also behave similar to one another at the knee joint. While there is actually a 
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flexion moment at the knee, it appears to be overcome by the hip action, yielding no 

kinematic response. In addition, this flexion moment clearly opposes the extension 

moment that should occur during this period; it is likely due to the mechanical hinge 

limit preventing overextension of either prosthesis. This behavior is consistent with 

other passive prosthesis walking gait data [105] and precludes the impact absorption 

provided by stance flexion. Achieving stance flexion with the experimental prosthe­

sis by the methods previously described is expected to correct the sign of the knee 

moment in this segment of the walking gait cycle. The ankle moment is closer to the 

control data for the experimental prosthesis than the daily prosthesis. These com­

parisons are made lightly, however, as Winter concludes that the gait kinetics used 

to generate what is considered standard kinematics show high variability [144].

Power at the hip indicates significant usage for both prostheses during stance 

phase; as previously indicated from evaluating the hip moment, this is likely for 

stabilization. Two features of the knee power curve validate its design and response. 

First, the lack of positive or negative power for 40% of the gait cycle indicates that 

the prosthesis is conserving power while in the self-locking position. Second, there 

is a positive power period beginning at 40%, indicating that the motor is providing 

power to the system. Positive power is distinctly lacking from the daily prosthesis 

profiles. Both prostheses show the latter two negative power segments associated with 

swing phase [143]. Differentiating the prostheses by design though, the experimental 

prosthesis can store this power while the daily prosthesis releases it as heat. Lastly, 

evaluating the ankle profile, it is consistent with the power absorption and release 

that would be expected from a spring type element. Neither case, the experimental 

or daily prosthesis, provide sufficient positive power for push off, highlighting the 

importance of future development of an integrated powered ankle solution.

Taking the leg subsystem beginning from the hip interface as an independent 

system, the work associated with the hip interaction forces and each joint torque can
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Figure 11: Average change in energies across ten gait cycles for the leg subsystem 
beginning at the trunk/hip intersection. Terms represented include work done by hip 
vertical force (HV), hip horizontal force (HH), hip joint moment (HM), knee joint 
moment (KM), and ankle joint moment (AM) for both the experimental prosthesis 
and the daily prosthesis. A positive change in energy represents energy added to the 
leg subsystem

provide insight into the volunteer’s energy requirements while walking with either 

prosthesis [133]. All resulting energy terms are shown for each speed in Fig. 11. The 

only power sources for this system are the forces and moment between the hip and 

trunk and the forces associated with ground contact at the foot. Under the rigid 

body assumption, the ground reaction forces do no work and are, therefore, excluded 

from the analysis.

The work done by the hip vertical force (HV) during the volunteer’s use of the 

experimental prosthesis results in energy being added to the leg subsystem whereas 

HV represents a loss of energy from the leg subsystem when the test subject uses 

his daily prosthesis. The expenditure associated with the experimental prosthesis, 

however, decreases with increased speed. The horizontal components of the work 

done by the hip interaction force (HH) are far less patterned according to speed but 

43



do consistently require a small energy input by the volunteer for all speeds with the 

experimental prosthesis. Completing the analysis of the hip, the work of the hip 

joint moment (HM) requires less energy from the leg subsystem for the experimental 

prosthesis than the daily prosthesis, and both prostheses require more energy with 

increasing speed. A rough sum of the terms associated with the hip suggests that 

there is a slight increase in energy required at the hip from the test subject when 

using the experimental prosthesis rather than the daily prosthesis.

The knee joint moment work (KM) of the experimental prosthesis incurs less 

energy loss from the leg subsystem than the daily prosthesis, and, notedly, some of 

this loss can be stored by the regenerative drive in the experimental prosthesis. The 

opposite situation holds for the work of the ankle moment (AM); the experimental 

prosthesis extracts more energy from the leg subsystem than the daily prosthesis, 

indicating that the volunteer’s changes in gait with the experimental prosthesis might 

be less efficient for the ankle. It is noted that this type of analysis is susceptible 

to inaccuracies in marker placement, shifting of joint centers of rotation, soft tissue 

displacement, and cross-joint energy transfer by the hip muscles that are not captured 

by this method. However, the relative trends established should be less sensitive to 

these sources of error [133, 152].

Video of the trial completed at 0.9 m/s is available in [137].

4.4 Prosthesis Sensor Data Analysis and Results

The data collected from the prosthesis’ sensor suite can provide additional insight 

into the operation of the system and further substantiates the observations made from 

the gait data. Considering the control signal in Figures 12 to 14, one can see that 

there is slight activation of the controller to straighten the knee during stance phase 

particularly for the two non-preferred speeds. While it is currently anecdotal evidence, 

perhaps habitual gait with the test subject’s passive prosthesis is more prevalent at
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Figure 12: Average control signal r and one standard deviation for walking at 0.6 m/s. 
The gait cycle begins with foot strike. Toe off is marked by a black dashed line and 
denoted by TO 

the preferred speed, where there is significantly less evidence of the potential for 

stance flexion. Further evaluating the generated controls, they maintain magnitudes 

well within the range for r, leaving the possibility of more demanding tasks such as 

sit to stand or stair climbing.
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Figure 13: Average control signal r and one standard deviation for walking at 
0.75 m/s. The gait cycle begins with foot strike. Toe off is marked by a black 
dashed line and denoted by TO

Figure 14: Average control signal r and one standard deviation for walking at 0.9 m/s. 
The gait cycle begins with foot strike. Toe off is marked by a black dashed line and 
denoted by TO
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Figure 15: Average normalized shank force measurement and one standard deviation 
for walking at 0.75 m/s. The gait cycle begins with foot strike. Toe off is marked by 
a black dashed line and denoted by TO

Validating the measurement used to generate the control, a representative curve 

for the normalized shank force is given in Figure 15. Here it is observed that the 

normalization factor was effectively measured and maintained relevance; the limited 

standard deviation band suggests that for the time period across which a given test 

was completed strain gauge drift, a common issue with these sensors, was not sig­

nificant. It is also noted that the force takes on the familiar double-peaked shape of 

vertical ground reaction force as measured in most gait studies by highly accurate 

force plates [9].

An internal energy balance of the experimental knee reveals the efficiency of the 

regenerative actuator; see Figures 16 to 18. The input is the knee moment work, 

computed from the gait data. The difference between this and the change in energy 

at the electrical port of the motor approximates the amount lost due to friction 

or being stored as potential or kinetic energy. To determine the electrical losses,
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Ultracapacitor Storage

Figure 18: Sankey diagram of the internal energy balance for the experimental pros­
thesis walking at 0.90 m/s.

0 96 J [8 7%]

neglecting inductance, the difference between the energy entering the capacitor and 

that available at the electrical port of the motor is evaluated. What remains passes 

into the capacitors.

The majority of the energy is lost to or remains in mechanical forms. This is 

consistent with expectations for the system components; for example, an ACME lead 

screw is used in the transmission and has a reported efficiency of 65%. Electrical 

losses decrease with increasing speed. The more notable improvement in electrical 

efficiency occurs between the slow and preferred speeds, suggesting that the motor 

driver has an optimal minimum voltage and/or current for efficiency and improved 

efficiency might be attainable for these circumstances with a different driver. The 

electrical losses can also be partially attributed to a constant power usage of 0.7 W 

by the motor driver and the Joule losses of the motor armature and tether. At all 

speeds the capacitor storage bank saw an increase in energy. While this energy is 

certainly coming from the test subject, it need not be a concern if it stays within the 

parameters suggested by able-bodied measurements. To truly evaluate this would 

require metabolic cost measurements, which were not able to be taken during this 

trial but would be a helpful metric in the future. If the capacitors become discharged,
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Figure 19: Net increase in capacitor bank voltage during variable speed trial where 
the volunteer began from and returned to a standing state, reaching a maximum gait 
speed of 1.35 m/s. Inset shows one representative gait cycle

a battery backup is a likely solution.

Examining the freely variable gait speed test shows that the volunteer chose to 

walk at up to a maximum speed of 1.35 m/s. No control gains were adjusted to 

complete this trial, and across a one minute period the test subject transitioned from 

standing to the peak speed and returned to standing. Furthermore, increasing depth 

of knee flexion when increasing speed was consistent with able-bodied gait [61], ex­

hibiting the flexibility of the controller. The length of the trial also allows observation 

of the prosthesis’ regeneration capacity. Figure 19 shows that the capacitor bank volt­

age increased by 0.023 V. It is noted that the voltage drops under load and recovers 

when the load is removed, which is indicative of the supercapacitor bank’s internal 

resistance. Looking at the inset of a representative gait cycle, there are two positive 

voltage peaks correlating with the negative power peaks seen at all gait speeds in 

Figure 10. The voltage drop near the end of the cycle corresponds with activation of 

the hard stop prevention damping at the end of swing phase.
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4.5 Test Sub ject Feedback

Upon concluding all trials, the volunteer provided his thoughts on the experimen­

tal prosthesis. He expressed concern about the weight of the device. Indeed, the 

combined weight of the experimental prosthesis and the foot is 4.23 kg as opposed 

to 2.21 kg for his daily prosthesis and the foot. The experimental prosthesis likely 

requires refining to account for the weight associated with the residual limb, socket, 

and embedding the electronics; however, it is a worthy consideration that anthro­

pometry suggests a weight of up to 4.98 kg for this individual’s leg [145]. Additional 

feedback indicated that the he felt the most benefit from the powered prosthesis at 

faster walking paces.

4.6 Remarks

Experimental tests with an individual with a transfemoral amputation have shown 

the feasibility of a prosthesis prototype that implements a novel control method and 

energy regeneration. Varying impedance in a continuous fashion dependent on shank 

force sensing without having to use gain switching makes the control tuning simple 

and the prosthesis response predictable. This approach also allows for variable gait 

speeds without introducing further gain scheduling. With five parameters that can 

be easily related to the gait cycle, tuning is intuitive. The last parameter can be 

identified analytically to achieve energy regeneration by the method developed in 

this work. The associated use of negative damping to achieve energy regeneration is 

also unique. Indeed, this is the first known application of purposeful electrical energy 

regeneration in a active prosthetic knee that shows self-powered operation in a human 

trial.

Future study should pursue three directions. First, an active ankle should be 

designed and integrated into the prosthesis. As a net positive power source to the 
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gait cycle, an active ankle should improve walking gait. Secondly, efforts should be 

made to achieve more natural gait kinematics and kinetics with the combined system. 

Progress in this area should be supported by the implementation of an active ankle 

but might also include user training to re-integrate previously avoided gait features 

such as stance flexion. Third, a broader task set needs to be evaluated. For example, 

the proposed control method could conceivably handle foot-over-foot stair ascent. It 

can provide support when the intact side is leading, and when the prosthetic side is 

leading, as the individual increases the force through the shank, the knee will extend. 

Assuming the individual using the prosthesis has the capacity to support the hip, the 

action of knee extension will lift the him or her to the next step.

In addition to these broader considerations, the prototype could benefit from 

extensive design optimization for efficiency. The mechanical system can easily be 

improved by a ball screw (90-95% efficient). Embedding the electronics and superca­

pacitors would decrease Joule losses by removing the tether. A more efficient motor 

and driver would also help; particularly while choosing the motor, guidance can be 

derived from observing that regeneration is related to the motor torque constant and 

armature resistance. Truly, if the prosthesis can capture most of the available knee 

power during gait, it should approach the capacity to power an active ankle [143]. 

Lastly, to consider longer operation periods, the prosthesis will require a comprehen­

sive power management system to handle both the possibility of overcharging and of 

extended net positive power usage leading to uncontrollability when discharged.
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PART 2:

MUSCULOSKELETAL MODELING FOR 

HUMAN-MACHINE INTERACTION SIMULATION
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CHAPTER V

BACKSTEPPING CONTROL OF A MUSCLE-ACTUATED 

LINKAGE HUMAN SIMULATION

5.1 Introduction

With the advancement of computing power, the practice of performing extensive 

simulation prior to prototyping continues to gain momentum. However, limited lit­

erature addresses the case where a human interacting with a robotic system must 

be simulated. A foremost example is prosthetic leg design, which typically moves 

directly from mechanical and control design, perhaps considering simulation of the 

robotic system in isolation, to human-involved physical prototype tests. Similarly, 

the design of advanced exercise machines and related control algorithms generally 

proceeds to human trials without simulating the machine and human together. To 

address this limitation of the human-machine interaction design pipeline, a closed 

loop simulation of a human represented by an open chain robotic linkage where the 

system actuators are dynamic muscle models is proposed.

Hill-type muscles have been selected to provide actuation to the system. More ad­

vanced muscle models exist, including one based on partial differential equations [46] 

and another based on finite elements [150], but the accuracy of the generated force
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rather than internal dynamics are being considered here. Accordingly, the Hill muscle 

model is sufficient because it highlights the natural components of the human muscle 

and is considered both accurate and computationally feasible for simulation [146,151].

Although human models actuated by muscles have previously appeared in the 

literature, their goals vary from this work and can be classified broadly by two cate­

gories, system identification and inverse dynamics. For system identification studies 

such as [2] the simulation is generally open-loop and formulated as an optimal con­

trol problem. Their primary goal is predictive—to seek to identify some feature(s) 

of the control system of the human. In the second case for which [17, 31, 132] are 

representative studies, human data is input to a model, and the dynamic response is 

the output. This data is helpful for medical assessment or for validating the results 

of the first category of studies [148]. In contrast, the proposed human simulation is 

closed-loop such that it can track internally produced trajectories and interact with 

the environment.

Model predictive control (MPC) has been used to close the loop around the 

previously mentioned optimal control methods. By applying MPC, a cost func­

tion associated with standard human motion goals, such as minimizing muscle ac­

tivations or joint torques, is implemented. Several studies specific to gait employ 

MPC [53, 91, 116, 117, 129, 147]. However, these works neglect the effects of muscle 

dynamics, and for examining human-machine interaction, the muscles are fundamen­

tal. For instance, applying such a simulation to advanced exercise machine design 

requires muscle data to evaluate the effectiveness of the machine in general. More­

over, one study where extremum-seeking control was applied to an exercise machine 

to optimize muscle effort required direct feedback from the muscles [90]. Addition­

ally, recent work has identified the need to simulate musculoskeletal and prosthesis 

models interacting [31]. In contrast, Mehrabi and colleagues do include muscle dy­

namics in [79], but they eliminate the muscle tendon states because they limit their 
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development to an arm model. In contrast, the proposed work will be established for 

general muscle-actuated linkage models, including all elements of the Hill muscle.

When considering the human controller, the following features can be identified 

from observing the resulting actions of the human system:

1. Capable of nearly exact tracking if required (Tracking control)

2. Capable of skillful environmental interaction when loads are within capacity 

(Impedance control)

3. Capable of changing reference mid-activity (Feedback, Toleration of uncer­

tainty)

The control method developed for the muscle-actuated linkage should capture these 

features. However, it should also be usably convenient as it is intended to be a tool 

in the assistive roboticist’s toolbox.

Hill muscle model-based controllers have been developed for purposes other than 

modeling the human. Examples are scattered throughout the literature for appli­

cations such as exoskeleton and prosthesis controllers [11, 22, 30]. The research per­

formed in the area of functional electrical stimulation (FES) also unites the concepts 

of muscle actuation and control. Control methods such as active disturbance re­

jection, reinforcement-learning, adaptive, predictor-based and PD control have been 

used for FES [48, 51, 52, 64, 128, 149]. In these cases the structure and data contained 

within the Hill muscle is used to inform model-based control laws. In contrast to the 

proposed simulation, the human is seen as external to the system in these papers, 

and the FES controllers do not account for environmental interaction.

Backstepping control was chosen for the human simulation because it offers the 

framework to apply various controllers, for example a joint-level controller, through 

the muscle actuators. It, in effect, allows any control method that has a known Lya­

punov function to be used for the human while providing analytical stability guaran­
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tees [60]. Conceptually then, backstepping can be consistent with the three identified 

features of human control and the self-evident idea that humans do not mentally 

consider the details of what needs to happen at the muscle level to accomplish a cho­

sen task. Seeking these same benefits, [63] uses backstepping for an FES application 

where it is assumed that the muscles will not co-contract. However, in the natural 

system, it is by the co-contraction mechanism that humans can vary the impedance 

of joints for a selected pose [40]; this is associated with the second feature previously 

identified as desirable for the human system when interacting with the environment. 

Accordingly, the backstepping control framework developed in this work will avoid 

the limitation of having only one active muscle at each joint, leaving the opportunity 

for co-contraction available.

Section 5.2 proceeds by presenting background information on the Hill muscle 

model. A simulation developed to study the constitutive dynamics of an antago­

nistic muscle pair is discussed next and is used to introduce backstepping control. 

This is followed by the development of the muscle actuated linkage framework un­

der backstepping control. Within this context two methods for addressing muscle 

redundancy are introduced. Performance is then evaluated for a human arm simula­

tion example, resulting in good tracking and indicating the importance of constraint 

protection within the control method. This chapter concludes by addressing future 

considerations and motivating the next chapter.

5.2 Hill Muscle Model as Actuator

As an alternative to gearmotors, hydraulic pistons, or other typical actuators, a 

model of the human muscle can provide a means of actuation within simulation.

5.2.1 Hill Muscle Model

Consider the Hill muscle model as depicted in Figure 20. An individual Hill mus-
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L
LC LS

PEE

*► $s (LS)

Figure 20: Hill muscle model with series elastic element (SEE), parallel elastic ele­
ment (PEE), contractile element (CE), and control input n. The resulting tendon 
force is denoted $S (LS)

cle includes several elements. First, a series elastic element (SEE) is modeled by a 

nonlinear spring with a slack region; it embodies the effects of the human tendon. 

Next, a contractile element (CE) represents the muscle body; it is the active force 

generating element. Finally, the parallel elastic element (PEE) represents the non­

linear stiffness of the muscle body that becomes effective once the muscle has been 

drawn beyond its optimal length. The control input to the system is denoted by n, 

the neural input.

According to the geometry of the muscle system shown in Figure 20, each muscle, 

uniquely identified by index j , has state LSj with dynamics

• _ • • _ .
LSj = Lj - LCj. (5.1)

Figure 20 also supports a force summation for the contractile element FCE,j

FcEj = ®Sj-(LSj) - >• (LCj), (5.2)

where the $S,j- and $Pj- functions are the force of the SEEj and PEEj, respectively. 

Both force functions are composed of a slack region followed by a monotonically 

increasing function. The slack for &S,j represents a slack tendon and implies that 

the total output force of the muscle remains zero. Similarly, $Pj- produces zero force 

until the muscle is stretched past its optimal length Lo,j .

58



Composed of a phenomenological model, the contractile element produces force 

according to

FCE,j = ajfj(LCj)gj(-LCj)Fmax,j, (5.3)

where the first three terms scale the maximum isometric (constant length) force 

Fmax,j . Scaling term aj ranges between zero and one and is related to the neural 

input nj by first order lag dynamics, identifying aj as the second state associated 

with each muscle. Details of these dynamics will be discussed in later sections. The 

second scaling term is the function fj , which can be described as the force-length 

relationship. It is defined by a Gaussian shaped curve with a maximum value of one 

at the optimal contractile element length Lo,j . Third, the scaling function gj adds 

the effects of the muscle contraction velocity on the force generation capacity. It is 

described piecewise by the Katz and Hill curves

gj(-LC j ) =

4 17 /1 ~ X ~ / 4 । 1 x r 7^AVmax,j (1-gmax ) -gmax ( A + 1)LC j
AVmax,j (1- gmax) -(A+1) LC j

AVmax,j +ALCj

AVmax,j -LCj ,

LCj > 0

• _.
LCj < 0,

(5.4)

where A is the Hill constant, Vmax,j is the maximum contraction velocity, and gmax 

is the eccentric contraction limit. The range of the gj function is between -A and 

gmax [37, 54].

Equating (5.2) and (5.3) gives a constraining equation for LCj

LCj = -gj-1(zj ), (5.5)

where

zj =
®s,j (LSj) - $P,j (LCj)

ajfj(LCj)Fmax,j
(5.6)

completing the Hill muscle model.
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5.2.2 Equilibrium Properties

Understanding the equilibrium properties of the muscle dynamics is foundational 

to constructing the desired simulations. To evaluate equilibrium, assume a constant 

muscle length, Lj = 0; this implies that any system being actuated by the muscle 

subsystem is also at equilibrium. Setting the state derivative of LSj to zero gives

LSj = 0 = Lj + LCj =^ LCj = 0. (5.7)

Following this condition through (5.5) and (5.6) leads to zj = 1 and consequently

*sj(LS) - ip,j(LCj) = ajfj(LCj)Fmaxj, (5.8)

which simply indicates that the difference in force between the SEEj and P EEj 

must be equivalent to the force generated in the CEj under equilibrium conditions, 

as denoted by the overbars.

The second state associated with each muscle is the activation. Its state derivative 

is also set equal to zero for equilibrium. Considering that the dynamics of this state 

are in the form of a first-order lag with the input nj , it is evident that equilibrium 

requires aj = nj.

Briefly considering the Hill muscle model’s stability at a constant length provides 

insight into the muscle’s general behavior. Note that Lj = 0 does not imply LSj = 

LCj = 0. A brief simulation study of this feature of the muscle dynamics showed 

invariance to differing initial combinations of LSj and LCj for a fixed muscle length 

Lj . For initial conditions consistent with the muscle dynamics, the dividing point in 

the constant length Lj between LSj and LCj would converge to a combination of LSj 

and LCj such that z = 1.
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5.2.3 Model Normalization

Because some preliminary studies completed within this work do not directly 

correlate with any human joint, a normalized model was used, thereby studying the 

muscle in general without having to assign properties of, for example, the Biceps 

Brachii and so limiting the results to that case. According to [151], each muscle 

length parameter can be normalized by Lo , each velocity term by Vmax , and each 

force by Fmax . These three parameters can be specified uniquely for each muscle. 

For the normalized studies of this work, however, the same parameter values were 

maintained across muscles. Under these circumstances a normalized time can be 

determined as

t , — with Tc = o . (5.9)
Tc V max

With this information the normalization can be extended to non-muscle subsystems. 

For example, a mass being positioned by a muscle actuator combines these two system 

types. To normalize a general state equation requires chain-rule expansion in terms 

of T . Returning to the single muscle actuated mass example and denoting normalized 

variables with a superscript n, normalization of a linear velocity x in terms of the 

muscle parameters and normalized time under the assumption that position xn , L^- 

gives 

dxn dxn dt dxn 
dT dt dT dt

1 dx
Lo dt ) c

1 dx
Lo dt

Lo

Vmax

1 dx
Vmax dt ,

(5.10)

where the non-normalized state equation dx must now be substituted. This simple 

case leads back to the previous statement that velocities can be normalized by division 

by Vmax . Evaluation of more complex cases can be completed in a similar manner.
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Figure 21: Mass system actuated by an antagonistic pair of muscles that are each 
anchored to a wall. The walls are distance C apart

5.3 Antagonistic Muscle Pair Actuated Mass

To develop a means of understanding the fundamental dynamics of an antagonistic 

muscle pair, a simple simulation consisting of a mass between two opposing muscles 

that were each attached to a wall was developed. Trajectory tracking for the mass is 

desired. The system construction implies that the force applied to the mass is the net 

consequence of both muscles; they are redundant actuators. This system has been 

developed in two stages, without and with the activation dynamics. For details of 

the simpler case, without activation dynamics, the reader is referred to [101]. Much 

of the work to be presented here has been published in [139].

5.3.1 Muscle Actuated Mass Model

Figure 21 illustrates the two muscle actuated mass system. In addition to the 

Hill muscle model as previously described, several further notations have been added. 

The length of muscle one is selected as the state x, locating the mass. Also, the 

system is of constant overall length C .

Defining x1 , x, the state equations for the two muscle system after normalization
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are

X i = x2 (5.11)

X 2 == — ($S2(LS2) - ^S^LSl)) m
(5.12)

• _
LSi = x2 - LC1 (5.13)

• _
LS2 = -x2 - LC2, (5.14)

recalling that LCj is not a state but is defined by combining (5.5) and (5.6).

The addition of the aforementioned activation dynamics completes the system 

model. From [151]

aj =---- jaj + ([^act,j - 1]aj + 1)nj, (5.15)
Tact,j Tact,j

where ^ is the ratio of the muscle activation time Tact to the muscle deactivation time 

Tdeact. This results in a total of six state equations for the given two muscle system.

Further considering the state equations, a chain structure can be identified. Tak­

ing equations (5.11) and (5.12) as a block, they are a function of the next block of 

state equations, which are for LSj . LCj appear in these equations and are a function 

of the aj, which can be seen as the final block of state equations. This structure 

suggests that the system could be a candidate for backstepping control.

5.3.2 Overview of Backstepping Control

Backstepping control belongs to the Lyapunov-based control family. The concept 

is generally that a stable controller can be constructed by consecutively addressing 

each layer of a system’s dynamics [60, 62, 66]. Typical assumptions associated with 

backstepping include that the first state equation has a known stabilizing controller 

and associated Lyapunov function and that the entire system fits a strict-feedback 
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structure. A strict-feedback model implies that consecutive states appear in an affine 

manner and the control, which also enters the system affinely, is only accessible at 

the end of such a chain

X 1 = f1(X1) + g1(X1 )X2

X 2 = f2(X1,X2) + g2(X1,X2^X3

(5.16)

Xn-1 = fn-i(Xi,X2, . . . ,Xn-i) + gn-i(Xi,X2, . . . ,Xn-i>n

X n fn(X1 , X2, . . . , Xn) + gn(X1 , X2, . . . , Xn)u.

Reference [66] presents backstepping for a pure-feedback system as well, which is more 

general than a strict-feedback system. With exception of the first state equation, a 

pure-feedback system removes the affine state and control requirements, allowing 

general nonlinear functions of, once again, only the fed-back states for each state 

derivative.

The design of a control law via backstepping proceeds algorithmically. The steps 

used to recursively find a control law start with the first subsystem and can be 

summarized as follows:

1. Identify a variable that could act as a control input for the subsystem. This is 

the synthetic control.

2. Define control law with known Lyapunov function using the synthetic control.

3. Develop error term between synthetic control and selected control law.

4. Determine system dynamics when the error term is non-zero.

5. Augment known Lyapunov function with positive definite function of the error 

term.
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Figure 22: Bob pendulum of length l and mass m with viscous damping k actuated 
by a motor with armature resistance R, inductance L, and motor constant Kt

6. Enforce negative definite Lyapunov derivative algebraically, producing new con-

trol law.

7. Repeat procedure for each consecutive subsystem until actual control inputs are

revealed.

Example: Pendulum Setpoint Control

A simple electromechanical system can be used to illustrate these concepts. Fig­

ure 22 shows a bob type pendulum and motor. Defining the states as x1 , 0, x2 , Q, 

and x3 , i and selecting the control input as V produces the following dynamic

system description:

x 1 = x2

X2 = - g sin(xi) - —X2 + txX3 (5.17)
l m ml2

X3 = - X2 - yX3 + y V. L LL

It is immediately apparent that the state equations fit the definition of a strict- 

feedback system.

For setpoint control an error system can be developed by defining e1 , x1 - x1d and 

e2 = e1, where xd is the desired setpoint. Noting that for setpoint control xd = xd = 0,
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transformation of the system dynamics gives

ei = e2

¿2 =
g k Kt- _ sin(ei + xi) — me2 + m_ x3

Kt R 1
X3 = -Te2 - Lx3 + LV

(5.18)

To initialize the backstepping procedure, e2 is chosen as the synthetic input to the 

first state equation Z1 = e2. It can be seen that a control law ^1(e1) = — e1 stabilizes 

this first state by use of the positive definite Lyapunov function V1 = 2ef. Its time 

derivative is

Vi = eiei = eie2 = —ei, (5.19)

which is negative definite, meeting the requirements for stability. While this control 

law does indeed stabilize the system, there is nothing requiring that e2 converge to 

the desired control. Accordingly, stabilization of the error between the state and the 

control law to the origin is sought. This error is expressed as

w1 = Z1 — ^i- (5.20)

The dynamics of state e1 when error exists are found

ei = '2 + ^i — ^i = wi + ^i. (5.21)

Augmenting the known Lyapunov equation with a positive definite term for this error

results in

Via = Vi + 2 w2. (5.22)

The time derivative evaluated along state trajectories under the assumption that w1

66



is potentially non-zero, recall (5.21), is

Via = eiei + wiwi = ei(wi + ^1) + wi(e2 - ^i)

= -e21 + w1
g k Kt

ei - - sin(ei + xj - ^e2 + m2X3 + e2

(5.23)

To obtain a negative definite Lyapunov derivative, the term is square brackets is set

equal to —Yiwi with gain Yi > 0

g k Kt
ei - - sln(ei + xj - ^^2 + m2X3 + e2 = -Yiwi- (5.24)

Clearly, V1a < V1 under these circumstances. Solving for x3

X3 = - k^- i (1 + Yi)(ei + e2)
g- j sin(ei + xd) (5.25)

leads to an intermediate control law. If x3 meets this equality, the pendulum will be 

controlled to xd1. However, x3 is not the actual control input. A second backstepping 

recursion can be completed to determine the control V that enforces that x3 meets 

the equality (5.25).

In the same way as before, a synthetic control is selected from the state derivative 

equation for e2. In this case Z2 = x3- A stabilizing control law with known Lyapunov 

equation was already determined in the previous step; assign ^2 = equation (5.25). 

To make the state x3 follow this condition, again develop an error between the state 

and its desired value

m2

W2 = Z2 - W = X3 + , Kt
(1 + Yi)(ei + e2) - J sln(ei + xd) - (5.26)
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The dynamics for e2 under this error are

g d k Kt Kt Kt
e2 = - J sm(e1 + x1 ) - me2 + —2x3 + —2 *2 - m2 *2

g d k Kt Kt
= - - Sin(e1 + xi )----e2 + ww+ + ^7*2 •l m ml2 ml2

(5.27)

Once more augmenting the Lyapunov function to enSure Stability

V2a = Via + 2 w2, (5.28)

and taking its time derivative

V2a =eiéi + WiìW 1 + W2W 2

=éi(wi + *i) + wi(é2 - *i)

+ w2
ml2

V3 + KÏ (1 + Y1)(<51 + é2) - g cos(é1 + xd)ei

2 g d k Kt Kt
= — éi + wi \ éi — J sin(éi + xi) — mé2 + m|2W2 + mi2*2 + é2

+ w2
Kt 
Té2

R V ml2

Lx3 + L + K — g cos(éi + xd^ (wi + *i)— —

+ f 1 + Yi — —ì -—g sin(éi + xd) — —é2 + K W2 + K^ *2} 
m l m ml2 ml2

22= — éi — Yi wi + w2
Kt RV

Lx3 + L—
2

—

+ ~Kr ( (1 + Yi — g cos(éi + xd)) (wi + *i)

k g d k Kt Kt
+ 1 + Yi—sin(éi + xi)é2 + wW+ + ?2*2 •m l m ml2 ml2 (5.29)

tcjIj • 1 1j* 1 1j t’z- • j • 1 n • j 1If the term in square brackets is made equal to — Y2w2, V2a is negative definite, and

V2a < Via.

—
R V ml2

Lx3 + L + A- — g cos(éi + xd)) (wi + *i)
Té2

—

+

Kt

— —é2 + KtxW2 + *2 j = — Y2w2

m ml2 ml2

(5.30)
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Figure 23: Simulated state and control trajectories and Lyapunov function V2a for the 
motor-driven bob pendulum under backstepping control. The angle 0 converges to 
the desired setpoint and requires a constant control input V to maintain the position.

The actual control V appears in equation (5.30). Solving for V gives the final control 

law.

Kt R ml2 g
V =L i l ' 2 + ^X3 - “k" i (J + Y1 - J cos(ei + xd) J (wi + ^1)

k g k Kt Kt
+ 1+ Yi - m -7 sin(ei + xi) - m^ + m2w2 + m|2^2 - Y2W2

(5.31)

which can be rewritten as a function of the states alone. It is observed that even 

for a simple system, control law complexity increased rapidly. This is common for 

backstepping and is often referred to as “explosion of terms.”

Figure 23 illustrates a simulation of the behavior of the system under the con­

structed control law for zero initial conditions, xd = n, and Y1 = Y2 = 1. System 
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parameters were selected as m = 0.2 kg, l = 0.3 m, and k = 0.1 Na|, and the motor 

is modeled using values for a Maxon RE 65 24 V motor. Indeed, 6 moves to xd = n, 

and the pendulum settles there as indicated by 6 . A steady-state current, pointing 

to a constant torque to hold the system, is established. An associated steady-state 

control input V also occurs. The slow movement stays well within the motor’s op­

erating conditions. A faster response can be obtained by tuning, and the addition 

of a geared transmission would allow for faster setpoint changes beyond the current 

operating conditions. Lastly, the Lyapunov function for the system and controller 

combination is always positive and decreasing as constructed.

5.3.3 Pure-Feedback (Modified Strict-Feedback) Dynamics

Returning to the muscle actuated mass system, the model can be transformed into 

a format closer to strict-feedback form by utilizing the change of variables -LCj = uj 

and performing the appropriate substitutions. The final dynamic model is

x 1 = x2 (5.32)

X 2 = — ($S2(LS2) - $S1(LS1)) m
(5.33)

•
LSi = x2 + i1 (5.34)

•
LS2 = -x2 + i2 (5.35)

it 1
dg-1(Z1) dzi „-V(r,U,

(5.36)dzi dt 91 "'

dg2-1(z2) dz2 10
U 2 (5.37)= dZ2 dt = g2 U)*"2,

where the functions itj have the form

u j = fij(xi, LSj,ij) + f2j(xi,x2, LSj,ij)nj (5.38) 

70



with general functions of the states fij for i = 1, 2. Clearly, the dynamics fit the 

definition of a pure-feedback system, but the nonlinear introduction of the next states 

in (5.33) precludes identifying the stronger strict-feedback form. Viewing the latter 

four state equations as vectorial pairs, however, they are in strict-feedback form. 

While having these states in strict-feedback form does not change the pure-feedback 

classification, this feature simplifies the controller construction process.

5.3.4 Pole Placement Based Backstepping Control

The stated goal for the muscle-driven mass system is that the mass follow a 

specified trajectory. Accordingly, selecting e1 , x1 — xd and e2 , e1, where xd is the 

desired trajectory, gives the error system

e1 = e2 (5.39)

e2 = ($S2(LS2) - $S1(LS1)) - x1(t)m
(5.40)

1LS1 — e2 + x 1 + Ui (5.41)

1LS 2 — —e2 — ^c 1 + U2 (5.42)

U 1 — f11(e1 + xd,LS1,U1) + f21(e1 + xd, e2, LS1, U1)n1 (5.43)

iU2 — f 12(e1 + xd, LS2,U2) + f22(e1 + xd, e2, LS2, U2>2. (5.44)

Two synthetic inputs are chosen. For the first

$S1(LS1)) — Xd(t). For the second pair Z2 = 

pair of equations Z1 ,

<21 X d + U1
.

Z22 —X d + U2

m ($S2(LS2) -

Rewriting the

now linear system (5.39) and (5.40),

e — Ae + BZi. (5.45)
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Also,

1
LS = e2 + Z2. (5.46)

- 1

First Synthetic Design

Considering this linear system, a pole-placement control law can be used for the 

first synthetic control ^1(e) = -Ke. Stability requires that the closed loop system 

Acl , A - BK have negative real parts of the eigenvalues. For backstepping a 

Lyapunov function must be established for this closed loop system. It is well known 

that
Vi = 1 eTPe, P = PT > 0 (5.47)

is positive definite with the negative definite time derivative evaluated along state 

trajectories

V1 = — -eTQe where — Q = PAcl + ATP, Q = QT > 0. (5.48)

Enforcement of ^1 requires that the selected synthetic control converge to ^1. 

Convergence can be measured by the error w1 = Z1 — ^1. Revealing w1 in the system 

dynamics,

e = Ae + Bw1 + B^1. (5.49)

Augmenting the Lyapunov function with wi to require convergence to zero gives

Via = 2 eT Pe + 2 w2 (5.50)
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for which the time derivative along state trajectories under the error w1 is

♦
V1a = 2 eT Qe + wi eT PB + $S2(LS2)( —e2 + Z22)

m

----^Si(LSi)(e2 + Z21) - xd + KAe + KBQ1

(5.51)
-

The term in square brackets can be made negative definite algebraically if it is set

equal to — YiWi- This equality can be written as

$0S1(LSi) —^S2(LS2') Z2 = m(BTP + KA + YiK)e

— mxdd — (^si(LSi) + ^2^2)^ (5-52)

+ (KB + Yi)($S2(LS2) - $Si(LSi) - mXd},

where Y1 = YT > 0- The redundant actuator structure of the system has become 

apparent at this point; this equation is underdetermined. A mathematically straight­

forward method to resolve this redundancy is to use a least-squares solution. A 

solution by this means would minimize u2i + u22, which according to (5.6) indirectly 

affects the muscle activations. Due to the linearity of the problem, the Moore-Penrose 

pseudoinverse can be used

Z2 =
Z2*i

Z2>2

^si(LSi)

— ÎS2(LS2)

1
^S1(LS1) + ^S2(LS2)

m(B T P + KA + YiK )e — (^Si(LSi) + ^S2(LS2))e2 
(5.53)

— mxd + (KB + Yi) ($S2(LS2) — ^si(LSi) — mxd)

The resulting equation defines the requirement for Z2 as input to (5.46) for the pole­

placement control law to hold.
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Second Synthetic Design

By the same approach a control law ^2 that links the next pair of equations in 

the chain can be enforced. ^2 is set equal to equation (5.53). The required error is 

written w2 = Z2 — ^2, and (5.46) under the error w2 is

1
LS = e2 + W2 + ^2- (5.54)

By augmenting the Lyapunov function

V2a = 2 eT Pe + 2 W2 + 2 WT W2 (5.55)

and computing its time derivative along state trajectories

V2a = — -eTQe + w11 BTPe + —$0 2m e2 + ^2

(5.56)

— x.d + KAe + KBZi + w2T 1
^2 +-------W1$m

- 1

1

— 1

xd + U i

— xd + U 2
—

,

where $0 = [—$0S1(LS1) $S2 (LS2)], it is seen that a similar structure for the Lyapunov 

derivative arises. The term marked by curly braces can be made negative definite by 

setting it equal to —Y2w2, where Y2 = YT > 0

xd + U1

—xd + U 2

1
^2 +-------wi$ Tm —Y2W2. (5.57)—
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The final control law is revealed by writing (5.38) in matrix form

û 1

U 2

f11 + f21

f12 0

0

f22

n1

n2

(5.58)

and substituting into (5.57)

Y2(Z2
/Xi /- ^2) + ^2 - —(Z1 + Ke)$0T -

dx1

dx1

f11

f12

(5.59)

-

/

All terms included in the control can be rewritten as expressions of the system states. 

In particular, note that ^2 can be found analytically from (5.53). The control law 

is feasible as long as the f2j for j = 1, 2 remain non-zero. According to (5.38), 

this condition only occurs when the coefficients of the controls nj disappear, which 

is associated with infeasible muscle conditions such as overly large C E lengths or 

velocities.

5.3.5 Simulation and Results

To simulate the muscle actuated mass system, several functions referred to in 

general during the discussion of the muscle model must be further specified. In 

keeping with the normalized system, the nonlinear stiffness functions were fit piecewise
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to curves provided in [151].

0, LSjn < Ls,j

6760794.14(LSjn)5 - 68434261.19(LSjn)4 + 277072371.99(LSjn)3

$S,j (Lj = - 560875494.46(LSjn)2 + 567666340.97LSjn

- 229806913.40, L < LSn < 1.02Ls,j j s,j

0.5+ 19.2308(LSjn - 1.02Ls,j), LSjn > 1.02Ls,j

(5.60)

where Ls,j is the tendon slack length.

0, LCjn < 1

8(LCjn)3 - 24(LCjn)2 + 24LCjn - 8, LCn > 1.
(5.61)

Additionally, the force-length relationship was also based on the properties described

in [151] and selected as
LCj -Lo,j 

“— ! T T T T 
fj (LCj ) = e V WLoj (5.62)

where W determines the width of the Gaussian.

To provide the greatest insight into the fundamentals of the antagonistic muscle 

arrangement of this system, the muscles were simulated with identical parameters. 

These values are presented in Table III; most are dimensionless. The pole-placement 

controller was tuned to K = [2 3] with Q = I to give stable poles at -1 and -2. 

Selecting Y1 = 15 and Y2 = 15I2 led to the smooth convergence of errors w1 and w2 

to zero.

Initial conditions were selected based on the requirements for equilibrium de­

scribed in Section 5.2.2 and the mass dynamics’ requirement that $S1 = $S2. Any 

combination of LS1, LC1, and LC2 could be selected, determining Xi, and LS2 could
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Parameter Value
Lo 0.01 m

Vmax 10Lo 1/s
Ls 2
W 0.3
Tact 0.01 s
Pact 0.25
m 1
A 0.25

gmax 1.5

Table III: Muscle-actuated mass system simulation parameters [37, 54, 146, 151]

be solved from the force equality. Care was taken that neither tendon length was 

in the slack region, allowing a solution for LS2 . In initializing the simulation at 

this equilibrium point and selecting the sine wave trajectory for the mass to track, 

xd(t) = 0.005x1 sin(t) + 1.01x1, effort was made to restrict the range of motion to an 

area near the muscles’ optimal properties. The system can track alternative reference 

trajectories. The total displacement or rate of displacement required of the mass 

for a given trajectory in combination with the initial conditions determines whether 

the modeled muscles stay within the allowable ranges for uj , aj , and nj and tendon 

remains outside of the slack region. Reference trajectories breaking the assumptions 

of the muscle model can lead to unstable dynamics.

In simulation it was seen that asymptotic tracking can be achieved, Figure 24. 

The control signals and post-calculated muscle activations, Figure 25, remain in the 

required range of zero to one after the transient behavior settles. Indicating that 

the synthetic controls are being applied effectively, w1 and w2 converge to zero in 

Figure 26.
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Figure 24: Trajectories of the two muscle system show convergence of the mass posi­
tion x1 to the desired sinusoid xd1 and the resulting muscle states.
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Figure 25: Two muscle system control signals and computed muscle activations

Figure 26: Errors w1 and w2 converge to zero for the two muscle system
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5.3.6 Discussion and Summary of Findings

The completion of this preliminary study showed that muscle redundancy can 

be resolved and a control solution found that provides accurate tracking within the 

backstepping framework. Using a normalized model allowed for a general study that 

illustrated muscle actuator properties without specifying a human joint. Control 

construction through the backstepping method was shown feasible, suggesting that 

backstepping could allow any stabilizing controller with a known Lyapunov function 

to be implemented through muscle actuation. Several topics for further investigation 

were also identified through this study.

It can be seen from the control signals that the muscles are consistently being 

called on to co-contract. While it is desirable to avoid complete tendon slack, within 

a human joint co-contraction generally implies excess energy usage when simply track­

ing a trajectory without needing to obtain a specific joint impedance. However, be­

cause several features of the human system remain unmodeled within this simplified 

system, addressing this issue was reserved for a model containing increased muscle 

redundancy, cross-joint muscles, and joint moment arms as well as non-normalized 

dynamics.

Though not presented here, several simulation conditions exposed some concerns 

with the chosen activation dynamics. It was determined that this was in part due to 

the activation dynamics lacking an equal time constant between aj and nj as shown 

by manipulating the activation dynamics

at j = - T~. (^act,j + [1 - ^act,j ]nj) aj + T^Ynj. (5.63)

For example, when the variable time constant of aj becomes small, the operator 

produces a large gain between nj and aj. A non-unity gain is already evidenced for the 
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nj and aj trajectories in Figure 25, even when they remain in [0,1]. Accordingly, this 

simulation provided the impetus to consider alternative activation dynamics options 

in future muscle-actuated simulations.

5.4 Muscle-Actuated Linkage

The muscle-actuated linkage simulation increases the complexity of the system to 

include cross-joint muscles and more redundant muscle pairs. It also allows for direct 

comparisons to be made with published data if the linkage is parameterized to, for 

example, a human arm or leg. The work presented in this section is being published 

in [140].

5.4.1 Muscle Actuated Linkage Model

The model used to represent the human system developed in this work from a 

robotics perspective can be viewed as two subsystems, the linkage, or skeleton, and 

the actuators, or muscles. Additionally, a coupling mechanism between the actuators 

and linkage must be identified.

Linkage Dynamics

The dynamics of a robotic system are given by

D(q)q + C (q,q)q + g(q) = T, (5.64)

where D is the mass matrix, C is the Coriolis matrix, g is the gravity vector, and t 

is the input vector.

Example: Human Arm

A human arm operating in two dimensions can be seen as a two-link planar
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Figure 27: Two degree of freedom planar robot schematic with joint coordinates q1 

and q2

robot as shown in Figure 27. Specifically considering the case where the arm operates 

in the horizontal plane, the details of (5.64) can be assigned as

D(1, 1) = m1lc21 + m2 (l12 + lc22 + 2l1 lc2 cos(q2)) + I1 + I2

D(1, 2) = D(2, 1) = m2(lc22 + l1lc2 cos(q2)) + I2

D(2, 2) = m2lc22 + I2

C (1,1) = hq

C(1, 2) = h(/2 + hqi

C (2,1) = -hqi

C(2, 2) = 0, h = -m2l1lc2 sin(q2) 

(5.65)

g(q) = 0,

where mi is the mass, li is the length, lci is the distance from joint i to the center of 

mass, and Ii is the mass moment of inertia of link i [114].
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Muscle Actuator Dynamics

Non-normalized Hill muscles as described in Section 5.2.1 are used to actuate the 

linkage. The activation dynamics of each muscle were updated based on observa­

tions made in Section 5.3.6 and can be defined by the following differential equation, 

implying a first-order lag with bounded time constant and unity DC gain

C1
(aj = ^(nj)(nj - aj), where ^(nj) = 1 + e-C2(nj.+C3) + C4 (5.66)

The Cs in (5.66) are coefficients to be fit to a linear function with upper and lower 

saturation limits such that

a(nj) « <

1
Tdeact

1
Tact ,

nj < 0

nj > 1 (5.67)

Tj + T-nj, otherwise,

where Tact and Tdeact are the muscle activation and deactivation time constants, re­

spectively. Equation (5.67) is of the general form given in [34], which provides the 

unity DC gain, and has been modified by use of a sigmoid to maintain a smooth, 

bounded time constant.

Linkage-Muscle Actuator Coupling

In this model the muscles create torques to drive the linkage by generating forces 

^S,j that are applied to constant moment arms, as modeled in [48]. The moment arm 

can be derived from the conservation of power for a given muscle j at joint i 

- ^Sj Lj = Tij qi Tij =
dLj,,, 
d«i '' , (5.68)-
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where Tij is the torque developed about joint i by muscle j. Therefore, given the 

length of muscle j as a function of the joint coordinates q , the moment arm can be 

defined as — dj [5]. Considering multiple muscles, the cumulative torque Ti for each 

joint i is

Ti = X Tij , (5.69)
j Ji

where Ji is the set of the indices of all muscles affecting joint i.

Example: Human Arm

According to [48], a suitable muscle length function for the planar arm is

Lj = a0,j — d1,j q1 — d2,jq2, (5.70)

where a0,j , d1,j , and d2,j are constants. This implies constant moment arms, estab­

lishing a pulley-type system.

Pure Feedback Model Realization

In summary, the system dynamics are given by (5.64), (5.1), and (5.66). Con­

straints (5.5) and (5.6) must hold to satisfy the muscle dynamics. Equations (5.68) 

and (5.69) couple the linkage and actuator subsystems.

As was noted in the two-muscle system, this system is structured such that each 

of the consecutive state equations appear as a chain, suggesting that the system is 

a candidate for the backstepping procedure. Specifically, the inputs to (5.64) are 

functions of the LSj according to (5.68). Similarly, the LCj , which could be viewed 

as the inputs to (5.1), are a function of the final states aj as seen in (5.5) and (5.6).

The dynamics can be reformulated as a pure-feedback system to further reveal the 

aforementioned structure. Under the change of variables —LCj = uj and definitions
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x1 , q and x2 , q, the dynamic equations can be written in state space as

X 1 = x2 (5.71)

X2 = D-1(X1)(-C(xi,X2)x2 - g(xi) + T) (5.72)

LSj = Lj(x2) + uj

dgj (zj ) dzj -i0
11 j = dZj dt = gj (zj )zj,

(5.73)

(5.74)

where the term Zj absorbs the state derivative àj. To show that the appropriate 

states appear within the final state equation, consider that gj-1 (zj) = u implies that 

zj = gj (u). Several further substitutions can be made based on previous definitions 

to reveal the general form

u j = fij (xi,LSj ,Uj ,nj )a(nj) + fy (xi,x2,LSj ,Uj) (5.75)

for the uj state derivative equations.

5.4.2 Inverse Dynamics Based Backstepping Control

First Synthetic Design

Mirroring the two-muscle case where the cumulative force was selected as the first 

synthetic control, the first synthetic control Z1 for the muscle-actuated linkage model 

can be selected as the input torque vector Z1 , t. The associated synthetic control 

law is denoted ^1(e), where e = [qT qT]T with q , q — qd and q , q — qd. The 

superscript d denotes desired trajectory.

Inverse dynamics has been selected to accomplish the goal of tracking control 

with the muscle-actuated linkage model. It is perhaps one of the most fundamental 

robotics control methods and is suitable for illustrating the backstepping approach for 

this specific problem. Alternative controllers with known Lyapunov functions could
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also be considered. Making the synthetic feedback law explicit,

^1 (e) = Ma + C(q, q)q + g(q), (5.76)

where a = qd — Kdq — Kpq is the synthetic acceleration associated with inverse dy­

namics and Kp and Kd are diagonal, positive gain matrices.

Application of the control law generates the error dynamics

e = Ae (5.77)

where

0 I
A= (5.78)

Kp Kd

For such a linear system the Lyapunov function

V1 = eTPe, (5.79)

where P = PT > 0 is known to be globally asymptotically stable with time derivative

Vi = — eT Qe, (5.80)

where Q = QT > 0 if

ATP + PA = —Q (5.81)

holds. When Z1 = ^i, inverse dynamics meets the requirements of an initial synthetic 

control law to which backstepping can be applied. Namely, tracking is achieved, and 

a working Lyapunov function can be identified.

Having established the first synthetic control, a means of enforcing it must be 

considered. Accordingly, an error between the synthetic control Z1 and control law
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^1 is defined

w1 , Z1 — ^i- (5.82)

When the control law ^1 is not being perfectly applied, the system dynamics become

D(q)q + C(q, q)q + g(q) = Zi + ii — ii = Wi + ii (5.83)

Under these circumstances the controlled system dynamics are

D(q)q + D(q)Kdq + D(q)Kpq = wi. (5.84)

Rewriting (5.84) as a function of e gives

e Ae + Bw1 wi, (5.85)

where BwT1 = [0 D-i].

The Lyapunov function is augmented with a positive definite term in wi to require 

that wi approach 0, which implies that the control law is successfully being applied 

through the synthetic control

Via = eTPe + wiTEwi, (5.86)

where E = ET > 0. Evaluating the time derivative of (5.86) along state trajectory 

(5.85) and using wi = £i — ^i gives

Via = —eTQe + 2wT [b^ 1 Pe + E (<Zi — . (5.87)

Satisfying the need for Via to be negative definite, the term within square brackets in
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(5.87) can be made to follow

BW1 Pe + E (<Zi - ¿Q = -riwi (5.88)

algebraically with r1 = rT > 0, resulting in a solution for £1

Z1 = V 1 - E-1 (riwi + BT1 Pe) . (5.89)

T'» IT J 1 J > △ 1 t' n T I il 1 J • c •Recalling that £1 , t and LS = L + u, the derivative of £1 is

<1 =
dT~\ . r dT "IT /•

_dqjq+ [dLS\ v + u (5.90)

Equation (5.90) reveals the next state in the chain of state equations u. Combining

(5.89) and (5.90) results in

dT 1T 
dLS u = ¿1 - E-1 (r1W1 + BW1 Pe) dT

dq dLS
♦ 
L. (5.91)- q -

Notedly, [ddTs]T is not necessarily square but rather is of dimension I x J, where I is 

the number of joints and J is the number of muscles; it is possible for the system to be 

underdetermined. Therefore, a direct solution for u by inverting this matrix coefficient 

is not always possible. This mathematical result is consistent with the model. A 

muscle-driven linkage in general will not have a one-to-one muscle actuator-to-joint 

ratio because of the antagonistic arrangement of muscles. Most joints include at least 

two muscles. Furthermore, the human body employs redundant muscles to vary joint 

impedance, adding more muscles to a given joint [40]. Both of these features are 

allowable within the control structure as long as a solution to (5.91) can be found.
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Resolving Muscle Redundancy

One option to easily resolve the control redundancy is a least squares solution for 

u, which can be computed by using the Moore-Penrose pseudoinverse of [dr/dLS]T 

J

when solving (5.91) for u. This solution would minimize uj2, which according to 
j=1

(5.6) indirectly affects the muscle activations.

Alternatively, optimization of other cost functions could be considered as long as 

it is constrained by exact solution of the equality (5.91). For example, it is desirable 

for the activations and neural signals to remain between zero and one. To address 

this more explicitly, one such optimization solution was developed. The control input 

to the system, the neural signals n, is closely related to the activation signal a; it is 

being simulated as only separated by a lag. It seems likely, therefore, that constraining 

the activations alone to the range zero to one will lead to an implied constraint of 

zero to one on the neural inputs. Recalling equations (5.5) and (5.6), there is a 

direct connection from the u, which are being determined at this stage of the control 

recursion, to the activation, allowing a constraint for a to be constructed.

From experience with the system, it became clear that addressing the current 

time solution for the activation was not sufficient for maintaining feasibility of the 

proposed optimization problem. Accordingly, the optimization candidate u was used 

to generate an approximate predicted a for one time step At ahead as follows:

LC = LC - uAt

L = L — L(q, q)At

LS = L — LC

. $S (LS) — $P (LC) 
a =---- -------------

f (LC )g(u)Fmax

(5.92)
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Solving for u can then be stated as the following optimization problem

minimize 
u

J

J2aj (uj )
=1 (5.93)

subject to Equality (5.91) and 0.01 < àj < 1

Note that by this method a small saturation value was able to be conveniently imple­

mented as the lower limit for a to prevent numerical issues in (5.6). Assuming some 

suitable method is selected to give a solution for the u, the next states in the chain, 

it is possible to transition into the second synthetic design.

Second Synthetic Design

In (5.73) u appears in a way that suggests it as the second synthetic input Z2 , u. 

From the results of the first synthetic design, (5.91) with u isolated on the left hand 

side by whatever method chosen can be selected as the synthetic feedback control law 

^2 with known Lyapunov function (5.86).

The error

W2 , Z2 - ^2 (5.94)

must reach zero to enforce the control law through the state equations. The system 

dynamics when there is some error are determined by

Tn T i i I ! T i 1/LS = L + Z2 + ^2 - '2 = L + W2 + ^2- (5.95)

Further augmenting the Lyapunov function with a term that is positive definite 

in w2 gives

t r T t~> 1 Trn 1 T mV2a = eTPe + w1T Ew1 + w2T Gw2, (5.96)

where G = GT > 0. The time derivative of (5.96) along the state trajectories defined
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by (5.85) and (5.95) is

V2a — — eT Qe + 2wT BwT1Pe+E

+ 2 (i — i2)TG + wTE

"dT_ . , 
F q + dq I

Requiring the term in curly braces to follow

(i — i2)T G + wT E
dLS

dLS
L+i2

Tr—w2 r 2

— V 1

(5.97)

(5.98)

with r2 — rT > 0 results in (5.97) being negative definite.

Substituting (5.75) for u in (5.98) and writing the result in vector form gives

T
I G 1 - [f2(q,q,LS,i)]T.

(5.99) 

This is the final control law as indicated by the appearance of the actual control 

inputs nj . The equation can be solved numerically. Note that all required values 

are available easily from state feedback except V2 , which is evaluated numerically to 

account for varied solution methods of (5.91). Furthermore, the control approach 

is insensitive to the muscle function shapes used for the force-length, force-velocity, 

and nonlinear elastic relationships and activation dynamics as long as some of their 

derivatives and inverses are available for computation.

There are several situations in which the control law fails. These primarily in­

clude extreme values of LC such that (5.62) approaches zero and conditions where 

u approaches Vmax because (5.4) equals zero at that point. Such conditions can be 

avoided through tuning and proper selection of initial conditions, final setpoints, and 

settling times.

Figure 28 summarizes the system dynamics of a muscle actuated linkage and

\_fi(q,LS,u,n)a(n)]T — w2T + V2T G — w1TE
dT

dLS
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System Dynamics

Figure 28: Block diagram of muscle-actuated linkage system dynamics and backstep- 
ping control levels. Relevant equations are referenced in parentheses

the control hierarchy of an inverse dynamics synthetic control design implemented 

through two recursions of backstepping.

5.4.3 Simulation and Results

Simulation studies of two cases for resolving muscle redundancy will be presented. 

The least squares method will be considered first followed by the optimization solu­

tion for bounding the activations with attention given to how the former motivated 

development of the latter.

Updated Muscle Functions

Now working with a non-normalized system, new selections were made for spec­

ifying the details for the muscle system. First, for the nonlinear tendon stiffnesses a 

simpler, quadratic form was chosen, primarily to allow for comparison to published 

data.
i 10-3-10-6 LSj + 10-6

*sj (LSj ) = Lsj

1 kSEE(LSj - Ls,j)2,

, LSj < Lsj
(5.100)

otherwise,

92



where ksEE = (OFFm^j )2 . A minute slope is introduced in the slack region of this 

function to maintain its ability to be inverted. Scaling of the quadratic by kSEE 

results in the tendon seeing a force of Fmax,j when it is extended by 4% beyond the 

slack limit [78]. The parallel stiffness (PEE) engages once the muscle body has been 

extended past the optimal fiber length Lo,j and has a similar structure to the SEE

I 0, LCj < Lo,j
^P,j (LCj ) = <

I kPEE(LCj — Lo,j)2, otherwise,
(5.101)

where kPEE = W'L .- [78]. Likewise, the force-length relationship was updated to 

compare with published data [78],

fj(LCj) = 1 - (LCW-LLoj)-. (5.102)

Human Arm System

The selected test application for the muscle-actuated linkage was the planar mo­

tion of a human arm, as setup within the previous examples in this section. A planar 

arm was chosen so as to advance toward applying the closed-loop muscle-actuated 

linkage to advanced exercise machines. The model was used directly from [48] for 

comparison. The arm was required to track a logistic sigmoid trajectory that was 

structured in the same way as (5.66) and fit to a transition from 20 to 80 degrees 

over 0.65 seconds for both the shoulder and elbow joints, providing a continuous, 

differentiable path similar to the setpoint change presented in [48]. That work uses 

a PD controller to accomplish the motion. The linkage is scaled according to the 

parameters given in Table IV.

A total of six muscles are used in this model, including two muscles that cross 

both joints. The muscles are oriented as shown in Figure 29. General parameters used
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Parameter Value
m1 2.24 kg
m2 1.76 kg
I1 0.0253 kg m
I2 0.0395 kg m
l1 0.33 m
l2 0.32 m
lc1 0.1439 m
lc2 0.2182 m

Table IV: Physical parameters of the linkage scaled to a human arm from [48]

Figure 29: Locations of simulated muscles: (1) Anterior Deltoid, (2) Posterior Deltoid, 
(3) Biceps Brachii, (4) Triceps Brachii (long head), (5) Triceps Brachii (short head), 
and (6) Brachialis. Not drawn to scale
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Parameter Value
Vmax 10Lo m/s
W 0.56
Tact 0.01 s
fiact 0.25
A 0.25

gmax 1.5

Table V: Muscle-actuated mass system simulation parameters [7, 37, 54, 146]

Muscle (j) Fmax,j (N) Lo,j (m) Ls,j (m) d1,j (m) d2,j (m) a0,j (m)
Anterior Deltoid (1) 800 0.1280 0.0538 0.05 0 0.1840
Posterior Deltoid (2) 800 0.1280 0.0538 -0.05 0 0.1055

Biceps Brachii (3) 1000 0.1422 0.2298 0.03 0.03 0.4283
Triceps Brachii (longhead) (4) 1000 0.0877 0.1905 -0.03 -0.03 0.1916
Triceps Brachii (shorthead) (5) 700 0.0877 0.1905 0 -0.03 0.2387

Brachialis (6) 700 0.1028 0.0175 0 0.03 0.1681

Table VI: Muscle and moment arm properties selected for the human arm simulation 
from [48] 

across all muscles are provided in Table V. For the individual muscles, the remaining 

parameters are shown in Table VI. Note that for the linkage and range of motion 

studied in the simulation it is assumed that $Pj = 0 [48].

Simulation Initialization

Initial conditions for the system were handled such that they were near equi­

librium and consistent with the system dynamics and control laws; a slight slope 

of the sigmoid trajectory in the initial position prevented a true equilibrium. The 

procedure for initializing the system begins with evaluating each joint position and 

velocity for the first point along the generated sigmoid trajectory. Next, the initial 

control ^1 was computed under these initial values, which are the same as the desired 

trajectory. Then an optimization solution for the LS was completed. The solution 

was constrained such that the selected LS were outside the slack region and led to 

a non-negative LC . A weighted cost function composed of the forces generated by 

each muscle and the difference between the resulting joint torques and initial control 
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^1 was used to accomplish the specified torque without excessive co-contraction.

The u can be initialized by direct solution of (5.91) with the pseudoinverse or by 

an optimization routine consistent with the selected alternative method of resolving 

muscle redundancy. Given the initial state description and assuming LC = 0 and 

^2 = 0 because the initial state is near equilibrium and no information is known about 

these values, the initial control n can be computed from (5.99). For the optimization 

option a constraint requiring that the initial control be non-negative was added.

Controller Tuning

Identical controller tunings were used for simulations of both methods of resolv­

ing muscle redundancy. The lowest values of Kp and Kd for which the system would 

maintain stability were selected, Kp = 0.1I2 and Kd = 0.05I2. Next, the Lyapunov 

equation ATP + PA = -Q was solved for Q = I4. The gains defining the weights on 

the Lyapunov function and its derivative for the first backstepping recursion were cho­

sen as r1 = I2 and E = 0.0001I2. Similarly, the weights for the second backstepping 

recursion were set to r2 = G = I6.

Results with Least Squares Muscle Redundancy Resolution

The muscle-actuated arm linkage simulation accurately tracked the generated 

reference trajectory as shown in Figure 30 for both joints. Compared to the results 

reported in [48] for a similar setpoint change under PD control, the backstepping con­

troller under the current tuning offers no overshoot and settles directly. Considering 

the tendon length states LS in Figure 31, the system achieves smooth transitions and 

maintains stability. For this particular case the Biceps Brachii enter slack, indicating 

little force output. Checking internally, the synthetic control laws follow the control 

laws, Figure 32. The inverse dynamics control design is, therefore, being transmitted 

accurately through the system dynamics to the joint torques. The states u are also
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Figure 30: Least Squares Solution: Both joints attain accurate tracking of a 0.65 
second long 20-80 degree transition

(1) Anterior Deltoid
? 0.1 ■

A 0.05 I- ------ :------ .
0 0.5 1 1.5 2

t (s)

(2) Posterior Deltoid
J 0.1 ■

CQ ___________---------------------
A 0.05 I- , ------ ;------

0 0.5 1 1.5 2
t (s)

(5) Triceps Brachii (short head)
0.25 ■

$ 0.2.

0
t (s)

(6) Brachialis 

0.06

A 0.02 , --------- ;------ -,
0 0.5 1 1.5 2

t (s)

Figure 31: Least Squares Solution: Tendon length states remain bounded. Red 
dashed lines show slack length limits Lsj
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Figure 32: Least Squares Solution: Synthetic control agreement for the first (left) 
and second (right) recursions 

shown in Figure 32. They are bounded and settle back to equilibrium.

Referring to Figure 33, the actual control signals, the neural inputs n, are overly 

large. The associated muscle activations are equally large but do lag the neural inputs 

as expected, validating the sigmoid implementation of the activation dynamics. Recall 

that both of these signals are supposed to range between zero and one. However, there 

is no feature within this control law to enforce this constraint. The source of the large 

control inputs can be identified by observing the individual forces generated by the 

muscles; see Figure 34. Upon completing the transition between desired joint angles, 

the forces do not settle back to zero. Because gravity is not being modeled, this is 

clearly due to co-contraction. Extrapolating this result backward in time, it follows 

that the entire movement was completed with a high joint impedance.

Further considering the root of the system’s tendency toward co-contraction, re­

call that a similar result was observed in the two-muscle system of Section 5.3.6. The 

addition of more muscles and multi-joint muscles and the elimination of the normal­

ized dynamics did not lead to notable improvement. Rather, the consistency of the 

co-contraction between these cases supports the possibility that the cost function, 

minimizing u, could be the source of the co-contraction. Considering this effect phys-
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Figure 33: Least Squares Solution: Control inputs n and associated activations a, 
showing the effects of the first order lag

(1) Anterior Deltoid
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(3) Biceps Brachii
(4) Triceps Brachii (long head)
(5) Triceps Brachii (short head)
(6) Brachialis

Figure 34: Least Squares Solution: Forces generated by each muscle 
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iologically, u can be minimized by the CE resisting movement, shifting the change 

in length of the muscle unit to the SEE. Dependence on the SEE for a change in 

length requires a change in muscle-generated force, and achieving the desired joint 

torque under these conditions necessitates a change in force generated by the muscles 

on the opposing side of the joint. The implied result is increased co-contraction.

These features motivated the development of the second method previously pre­

sented for resolving muscle redundancy. The specific form of the cost function, basing 

it on the activations, was suggested by the observation that the activations in partic­

ular were far outside of their acceptable range. Also, the other functions scaling the 

muscle force, the force-length f (LC) and force-velocity g(u) functions, are inherently 

bounded at 1 and 1.5, respectively, while the muscle activations are not. To generate 

a force larger than 1.5Fmax requires that the activations be the source of this scal­

ing. Focusing the solution of the control level (5.91) where the muscle redundancy is 

resolved on the activations led to the results presented next.

Results with Constrained Optimization Muscle Redundancy Resolution

Using (5.93) to resolve muscle redundancy led to equally accurate tracking, as 

shown in Figure 35. However, the LS trajectories were significantly altered; see 

Figure 36. They all maintained lengths above the slack limit, a consequence of the 

lower bound on the activations. Even with this limitation, the tendon lengths all 

return to the region of their initial lengths once the motion trajectory is completed, 

indicating a reduction in force.

When checking the consistency between the synthetic controls and the control 

laws, Figure 37, it is seen that the torque recursion performs equally as well as in 

the least squares solution. The u and ^2 do not compare as closely. A trend toward 

convergence is seen, however, with the exception of a brief transient at the peak, 

which remains bounded.
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Figure 35: Constrained Optimization Solution: Both joints attain accurate tracking 
of a 0.65 second long 20-80 degree transition
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Figure 36: Constrained Optimization Solution: Tendon length states remain bounded. 
Red dashed lines show slack length limits Ls,j
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Figure 37: Constrained Optimization Solution: Synthetic control agreement for the 
first (left) and second (right) recursions

The constrained optimization method achieves reduced neural inputs and activa­

tions in comparison with the least squares method; these results are given in Figure 38. 

All signals meet the required range of zero to one with the exception of brief transients 

and negative segments in the neural inputs upon initialization and at the transition 

between the accelerating and decelerating actions of the muscles. It is noted that 

the activation signal estimates to which the constraints were actually applied strictly 

follow the constraints. Though not visible at this scale, the estimates are acceptable 

even where the actual activations negligibly break the lower constraint of 0.01, which 

led to feasibility of the optimization problem. Moreover, the negative regions of the 

neural inputs clearly correspond with steeply decreasing segments of the activations. 

It follows that the leading neural inputs must become negative to induce this steep 

response. Because there was no constraint placed on the controls, this behavior is 

not inconsistent with the backstepping controller. It does identify a limitation of this 

control technique, however.

The resulting muscle forces in Figure 39 are far closer to natural forces than 

those generated by the least squares solution. Also, looking at the simulation results 

of [48], the peak magnitudes are similar at just over 300 N. Because the trajectory was
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Figure 38: Constrained Optimization Solution: Control inputs n and associated ac­
tivations a, showing the effects of the first order lag. Note that the largest initial 
transient extends to about -5.5, and the spike associated with n3 reaches approxi­
mately -3.1
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Figure 39: Constrained Optimization Solution: Forces generated by each muscle 
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specified as a setpoint change in that work, a direct comparison would not be accurate. 

However, two salient features of the force trajectories are consistent with [48]. First, 

the initial group of muscles to increase in force production are on the front side of 

the arm. This is followed by a counter increase in force by muscles on the back of 

the arm. This alternating activation pattern of the agonist and antagonist muscles 

also agrees with the human reaching experiments of [13]. Second, the Triceps Brachii 

(short head) generates little force [48].

5.4.4 Discussion and Summary of Findings

Backstepping control of a general antagonistic muscle pair actuated robotic link­

age was developed. Two methods of resolving muscle redundancy were identified. 

The application of both methods to a realistically scaled human arm for planar move­

ments was demonstrated in simulation. The least squares method resulted in accurate 

tracking but unrealistic muscle co-contraction. The alternative, a constrained opti­

mization, led to accurate tracking with more realistic muscle forces but revealed that 

the rate of change produced by the controller was aggressive.

Trajectories allowing more time for the motion or requiring a smaller displace­

ment can help to improve control behavior under either method of resolving muscle 

redundancy. For the optimization method specifically, reducing the execution time for 

the motion results in muscle activation trajectories reaching their upper constraint. 

This case might or might not be feasible depending on whether a single-time step pre­

diction is adequate to make the slope of the activations negative or zero (saturation) 

and maintain equality (5.91).

Detuning the controller was also attempted to smooth the changes in the con­

trol signal, seeking smoother activations and forces as a consequence. However, no 

combination was found that would keep the muscles within their working ranges. Al­

ternatively, further constraints on the optimization were sought. Of particular interest 
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was the constraint based on the rate of change of the activation. It was constructed 

by observing the requirement

1
n = a + a > 0. (5.103)

a(n)

Taking the worst case scenario (smallest value of a(n) occurs for large, negative n), 

the approximate constraint ài > -24a was identified. No simulation trials where 

this constraint maintained feasibility were discovered, leading to the conclusion that 

a single-time step prediction is probably insufficient to solve (5.91) and meet these 

constraints for the given trajectory.

5.5 Remarks

The two muscle actuated mass simulation has provided insight into the agonist­

antagonist relationship between muscle pairs. Human-like features such as cross-joint 

muscles have been implemented in the muscle-actuated linkage model combined with 

backstepping control framework. By application of this framework to a human arm, 

it was concluded that backstepping, while it provides the desired stability guarantees 

and successfully scales with the increased number of joints and muscles, is insuffi­

cient in its standard form. This is primarily because it does not inherently protect 

constraints required by the muscle actuators. An indirect means of introducing con­

straints was developed, but it would repeatedly find infeasible solutions depending on 

the constraints applied and the initial conditions for the simulation.

Considering the limitations of standard recursive backstepping, expanding upon 

this technique by use of barrier Lyapunov functions or constrained command filters 

could perhaps allow the appropriate constraints to be implemented analytically [125­

127,153]. A shift to other control methods could also be considered. The innate ability 

of model predictive control (MPC) to protect constraints for a larger time horizon 
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than has been accomplished with backstepping alongside cost function optimization is 

particularly attractive. Alternatively, a combination of these control approaches, e.g. 

wrapping backstepping control with MPC to make backstepping the internal solver, 

might offer the benefits of both methods, internal stability guarantees and constraint 

protection [107].

In addition to addressing the aforementioned questions, future work could include 

the expansion of the system to consider non-constant moment arms. A study directly 

comparing the output of the system with human data could then be completed to 

better validate the human simulation. The method should then advance to machine 

interaction, which would likely require implementing an impedance controller through 

backstepping or an impedance cost function for MPC.
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CHAPTER VI

OPEN LOOP MUSCLE-ACTUATED LINKAGE HUMAN SIMULATION

6.1 Introduction

Within this chapter an open-loop approach to muscle-actuated linkage human 

simulation is taken. Maintaining the goals discussed in Chapter V, the work presented 

in this chapter can serve as an optimal control solver for (1) moving toward a receding 

horizon approach to closed-loop control such as MPC implementation or (2) open-loop 

studies of human-machine interaction systems. The solver combines two established 

methodologies, differential flatness and sum of squares (SOS) polynomials.

The concept of differential flatness was introduced in [28] and has been applied to 

a wide variety of systems. To state that a system is differentially flat is to say that a 

parameterization can be found such that the states and inputs of the system can be 

written in terms of some set of parameters, termed the flat outputs, and their deriva­

tives; a system with m inputs must have m flat outputs. If such a parameterization 

can be found, the state and control trajectories can be determined algebraically from 

the flat outputs and their necessary derivatives, eliminating the use of differential 

equations.

A variety of systems have been identified as differentially flat. Several categories 
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include controllable linear systems, feedback-linearizable systems, and pure-feedback 

systems [76]. Notably, the musculoskeletal system dynamics discussed in Chapter V 

are in pure feedback form and should, therefore, have a flatness parameterization. 

However, existence of such a parameterization does not imply ease in determining 

the flat outputs. For the musculoskeletal system a flatness parameterization can be 

identified based on the physical system properties. The linkage joint coordinates 

define several of the flat outputs and the choice of remaining outputs is inspired by 

the significance of muscle co-contractions observed in Chapter V.

A SOS polynomial in multiple variables can be generally defined as

n

p(x) = Xhi2(x), (6.1)
i=1

where hi(x) is a polynomial in variables x = [x1 , x2 . . . xm]. All SOS polynomials are 

non-negative. However, non-negative polynomials need not be SOS, and equivalence 

holds only for quadratic, univariate, and quartic polynomials in two variables [36, 94]. 

For this work the muscle co-contractions are functions of time. Because a muscle co­

contraction, defined as the average tensile force of an agonist-antagonist muscle set, 

is univariate (in t) and must be non-negative, SOS polynomials of sufficient degree 

can be used to define these functions without added conservatism.

Furthermore, the structure associated with SOS polynomials simplifies the solu­

tion of the polynomial coefficients because it transforms the problem into a semidefi­

nite program, which is a convex optimization problem by definition. This transforma­

tion is accomplished for even (degree 2d) univariate polynomials by the SOS property 

that such a polynomial must be SOS if and only if a positive semidefinite matrix Q 

(Gram matrix) exists such that

p(x) = zmT Qzm, (6.2) 
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where zm is a vector of monomials of degrees 0 to d [88]. Restating, for a general 

polynomial f(x) to be SOS, the semidefinite feasibility problem is to find some Q 

such that f (x)=zmQzm and Q > 0. For a solution Q the SOS polynomial can be 

extracted by

p(x) = ||Lzm||2, (6.3)

where Q = LT L, the Cholesky factorization [88].

As previously outlined, a variety of methods have been developed to either emu­

late the human system given a set of kinematic data (inverse dynamics) or a set of 

kinetic data (forward dynamics). A related technique termed dynamic optimization 

combines both inverse and forward methods to generate fully predictive simulations, 

often from just minor kinematic guidance (e.g. periodicity of gait) [1, 2, 4, 108]. The 

solution of the muscle co-contraction flat outputs by SOS polynomial optimization 

can be termed a control allocation problem [49, 80]. Its combination with the sub­

sequent evaluation of state trajectories from the flat outputs can be identified as a 

forward dynamics method constrained to a given trajectory [108]. Because of the flat­

ness parameterization, though, the requirement of integrating state equations during 

forward dynamics is replaced by direct evaluation, reducing computation time rela­

tive to published methods [108]. Note that if the complete optimal control solver is 

wrapped with a trajectory optimization it is more closely associated with a dynamic 

optimization.

Therefore, by applying an unprecedented parameterization of the musculoskele­

tal system dynamics based on differential flatness and SOS polynomials, the optimal 

control solver achieves analytical and computational benefits; this parameterization 

is being published in [102]. Continuing the work of [102], which focuses on tracking, 

it is shown that the method can handle interaction forces. The solver is validated 

by comparing its resultant muscle activations with experimental electromyography 

(EMG) data. The solver is then applied to the problem of optimal exercise of se­
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lected muscles with the planar arm model. This application shows that the solver is 

capable of isolating single muscles, even with the emphasis on muscle co-contractions, 

is highly efficient, and can be effectively combined with an outside method for con­

straint management.

6.2 Differential Flatness of Musculoskeletal Systems

Recall the musculoskeletal system dynamics of Chapter V; both the dynamics 

of the two muscle actuated mass system and the muscle actuated linkage can be 

summarized by the formulation

M (q)q + C (q,q)q + g(q) = a$s (LS ) (6-4)

LS = -AT q + u (6.5)

aj = ^j(nj)(nj - aj)> (6-6)

where uj = gj-1 (zj ) with

z. = ^sj (LSj) - ®P,j (Lj(q) - LSj ) (6 7)
j ajfj (Lj (q) — LSj )Fmax,j

and A denoting the matrix of moment arms such that A(i, j) = dij, where the dij are 

constants as in (5.70) with i = 1, 2, . . . , I and j = 1, 2, . . . , J.

As previously identified, this pure feedback system should have a differential flat­

ness parameterization. For a total of J control inputs, one associated with each 

muscle, J flat outputs must be determined. Beginning with the standard choice of 

flat outputs for robotics, the joint coordinates q are selected [76]. This leaves p = J-I 

additional flat outputs to be chosen. Assuming that there is at least one redundant 

muscle being modeled (p > 1), the remaining flat outputs are proposed to be the 
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muscle co-contractions

Y = E $s (LS), (6.8)

where E is defined as a p x J matrix that results in computing co-contractions of 

antagonistic muscle pairs. The row sums of E are each assumed to equal 1. The 

completed set of flat outputs is then

q

Y
y= (6.9)

This implies that

A

E

T (y,y ,y)

Y
$s (LS ) = C $s (LS ), (6.10)

where t represents the left-hand side of (6.4). Under the circumstance that p > J/2, 

additional flat outputs are assigned some linear combination of the tendon forces 

such that C remains invertible. By making this assumption, the states LS can be 

computed from a set of flat outputs as long as the tendons are outside of the slack 

region, allowing $S(LS) to be inverted.

Having shown that the joint coordinates and tendon lengths can be recovered 

from the flatness parameterization, only the activation states and control inputs n
• rijj i j • t' n i i j • ii j i • ii j • i j • r . iremain. State derivative LS can be determined by taking the time derivative of the

inversion of (6.10)

LS j Sj (L Sj ) cj
T

Y
(6.11)

where Cj is the j-th row of C and t can be computed from the joint coordinate flat 

outputs and their derivatives. The uj can now be determined from (6.5). After finding 

zj from the definition zj = gj (uj), each activation state aj can be found from (6.7). 
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The control inputs result from differentiating aj with respect to time and solving 

(6.6).

The proposed flat outputs are not unique [76]. Indeed, if the same control in­

puts can be computed from a different set of flat outputs, the choice of flat outputs 

themselves does not affect the resulting algebraically evaluated state trajectories as 

they are always equivalent to solving the system’s differential equations. Assuming 

that another set of flat outputs can be found, a method of describing them, such 

as the SOS polynomials being used here, would need to be determined to fit the 

circumstances.

6.2.1 Example: Differential Flatness of Antagonistic Muscle Pair Actu­

ated Mass System

Revisiting the simple system of Section 5.3 where two opposing muscles are used 

to drive a central mass to track desired trajectories, the flatness parameterization can 

be easily exhibited. For this system I = 1 and J = 2, resulting in p = 1. This model 

simplifies the system dynamics (6.4) through (6.7) with M = 1, C = 0, g = 0, and 

A = [-1 1]. Also recall that the constant length constraint induced by mounting the 

system between two walls further simplifies the system and allows the definition of 

the LC and u directly from L1 and the LS and their derivatives.

The two muscles have one input each, implying a total of two flat outputs to be 

defined. The first flat output is chosen as the coordinate locating the mass y1 = q. 

The second is the average of the tendon forces y2 = Y = 2($S(LS1) + $S(LS2)), 

giving E = [2 2]. Note that the resulting C can be inverted. Defining all states in 
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terms of the flat outputs and their derivatives, the full parameterization is

q = y1

q = y1

LS1 = $s1 yy- —- y/ij

-1 MLS2 = $S ( y2 + — y1 I

= $s (y-— MMyi) — $p(L — LSi) 
f(L — LS1)g(u1)Fmax

= $s (y- + MMy1) — $P(L — LS-) 
f (L — LS2)g(u-)Fmax

n1 = n1(a1, a’1) 

(6.12)

n- = n-(a-, a-)

From the simple example of a two-muscle actuated mass it can be noted that the 

co-contraction required to perform any trajectory q(t) compatible with the system 

limits is arbitrary. This is consistent with the freedom allowed by redundant actua­

tion. Accordingly, an optimization approach to selecting the muscle co-contractions 

is recommended.

6.3 Sum of Squares Representation of Muscle Co-contractions

Human motion studies frequently minimize a measure of muscle effort, a proxy 

for energy usage, to resolve muscle redundancy [1]. It is proposed that minimizing 

muscle co-contractions subject to task constraints conforms to this goal, as excessive 

co-contraction does not conserve energy. SOS polynomial methods can effectively 

parameterize and solve for minimal co-contraction trajectories. Consequently, the 

integral of the co-contractions is used to represent the muscle effort.

SOS polynomial solutions can also be subjected to constraints. Two main cate­

gories of constraints are of interest when working with the muscle co-contractions.
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First, boundary conditions might need to be implemented through equality con­

straints. For example, in a receding horizon control application of the solver, re­

peated predictions would require initial condition constraints to enforce continuous 

predicated trajectories as the optimization recedes. Terminal constraints could also 

be important in this circumstance. An open-loop application, such as the optimal ex­

ercise problem that will be examined, could also have boundary conditions that need 

to be enforced, periodicity being of particular interest in the provided example. Sec­

ond, inequality constraints must be defined to prevent muscle slack. To avoid muscle 

slack throughout a given movement requires that the tendon forces are maintained 

at or greater than some set of force reserves FT, explicitly $S (LS) > FT for some 

positive vector FT. In order to implement this inequality, consider that $S(LS) can 

be expanded as follows

$s (LS) = C-1
T (y,y ,y)

Y
= Ct T + Cy Y, (6.13)

but because t(y,y,y) is not a polynomial in general, a polynomial inequality cannot 

be applied directly to this expression. Circumventing this problem, bounds on the T 

can be computed from the previously identified joint trajectories and can be combined 

with the tendon force reserves FT giving the following vectorial SOS inequality

CYY > Ft — min CYt(t) = B. (6.14)

Alternatively, a potentially less conservative method could be used by finding the 

elements of B from

Bj = F t — min Cj t

T>T (6.15)

— T > —T,
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which is a linear program in the two-element decision variable t where cj is the j-th 

row of CY and t and t are the lower and upper bounds on t (t), respectively, for given 

joint trajectories.

In general, the SOS polynomial optimization problem for muscle co-contractions 

can be summarized as

min 
Y 0

Tp 
XYi(t)dt 
i=1

subject to Y (t) is SOS

initial and terminal conditions on Y, Y , and Y

(6.16)

CyY(t) > B

The solution of (6.16) requires symbolic conversion to a semidefinite program, as 

previously described. The Matlab sum of squares polynomial optimization toolbox 

SOSTOOLS is one accessible means of performing this transformation. It also pro­

vides for the solution of the resulting semidefinite program by a variety of solvers; for 

example, the default solver is SeDuMi [92]. Alternatively, because the SOS problem is 

convex, if the cost function and constraints are affine in the decision variables, it can 

be simplified further to a linear program, eliminating the computational burden of 

the symbolic processing [8]. An example of this simplification and its computational 

benefits will be provided in the context of an exercise application. Solution of a linear 

program can be completed with the Matlab optimization toolbox routine linprog, 

among other options.
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6.3.1 Including Interaction Forces

To implement environmental interaction forces, the system model (6.4) can be 

updated as follows

M(q)q + C(q, g)q + g(q) - J(q)TFext = A$s(LS), (6.17)

where J is the velocity Jacobian and Fext is the vector of forces applied at the “end 

effector” of the human linkage, for example at the wrist in a two degree of freedom arm 

model. From this model description it can be seen that the flatness parameterization 

is maintained. It is then straightforward to extend the SOS solver to account for the 

external forces, assuming they are known, because they simply appear as an additive 

term in t(t), updating the tendon force inequality on CYY. The assumption that 

the force trajectories Fext (t) are known is feasible if they are purely a function of the 

system kinematics, which have also been assumed given. This is equivalent to saying 

that the the human can track while compensating for these forces. Interesting cases 

where this assumption can hold include simulated interaction with an impedance- 

controlled machine, which will be further considered, and typical ground contact 

models for gait [1].

6.4 Validating the Open Loop Solver

While the formulation of the open loop solver is analytically favorable, it is of 

no use if it does not represent the actual human system. Therefore, the model must 

be validated against human data. Reference [70] presents a study of the human arm 

performing planar motions. Tracing actions that are perpendicular to, at a right 

slant to, parallel to, and at a left slant to the sagittal plane are considered. When 

superimposed, these actions form a star pattern with the wrist starting each action 

from the center of the star. A peak-to-peak amplitude of 18 cm was prescribed for 
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each trajectory. The central point is positioned in line with the shoulder and 40 cm 

away. These motions are performed at a rate of 2.1 Hz, indicating that the dynamics 

of the arm should be thoroughly excited. For each action the muscle activity is 

measured by EMG for the Anterior Deltoid, Posterior Deltoid, Biceps Brachii and 

Triceps Brachii (short head). Because the EMG signals are not scaled to a maximal 

contraction, only a qualitative comparison to phase and relative magnitudes can be 

made with the optimal control solver’s resulting muscle activations.

To apply the optimal control solver, trajectories were a collapsed ellipse with the 

minor axis assigned a value of 5e-3 m, giving the “line” an overall width of 1 mm. This 

is representative of the accuracy of the human movement. In addition, no external 

forces were applied to the arm end effector. The co-contraction SOS polynomial was 

specified as a quartic with periodicity constraints on t E [0 T], which can be solved 

using a linear program; see Section 6.5.3 for details. All tendon force reserves were set 

to the same value; FT = 20 N, which is less than 3% of the maximum isometric force 

Fmax of each muscle modeled. The co-contraction matrix E for six muscles (columns) 

and four flat outputs (rows) was chosen as

1
2

1
2 0 0 0 0

E=
0 0 1

2
1
2 0 0

0 0 0 0 1
2

1
2

1
_3 0 1

3 0 1
3 0

(6.18)

The first three rows compute the force averages for each antagonistic muscle pair. 

While any arbitrary selection maintaining the row sum assumption and matrix C ’s 

invertibility could be made for the last row, it does affect the distribution of required 

effort among the muscle groups formed by the previous three rows. For example, 

choosing the first element of the final row as one and assigning zeros to the remaining 

elements can eliminate recruitment of the first pair of muscles (Anterior and Posterior
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Trajectory Solver Time (s)
Vertical 0.01453±0.002680

Right Diagonal 0.01179±0.001034
Horizontal 0.02627±0.003856

Left Diagonal 0.03471±0.001459

Table VII: Average and one standard deviation over five trials of the time required 
for the solver to complete the validation problem

Deltoids). Accordingly, the final row chosen here weighs all muscle pairs equally. 

Alternative weights meeting the assumptions could be used throughout the matrix. 

For instance, muscle recruitment should be able to be shifted toward or away from 

emphasizing the biarticular muscles. Further study is required to fully understand 

how the selection of the elements of E affects the results.

For all cases the Cartesian trajectories and associated tangential accelerations 

were accurately replicated. The time required by the linear programming solver is 

reported in Table VII for each trajectory. Though all cases required little time to 

complete, the variation in time is indicative of how the solution of some trajectories 

can be more difficult than others. Analysis will focus on comparing the simulated 

muscle activations to measured EMG. While only one cycle was solved due to the 

periodicity of the trajectory, a total of five cycles are replicated in the plots for 

comparison to the data presented in [70].

Figure 40 presents the results computed for the vertical trajectory. Reference [70] 

shows alternating bursts of Anterior and Posterior Deltoid activity with a small 

amount of Biceps activation that occurs slightly ahead of the Anterior Deltoid bursts. 

The Triceps appears to be inactive. Comparing to the open loop solver, the same 

alternation between the Deltoids can be seen. The Biceps show minor activation and 

the Triceps little at all. The phase of the Biceps is closer to the Posterior Deltoid in 

the simulated case.

The reported data of [70] for the right diagonal trajectory shows decreased activity 

of both Deltoid muscles. The Anterior Deltoid shows a more constant activation
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Figure 40: Cartesian trajectories, tangential accelerations, and muscle activations 
generated by the optimal control solver for a trajectory approximating the vertical 
(planar but perpendicular to the sagittal plane) trajectory reported in [70]
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Figure 41: Cartesian trajectories, tangential accelerations, and muscle activations 
generated by the optimal control solver for a trajectory approximating the right di­
agonal trajectory reported in  [70]

pattern while the Posterior Deltoid exhibits brief bursts. The Biceps and Triceps 

display an alternating behavior with comparable magnitudes to each other where the 

Biceps leads the Triceps, causing some overlap. The performance of the simulated 

muscles generally matches the recorded data in this case; see Figure 41. The primary 

difference, once again, is in the phase of the Biceps, which is farther behind the 

Triceps for the simulated case than it is for the measured case.

Continuing to the horizontal trajectory, [70] identifies a strong alternation between 

the Anterior and Posterior Deltoids and a limited in magnitude but clearly patterned
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Figure 42: Cartesian trajectories, tangential accelerations, and muscle activations 
generated by the optimal control solver for a trajectory approximating the horizontal 
trajectory reported in [70]

Biceps activity that trades off with the Triceps, which demonstrate a magnitude of 

about double that of the Biceps. With exception of the Biceps’ phase, the simulated 

results reported in Figure 42 match these patterns.

The left diagonal trajectory EMG signals of [70] are similar to the horizontal case 

except that there appears to be no Triceps activity for this action and the magnitudes 

of the Anterior and Posterior Deltoids are higher. A simulation of this case presents 

these major features, except that the Triceps are more active than expected and the 

Biceps phase remains a concern; see Figure 43.
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Approximately 70% of the identified features of the EMG data are also represented 

in the simulated model. The primary discrepancy is in the phase of the Biceps Brachii. 

With the current information it is difficult to determine whether the model or the 

data is the source of this inconsistency. For example, it is possible that the EMG 

data involved some crosstalk, which could skew the data from a particular muscle. 

Execution of a similar protocol where information about the absolute scaling of the 

EMG signal relative to maximal contractions, analysis of potential crosstalk, and 

measurements across a broader variety of trajectories are implemented would allow 

for an improved validation study.

6.5 Application to Optimal Exercise

To illustrate an open-loop application of the solver and gain understanding of the 

solver’s behavior, the problem of optimal exercise will be examined. This application 

is motivated by the pursuit of advanced exercise machines. For example, extremum 

seeking control and similar methods are being developed to maximize the impact of an 

exercise session [71, 72, 90]. The results determined here could be used to provide an 

initial condition for extremum seeking control or if the necessary feedback signals are 

not available for extremum seeking control (e.g. EMG), generate exercise protocols 

that should better inform the muscle strengthening process.

The optimal exercise problem is formulated in the context of a planar arm in 

contact with an idealized exercise machine capable of applying specified forces to the 

human arm endpoint. Trajectories for the arm and force profiles for the machine 

are optimized such that selected muscles’ activations are maximized. Note that the 

opposite question (minimizing usage of a particular muscle or group of muscles) could 

be addressed in the same manner for a rehabilitation protocol.

In applying the solver to the optimal exercise problem, three features should 

confirm the solver design. First, effective exercises should be able to be found for
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Figure 44: Example of an exercise machine (black) and human arm (blue) joined by a 
revolute joint and tracing the same trajectory (dashed) in the horizontal plane. The 
shoulder is located at the origin

every muscle, indicating that the solver’s use of co-contractions does not prevent 

the muscles’ independent action. Second, the results should show that an external 

method for maintaining the muscle constraints is sufficient while remaining timely. 

Third, the solver should run quickly in comparison to established methods, further 

supporting the second feature.

6.5.1 Exercise Machine and Human Arm Interaction Model

The human arm model presented in Section 5.4.3 is reused here. It is connected by 

a revolute joint to an exercise machine linkage located opposite it. This arrangement 

is shown in Figure 44. It is assumed that the exercise machine only generates the 

external force applied to the arm and does not contribute any other dynamics to 

the model. Because the method used to determine the external force only requires 

kinematic analysis of the exercise machine, the machine can briefly be described as 

being a planar two degree of freedom linkage located 1 m along the positive y-axis 

from the arm and composed of two 0.5 m links.
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The external force applied to the arm endpoint is generated by a Cartesian 

impedance controller for the endpoint of the exercise machine. This allows for various 

combinations of inertia, damping, and stiffness properties to be applied to the arm 

endpoint. This can be expressed as

Ix 0 x
+

Bx 0 x
+

Kx 0 y
= —F .= ext, (6.19)

0 Iy y 0 By y 0 Ky y

where Ix and Iy are the inertia, Bx and By are the damping, and Kx and Ky are the 

stiffness properties applied to displacements in the x and y directions, respectively. 

Displacements are defined using the convention y = xa — xd, where subscript a iden­

tifies the actual trajectory of the machine endpoint as it is guided by the arm and 

subscript d identifies the desired trajectory of the machine endpoint. Fext is the force 

applied to the human arm endpoint, assuming perfect tracking by the human.

From a practical standpoint, it is noted that scaling the inertia, damping, and 

stiffness terms by some value S scales Fext by the same amount, which is equiva­

lent to scaling Fext while maintaining the natural frequency wn and damping ratio 

Z of the selected impedance. For a given set of joint trajectories the same scaling 

passes directly to the joint torques, t = JT(q)Fext. While the scaling factor S is 

not replicated exactly in the muscles, it does have a direct relationship to the muscle 

forces. Accordingly, recommended practice is to determine an impedance and trajec­

tory combination that maximizes the effort of a muscle of interest and then scale it 

down as needed.

6.5.2 Trajectory Generation

Two task space trajectories need to be generated for the exercise simulation. 

The first trajectory is the desired trajectory for the machine. This is the trajectory 

that it will gravitate toward. The second trajectory is the actual trajectory that
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Figure 45: General ellipse trajectory in task space with axes a and b, center point 
(xc,yc), and orientation ^

the machine and arm endpoints trace under the volition of the human arm. Both 

of these trajectories are defined as general ellipses; see Figure 45. From a symbolic 

form of these trajectories symbolic equations for the joint angles, velocities, and 

accelerations were determined for each linkage by inverse kinematics [114] and could 

then be evaluated.

6.5.3 SOS Solution Reduced to a Linear Program

Due to the periodicity constraints associated with the elliptical trajectory, pe­

riodicity can be extended to the muscle co-contractions. These conditions allow a 

linear program to be developed to solve for the SOS polynomials representing the 

muscle co-contractions. To enforce periodicity up to the second derivative of all co­

contraction polynomials Y on t G [0 T], the following constraints are required for 

each polynomial i

yi (0) = yi(T) 

yi(0) = yi(T) (6.20)

yi(0) = yi(T).

These constraints specify that at minimum a cubic polynomial be used to enforce 

them and maintain one decision variable (polynomial coefficient) for optimization. 

However, as an odd degree polynomial a cubic cannot be non-negative, and, therefore, 
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as a univariate polynomial cannot be a SOS. This implies that at least a quartic 

polynomial must be used. Its general form can be written for polynomial i as

yi(t) = aio + ant + ai2ti 2 + ai3t3 + ai4t4. (6.21)

i yi(t)dt = Taio + — T5ai4.
0 30

Applying periodicity constraints (6.20) results in

ai1 = 0

ai2 = T2ai4 (6.22)

ai3 = -2Tai4,

giving the reduced polynomial

yi(t) = ai0 + T2ai4t2 - 2T ai4t3 + ai4t4 (6.23)

in the two decision variables ai0 and ai4 . Note that for an even degree polynomial 

the leading term determines whether the polynomial opens upward or downward. To 

enforce non-negativity, it is necessary that the quartic polynomial open upward. In 

addition, all extreme values must be non-negative. A total of three local optima can 

be solved from yi = 0. They occur at t = 0, T and T. Function values at t = 0 and 

T show that ai0, the y-intercept, must be non-negative. At T the condition

ai0 + 16 T4 ai4 > 0 (6.24)

is necessary. The conditions on polynomial expression CYY(t) — B > 0 can be worked 

out in the same way. Completing the linear program, the integral cost function for 

an individual polynomial is

(6.25)
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The complete program can be assembled as

p
min ^^T ai0

i=1

+ 7^.T 5ai4
30

(6.26)

subject to — ao < 0 (6.27)

—a4 < 0 (6.28)

—ao - T4a4a4
16

< 0 (6.29)

- CY a0 + B < 0 (6.30)

—CY a4 < 0 (6.31)

—CY a0 — è T 4Cy a4 
16

< 0. (6.32)

This structure allows for the efficient solution of the muscle co-contractions associated 

with tracking a known trajectory with known environmental forces; in the example 

case the forces result from an impedance controller.

6.5.4 Trajectory and Impedance Optimization

To find an optimal trajectory and set of impedance parameters maximizing spec­

ified muscle activations, a global optimizer termed biogeography-based optimization 

(BBO) is used. The algorithm in general, applicable problem constraints, and pa­

rameter search space are described next.

Constrained Biogeography-Based Optimization

Biogeography-based optimization is a relatively recent addition to the field of 

evolutionary optimization algorithms [111]. This global optimization method is sup­

ported by the mathematical models of biogeography observed in nature, that is the 

emigration (exiting) of species from and immigration (entering) of species into isolated 

habitats. Each habitat possesses a set of Suitability Index Variables (SIV); these rep­
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resent features of the habitat such as availability of food and water, shelter, climate, 

etc. The SIV set defines the overall suitability of the habitat, which is measured 

by the Habitat Suitability Index (HSI). For a given habitat, therefore, a higher HSI 

indicates that more species will take residence. A larger number of species leads to 

abundant emigration: species will spread from a high HSI habitat to other habitats. 

Conversely, this habitat will have a low immigration rate because the resources are 

already claimed by the resident species. The opposite holds for a low HSI habitat. 

In this case there are both limited resident species, resulting in little emigration, and 

excess space, allowing immigration.

Transferring these concepts to the solution of optimization problems, each candi­

date solution is seen as a unique habitat. Each candidate’s HSI in standard optimiza­

tion terms is the cost function. The SIV represent the features of a candidate solution. 

The algorithm progresses in a generational manner. The first generation population 

is initialized randomly within the given ranges for each feature and is sorted; sorting 

will be discussed in detail later. Copies of a small number (n) of the best solutions are 

stored, and features of the sorted population are then probabilistically shared such 

that higher HSI candidates more frequently provide (emigrate) features to lower HSI 

candidates (immigration recipients). Upon concluding this process, some features of 

some candidates are probabilistically mutated, reducing the likelihood of finding a 

local minimum. The n elite solutions are added to the population, and it is sorted. 

n of the worst candidate solutions are then eliminated. Note that while the elite 

solutions are prevented from being the recipients of immigration or mutating, they 

can still be sorted out of the population in the case that the past generation’s elites 

are the current generation’s worst candidates. The resulting population initializes the 

next generation.

A means of handling constraints must be layered over the basic BBO method. 

This is addressed within the sorting algorithm by which candidate solutions are 
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ranked from highest to lowest HSI. The e-level comparisons method was chosen for 

this work because it allows infeasible solutions with superior cost functions to po­

tentially rank as well as feasible solutions with the same cost, yet shifts emphasis to 

maintaining feasible solutions (assuming existence) within the population during late 

generations [124]. Using the maximum constraint violation M, this can be expressed 

as

f (x) < f (y) and M(x) < e and M(y) < e, or

x ranks higher than y if f(x) < f(y) and M(x) = M(y), or (6.33)

M(x) < M(y) and M(y) > e

for two candidate solutions x and y, where f is the cost function and e > 0 defines the 

level of allowable constraint violation [112]. e is decreased with increasing generation 

count. From [112] this can be implemented as

e(0) = M (xp)

c
I e(0) 1 - 

e(t) = \ V TcJ

II0

if 0 < t < Tc

if t > Tc,

(6.34)

where p = N/5, N is the population size, xp is the solution with the p-th smallest 

constraint violation, t indicates the current generation count, and Tc and c are tuning 

parameters. Recommended values are c = 100 and Tc = tmax/5 [124].

Cost and Constraint Functions for Optimal Exercise

Applying BBO to the optimal exercise problem requires the development of a 

scalar cost function. This work proposes the use of a muscle activation-based cost
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function

- —W
JT

T a(t) dt, 

0
(6.35)

where J is the total number of muscles, T is the period, W is a 1 x J vector of 

weights, and the integral of the muscle activations a over time is of dimension J x 1. 

The negative indicates that maximization of the muscle activations is desired. To 

select a single muscle j for maximization, W is simply defined as a vector of negative 

ones except for element j , which is assigned a positive value. Recommended practice 

is to start with a positive 1, which has been sufficient for single muscle optimization 

in the example cases to be shown.

Constraints for this problem can be divided into four categories—trajectory, 

solver, state and control, and exercise definition. Trajectory constraints ensure reach­

ability of the trajectories and anatomical correctness. All joint trajectories are checked 

for imaginary solutions, indicating that the trajectory is unreachable. Including the 

desired and actual trajectories of the exercise machine and the trajectory of the arm 

for two joints each system leads to a total of six constraints. To maintain anatomically 

correct trajectories, the shoulder is not allowed to go beyond -30 degrees clockwise. 

Similarly, the elbow cannot extend beyond 5 degrees, preventing hyperextension and 

acceleration extremes. Lastly, it is confirmed that the inverse kinematics did not jump 

to a solution adding a multiple of 2n to the trajectories. Constraint (c) violations in 

this category are evaluated in a discrete manner. Vc = 1 is assigned for a violation 

and Vc = 0 is assigned for no violation. The trajectory constraints are summed and 

then scaled by a factor of 10

10XVc (6.36)
c

to ensure that this combined constraint maintained a generally larger magnitude than 

the state and control constraints. Constraints on the trajectory are applied before 

enacting the solver, reducing function evaluations. Under this circumstance the cost
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aa, ba, 
ad, bd

Trajectory Parameters (Figure 45)

Direction

Impedance Parameters (6.19)
xca, yca,
xcd, ycd

0a, 
'

f Ix , Iy Bx, By Kx, Ky

Lower Limit 5 x 10-3 m -0.6 m 0 m 0 rad 0.1 Hz -1 (CW) 0 kg 0 kg/s 0 N/m
Upper Limit 0.3 m 0.6 m 0.6 m n rad 3 Hz 1 (CCW) 200 kg 500 kg/s 1000 N/m

Table VIII: Parameter range limits for exercise optimization. CW indicates clockwise, 
and CCW indicates counterclockwise 

function is assigned the constraint value.

Second, if the SOS or LP solver fails, both the cost and constraint functions are 

set to infinity. This also applies to the related cases where no suitable F Treserve, 

defined by FTreserve < min(Fmax), or solution for n can be found.

Third, for all solutions having passed both previous levels of constraint checking, 

the muscle activation state and neural input constraints are applied

min min aj- (t) > 0 
jt

max max aj (t) < 1 
j tj

(6.37)
min min nj (t) > 0 
jtj

max max nj (t) < 1. 
jt

These maintain the muscle states and controls within the ranges acceptable for the 

Hill muscle model.

Lastly, a constraint was implemented to limit the maximum force magnitude 

applied by the machine endpoint to some value set by the investigator, F ext.

max ||Fext(t)|| < F ext (6.38)

Optimal Exercise Search Space

The parameter limits used for all exercise optimizations are given in Table VIII.

The reachable space of the human arm primarily guided the scaling and location of
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Figure 46: Process for a single trial of the exercise optimization problem

the elliptical trajectories for the machine (actual and desired) and the arm. The 

arm can reach 0.65 m when fully extended. In addition, the exercise machine can 

only reach to the shoulder point (origin). The range for the orientation of the ellipse 

allows all cases. Trajectories ranging in execution time from 1/3 to 10 seconds are 

allowed, and the trajectory can be executed in either the clockwise or counterclockwise 

direction. Ample ranges for the impedance parameters permit the optimization to 

achieve flexibility in the orientation of the resultant force along the trajectory while 

the force magnitude is managed by the previously described constraint. The upper 

bounds for the impedance parameters were increased until the optimal solutions were 

typically not on the boundary. For all trials Fext was set at 45 N«10 lbf.

Figure 46 shows all components of the optimal exercise method combined, pro­

viding a summary of Section 6.5.

6.6 Results

In applying the solver to the optimal exercise problem, general understanding of 

the behavior of the solver was sought, especially with respect to muscle independence, 

effective constraint protection, and solver speed. Selected optimization trials show 

that individual muscles can be isolated and the external optimizer can maintain the 

constraints. These trials also reveal the solver’s preference toward selecting constant 
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co-contractions. Repeated timed trials illustrate the speed advantage of the solver.

6.6.1 Selected Optimal Exercise Trials

For each individual muscle a maximization problem was solved. A total of five 

successful Monte Carlo trials with a population size of 50 and 300 generations were 

completed for each muscle. Successful trials is denoted because it is possible for the 

population to remain infeasible across all generations. For this reason the epsilon 

level for constraints was set at Tc = tmax/1.25, allowing exploration for more gen­

erations than the recommended value of Tc . Barring the possibility of a completely 

infeasible trial, the given combination of population size and generations maintained 

reasonable run times and good convergence. However, more trials would be required 

to identify global optima. Nevertheless, a variety of feasible solutions were found, 

and the variation observed could prove beneficial for clinical selection. According to 

the procedure previously outlined for choosing weights, a positive weight of 1 was 

used for the muscle of interest during that trial. The other five muscles’ weights were 

set to negative 1. The best trial from the five Monte Carlo trials completed for each 

muscle and the associated final cost of that trial are summarized in Table IX.

Examining the effects of the resulting parameters more closely yields insight into 

the discovered exercise solutions. For each solution assessing the Cartesian trajecto­

ries and forces applied to the arm endpoint provides an intuitive understanding of the 

result. This is then supported by observing the muscle activations, which indicate 

the effectiveness of the selected cost function.
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Muscle 
Maximized

(1) Anterior 
Deltoid

(2) Posterior 
Deltoid

(3) Biceps 
Brachii

(4) Triceps Brachii 
(long head)

(5) Triceps Brachii 
(short head) (6) Brachialis

Trial Cost -0.1076 -0.1017 -0.0768 -0.1142 -0.1011 -0.1282
aa (m) 0.0427 0.0833 0.0206 0.0421 0.0604 0.0058
ba (m) 0.0489 0.0177 0.0647 0.0323 0.0278 0.0245

xca (m) -0.1706 0.2884 -0.2378 0.2595 0.0300 -0.0025
yca (m) 0.5252 0.2699 0.3251 0.4780 0.1892 0.1246
^a (rad) 1.6915 2.5068 2.2007 2.8117 1.4481 2.6590
ad (m) 0.0293 0.2539 0.1760 0.0247 0.0660 0.0301
bd (m) 0.0882 0.0461 0.0346 0.0678 0.0412 0.0130

xcd (m) 0.4721 0.1876 0.2044 0.0890 -0.2662 -0.0748
ycd (m) 0.2612 0.3455 0.5140 0.2076 0.1177 0.5972
fa (rad) 1.8385 2.7626 3.0363 2.2266 1.2284 3.0286
f (Hz) 0.2785 0.1200 0.1146 0.1835 0.1830 0.1546

Direction CCW CW CW CW CW CW
Ix (kg) 32.8623 1.5144 44.8465 128.1005 167.7276 11.6536
Iy (kg) 35.0128 166.8032 1.3386 197.3658 194.9124 134.7549

Bx (kg/s) 51.9952 1.2646 52.8979 44.9777 378.5293 164.8673
By (kg/s) 89.3277 80.7159 286.7059 145.5636 11.8436 5.3669
Kx (N/m) 51.4176 43.0219 23.4450 205.5939 19.7304 15.8905
Ky (N/m) 97.5508 253.2602 222.8894 71.3092 471.8879 87.0280

Table IX: Optimal exercise trajectory and impedance parameters resulting from six 
trials, one for each muscle. CW indicates clockwise. CCW indicates counterclockwise
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Trial 1: Anterior Deltoid

The results for maximizing the Anterior Deltoid are shown in Figures 47 and 48. 

The orientation of the trajectories and selected impedance parameters give a fairly 

uniform distribution of Fext . This combination is effective in realizing an increased 

activation for the Anterior Deltoid and minimizing all other muscles’ activations. The 

increased activation corresponds to increased tendon force for that muscle, which is 

shown as an example case in Figure 49. However, it is clear that the Anterior Deltoid 

tendon force did not reach its maximum capacity (Fmax1 = 800 N) in contrast to 

what is suggested by the activation. This can be attributed to the influence of the 

force-length and force-velocity dependencies of the muscle model.
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Figure 47: Top: Cartesian representation of the desired (red) and actual (black) 
trajectories (dashed) found to maximize the Anterior Deltoid muscle activation. The 
exercise machine is shown in its actual position (black) as guided by the human arm 
(blue). The exercise machine’s desired position that it is drawing the arm toward 
is also shown (red). Bottom: Scaled forces applied to the arm endpoint along the 
trajectory
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Figure 48: Muscle activations found when maximizing the Anterior Deltoid muscle 
activation. The muscles are (1) Anterior Deltoid, (2) Posterior Deltoid, (3) Biceps 
Brachii, (4) Triceps Brachii (long head), (5) Triceps Brachii (short head), and (6) 
Brachialis
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Figure 49: Tendon forces resulting from maximizing the Anterior Deltoid muscle 
activations. The muscles are (1) Anterior Deltoid, (2) Posterior Deltoid, (3) Biceps 
Brachii, (4) Triceps Brachii (long head), (5) Triceps Brachii (short head), and (6) 
Brachialis
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Trial 2: Posterior Deltoid

Maximizing the Posterior Deltoid, Figures 50 and 51, gives an example of a rel­

atively slowly executed trajectory. The muscle activations and associated cost show 

that the optimization was as effective as the Anterior Deltoid case. The combination 

of trajectories and impedance parameters lend more diversity to Fext than was seen 

with the Anterior Deltoid. Accordingly, the tendon forces, Figure 52, have a larger 

range than the Anterior Deltoid while still emphasizing the Posterior Deltoid.
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Figure 50: Top: Cartesian representation of the desired (red) and actual (black) 
trajectories (dashed) found to maximize the Posterior Deltoid muscle activation. The 
exercise machine is shown in its actual position (black) as guided by the human arm 
(blue). The exercise machine’s desired position that it is drawing the arm toward 
is also shown (red). Bottom: Scaled forces applied to the arm endpoint along the 
trajectory
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Figure 51: Muscle activations found when maximizing the Posterior Deltoid muscle 
activation. The muscles are (1) Anterior Deltoid, (2) Posterior Deltoid, (3) Biceps 
Brachii, (4) Triceps Brachii (long head), (5) Triceps Brachii (short head), and (6) 
Brachialis
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Figure 52: Tendon forces resulting from maximizing the Posterior Deltoid muscle 
activations. The muscles are (1) Anterior Deltoid, (2) Posterior Deltoid, (3) Biceps 
Brachii, (4) Triceps Brachii (long head), (5) Triceps Brachii (short head), and (6) 
Brachialis
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Trial 3: Biceps Brachii

The case of maximizing the Biceps Brachii muscle activation indicates increased 

difficulty in finding solutions for a bi-articular muscle. Figures 53 and 54 provide 

the associated Cartesian trajectories, external force on the arm endpoint, and muscle 

activations. The best result found over five successful trials gives an activation of just 

over 1/2 in contrast to the activations nearing 1 found for the Deltoids. Even so, the 

Biceps muscle is effectively singled-out by the optimization.
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Figure 53: Top: Cartesian representation of the desired (red) and actual (black) 
trajectories (dashed) found to maximize the Biceps Brachii muscle activation. The 
exercise machine is shown in its actual position (black) as guided by the human arm 
(blue). The exercise machine’s desired position that it is drawing the arm toward 
is also shown (red). Bottom: Scaled forces applied to the arm endpoint along the 
trajectory
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activation. The muscles are (1) Anterior Deltoid, (2) Posterior Deltoid, (3) Biceps 
Brachii, (4) Triceps Brachii (long head), (5) Triceps Brachii (short head), and (6) 
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Trial 4: Triceps Brachii (long head)

Examining the other bi-articular muscle, the Triceps Brachii (long head), in Fig­

ures 55 and 56, a stronger result can be noted in comparison to the Biceps for the 

muscle activation. However, thirteen trials were required to achieve five successful 

trials, again suggesting the higher difficulty level of the bi-articular muscle problem. 

The location of the desired trajectory of the Triceps Brachii (long head) is directly 

along the line from the shoulder to the actual trajectory, which should concentrate 

the effort requirement at the elbow joint [70]. This result in combination with the 

higher cost function for the Biceps Brachii in comparison to the Triceps Brachii (long 

head) could indicate that maximizing the Biceps requires a revised search space. For 

example, the machine desired trajectory being allowed outside of the arm’s reach 

along the same line.
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Figure 55: Top: Cartesian representation of the desired (red) and actual (black) 
trajectories (dashed) found to maximize the Triceps Brachii (long head) muscle ac­
tivation. The exercise machine is shown in its actual position (black) as guided by 
the human arm (blue). The exercise machine’s desired position that it is drawing the 
arm toward is also shown (red). Bottom: Scaled forces applied to the arm endpoint 
along the trajectory
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Figure 56: Muscle activations found when maximizing the Triceps Brachii (long head) 
muscle activation. The muscles are (1) Anterior Deltoid, (2) Posterior Deltoid, (3) 
Biceps Brachii, (4) Triceps Brachii (long head), (5) Triceps Brachii (short head), and 
(6) Brachialis
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Trial 5: Triceps Brachii (short head)

The selected optimal solution for the Triceps Brachii (short head) also achieves 

the goal of maintaining higher activations for the muscle being maximized throughout 

the exercise; see Figures 57 and 58. Within this solution, among others, it is clear 

that the upper constraint on the muscle activations is being effectively protected. 

Also, this case can be used as an example of the muscle co-contractions. Figure 59 

shows that the co-contractions are constant over the exercise period. This feature 

can be seen for all trials across all muscles.
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Figure 57: Top: Cartesian representation of the desired (red) and actual (black) 
trajectories (dashed) found to maximize the Triceps Brachii (short head) muscle ac­
tivation. The exercise machine is shown in its actual position (black) as guided by 
the human arm (blue). The exercise machine’s desired position that it is drawing the 
arm toward is also shown (red). Bottom: Scaled forces applied to the arm endpoint 
along the trajectory
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Figure 58: Muscle activations found when maximizing the Triceps Brachii (short 
head) muscle activation. The muscles are (1) Anterior Deltoid, (2) Posterior Deltoid, 
(3) Biceps Brachii, (4) Triceps Brachii (long head), (5) Triceps Brachii (short head), 
and (6) Brachialis
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Figure 59: Muscle co-contractions resulting from maximizing Triceps Brachii (short 
head)
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Trial 6: Brachialis

Concluding with the Brachialis muscle, a substantial difference in the activation 

of the muscle of interest can be observed in Figure 61 for the trajectory of Figure 60. 

It is nearest to constant full activation out of all of the individual muscle trials as 

shown by its cost value and the activation plots. From the trajectories it is noted that 

this is a nearly static exercise. This might be beneficial under some circumstances, 

or a more dynamic solution could be selected from the set of feasible trials. Solutions 

can also be influenced toward or away from being static based on the selection of the 

minimum ellipse axis sizes and the frequency prior to optimization.
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Figure 60: Top: Cartesian representation of the desired (red) and actual (black) 
trajectories (dashed) found to maximize the Brachialis muscle activation. The exercise 
machine is shown in its actual position (black) as guided by the human arm (blue). 
The exercise machine’s desired position that it is drawing the arm toward is also 
shown (red). Bottom: Scaled forces applied to the arm endpoint along the trajectory
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Figure 61: Muscle activations found when maximizing the Brachialis muscle activa­
tion. The muscles are (1) Anterior Deltoid, (2) Posterior Deltoid, (3) Biceps Brachii, 
(4) Triceps Brachii (long head), (5) Triceps Brachii (short head), and (6) Brachialis
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6.6.2 Constant Co-contractions

It was observed that across all muscles and all computed solutions constant co­

contractions are selected by the linear program; the same feature is seen in results 

from using the SOSTOOLS solver, as expected. The source of this phenomenon can 

be shown analytically for the quartic polynomial. Consider that because the cost 

function in the space of polynomial coefficient vectors a0 and a4 is linear, leading 

to a non-zero gradient, the problem would be unbounded without the existence of 

constraints. With convex, feasible constraints the optimal combination of coefficients 

will be at an edge or vertex of the constraints.

By elimination each constraint can be identified as either a strict equality or 

strict inequality. Assume equality for (6.27); substituting into (6.30) requires that 

B < 0, which is not true in general. The same conclusion can be stated for assuming 

equality for (6.29) from (6.32). Therefore, it holds that (6.27) and (6.29) are strict 

inequalities. Now observe that neither the gradient of (6.30) nor of (6.32) is parallel 

with the gradient of the cost. Therefore, they must both be active equality constraints. 

Accordingly, combining these two constraints under strict equality requires a4 = 0, 

yielding constant polynomials, because the columns of CY are linearly independent 

from being extracted from an invertible matrix. This implies that constraints (6.28) 

and (6.31) are also equalities, which yields no contradiction.

In light of this result for the quartic polynomial with periodicity constraints and 

testing completed using SOSTOOLS for up to tenth degree polynomials with and 

without periodicity constraints, it is conjectured that the optimality of constant co­

contractions holds for SOS polynomial solutions in general under the current struc­

ture of the open-loop solver. Improved EMG data from new experiments as dis­

cussed in Section 6.4 can help to validate how realistic constant tendon force averages 
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are. It seems likely that there are circumstances under which modeling human co­

contractions would require more freedom than is allowed by constant polynomials. 

Concurrently, it is noted that this is not a limitation of the open-loop solver concept 

as it is capable of non-constant co-contractions. For example, if a4 > C is used 

rather than non-negativity, where C is some positive constant, the co-contractions 

are forced to be non-constant. Further study is required to identify whether the con­

stant co-contractions are a consequence of the system or due to a yet unrecognized 

assumption.

6.6.3 Computational Efficiency

To provide insight into the computation efficiency of the solver, it was timed while 

running the best case found for the Anterior Deltoid. The optimal control solver was 

evaluated using both the SOSTOOLS and linear programming solution methods on 

a computer with an Intel Core i7-7700HQ processor running at the “Turbo Boost” 

clock speed of 3.60 GHz with 16 GB of RAM. Over five trials SOSTOOLS required 

an average of 6.69 s. In contrast, the linear program was able to be completed in 

0.029 s on average. While the linear programming solution is indeed specialized to the 

problem of interest, the computation savings support the effort of developing a linear 

program where possible. As another point of comparison, it has been reported that the 

method termed forward static optimization, which also uses a predefined trajectory, 

requires 7.9 s to complete an arm simulation with what appears to be the same model 

on a comparable processor [108]. The SOSTOOLS method is competitive with this 

result and could represent computational savings of up to 18%. The linear program 

runs 272 times faster than the example provided for forward static optimization.

While an equivalent model could not be found to compare the optimal control 

solver wrapped in a trajectory optimization to dynamic optimization, some more 

general observations can be made. Reference [1] reports a 35 minute solution time 
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using direct collocation for 1/2 of a walking gait cycle for a planar model. One trial 

with BBO for the Anterior Deltoid optimization using the linear program required 

an average across 5 trials of 10.5 minutes with a range of 7.8-12.1 minutes. The 

variation in speed partially depends on which generation iteration the population 

begins to be feasible and the number of feasible individuals needing to be evaluated 

each generation. For example, the fastest time correlates with the trial with the 

largest sum of the average constraint violation across the 300 evaluated generations. 

Likewise, the slowest time correlates with the trial with the smallest average constraint 

violation sum. Though a direct comparison cannot be made, it seems possible that the 

trajectory optimization and solver combination computation time could at least be 

comparable to direct collocation. Arguably, the implementation of differential flatness 

should provide an advantage because the system dynamics need not be included in 

the set of constraints as it is in direct collocation.

6.7 Remarks

A novel parameterization of musculoskeletal dynamics produces a analytically 

amenable and computationally feasible optimal control solver. Differential flatness 

simplifies model evaluation and contributes computational speed. SOS polynomial 

techniques allow analytical expressions for muscle co-contractions, which is based on 

insight from the previous chapter into the importance of muscle co-contractions. The 

solution of these co-contractions can be reduced to a linear program under various 

circumstances and further simplifies to constant co-contractions in many cases. The 

results of the solver were shown valid against EMG data. Measured computation 

times indicate that the solver is competitive with published methods when utilizing 

SOSTOOLS and sees a significant speed advantage when employing a linear program.
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6.7.1 Exercise Optimization

In applying the optimal control solver to exercise optimization, a variety of re­

sults were produced, but for all cases a specific muscle could be almost completely 

isolated. Additionally, the optimization effectively protected the required constraints. 

The variation in the results provides insight into ways to improve the optimal exercise 

approach. First, stronger results for some muscles might be possible by extending the 

search space for the desired trajectory. It is noted, however, that the chosen ranges 

provide a measure of safety considering the physical implementation of these trajec­

tories. Assuming some safety controls could be implemented though, this extended 

search space could be particularly important for the desired trajectories as they are 

currently limited to the same search space as the actual trajectories. For example, the 

placement of the desired ellipse could be behind the exercise subject’s back, adding 

different dynamics than have been considered here.

Second, the results also revealed the effects of the cost function. In particular, 

the activations can be fully maximized when the muscle force is not due to additional 

dependence on the force-length and force-velocity relationships. Therefore, a muscle 

force-based cost function might reduce the variety seen in the chosen trajectories, 

yielding global optima. On the other hand, muscle activations are closest to the 

clinically feasible measurement EMG. To use muscle force in practice would require 

implementing a form of estimation at least.

While this approach does not guarantee quick solution of global optima, it can 

facilitate exercise studies, as was completed here. Additionally, it can provide initial­

ization conditions for applications like extremum seeking control in practice.

6.7.2 Receding Horizon Control

A major impetus to the development of the optimal control solver is receding 

horizon control, in particular MPC, due to the inherent ability of these methods to 
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protect constraints. These methods require the repeated solution of an open-loop 

optimal control problem, application of the result for one simulation time step, and 

reevaluation of the optimal control problem starting at the updated initial conditions. 

These extensive function evaluations demand computational efficiency. In addition, 

implementation requires recursive feasibility of the optimal control solution. A proof 

of this property for the optimal control solver developed in this chapter is provided 

in [102]. Alongside this requirement to implement MPC, a linear program handling 

more general initial and final conditions would be beneficial. Fully establishing the 

optimality of constant co-contractions should support this endeavor.
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CHAPTER VII

CONCLUSION

7.1 Summary

This work began with involvement in powered transfemoral prosthesis research. 

Out of that came a prototype prosthesis and controller. The prosthesis proved capable 

during tests with an individual with an amputation of attaining basic gait features 

while performing energy regeneration under a unifying control law that could handle 

variation in gait speed. Though yet untested, the controller is anticipated to be able 

to handle climbing slopes and stairs and the sit-to-stand motion.

Through engaging with prosthetics, a gap in the capacity to test machines de­

signed for human interaction was identified. Two distinct methods of closing this 

discrepancy have been proposed with an emphasis on lower-limb prosthesis and exer­

cise applications. First, a control method based on impulse-momentum sliding mode 

control for implementation in a hip emulation robot has been proposed as a prototype 

pre-human trial test solution. This control had already been shown to produce the 

effect of human weight settling onto the prosthesis being tested in a vertical motion. 

Extension to walking by determining the necessary switching law exposed the need for 

improved swing-phase tracking, and several steps to achieve better gait were outlined.
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Additional evaluation of the force measurements is called for due to the possibility of 

generating appropriate forces but walking on the heel or toe alone. Finally, a unique 

direction for gait emulation, namely creating virtual environments, is opened by this 

research.

Second, muscle-actuated linkage simulation methods for human subsystems have 

been offered as a pre-prototype solution. The fundamental dynamics of such a system 

were initially studied, providing direction for the linkage simulation. Control by the 

backstepping method was identified as a well-structured framework to complete such 

simulations, and it inspired two methods for resolving redundancy in the muscle 

actuators. However, the lacking ability to apply constraints within backstepping as 

formulated guided investigations toward an alternative method capable of prediction.

Beginning to address the need for computationally efficient predictive methods 

in musculoskeletal modeling, an optimal control solver was invented. This solver em­

ploys differential flatness to parameterize the system dynamics in terms of the muscle 

co-contractions, which are represented with SOS polynomials. The combination of 

these techniques results in measurably faster solutions to the system dynamics given 

a trajectory, particular for cases that can analytically be reduced to a linear pro­

gram. Implementation of the solver in the context of an optimal exercise problem 

exhibited its capacity to support open-loop musculoskeletal system studies involv­

ing human-machine interaction, and the groundwork has been laid for closed-loop 

receding horizon models.

In summary, the dissertation comprised two projects related to the boundaries 

between humans and assistive-robotics. First, efforts to close the boundary formed 

when a human is joined with a robot are considered via the realm of powered trans­

femoral prostheses. Second, two methods to further widen the boundary between 

machine ideation and human tests are established. One focuses on prototype testing, 

and the other concentrates on pre-prototype simulation. The combination of these 
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two projects represent an improved development path for human-machine systems.

7.2 Contributions

Objective 1: To design a simplified powered prosthesis controller and pro­

totype with energy regeneration

• Chapter II: Invented a control method that is force modulated and can handle 

variable walking speeds while explicitly considering energy regeneration.

• Chapter IV: Validated the prosthesis prototype, control method, and energy 

regeneration by holding trials with an individual with a transfemoral ampu­

tation. Measurable features of walking gait and self-powered operation are 

achieved.

Publications

1. Warner, H., Khalaf, P., Richter, H., Simon, D., Hardin, E., and van den Bogert, 

A. J., 2020. “Powered transfemoral prosthesis with force-modulated impedance 

control and energy regeneration: A walking gait trial”. IEEE Transactions on 

Biomedical Engineering. (under review).

2. Khalaf, P., Warner, H., Hardin, E., Richter, H., and Simon, D., 2018. “Devel­

opment and experimental validation of an energy regenerative prosthetic knee 

controller and prototype”. In Proceedings of the American Society of Mechan­

ical Engineers Dynamic Systems and Control Conference, p. V001T07A008.

Objective 2: To extend impulse-momentum sliding mode control to emu­

late weight-bearing gait with a robot for prosthesis mechanical testing
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• Chapter III: Identified a switching law to enable walking gait for the weight 

simulating controller, and performed mechanical testing of the prosthesis with 

the gait emulation system.

Objective 3: To develop a framework for closed-loop muscle-actuated link­

age simulation of a human

• Chapter V: Designed a framework for simulating human subsystems as muscle- 

actuated linkages under closed-loop control. Assessed the closed-loop simulation 

by application to a human arm model.

Publications

1. Warner, H., Richter, H., and van den Bogert, A. J., 2019. “Backstepping con­

trol of open-chain linkages actuated by antagonistic Hill muscles”. Journal of 

Dynamic Systems, Measurement, and Control. (under review).

2. Warner, H., Richter, H., and van den Bogert, A., 2017. “Nonlinear tracking 

control of an antagonistic muscle pair actuated system”. In Proceedings of 

the American Society of Mechanical Engineers Dynamic Systems and Control 

Conference, p. V001T38A006.

3. Nguyen, T. T., Warner, H., La, H., Mohammadi, H., Simon, D., and Richter, 

H., 2019. “State estimation for an agonistic-antagonistic muscle system”. Asian 

Journal of Control, 21(1), pp. 354-363.

4. Richter, H., and Warner, H., 2017. “Stable nonlinear control of an agonist­

antagonist muscle-driven system”. IFAC Proceedings Volumes, 50(1), pp. 7199­

7204.

5. Nguyen, T., Warner, H., Mohammadi, H., Simon, D., and Richter, H., 2017. “On 

the state estimation of an agonistic-antagonistic muscle system”. In Proceedings 
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of the American Society of Mechanical Engineers Dynamic Systems and Control 

Conference, p. V001T37A005.

Objective 4: To establish an efficient open-loop musculoskeletal system 

solver

• Chapter VI: Introduced a novel parameterization for musculoskeletal system 

dynamics. Evaluated its accuracy by comparison to published data and com­

putational efficiency by application to exercise optimization.

Publications

1. Warner, H., and Richter, H., 2020. “Musculoskeletal dynamics simulation by 

differential flatness and sum of squares methods: Application to optimal exer­

cise”. (in preparation).

2. Richter, H., and Warner, H., 2020. “Motion optimization for musculoskeletal 

dynamics: A flatness-based sum of squares approach”. IEEE Transactions on 

Automatic Control. (under review).

7.3 Future Work

The field of powered prostheses leaves much space for progress. The limited 

commercial availability of powered devices attests to this fact. For the prosthesis 

developments presented in this dissertation, future directions should include an in­

vestigation into the frontiers of the proposed controller, expanding its recognized 

capacities to other activities of daily living besides walking. In addition, movement 

toward adding an integrated powered ankle should take place alongside a general 

design optimization, particularly emphasizing energy efficiency.

Advancing the mechanical testing of prostheses by robotic gait emulation is a rela­

tively new concept. The impulse-momentum sliding mode control approach improves 
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gait fidelity for such a robot, but it also allows for emulation of virtual environments. 

The extent to which this can be attained is an open question.

Pre-prototype simulation of human-machine interaction can bolster the design 

process and provide an increased measure of safety. The results of this disserta­

tion point to the significance of prediction when closing the loop for these methods. 

Progress in computational methods enable prediction in practice. Formally defining 

this problem in terms of receding horizon control, or preferably MPC which provides 

stronger guarantees, might finish opening the door to a more rigorous concept testing 

methodology to be applied before human trials.
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APPENDIX A

COPYRIGHTS AND PERMISSIONS

Permissions request for DOI 10.1115/DSCC2018-9091 13

®
Beth Darchi <DarchiB@asme.org> x
Thu 10/24/2019 4:31 PM

Holly E Warner: AccountsReceivable <AccountsReceivable@asme.org> ¥

Dear Mr. Warner,
This permission has been revised. It is our pleasure to grant you permission to use the ASME Figures 1,4 ONLY from 
"Development and Experimental Validation of an Energy Regenerative Prosthetic Knee Controller and Prototype/' by Poya 
Khalaf, Holly Warner, Elizabeth Hardin, Hanz Richter, Dan Simon, Paper No: DSCC2018-9091, cited in your letter for 
inclusion in a journal paper for IEEE's Transactions on Biomedical Engineering and to be published by IEEE and the 
dissertation entitled Simulation and Control at the Boundaries Between Humans and Assistive Robots to be published by 
Cleveland State University.

Permission is granted for the specific use as stated herein and does not permit further use of the materials without proper 
authorization. Proper attribution must be made to the author(s) of the materials. As is customary, we request that you 
ensure proper acknowledgment of the exact sources of this material, the authors, and ASME as original publisher. 
Acknowledgment must be retained on all pages printed and distributed.

All royalties have been waived.

Many thanks for your interest in ASME publications.

Sincerely,

Beth Darchi
Publishing Administrator
ASME
2 Park Avenue
New YorK NY 10016-5990
darchib@asme.org

Figure 62: Permission to reuse photographs of the prosthesis prototype (Figure 1) 
and the volunteer wearing the prototype (Figure 9) from [59]

190

mailto:DarchiB@asme.org
mailto:AccountsReceivable@asme.org
mailto:darchib@asme.org


Figure 63: Permission to replicate the able-bodied data used for comparison in Fig­
ure 10 from [105]

191


	Simulation And Control At the Boundaries Between Humans And Assistive Robots
	Recommended Citation

	tmp.1649445011.pdf.MWY1i

