235 research outputs found

    Multiple model adaptive control of neuromuscular blockade: Design guidelines and clinical cases

    Get PDF
    The high level of uncertainty of the dynamic response of patients subject to anaesthesia motivates the use of adaptive control methods. This paper proposes an approach based on Switched Multiple Model Adaptive Control (SMMAC) to tackle this problem in what concerns the control of the neuromuscular blockade level. It is shown how to design the different elements of the SMMAC controller, enhancing the importance of the observer polynomial, that is shown to be instrumental to stabilize the loop. Clinical results using atracurium as blocking agent are reported, thereby illustrating the application of the proposed approach in actual clinical practice

    Fuzzy logic: A “simple” solution for complexities in neurosciences?

    Get PDF
    Background: Fuzzy logic is a multi-valued logic which is similar to human thinking and interpretation. It has the potential of combining human heuristics into computer-assisted decision making, which is applicable to individual patients as it takes into account all the factors and complexities of individuals. Fuzzy logic has been applied in all disciplines of medicine in some form and recently its applicability in neurosciences has also gained momentum.Methods: This review focuses on the use of this concept in various branches of neurosciences including basic neuroscience, neurology, neurosurgery, psychiatry and psychology.Results: The applicability of fuzzy logic is not limited to research related to neuroanatomy, imaging nerve fibers and understanding neurophysiology, but it is also a sensitive and specific tool for interpretation of EEGs, EMGs and MRIs and an effective controller device in intensive care units. It has been used for risk stratification of stroke, diagnosis of different psychiatric illnesses and even planning neurosurgical procedures.Conclusions: In the future, fuzzy logic has the potential of becoming the basis of all clinical decision making and our understanding of neurosciences

    Tracking the NMB level via a switching system mass control strategy

    Get PDF
    Tese de mestrado. Engenharia Biomédica. Faculdade de Engenharia. Universidade do Porto. 201

    Development and implementation of feed-back controlled drug administration during anesthesia and sedation

    Get PDF

    Advanced Signal Processing and Control in Anaesthesia

    Get PDF
    This thesis comprises three major stages: classification of depth of anaesthesia (DOA); modelling a typical patient’s behaviour during a surgical procedure; and control of DOAwith simultaneous administration of propofol and remifentanil. Clinical data gathered in theoperating theatre was used in this project. Multiresolution wavelet analysis was used to extract meaningful features from the auditory evoked potentials (AEP). These features were classified into different DOA levels using a fuzzy relational classifier (FRC). The FRC uses fuzzy clustering and fuzzy relational composition. The FRC had a good performance and was able to distinguish between the DOA levels. A hybrid patient model was developed for the induction and maintenance phase of anaesthesia. An adaptive network-based fuzzy inference system was used to adapt Takagi-Sugeno-Kang (TSK) fuzzy models relating systolic arterial pressure (SAP), heart rate (HR), and the wavelet extracted AEP features with the effect concentrations of propofol and remifentanil. The effect of surgical stimuli on SAP and HR, and the analgesic properties of remifentanil were described by Mamdani fuzzy models, constructed with anaesthetist cooperation. The model proved to be adequate, reflecting the effect of drugs and surgical stimuli. A multivariable fuzzy controller was developed for the simultaneous administration of propofol and remifentanil. The controller is based on linguistic rules that interact with three decision tables, one of which represents a fuzzy PI controller. The infusion rates of the two drugs are determined according to the DOA level and surgical stimulus. Remifentanil is titrated according to the required analgesia level and its synergistic interaction with propofol. The controller was able to adequately achieve and maintain the target DOA level, under different conditions. Overall, it was possible to model the interaction between propofol and remifentanil, and to successfully use this model to develop a closed-loop system in anaesthesia

    Risk Management for the Future

    Get PDF
    A large part of academic literature, business literature as well as practices in real life are resting on the assumption that uncertainty and risk does not exist. We all know that this is not true, yet, a whole variety of methods, tools and practices are not attuned to the fact that the future is uncertain and that risks are all around us. However, despite risk management entering the agenda some decades ago, it has introduced risks on its own as illustrated by the financial crisis. Here is a book that goes beyond risk management as it is today and tries to discuss what needs to be improved further. The book also offers some cases

    Automation of the anesthetic process: New computer-based solutions to deal with the current frontiers in the assessment, modeling and control of anesthesia

    Get PDF
    The current trend in automating the anesthetic process focuses on developing a system for fully controlling the different variables involved in anesthesia. To this end, several challenges need to be addressed first. The main objective of this thesis is to propose new solutions that provide answers to the current problems in the field of assessing, modeling and controlling the anesthetic process. Undoubtedly, the main handicap to the development of a comprehensive proposal lies in the absence of a reliable measure of analgesia. This thesis proposes a novel fuzzy-logic-based scheme to evaluate the impact of including a new variable in a decision-making process. This scheme is validated by way of a preliminary analysis of the Analgesia Nociception Index (ANI) monitor on analgesic drug titration. Furthermore, the capacity of the ANI monitor to provide information to replicate the decisions of the experts in different clinical situations is studied. To this end, different artificial intelligence-based algorithms are used: specifically, the suitability of this index is evaluated against other variables commonly used in clinical practice. Regarding the modeling of anesthesia, this thesis presents an adaptive model that allows characterizing the pharmacological interaction effects between the hypnotic and analgesic drug on the depth of hypnosis. In addition, the proposed model takes into account both inter- and intra-patient variabilities observed in the response of the subjects. Finally, this work presents the synthesis of a robust optimal PID controller for regulating the depth of hypnosis by considering the effect of the uncertainties derived from the patient's pharmacological response. Moreover, a study is conducted on the limitations introduced when using a PID controller versus the development of higher order solutions under the same clinical and technical considerations

    Information Systems and Healthcare XXXIV: Clinical Knowledge Management Systems—Literature Review and Research Issues for Information Systems

    Get PDF
    Knowledge Management (KM) has emerged as a possible solution to many of the challenges facing U.S. and international healthcare systems. These challenges include concerns regarding the safety and quality of patient care, critical inefficiency, disparate technologies and information standards, rapidly rising costs and clinical information overload. In this paper, we focus on clinical knowledge management systems (CKMS) research. The objectives of the paper are to evaluate the current state of knowledge management systems diffusion in the clinical setting, assess the present status and focus of CKMS research efforts, and identify research gaps and opportunities for future work across the medical informatics and information systems disciplines. The study analyzes the literature along two dimensions: (1) the knowledge management processes of creation, capture, transfer, and application, and (2) the clinical processes of diagnosis, treatment, monitoring and prognosis. The study reveals that the vast majority of CKMS research has been conducted by the medical and health informatics communities. Information systems (IS) researchers have played a limited role in past CKMS research. Overall, the results indicate that there is considerable potential for IS researchers to contribute their expertise to the improvement of clinical process through technology-based KM approaches

    Acute lung injury in paediatric intensive care: course and outcome

    Get PDF
    Introduction: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) carry a high morbidity and mortality (10-90%). ALI is characterised by non-cardiogenic pulmonary oedema and refractory hypoxaemia of multifactorial aetiology [1]. There is limited data about outcome particularly in children. Methods This retrospective cohort study of 85 randomly selected patients with respiratory failure recruited from a prospectively collected database represents 7.1% of 1187 admissions. They include those treated with High Frequency Oscillation Ventilation (HFOV). The patients were admitted between 1 November 1998 and 31 October 2000. Results: Of the 85, 49 developed acute lung injury and 47 had ARDS. There were 26 males and 23 females with a median age and weight of 7.7 months (range 1 day-12.8 years) and 8 kg (range 0.8-40 kg). There were 7 deaths giving a crude mortality of 14.3%, all of which fulfilled the Consensus I [1] criteria for ARDS. Pulmonary occlusion pressures were not routinely measured. The A-a gradient and PaO2/FiO2 ratio (median + [95% CI]) were 37.46 [31.82-43.1] kPa and 19.12 [15.26-22.98] kPa respectively. The non-survivors had a significantly lower PaO2/FiO2 ratio (13 [6.07-19.93] kPa) compared to survivors (23.85 [19.57-28.13] kPa) (P = 0.03) and had a higher A-a gradient (51.05 [35.68-66.42] kPa) compared to survivors (36.07 [30.2-41.94]) kPa though not significant (P = 0.06). Twenty-nine patients (59.2%) were oscillated (Sensormedics 3100A) including all 7 non-survivors. There was no difference in ventilation requirements for CMV prior to oscillation. Seventeen of the 49 (34.7%) were treated with Nitric Oxide including 5 out of 7 non-survivors (71.4%). The median (95% CI) number of failed organs was 3 (1.96-4.04) for non-survivors compared to 1 (0.62-1.62) for survivors (P = 0.03). There were 27 patients with isolated respiratory failure all of whom survived. Six (85.7%) of the non-survivors also required cardiovascular support.Conclusion: A crude mortality of 14.3% compares favourably to published data. The A-a gradient and PaO2/FiO2 ratio may be of help in morbidity scoring in paediatric ARDS. Use of Nitric Oxide and HFOV is associated with increased mortality, which probably relates to the severity of disease. Multiple organ failure particularly respiratory and cardiac disease is associated with increased mortality. ARDS with isolated respiratory failure carries a good prognosis in children
    corecore