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Abstract

Over the past 35 years the development of strategies that allow to automatically control the

patient neuromuscular blockade (NMB) has met some important advances. This development

allowed the evolution from a simple on-off controller to intelligent control schemes based on a

variety of theories, such as the adaptive and model-based controllers.

Despite the vast work previously done in the area of NMB control, some problems still exist,

like a very high degree of uncertainty in the system dynamics due to the intra- and intervariability

in the patients and nonlinearities, and it is still desirable to achieve a better anesthetic solution.

Therefore further study around this theme in order to overcome the drawbacks of the manual

control as well as the limitations of the previous NMB control strategies will have a high impact

in the anesthetic community.

This work presents the implementation of a model-based switching control strategy to drive

the NMB level of patients undergoing general anesthesia to a predefined reference. SISO (Single-

Input-Single-Output) Wiener models with a compartmental part, describing the pharmacokinet-

ics and pharmacodynamics linear effect together with a static nonlinearity are used to model the

NMB response of two muscle relaxants, atracurium and rocuronium. The switching controller is

designed based on a bank of total system mass control laws, where each of such laws is tuned

for an individual model from a bank of models developed to represent the behavior of the whole

population. Moreover a scheme to improve the reference tracking quality based on the analysis

of the patient’s steady-state response is presented.

Keywords: Automatic NMB Control, Compartmental Models, Switching Control, Total

System Mass Control Law, Reference Tracking Improvement.
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Resumo

Durante os últimos 35 anos o desenvolvimento de controladores que permitem o controlo do ńıvel

de bloqueio neuromuscular (NMB) de um paciente tem conhecido importantes avanços. Graças

a estes desenvolvimentos foi posśıvel evoluir desde simples controladores on-off até controladores

inteligentes baseados numa larga gama de teorias, tais como os controladores adaptativos e os

controladores baseados em modelos.

Apesar do enorme volume de trabalho que se tem vindo a desenvolver na área do controlo do

NMB, ainda se constata a presença de alguns problemas tais como o elevado grau de incerteza

na dinâmica dos sistemas devido à inter- e intravariabilidade dos pacientes e a não-linearidades.

Embora tenha sido proposto até hoje um elevado número de controladores, ainda é desejável

alcançar-se uma melhor solução. Deste modo uma cont́ınua aposta em estudos nesta área, de

forma a ultrapassar as desvantagens do controlo manual bem como as limitações das estratégias

de controlo automáticas já desenvolvidas, tem certamente um enorme valor para a comunidade

anestésica.

Este trabalho apresenta a implementação de uma estratégia de controlo por comutação

baseada em modelos de forma a controlar a resposta de NMB de um paciente sujeito a cirur-

gia geral para um valor de referência desejado. Modelos de Wiener com uma entrada e uma

sáıda, constituidos por um sistema compartimental, que descreve o efeito farmacocinético e far-

macodinâmico linear, em série com uma não linearidade estática, são utilizados para modelar a

resposta do NMB à administração de dois relaxantes musculares, o atracurium e o rocuronium.

O controlador por comutação é constrúıdo com base num banco de leis de controlo de massa

total, estando cada uma dessas leis sintonizada para um modelo de um banco de modelos desen-

volvido de forma a representar o comportamento da população. Além disso, é apresentada uma

estratégia de melhoramento do seguimento de referência, baseada na análise da resposta NMB

do paciente em estado estacionário.

Palavras-Chave: Controlo Automático do NMB, Modelos Compartimentais, Controlo por

Comutação, Lei de Controlo de Massa, Melhoramento do Seguimento de Referência.
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Chapter 1

Introduction

1.1 Motivation

Health related research has accomplished major advances in the last decades. In this period the

world has witnessed an exponential development in this area and the tendency is to continue at

a faster scale.

Health care is one of the basic foundations for a good quality of life. So any improvement

in this area is a great social accomplishment. In this context, surgical procedures have a crucial

importance as a way of treating and correcting a very large range of health problems.

Anesthesia is a key factor to the success of a surgery since it provides good conditions for

surgical activity. Therefore, there is a considerable interest in research in this area, leading to

procedures that can assist and simplify the anesthesiologists work as well as for the surgeons.

General anesthesia is achieved by the administration of three types of drugs, a hypnotic, an

analgesic, and a muscle relaxant. Usually, these drugs are manually administered through boluses

given by the anesthesiologists during the surgery. Automatic methods for drug administration

can make this procedure smoother for the patient and lead to less waste of drug.

The present work was carried out within the research project GALENO - Modeling and

control for personalized drug administration (PTDC/SAU-BEB/103667/2008), which aims at

designing personalized drug administration system using modeling, estimation, control and ad-

visory methods.

1



CHAPTER 1. INTRODUCTION

1.2 Aims

The automatic control of the neuromuscular blockade (NMB) level (one of the components of

the general anesthesia) can be achieved with a proper positive control law, designed with basis

on compartmental systems models that describe the behavior of the muscle relaxants inside the

body, [Almeida (2010)]. This not only drives the total drug mass in a patient to a desired

reference but also drives the NMB level to a specific target.

The present work is aimed at:

• Presenting a total system mass control law in order to perform the automatic control of

the NMB level in patients with a suitably identified model.

• Developing of a switching strategy to control the NMB level in patients whose model

parameters are unknown.

1.3 Previous Work and State of the Art

Over the past 35 years the development of the tunning of controllers for systems characterized

by the presence of non-linearities and large uncertainties has met some important advances. A

wide range of controllers from a simple on-off controllers [Vries et al. (1986), Wait et al. (1987)]

or PID controllers [Lago et al. (1998)] until intelligent control schemes based on a variety of

theories, like the adaptive, model-based, fuzzy and robust controllers has been achieved amoung

the last years.

Cass et al. (1976) reports one of the first cases of the use of a PID controller (Propor-

tional–Integral–Derivative controller) which the most commonly used is the feedback controller.

This case consisted in the administration of four non-depolarizing muscle relaxants, d-tubocarine,

gallamine, alcuronim and pancuronium to sheep with a pre-defined target of 40% and with an

infusion limited to a maximum of one hour. This led to the conclusion that an automatic control

scheme in order to control the NMB level is achievable in clinical practice. Other authors such

Asbury and Linkens (1986), O’Hara et al. (1991), and Lago et al. (1998), have also developed

work in the area of the PID controllers.

The adaptive model-based closed-loop systems bring a big advance in the control of neu-

romuscular blockade with a wide range of advantages. The development of these models was

possible due to the publication of pharmacokinetic/pharmacodynamic (PK/PD) models, which

are assumed to accurately describe the actual behaviour of NMB agents inside the body. Once

these models were presented, a variety of feedback control schemes designed to lead the NMB

to a desired target have appeared. During the past years authors like Bradlow et al. (1986),

Jaklitsch and Westenskow (1987), Uys et al. (1988), Lendl et al. (1999) and many others have

2



CHAPTER 1. INTRODUCTION

proposed different feedback schemes in order to present a suitable strategy to control the NMB

level.

Regarding fuzzy logic model based methods, there are many authors that explored this ap-

proach as a simple mean to build a nonlinear controller. Here, Mason et al. (1994), Mason et al.

(1996), Mason et al. (1999), Ross et al. (1997), Edwards et al. (1998), and Shieh et al. (2000)

are some of the many authors that developed this method. Fuzzy logic control consists from a

structural point of view, in a set of rules built via guidelines normally provided by an experi-

enced operator well aware of the proccess under study. Consequently, the controller looks at the

process as a black box and does not need an accurate model description.

The project GALENO - Modeling and control for personalized drug administration (PTDC/

SAU-BEB/103667/2008), a project financed by the FCT - Fundação para a Ciência e a Tec-

nologia, has the objective of designing personalized drug administration systems using modelling,

estimation, control and advisory methods. Over the past years, it has seen several developments

regarding the automatic control of the neuromuscular blockade with the participation of several

researchers which have worked in different ways to pursue the main goal of this project. Adap-

tive control methods were studied in (Lemos et al. (2002a), Lemos et al. (2002b), Lemos et al.

(2003), Lemos et al. (2005a), Lemos et al. (2005b), and Lemos et al. (2006)). These methods

consist in using a parameter dependent controller whose parameters are updated with basis on

the controller system response. PID controllers, switching strategies and observers were studied

in (Magalhães et al. (2002a), Magalhães et al. (2002b), Magalhães et al. (2004), Magalhães et al.

(2005), and Magalhães (2006)). Observers consist on the modelling of a real system in order to

provide an estimation of its internal state. This modelling is achieved through measurements

of the input and output of the real system. The NMB control with positive total system mass

control laws applied to systems with uncertainties were studied in (Sousa et al. (2007), Sousa

et al. (2008), and Sousa et al. (2010)). Finally, the total system mass control laws applied to

positive systems were studied in (Almeida et al. (2010), Almeida et al. (2011), and Almeida

(2010)). All this developed work allowed a major breakthrough on the automatic control of the

NMB with a reasonable number of techniques already applied in the surgery room that have

shown acceptable results.

1.4 Contributions

Several techniques are applied and tested to perform, both online and offline, the automatic

control of the NMB level.

Regarding online NMB control it was addressed the total system mass control law with
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controller selection based on two techniques. The first one is the switching strategy and the

second one is the Extended Kalman Filter (EKF) used to perform the model identification and

then tuned the corresponding total system control law.

The offline NMB control was also based on the application of the total system mass control

law, but the controller selection was performed with different methods. For controller selection

it was used the controller with the better reference tracking, the controller of the model with the

closest parameters to the ones of the patient model, the controller of the model with the value of

steady-state input (USS) required to achieve a desired reference closest to the one of the patient

model, the controller of the model with the value of Norm 2 closest to the one of the patient

model, the controller of the model with the value of Vinnicombe metric closest to the one of the

patient model, the controller of the model with the closest Impulse Response to the one of the

patient model, and the controller of the model with the closest Step Response to the one of the

patient model.

Comparisons between methods are presented and discussed.

Some work related to the automatic control of NMB level through total system mass control

laws using a switching strategy was published in Teixeira et al. (2012).

1.5 Outline of the Dissertation

Despite all the previous work done in the area of NMB control, some problems related with

the continuous infusion still exist. This is mainly due to a very high degree of uncertainty in

the system dynamics caused by the intra- and intervariability in the patients, noise level, sensor

faults, nonlinearities, time variations and control actions constrains. Although a large range of

control strategies have been proposed and studied, a suitable and acceptable anesthetic solution

has not yet been achieved. So research developments that allow to overcome the drawbacks of

the manual control as well as the limitations of the past NMB control strategies have a high

impact in the anesthetic community.

Chapter 2 presents an overview of anesthesia. Here the existence of a large range of anes-

thetic solutions is emphasized and the particular case of the general anesthesia will be further

studied once it is the type of anaesthesia addressed in this work. The different general anesthesia

components as well as the drugs used to achieve it will be presented. Moreover an explanation

is given about the importance of anesthetic procedures during surgeries, as well as, about the

induction and maintenance of anesthesia. In a second part of chapter the particular case of Neu-

romuscular Blockade (NMB) was studied, with a focus in the anatomy and physiology related

with the NMB process, which means to explain how the muscle relaxants work over the muscle

paralysis. Furthermore a brief description of the main muscle relaxants addressed in this work
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is made.

In chapter 3 all the theoretical ground of the work is presented. Here two compartmental

models are introduced, firstly the main PK/PD compartmental model is addressed and secondly

a new compartmental model, known as reduced parameter compartmental model is presented.

These models describe the relation between the quantity (or concentration) of administered

drug and the quantity (or concentration) of drug which is actually effective. After that the Hill

Equation adapted to each compartmental model, is introduced. This is a nonlinear equation that

relates the drug effect concentration with its effect, i.e., with the NMB level of the patient. The

total system mass control law is presented and studied in order to show that leading the total

system mass to a reference value the NMB level is also drived to a specific desired target. Also

the open-loop control technique TCI is briefly described. After that a switching strategy between

total system mass control laws is introduced. The switching strategy is explained together with

the switching criterion. Then some results of NMB control with switching strategy are presented,

and a study comparing the switching strategy and the Extended Kalman Filter (EKF) strategy is

performed, as well as a comparative study with several offline controllers chosen based on different

metrics. Finally a strategy to improve the reference tracking quality is presented together with

the results obtained after its application.

Chapter 4 is devoted to the clinical environment, i.e., to all the practical work developed on

the application of the NMB control on real patients during surgery ranging from the hardware

to the software used for the work, the protocol applied by the anesthesiologists as well as the

outcomes obtained.

Finally, Chapter 5 contains the conclusions of the developed work as well as some suggestions

for future work.
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Chapter 2

Anesthesia

In surgical procedures where the absence of pain, feeling/sensation and/or movement is essential,

anesthesia is an important aspect to consider. There are four main types of anesthesia:

• Local : numbs one small area of the body. The patient stays awake and alert;

• Conscious sedation: uses a mild sedative to relax the patient and pain medicine to relieve

pain. The patient stays awake but may not remember the procedure afterwards;

• Regional anesthesia: blocks pain in an area of the body, such an arm or leg. Epidural

anesthesia is a type of regional anesthesia;

• General anesthesia: affects the whole body. The patient goes to sleep and feels nothing,

and should have no memory of the procedure afterwards.

For the purpose of this work only the general anesthesia will be assessed.

2.1 General Anesthesia

2.1.1 General Anesthesia

General anesthesia enables a patient to tolerate surgical procedures that would otherwise inflict

unbearable pain, potentiate extreme physiologic exacerbations, and result in unpleasant memo-

ries. General anesthesia uses intravenous and inhaled agents to allow adequate surgical access

to the operative site. Anesthesiologists are responsible for assessing all factors that influence a

patient’s medical condition and for selecting the optimal anesthetic technique accordingly.

The main features of general anesthesia are the following::

• It allows proper muscle relaxation for prolonged periods of time;
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• It can be administered rapidly and is reversible;

• It reduces intraoperative patient awareness and recall;

• It can be adapted easily to procedures of unpredictable duration or extent;

• It facilitates control of the airway, breathing, and circulation.

2.1.2 General Anesthesia Components

General anesthesia can be defined as a reversible state of unconsciousness where three variables

must be controlled: hypnosis, analgesia, and areflexia. For this purpose, the anesthesiologists

need to administrate three different types of drugs: hypnotics, opioids and muscle relaxants.

Hypnotic drugs are a class of psychoactives whose primary function is to produce uncon-

sciousness and sedation in surgical anesthesia. Examples of hypnotics are isoflurane, sevoflurane

and desflurane (volatile drugs), and propofol (intravenous drug).

Opioid (or analgesic) are drugs used to relieve pain and to achieve analgesia. The analgesic

effects of opioids are due to decreased perception of pain, decreased reaction to pain as well as

increased pain tolerance once they act in the opioid receptors, from the central and peripheral

nervous system. Examples of analgesics are fentanil, sufentanil and remifentanil (all intravenous

drugs).

Finally, areflexia is defined as the lack of movement produced by muscle relaxants, or neuro-

muscular blockade agents (NMBA) [Esteves (2008)]. This drugs affect skeletal muscle function

and decrease the muscle tonus by blocking nerve impulses so that muscles cannot contract,

creating paralysis, a desired condition to facilitate tracheal intubation and to maintain good sur-

gical conditions. Examples of muscle relaxants are succinylcholine, atracurium, cis-atracurium,

vecuronium and rocuronium (all intravenous drugs).

The administration of a particular hypnotic, analgesic or muscle relaxant during a surgical

procedure is a choice of the anesthesiologist, where patient characteristics, hospital protocols and

the type of surgery are aspects to take into account.

2.1.3 Manipulation of the General Anesthesia Components

In order to manipulate the drug input the anesthesiologist has to supervise some physiological

signals from the patient, so that he knows when and how to act in order to preserve a good level

of anesthesia. It is based on the interpretation of specific patient signals that the anesthesiologist

makes the decision of increase, decrease or cease the drug input.
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In order to manipulate the depth of anesthesia (DoA) the anesthesiologist uses information

from several physiological signals and depending on the stage of the surgery decides the anesthetic

protocol, i.e., the amount of hypnotic and analgesic to deliver. However it was need to take into

account that the analgesic drugs only affect the DoA if used in large amounts, which does not

usually occur.

Nowadays, BIS signal (Bispectral index, which is a measure of the level of consciousness) is

widely used in surgery rooms and it is accepted as a measure of the DoA: if the BIS signal is

to high the anesthesiologist knows he needs to increase the drug input, and if it presents too

low values he knows that he needs to decrease the drug input (Note that the BIS signal must

be preserved between 40 and 60%). Fig. 2.1 illustrates the BIS sensor and its way to use and

Fig. 2.2 the main BIS monitor. Nevertheless, this signal presents some drawbacks namely the

noise from the surgical instruments and electromyography that affect the quality of the signal.

Therefore, signals such the BIS-SQI signal, quality index of the BIS, and theBIS-EMG signal,

interference of the electromyographic signal into the BIS signal, are used. In the first one, if the

value is too low the anesthesiologist ignores the correspondent BIS value and waits for further

values with better BIS-SQI to validate any action. In the second one, if the value is high the

anesthesiologist ignores the BIS values, and if the value is low it means a clean BIS signal that

can be used to make a decision. Finally signals like the heart rate and the blood pressure are

supervised to restrain the increase of input of the hypnotic and the analgesic.

Figure 2.1: BIS Sensor.

In summary, the anesthesiologist uses the BIS signal as a measure for the hypnotic, which

influences directly the DoA, but also the analgesic, which interacts with the hypnotic drug in

the DoA. Signals like the BIS-SQI and BIS-EMG are used to validate the BIS signal, and heart

rate and blood pressure are used to supervise the hypnotic and analgesic administration.

9



CHAPTER 2. ANESTHESIA

Figure 2.2: BIS Signal.

As for arreflexia, its manipulation is much easier and direct than the one of the depth of

anaesthesia [da Silva et al. (2010), da Silva et al. (2012), Esteves (2008)]. Here the anesthesiologist

only has to use the TOF signal (Train-Of-Four), which is used to measure the level of NMB.

This signal is the patient’s response to an evoked EMG obtained at the hand of the patient by

a sequence of four external stimulations of the ulnar nerve (Fig. 2.3). A baseline measurement

is done before paralytic agent is administered in order to determine the current necessary to

obtain twitch. The signal (Fig. 2.3) is graphically represented by four bars, which correspond

to the four twitches. At the beginning those bars are full (full muscle capacity) and when the

muscle relaxant is administered the values decrease and come to zero by full paralysis. The value

used to control the muscle relaxant input is T1, the first twitch of the TOF signal. If T1 is too

high the anesthesiologist knows that more muscle relaxant is needed in order to increase muscle

paralysis. Another value used, but in order to reverse the muscle paralysis is the TOF Ratio,

given as the quotient between T4, the four twitch of the TOF signal, and T1. This value allows

the anesthesiologist to know if he can apply the muscle relaxant reverser. If the TOF Ratio is

different from 0 he knows that the reverser can be administered.

In summary, the anesthesiologist uses the TOF signal to handle the input of the NMB agents,

using the T1 to manipulate the muscle paralysis agent and the TOF Ratio to identify when the

reverser can be administered.
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Figure 2.3: Mechanotransducer in the left image and TOF signal in the right image.

The values of the signals BIS, BIS-SQI, BIS-EMG, T1, T2, T3, T4, and TOF Ratio range from

0 to 100.

2.2 Neuromuscular Blockade (NMB)

2.2.1 NMB Anatomy and Physiology

The normal neuromuscular junction (NMJ) consists of a presynaptic neuron, a Schwann cell

(covering the neuron), and a postsynaptic muscle fiber [Guyton and Hall (2000)]. The presynap-

tic neuron stores and releases Acetylcholine (ACh). ACh receptors exist at both junctional and

extrajunctional areas of muscle fibers. When a nerve impulse reaches the end of a presynaptic

neuron, N-type Ca++ channels increase the intracellular calcium concentration, which causes the

synaptic vesicles to release ACh into the endplate. These ACh molecules then bind to the junc-

tional receptors allowing for Na+ and Ca++ influx into the muscle cell, which ultimately leads

to contraction due to the end plate potential. Aceytlcholinesterases quickly degrade available

synaptic ACh, preventing prolonged contraction [Appiah-Ankam and Hunter (2004)].

A decrease in the binding of acetylcholine leads to a decrease in its effect and neuron trans-

mission to the muscle is less likely to occur [Appiah-Ankam and Hunter (2004)]. There are two

types of drugs that affect the transmission at the neuromuscular junction: depolarizing and non-

depolarizing. Depolarizing drugs, such as succinylcholine, have the same effect on the muscle

fibre as does acetylcholine. The difference between these drugs and acetylcholine is that they are

not metabolized by acetylcholinesterase so a prolonged activation of the acetylcholine receptors

is produced (depolarization of the motor end plate). Non-depolarizing drugs, such as atracurium

and rocuronium block the action of acetylcholine on the acetylcholine receptor sites and therefore

no end plate potential is developed [Appiah-Ankam and Hunter (2004)].
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Figure 2.4: Neuromuscular junction [Magalhães (2006)].

The infusion of muscle relaxant drugs is frequent during the surgery for three reasons:

• To eliminate spontaneous breathing and promote mechanical ventilation (e.g. to eliminate

the urge to fight the vent);

• To cause a pharmacological restraint so patients do not harm themselves;

• To decrease oxygen consumption.

Neuromuscular blockade agents (NMBA) are non-depolarizing drugs that block the neuro-

muscular transmission and consequently lead to muscle paralysis. Besides the already mentioned

drugs atracurium and rocuronium, examples of such agents are cis-atracurium and vecuronium

[Appiah-Ankam and Hunter (2004)].

After an infusion of an initial bolus of NMBA to facilitate tracheal intubation, the maintenance

of muscle relaxation for long periods of time during surgery can be achieved by two different ways,

namely it may be ensured either by continuous infusion or by further increments (top-ups) of

NMBA at regular instants of time.

A bolus is a single dose B of drug usually injected into a blood vessel over a short period of

time. It can be mathematically represented by:

u(t) = Bδ(t) [µg/kg], (2.1)
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where δ(t) is the Dirac δ function. On the other side, the continuous infusion of a quantity ki of

drug in a time interval [ti, ti+1] may be represented by the following step function:

u(t) = ki [µg.kg−1.min−1], ti ≤ t ≤ ti+1, i = 0, 1, 2, 3, . . . . (2.2)

For the purpose of this work atracurium and rocuronium will be the NMBA’s under consid-

eration.

2.2.2 Atracurium

Figure 2.5: Atracurium molecular structure.

Atracurium is a benzyl isoquinolonium ester and can be defined as an intermediate-duration,

short-acting relaxant in the category of non-depolarizing neuromuscular blocking drugs, used

adjunctively in anesthesia to facilitate endotracheal intubation and to provide skeletal muscle re-

laxation during surgery or mechanical ventilation. An initial atracurium dose of 0.4 to 0.5 mg/kg

provides a maximum neuromuscular blockade within 3 to 5 minutes of injection, and a recovery

occurs approximately between 20 to 35 minutes after injection. The neuromuscular blocking

action of atracurium is enhanced in the presence of potent inhalation anesthetics like isoflurane

and enflurane which increase the potency of atracurium and prolong neuromuscular block by

approximately 35%. The onset time decreases and the duration of maximum effect increases with

the increase of the dose. Atracurium is rapidly broken down by the body to inactive metabolites

by ester hydrolysis (minor pathway) and spontaneous Hoffman degradation (major pathway).

The reversion of the neuromuscular blockade can be achieved with an anticholinesterase agent

such as neostigmine in conjunction with an anticholinergic agent such as atropine. Reversal can

usually be attempted when recovery of muscle twitch has started. Complete reversal is usually

attained within 8 to 10 minutes of the administration of reversing agents.

Schematically, atracurium can be characterized as follows:

• Structure: Benzyl isoquinolinium compound;
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• Dosing : 0.4-0.5 mg/kg with onset in 3-5 minutes, lasting 20-35 minutes;

• Metabolism: Cleared by non-enzymatic degradation (Hofmann elimination) as well as ester

hydrolysis by plasma esterases.

2.2.3 Rocuronium

Figure 2.6: Rocuronium molecular structure.

Rocuronium is an aminosteroid non-depolarizing muscle relaxant used in modern anesthesia,

to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or

mechanical ventilation. As a non-depolarizing drug, rocuronium binds competitively to cholin-

ergic receptors on motor end-plate to antagonize action of acetylcholine, resulting in a blockade

of neuromuscular transmission. An initial rocuronium dose of 0.6 mg/kg provide a maximum

neuromuscular blockade within 1 to 2 minutes of injection, and a recovery occurs approximately

between 20 to 35 minutes after injection. The neuromuscular blocking action of this drug is en-

hanced in the presence of inhalation anesthetics like sevoflurane, isoflurane, and enflurane. The

onset time decreases and the duration of maximum effect increases with the increase of the dose.

Rocuronium is mostly cleared in the bile (essentially unchanged) (major pathway) although up

to 30% may be excreted renally (minor pathway). Note that individual responses to this drug

are highly variable, and the duration of the effect is difficult to predict. The main advantage of

using rocuronium instead of atracurium is the existence of sugammadex, a reversal of neuromus-

cular blockade without relying on inhibition of acetylcholinesterase, like neostigmine. Also the

reversion can be realized at any point, and so it is not necessary to expect the initial recovery

from the initial bolus. The reversion of the neuromuscular blockade can also be achieved with an

anticholinesterase agent such as neostigmine in conjunction with an anticholinergic agent such

as atropine, but reversal can only be attempted when recovery of muscle twitch has started. In

comparison with atracurium, rocuronium has a lower potency and so a higher dose is required

for the same effect, leading to a higher concentration gradient and a faster onset.

Schematically, rocuronium is characterized as follows:

• Structure: Aminosteroid compound;
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• Dosing : 0.6 mg/kg onset in 1-2 minutes and lasts 20-35 minutes;

• Metabolism: Rocuronium is mostly cleared in the bile (essentially unchanged) although up

to 30% may be excreted renally. Note that individual responses to rocuronium are highly

variable, and the duration of the effect is difficult to predict.
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Chapter 3

Automatic Control

The manual control is tedious, slower and more prone to errors. Thus, the development of pro-

cedures for automatic control is of great interest, once they allow a more rigorous determination

of the drug infusion dose and decrease the tendency to error.

Figure 3.1: Elementary NMB control scheme.

To achieve an efficient automatic control, the effect of drug on the NMB of a patient needs

to be modelled by means of mathematical equations.

3.1 Drug Effect Models

In order to model the effect of a drug, pharmacologists often separate their analysis into two

steps. First, they built a pharmacokinetic (PK ) model that relates the administered drug dose

with the blood drug concentration. In a second stage, a pharmacodynamic (PD) model is

derived, describing the relation between the former concentration and the drug concentration in

the relevant part of the body, known as the effect concentration, as well as the relation between

the effect concentration and the actual drug effect (here the NMB level).

3.1.1 Drug Dose/Effect Concentration Models

The most common models for the effect concentration of a drug are compartmental systems.
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A system is a set of interconnected elements that are dependent on each other and form a

unit that has specific characteristics and functions [Magalhães (2006), Marques (2008)]. Each

system admits states that are defined as a set of variables capable to describe the system in any

instant of time. Systems can be classified as continuous or discrete-time systems according to

the continuous or discrete nature of the time-line over which their variables are defined. Also,

systems can be classified as open, closed or isolated. An open system can exchange matter or

energy with its surroundings, while a closed system can only exchange energy, but not matter

with its surroundings. In contrast, an isolated system cannot exchange neither energy nor matter.

Compartmental systems are widely used to model the pharmacodynamics and pharmacoki-

netics of intravenously administered drugs [Godfrey (1983), Hof (1996), Beck et al. (2007)]. A

compartmental system is a system that has a finite number of homogeneous, well-mixed sub-

systems, called compartments that exchange material among them and with the environment.

These models are based on the principle of mass conservation.

Figure 3.2: Representation of a compartment.

Fig. 3.2 represents a compartment, in this case compartment i; here bi represents the input

rate (the drug infusion rate to a patient if we consider the specific case of anesthesia), xi is

the concentration of material in the compartment i, kij represents the rate of mass transfer

from compartment i to compartment j, and ki0 represents the rate of material output from

compartment i to the environment.

The input to compartment i, is given by bi.u, where u is the total system input. This input,

the state xi and all the rate constants are assumed to be non-negative.

At each time instant t, the variation ẋ(t) in the concentration of material in compartment i
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is then given by [Marques (2008), Almeida (2010)]:

ẋi(t) = −
n∑

j=0,
j 6=i

kijxi(t) +
n∑

j=1,
j 6=i

kjixj(t) + biu i = 1, . . . , n. (3.1)

where n is the total number of compartments.

Assuming that a linear combination of the concentrations of material in each compartment

is the relevant system feature, the output of the system is defined as:

y(t) = c1x1(t) + . . .+ cnxn(t). (3.2)

It is assumed that the ci are non-negative and that at least one of them is strictly positive.

Gathering in a vector all the concentrations xi of material in the different compartments, i.e.,

defining

x(t) =


x1(t)

...

xn(t)

 ,
the previous equations can be written in matrix form as:

 ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) t ≥ 0,
(3.3)

where

B =


b1
...

bn

 ,

is a n× 1 (column) and C =

[
c1, . . . , cn

]
, is a 1× n matriz (row), and A is a matrix n× n of

the form:

A = (aij),

with:

aii = −
n∑
j=0
j 6=1

kij

aij = kji (i 6= j).

(3.4)

Models as the one given by equations (3.3) are known as linear state-space models.
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The vector x(t) is known as the state vector, as it collects all the necessary information about

the system at time instant t in order to describe its future behaviour, under the influence of a

given input u.

Due to the fact that matrix A is of the form (3.4) and that B and C have nonnegative

components and that at least one of its components is strictly positive, it turns out that when the

initial state and the input are nonnegative, then the states and the output remain nonnegative.

The particular features of the matrix A are that:

• It is a Metzler Matrix, i.e., all off-diagonal values are non-negative:

aij ≥ 0, ∀i, j with i 6= j

• All its diagonal values are non-positive:

aii ≤ 0, ∀i

• It is a diagonally dominant matrix, i.e.,

| aii |≥
∑
j 6=i

aij ∀i.

A matrix with these properties is called a compartmental matrix.

In the sequel, two types of compartmental models are introduced in order to describe the

administration of NMBA, namely the PK/PD compartmental model and the reduced parameter

model. These will be used as basis for the implementation of automatic control procedures.

PK/PD Compartmental Model

In this specific work, a mammillary model is considered to represent the pharmacokinetics

and pharmacodynamics of NMBA infusion (Fig. 3.3) [Magalhães (2006), Beck et al. (2007),

Almeida (2010)]. A mammillary model is a compartmental model in which a central compartment

is surrounded by p-1 peripheral compartments which exchange matter only with the central

compartmental and not with one another. Pharmacokinetics describes the path that a drug

does inside the body, whereas pharmacodynamics means the pharmacology field that studies the

physiological effects of drugs, and their mechanisms of action.

Here this model includes three compartments, where two of them represent the pharma-

cokinetic model (C1 and C2), combined with an effect compartment (Ce) which is part of the

pharmacodynamic part of the model, see Fig. 3.3.
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Figure 3.3: Block diagram of the mammillary PK/PD compartmental model.

The corresponding state-space equations are as follows.


ẋ1

ẋ2

ẋ3


︸ ︷︷ ︸

ẋ

(t) =


−(k12 + k10 + k1e) k21 0

k12 −(k21 + k20) 0

k1e 0 −ke0


︸ ︷︷ ︸

A

.


x1

x2

x3


︸ ︷︷ ︸

x

(t) +


1

0

0


︸ ︷︷ ︸

B

u(t)

y(t) =

[
0 0 1

]
︸ ︷︷ ︸

C

.


x1

x2

x3


︸ ︷︷ ︸

x

(t). (3.5)

This model has six patient dependent parameters, k10, k12, k1e, k20, k21, and ke0 (min−1)

that must be identified for each particular patient. The state variables x1 and x2 (µg/kg)

correspond to the drug concentrations in compartments C1 and C2, whereas x3 (µg/kg) is the

drug concentration in the effect compartment, also known as effect concentration. The input u(t)

(µg/kg/min) corresponds to the delivery rate of drug concentration with respect to the central

compartment, and is computed as u(t) = ũ(t)/V1, where ũ(t) is the drug delivery rate, and V1
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is the volume of the central compartment. The output y(t) (µg/kg) corresponds to the effect

concentration.

Reduced Parameter Compartmental Model

The reduced parameter model described in da Silva et al. (2012) has been derived by system

identification techniques, rather than by pharmacological considerations. It can be described

as a compartmental system as seen in Fig. 3.4. Although it is equally a mammillary tri-

compartmental model, with two compartments representing the pharmacokinetic model (C1

and C2), combined with an effect compartment (C3) which represents the pharmacodynamic

model, the rate exchange constants are not the same as in the previous model. This leads to a

different system, with different state-space equations. More concretely the model equations are

the following [da Silva et al. (2012), Almeida (2010)].

Figure 3.4: Block diagram of the mammillary reduced parameter compartmental model.


ẋ1

ẋ2

ẋ3


︸ ︷︷ ︸

ẋ

(t) =


−k3α 0 0

k2α −k2α 0

0 k1α −k1α


︸ ︷︷ ︸

A

.


x1

x2

x3


︸ ︷︷ ︸

x

(t) +


k3α

0

0


︸ ︷︷ ︸

B

u(t)

y(t) =

[
0 0 1

]
︸ ︷︷ ︸

C

.


x1

x2

x3


︸ ︷︷ ︸

x

(t). (3.6)
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This model has four parameters, k1, k2, k3 (min−1) and α (alpha) (dimensionless) that, as

in the previous case, must be identified for each particular patient. However good results are

obtained if the parameters k1, k2, k3 are fixed, based on previous knowledge on the patient pop-

ulation, and only α is identified for each particular patient. This constitutes a great advantage.

The values of k1, k2 and k3 used in the sequel are k1 = 1, k2 = 4 and k3 = 10, [da Silva (2011)].

The state variables x1 and x2 (µg/kg) correspond to the drug concentrations in compartments

1 and compartment 2, whereas x3 (µg/kg) is the drug concentration in the compartment 3, also

known as effect concentration. The input u(t) (µg/kg/min) corresponds to the drug delivery

rate with respect to the central compartment, and is computed as u(t) = ũ(t)/V1, where ũ(t)

is the drug delivery rate, and V1 is the volume of the central compartment. The output y(t)

(µg/kg) corresponds to the effect concentration.

3.1.2 Effect Concentration/ Drug Effect Models

As an output from the models presented in the previous subsection, the effect concentration,

y(t), is obtained. The effect concentration corresponds to the percentage of administered drug

that will produce effect in the NMB level, r(t).

The relationship between the effect concentration and the NMB level is given by the Hill

Equation; this is a nonlinear static equation, which assumes slightly different forms for the

PK/PD model and for the reduced parameter model.

For the PK/PD model [Beck et al. (2007)]:

r(t) =
100

1 +

(
y(t)

C50

)γ , (3.7)

where C50 (µg/kg) and γ (dimensionless) are patient-dependent parameters.

For the reduced parameter model [Almeida (2010)]:

r(t) =
100

1 +

(
y(t)

k.C50

)γ , (3.8)

where C50 (µg/kg) is a fixed parameter equal to 0.6487 for atracurium and 1/5 for rocuronium,

γ (dimensionless) is patient-dependent parameter and k = 5 (dimensionless) [Almeida (2010)].

The responses of the PK/PD model and of the reduced parameter model to a drug bolus are

illustrated in Fig. 3.5. As can be seen, the behavior of the reduced parameter models differs from
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Figure 3.5: Simulation of 100 atracurium PK/PD models (blue lines) and 100 atracurium re-
duced parameter models (red lines) to a bolus of 500µg/kg during 100 minutes. The upper plot
represents the first 10 minutes, and the lower plot represents the remaining time.

the one of the PK/PD models mainly in the transient stage.

3.2 NMB Control Law

In this section two strategies are used in order to control NMB to a desired level. The first one

is an open-loop strategy, whereas the second one is based on a closed-loop control law.

3.2.1 Open-Loop Control - TCI

An open-loop controller, also called a non-feedback controller, is a type of controller which

computes its input into a system using only a model of the system and the knowledge of the

desired control objective.

Open-loop control is useful for well-defined systems where the relationship between input and

the resultant state or output can be modelled by a mathematical formula. Such control does

not use the comparison between the obtained output and the desired one in order to autocorrect

itself. This means that the control variable input does not depend on the observation of the

output of the processes under control.

TCI control (Target Controlled Infusion) for neuromuscular blockade level is an example of

an open-loop control [Bressan et al. (2010)], where the input is stationary, i.e. u(t) ≡ uref , t ≥ 0.

The adequate value of uref is computed as follows. Given a desired reference value rref for the
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NMB level, invert the Hill Equation in order to obtain the corresponding reference value yref for

the effect concentration. Due to the characteristics of the compartmental systems that model

the drug dose/effect concentration relationship, it turns out that these models have stationary

solution x(t) ≡ xref , u(t) ≡ uref and y ≡ yref . More concretely xref = −A−1.B.uref and uref =

−(C.A−1.B)−1.yref . The TCI control strategy consists in taking the drug dose constantly equal

to uref . Since the patient’s initial state is null, and not equal to xref , the effect concentration is

not immediately equal to yref , implying that the NMB level r(t) does not immediately coincide

with the desired value rref . However, r(t) tends to rref as time evolves.

3.2.2 Closed-Loop Control - Total Sistem Mass Control Law

In this section it is first shown that it is possible to stabilize the “total mass” of a compartmental

system (M) at a given set-point M∗ > 0 using a suitable feedback control law presented in

[Bastin and Provost (2002)].

The total mass of a compartmental system with n compartments is defined as [Marques

(2008), Sousa et al. (2010)]:

M (x(t)) =
n∑
i=1

xi. (3.9)

Note that the states of the compartmental models used in this work do not correspond to

drug masses, but rather to drug concentrations. Therefore their sum cannot be interpreted as a

mass. However the terminology ”total mass” is used in order to keep in line with the literature

on this subject.

The objective is to track a constant reference yref by leading the system to an equilibrium

point Xe = [xe1 xe2 xe3]
T

where xe3 = yref . This is achieved by leading the system mass to an

adequate value M∗.

For the PK/PD model M∗ is given by:

M∗ = (α1 + α2 + 1)yref , (3.10)

where

α1 =
ke0
k1e

,
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α2 =
k12ke0

k1e(k21 + k20)
,

as shown in [Magalhães, 2006].

For the reduced parameter model:

M∗ = 3.yref , (3.11)

[Almeida, 2010], meaning that the total mass is equally distributed by the three compartments.

The control law is of the form:

ũ(t) = ũ(x(t)) = Kx(t) + L, (3.12)

where the 1× 3 matrix K and the real number L must be suitably chosen.

Since a compartmental system admits only positive values as inputs, the control law should

provide only such type of values. Therefore, once a theoretical feedback control law ũ(t) is

defined, the input value to be applied is given by:

u(t) = max(0, ũ(t)). (3.13)

The choice of K and L is made based on the following considerations.

Let ẋ(t) = Ax(t)+Bu(t) be a compartmental system. Its total mass corresponding to a state

x can be written as M(x) = [1 · · · 1]x. Then:

[1 · · · 1]ẋ(t) = [1 · · · 1]Ax(t) + [1 · · · 1]Bu(t), (3.14)

which is equivalent to

˙̂
M(x(t)) = [1 · · · 1]Ax(t) + (Σbi)u(t), (3.15)

Once the convergence of total mass to the value M∗ is desired, the idea is, if possible, to

determine u(t) in such way that (3.15) takes the form:

˙̂
M(x(t)) = −λ (M(x(t))−M∗) , (3.16)
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where λ is a positive value. Since
˙̂
M∗ = 0 because M∗ is a constant, this i.e.:

˙̂
M(x(t))−M∗ =

˙̂
M(x(t)) = −λ (M(x(t))−M∗) . (3.17)

In this way, defining:

∆M(t) = M(x(t))−M∗, (3.18)

it holds that

˙̂
∆M = −λ∆M(t), (3.19)

and hence:

M(x(t))−M∗ = ∆M(t) = e−λt∆M(0) −→
t→∞

0, (3.20)

meaning that:

M(x(t)) −→
t→∞

M∗. (3.21)

as desired.

Equating the right-hand sides of (3.15) and (3.16) and solving in order to u(t), yields:

[1 · · · 1]Ax(t) + (Σbi)u(t) = −λ(M(x(t))−M∗)

⇔ u(t) = (Σbi)
−1 [−λ(M(x(t))−M∗)− [1 · · · 1]Ax(t)]

⇔ u(t) = (Σbi)
−1 [−λM(x(t)) + λM∗ − [1 · · · 1]Ax(t)]

⇔ u(t) = (Σbi)
−1 [−λ[1 · · · 1]x(t) + λM∗ − [1 · · · 1]Ax(t)]

⇔ u(t) = (Σbi)
−1 [[1 · · · 1](−λI −A)x(t) + λM∗] .

(3.22)

This shows that the control law:

u(t) = u(x(t)) = (Σbi)
−1 [[1 · · · 1](−λI −A)x(t) + λM∗] , (3.23)

allows the mass stabilization of a compartmental system around a set-point M∗.
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The previous equation (3.23) can be rewritten as:

u(t) = u(x(t)) = (Σbi)
−1[1 · · · 1](−λI −A)︸ ︷︷ ︸

K

x(t) + (Σbi)
−1λM∗︸ ︷︷ ︸
L

, (3.24)

as in (3.12).

Finally it is shown in Magalhães (2006), Sousa et al. (2007) and Almeida (2010) that taking

u(t) = max(0, ũ(t)), with ũ(t) given by (3.12), not only leads the total system mass M(x(t)) =
3∑
i=1

xi(t) to a value M∗, but also leads the effect concentration, y(t), to a value y∗ (3.10) (3.11).

This can be used to control the NMB level in the following way. Given a desired reference value

rref = r∗ for the NMB, compute the corresponding reference level for the effect concentration

y∗ by inverting the Hill equation, i.e.

y∗ =

(
100

r∗
− 1

)1/γ

× C50, (3.25)

for the PK/PD model.

y∗ =

(
100

r∗
− 1

)1/γ

× k.C50, (3.26)

for the reduced parameter model.

Then obtain M∗ as in (3.10) or (3.11), according to the model that is used. Finally, use

this value of M∗ in the control law (3.24). This guarantees that the NMB follows the desired

reference level, r∗.

Note however that this control strategy strongly rests on knowledge of the patient-dependent

parameter γ, which is unknown in practical cases. Moreover, for the PK/PD model it also

depends on the parameters k12, k1e, k20, k21, ke0, and C50. In order to overcome this situation,

a switching control strategy is introduced in the next section.

3.3 NMB Control Strategy

Due to the very high degree of uncertainty in the system dynamics and to the intra- and inter-

variability in the patients, multiple models have emerged over the past years as an alternative

to the PID, adaptive, fuzzy and robust controls in order to overcome those problems.
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The study of multiple model switching control is not new. Authors like Morse (1996), Morse

(1997), Narendra and Balakrishnan (1994), Narendra and Balakrishnan (1997) and others have

studied this over the past years.

Over the next sections this control scheme will be approached. The strategy corresponding

to this scheme will be addressed together with the selection criterion to perform the switching

during the NMB control. Finally an improvement to the reference tracking will be proposed in

order to overcome some issues with the switching control strategy.

It is important to note that for this work only the reduced parameter models will be addressed.

As has been seen during this chapter the PK/PD models differ from the reduced parameter

models in the number of patient-dependent parameters: the former models have eight patient-

dependent parameters and the latter ones have only two. This implies much more variability in

the PK/PD models and much more uncertainty in the NMB control since more parameters have

to be identified in order to perform the total system control mass law (3.24).

3.3.1 Switching Strategy

The requirements of a good controller are speed, accuracy and stability relative to the target.

Achieving these features in complex systems, in the presence of large uncertainty in the process

to be controlled is not always possible with classical adaptive controllers, and therefore switching

control appears in order to overcome the problems faced by previous controllers.

Multiple model switching control [Morse (1996), Morse (1997), Narendra and Balakrishnan

(1994), Narendra and Balakrishnan (1997), Neves et al. (2000), Neves (2003), Magalhães (2006)]

uses a bank P of possible models for the process in order to obtain a bank K of controllers each

of them tuned for a specific model. At each time instant a controller is chosen to be active. The

controller selection criterion is based on a pre-specified measure of proximity between the process

and the model for which the controller is tuned. The outcome of this proximity measure usually

varies in time, leading to the switching from one controller to another.

Since atracurium and rocuronium are the two main NMBA used during surgeries, these were

the drugs considered for the purpose of this work.

Therefore a bank P = {P1, . . . ,PN} of representative reduced parameter models is considered,

together with a bank of the corresponding total system mass controllers K = {K1, . . . ,KN} each

of them tuned according to what has been explained in section 3.2.2.

29



CHAPTER 3. AUTOMATIC CONTROL

Figure 3.6: Basic scheme of a switching controller for a process P: K1...KN are the controllers
in the bank K, and S is the controller selection procedure.

More concretely if Pi = P(αi, γi) then Ki produces the control law:

ui(t) = max(0, ũi(t)),

with

ũi(t) = (Σbi)
−1[1 · · · 1](−λI −Ai)x(t) + (Σbi)

−1λM∗i , (3.27)

For the action of atracurium the bank P was built taking into account real data acquired

during surgeries. Based on that data the joint distribution for the parameters (α, γ) is considered

as follows [Rocha et al. (2011)]:

(ln(α), ln(γ)) ∼ BN(µ,Σ), (3.28)

where

µ =

 −3.2870

0.9812


is the mean vector and

Σ =

 0.0250 −0.0179

−0.0179 0.1196


is the covariance matrix.

The standard bank of representative models, consisting of a linear part (compartmental model)

plus a nonlinear part, the (Hill Equation), was generated from this distribution (See Appendix

C.1).

30



CHAPTER 3. AUTOMATIC CONTROL

0 5 10 15
0

20

40

60

80

100

120
NMB Response

time (minutes)

%
 r

(t
)

Figure 3.7: Red: real NMB responses acquired during surgery performed with atracurium. Blue:
NMB responses of the atracurium models from the bank P. In both NMB responses an initial
bolus of 500µg/kg was administered.

A similar study of the action of rocuronium is still being performed, and at this point only

a set of real data acquired during 41 surgeries is available. For each of these real cases, the

parameters α and γ were identified, and the corresponding models were taken as the standard

bank of models to perform switching control.

Note that for this work only 37 models of the original 41 will be used since four models were

eliminated due to unsatisfactory results for the NMB control via switching (See Appendix C.2).

After the controller bank K is obtained, the switching strategy only needs a switching criterion

in order to select the controller that should be made active to achieve a better reference tracking.

3.3.2 Switching Criterion

In order to perform switching among the controllers Ki contained in the bank K previously

mentioned, it is necessary to establish a criterion so that the system ”knows” when a switching

is advisable.

It is important to notice that due to clinical constraints the automatic control of the NMB

does not start immediately after the beginning of the surgery, but only after the recovery from an
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initial bolus, t∗ (the time instant t∗ is detected automatically by the OLARD algorithm introduced

in [da Silva et al. (2009)]). And so, from that moment forward the switching controller computes

at each instant the ”nearest model” to the patient and applies the control input corresponding

to the associated controller to the patient (See Fig. 3.8).

Figure 3.8: Switching control scheme.

The procedure to choose a controller (represented by the box Controller Choice Fig. 3.8) has

as main goal to select the model that minimizes the following function of the error identification:

ej = rpatient − rj

where rpatient is the patient’s NMB response and the rj is the NMB response of the model Pj ,

j ⊂ 1, . . . , N . More concretely, proximity is here measured by the cumulative quadratic error.

The controller to be selected is the one corresponding to the following minimizing model:

fj(k) =
k∑

l=t∗

|ej(l)|2. (3.29)

In order to initialize the procedure at the instant time t = t∗ (that corresponds to the recovery

from the initial bolus) a random controller from bank K is chosen.

The process of switching control can thus be summarized as:
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• Step 1 t = 0: An initial bolus is given to the patient.

• Step 2 0 < t < t∗ (before recovery from the initial bolus): The control input remains zero.

• Step 3 t = t∗ (t∗ computed by the OLARD algorithm introduced in da Silva et al. (2009)):

A random controller from bankK is chosen in order to start the control of the NMB response

of the patient.

• Step 4 t ≥ t∗: A controller Ki is chosen at each time instant based on the minimization of

the cumulative error between the patient response and the responses of each of the models

in the bank P.

For the purpose of simulation, a model Pj from the bank P is chosen as describing the real

patient dynamics and the corresponding controller Kj removed from the bank K yielding a new

bank of controllers (K\{Kj}). This prevents the switching strategy to ”catch” the controller

associated to the patient model, and makes simulation more realistic, since in real cases the

patient model and hence the corresponding controller are not available. The initial drug bolus is

taken as 500µg/kg for atracurium or 600µg/kg for rocuronium and is given to the patient. The

remaining steps are kept the same as above (from Step 2 to Step 4).

3.3.3 Switching Results

Figs. 3.9, 3.10, 3.11 and Table 3.1 show results of the application of the switching strategy among

a bank of total system mass control laws in order to control the NMB level. For these cases a

bank P with 100 models for atracurium (see Appendix C.1) was used.

Figure 3.9: NMB control simulation with M30 from the bank P of atracurium models.
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Table 3.1: Switching results with atracurium models

Patient Model 30 59 92
Recovery to the Initial Bolus (min) 28 32 37
First Controller K (Random) 17 58 6
Last Controller K 41 97 18
Patient Uss (µg/kg/min) 17,37 5,58 7,34
Real Uss (µg/kg/min) 16,85 5,6 7,36
∆NMB (%) 0,37 0,14 0,06

In the first case (Fig. 3.9), the model P30 was used to simulate the patient dynamics, and so

the controller K30 was removed from the bank K of controllers. As can be seen in Fig. 3.9 and

confirmed in Table 3.1, using modelM30 and applying a typical bolus of 500µg/kg of atracurium,

the recovery time (instant at which the controller is activated) is t∗=28 min and the switching

strategy started with the controller K17. After 300 minutes of simulation the switching strategy

ended with controller K41 with a steady-state dose of 16.85 µg/kg/min. The steady-state dose

necessary to achieve the NMB target of 10% for model P30 is in fact 17.37 µg/kg/min. Since

the difference in the steady-state doses is small, the difference between the final NMB level and

the desired NMB target is only of 0.37% (See Table 3.1).

Figure 3.10: NMB control simulation with M59 from the bank P of atracurium models.

In the second case (Fig. 3.10) the model M59 was used to simulate a patient model and

as a consequence the controller K59 was removed from the controller bank. In this model the

recovery to the initial bolus of 500 µg/kg of atracurium occurred at t∗=32 min and the started

up controller was K58. After 300 minutes of simulation the last controller applied was K97, with

a steady-state dose of 5.6 µg/kg/min. Once the steady-state dose needed for this model in order

to follow the NMB target is 5.58 µg/kg/min the difference between the achieved NMB level and

the desired NMB target is only of 0.14% (See Table 3.1).
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Figure 3.11: NMB control simulation with M92 from the bank P of atracurium models.

Finally, in Fig. 3.11, the model M92 was used to simulate the patient dynamics and the

respective controller K92 was removed from the controller bank. After applying a typical bolus

of 500 µg/kg of atracurium the recovery happened at t∗=37 min and the first applied controller

was K6. After 300 minutes of simulation the switching strategy ended with the controller K18

and a steady-state dose of 7.36 µg/kg/min. Comparing with the steady-state dose needed for

the model to achieve the NMB target, 7.34 µg/kg/min, the difference is very small, and so the

difference between the achieved NMB level and the desired NMB target is only of 0.06% (See

Table 3.1).

In summary, the switching strategy shows good results for the control of the NMB under

administration of atracurium. As can be seen in the left upper plots of Figs. 3.9, 3.10 and 3.11

the NMB level is driven with only small error to the NMB target value (10%) over time. The left

lower plot of each image shows that switching occurs over time, which means that this strategy

responds to the patient dynamics, searching better controllers over time. The right lower plots

show the total system mass of the patient (in blue), the value M∗ that corresponds to the NMB

target according to the patient model (in green), and the different values of M∗ chosen by the

switching strategy over time (in red). As can be seen in these figures the total system mass of the

patient follows the values of M∗ with good accuracy and the controller computes proper values

for M∗, and hence the switching strategy produces good results.

Figs. 3.12, 3.13, 3.14 and Table 3.2 show results concerning the use of the switching strategy

among a bank of total system mass control laws in order to control the NMB level by adminis-

tration of rocuronium. For these cases a bank P with 37 models for rocuronium (see Appendix

C.2) was used.
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Figure 3.12: NMB control simulation with M1 from the bank P of rocuronium models.

Table 3.2: Switching results with rocuronium models

Patient Model 1 19 23
Recovery to the Initial Bolus (min) 28 28 32
First Controller K (Random) 30 29 31
Last Controller K 23 34 13
Patient Uss (µg/kg/min) 5,64 4,4 3,92
Real Uss (µg/kg/min) 5,48 4,4 3,94
∆NMB (%) 0,34 0,007 0,08

In Fig. 3.12, the model used to simulate the patient dynamics is M1, and the respective

controller K1 was removed from the controller bank. As can be seen in Fig. 3.12 and in Table

3.2, after applying a typical bolus of 600 µg/kg of rocuronium, the recovery time is t∗=28 min,

and the switching strategy started up with the controller K30. After 300 minutes of simulation

the last controller applied to this model was K23, corresponding to a steady-state dose of 5.48

µg/kg/min. Since the steady-state dose necessary for modelM1 in order to lead the NMB level

to the NMB target of 10% is 5.64 µg/kg/min, the difference between the achieved NMB level

and the desired NMB target is only of 0.34% (See Table 3.2).

In the second case (Fig. 3.13) the model M19 was used in order to simulate the patient

dynamics, and as a consequence the controller K19 was removed from the controller bank. After

applying a typical bolus of 600 µg/kg of rocuronium the recovery time occurred at t∗=28 min.

The first controller applied by the switching strategy was K29 and at the end of the simulation

the last applied controller was K34 with a steady-state dose of 4.4 µg/kg/min, the same value

as the steady-state dose needed for this model to drive the NMB level to the desired target, and

so the final NMB level was the NMB target of 10% (See Table 3.2).
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Figure 3.13: NMB control simulation with M19 from the bank P of rocuronium models.

Figure 3.14: NMB control simulation with M23 from the bank P of rocuronium models.

Finally in the third case (Fig. 3.14) the modelM23 was used in order to simulate the patient

dynamics and the respective controller K23 was removed from the controller bank. After giving

a bolus of 600 µg/kg of rocuronium the recovery time happened at t∗=32 min, and the switching

strategy started with the controller K31. At the end of the simulation (300 minutes) the controller

used was K13, with a steady-state dose of 3.94 µg/kg/min. Comparing with the steady-state

dose needed by model M23 to achieve the NMB target, 3.92 µg/kg/min, one can see that the

difference is very small. Hence the difference between the achieved NMB level and the desired

NMB target was also very small: only 0.08% (See Table 3.2).

In summary, the switching strategy shows good results for the control of the NMB under

administration of rocuronium. As can be seen in the left upper plots of Figs. 3.12, 3.13 and 3.14

the NMB level is driven with good accuracy to the NMB target value (10%) over time. The left

37



CHAPTER 3. AUTOMATIC CONTROL

lower plot of each image shows that switching occurs over time, as happened for the atracurium

cases. The right lower plots show the total system mass of the patient (in blue), the value M∗ of

the patient model corresponding to the desired NMB target (in green), and the different values

of M∗ chosen by the switching strategy over time (in red). As can be seen in these figures the

total system mass of the patient follows the value M∗ with good accuracy and the controller

computes proper values for M∗, and hence the switching strategy produces good results.

3.3.4 Switching Vs. Parameter Identification via EKF

In order to analyze the switching strategy a comparison was made with the Extended Kalman

Filter (EKF ). The EKF performs the identification of the model parameters used in the total

system mass control law (3.24) in order to control the NMB level.

The Extended Kalman Filter (EKF ) is an adaptation of the filter originally proposed by

Kalman [Kalman (1960)] in order to estimate the states of a linear system. This extension is

aimed at application to nonlinear systems and allows to estimate model parameters by incorpo-

rating them as states (which gives rise to a nonlinear system). The explanation of the Kalman

filter and of the EKF is omitted since it falls out of the scope of this work. Some work re-

lated with the application of the EKF to model parameter identification was made inside the

GALENO project [Almeida (2010), da Silva et al. (2012)].

The EKF algorithm used here was used before in [Almeida (2010), da Silva et al. (2012)] and

properly adapted to this work in order to obtain the necessary data to perform the comparative

study.

For the purpose of obtaining data the bank P with 100 models for atracurium (see Appendix

C.1) and the bank P with 37 models for rocuronium (see Appendix C.2) were used. A simulation

of 300 minutes was performed for each model, where each one was used to simulate the patient

dynamics as previously mentioned. Thereafter the two strategies were analyzed using the follow-

ing as comparison features: total amount of used drug normalized by the patient weight, set-point,

settling time, and tracking quality. Taking into account that discretized models are used, these

parameters are defined as follows:

• The normalized drug amount is given by:

tend∑
k=t∗

u(k), (3.30)

where u(k) (µg/kg/min) is the dose of administered drug at step k, and t∗ is the recovery

time, detected by OLARD.
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• The set-point corresponds to the value (in %) where NMB level stabilizes;

• The settling time is the time that patient’s NMB level takes to reach the set-point value,

with an error not greater than 2%;

• The tracking quality is measured by:

1

n

tend∑
k=settlingtime

√
(r(k)− rref )2, (3.31)

where n=tend - settlingtime, r(k) is the NMB level at step k and rref is the desired

reference value of 10%.

The results of applying the switching strategy and the EKF followed by a total system mass

control law can be visualized in Tables 3.3 (for atracurium), and 3.4 (for rocuronium).

Table 3.3: Comparison between total mass control with Switching and with Extended Kalman
Filter (EKF ) (atracurium)

Total Input (µg/kg) Set-Point (%) Settling Time (min) Ref Track Error (%)

Switching EKF Switching EKF Switching EKF Switching EKF
N Valid 100 100 100 100 100 100 100 100

Mean 6846 8293 9,90 6,33 96 56 0.27 3,90
Median 6118 7629 9,90 6,38 81 58 0.14 3,68

Std. Deviation 2583 2872 0,62 1,64 51 21 0,48 1,70
Range 11292 16342 7,30 8,25 220 86 3,29 8,26

Minimum 3751 4725 6,10 1,40 29 23 0,01 0,49
Maximum 15043 21067 13,40 9,65 249 108 3,31 8,75
Percentiles 25 5014 6177 9,80 5,08 64 37 0,06 2,66

75 8100 9758 10,05 7,59 113 73 0,23 5,12

In Table 3.3 it can be seen that in average, the total mass control with switching spends less

dose than the total mass control with EKF (EKF+TMC ). Also the input values in the switching

are much closer among themselves than the EKF+TMC input values. This can be seen by the

smaller value of the standard deviation, and of the range. The lowest minimum, and the lowest

maximum values also occur for the switching.

As for the set-point reached with these two techniques, switching presents a better mean

NMB value: 9.90% for a desired target of 10%. EKF+TMC presents a mean value of 6.33%,

which is not a good result concerning to the tracking of the NMB reference of 10%. Moreover the

switching has set-point values closer to the average than the EKF+TMC, as can be seen by the

smaller value of the corresponding standard deviation. The set-points achieved in the switching

vary between 6.10% and 13.40%, and the EKF+TMC between 1.40% and 9.65%, showing again

better results with switching.

The bad results verified in the set-point with the EKF+TMC can be explained by the bad

quality in the parameter identification in cases where the recovery to the initial bolus takes to
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long too happen. Such situation is put into evidence in Fig. 3.15. Here it can be seen that with

the increase of the recovery time the achieved set-point is lower.

Figure 3.15: Set-Point achieved with the EKF+TMC as a function of the recovery time from
the initial bolus with atracurium models.

The settling time mean value is higher with the switching than with the EKF+TMC. This con-

clusion is enhanced by the fact that the lowest minimum and the lowest maximum settling times

occur in the EKF+TMC. These results can be explained due to the nature of the EKF+TMC

strategy, which identifies the parameters to be used in the control law when the recovery to

the initial bolus is detected; in opposition, as the name suggests, the switching strategy causes

changes between controllers over time, and only when the last controller is selected the final

set-point is achieved and the settling time is measured.

Finally, analyzing the tracking error (Ref Track Error column) the mean value for switching is

much lower than the one verified for the EKF+TMC. The same happens to all the other variables

in Table 3.3, showing that the switching is better than the EKF+TMC. So it can be concluded

that the switching strategy has a better reference tracking quality than the EKF+TMC strategy.

Table 3.4: Comparison between total mass control with Switching and with Extended Kalman
Filter (EKF ) (rocuronium)

Total Input (µg/kg) Set-Point (%) Settling Time (min) Ref Track Error (%)

Switching EKF Switching EKF Switching EKF Switching EKF
N Valid 37 37 37 37 37 37 37 37

Mean 3577 3627 10,14 9,38 141 94 0,82 1,38
Median 3205 3125 10,10 9,95 137 89 0,67 0,72

Std. Deviation 1903 2093 1,11 2,33 64 32 0,68 1,97
Range 6610 9226 5,35 10,20 248 112 3,29 8,49

Minimum 911 1200 7,85 1,60 48 39 0,02 0,03
Maximum 7521 10425 13,20 11,80 296 151 3,31 8,52
Percentiles 25 2107 2151 9,23 8,98 94 69 0,31 0,20

75 4303 4223 10,63 10,68 170 123 1,20 1,37

Now comparing the switching strategy and the EKF+TMC strategy using rocuronium mod-
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els, it can be seen in Table 3.4 that in average the switching consumes less dose than the

EKF+TMC. Moreover the doses administered during control with switching are more similar

among themselves than with the EKF+TMC, as is evidenced by the lowest value of the standard

deviation and range for the total drug input using switching. The lowest minimum and maximum

drug dose are also obtained with the switching strategy, showing once again that the switching

consumes less dose.

As for the set-point, here the EKF+TMC shows better results for the mean value than in

the case of the atracurium models (9.38% instead of the previous 6.33% for a desired target

of 10%). Comparing the mean value of the switching with the one of the EKF+TMC, both

of them are similar but the value of switching is closer to the NMB target of 10%. Analyzing

the standard deviation and the range the switching strategy has better results for the set-point

than the EKF+TMC : the set-points for the different cases (models) are more similar for the

switching, also the proximity between the minimum and maximum set-point values show that

same conclusion. Once again the higher value obtained for the standard deviation and range

with the EKF+TMC strategy is due to the bad quality in the parameter identification in cases

where the recovery to the initial bolus takes to long too happen, similar to what happened for

the atracurium models (see Fig. 3.16): as a consequence the reference tracking is not good (as

will be seen more ahead).

Figure 3.16: Set-Point achieved with the EKF+TMC as a function of the recovery time from
the initial bolus with rocuronium models.

Studying the settling time, the same that was observed in Table 3.3 prevails here: the settling

time of the switching strategy is higher than for the EKF+TMC. This can be concluded from the

highest value in the corresponding mean value, in the minimum and maximum, as well as in the

range. Once again such result is due to the nature of the switching strategy, as was previously

mentioned.
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Finally, addressing the tracking error (Ref Track Error column), the switching strategy

presents, as for the atracurium models, lower values than the EKF+TMC strategy except for the

percentile 25. Despite that, the differences between the obtained values for the two strategies is

smaller than the one verified with atracurium models. Therefore it can be said that the switching

strategy presents better reference tracking quality than the EKF+TMC but this difference is

not so large as for the atracurium models.

In summary, for the atracurium models, the switching strategy has better results than the

EKF+TMC strategy with respect to the total dose used during NMB control, follows better the

NMB target with a better reference tracking quality, specially when the recovery time to the

initial bolus is prolonged. As for the settling time, the EKF+TMC obtained better results due

to the nature of the switching strategy.

With the rocuronium models, the switching strategy also has better results than the EKF+TMC

strategy with respect to the total dose required for NMB control, follows better the NMB target

because the values obtained for switching are more closer to the target than the ones obtained

with the EKF+TMC. The reference tracking quality is better for the switching with an advan-

tage over the EKF+TMC, which is smaller than the one verified for the atracurium models.

Finally the settling time is better for the EKF+TMC strategy due to the nature of the switching

strategy.

3.3.5 Analyzing the Switching

In order to further study the switching strategy, another comparative study was made using

fixed total mass controllers chosen from different criteria. More concretely the last choice of the

switching controller was compared with the other controllers, in order to find out if the switching

strategy converge to a good controller.

For the purpose of this study both the bank P of 100 atracurium models (see Appendix C.1),

and the bank P of 37 rocuronium models (see Appendix C.2) were used.

The criteria used to choose a controller for the model that simulates the patient dynamics

are the following:

• The last controller resulting from the switching strategy (Switching) (see Appendix A.2);

• The best controller in the controller bank K (containing all the controllers except the one

of the model used to simulate the patient system) to follow the desired reference of 10%

(Ref Track) (see Appendix A.3);
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• The controller tunned for the model with the value of α closest to the one of the patient

model (Alpha) (see Appendix A.4);

• The controller tunned for the model with the value of γ closest to the one of the patient

model (Gamma) (see Appendix A.4);

• The controller tunned for the model with the value of USS (steady-state dose) closest to

the one of the patient model (USS) (see Appendix A.5);

• The controller tunned for the model with the value of Norm 2 closest to the one of the

patient model (Norm2) (see Appendix A.6);

• The controller tunned for the model with the value of the Vinnicombe metric closest to the

one of the patient model (Vinnicombe) (see Appendix A.7);

• The controller tunned for the model with the closest Impulse Response to the one of the

patient model (Impulse) (see Appendix A.8);

• The controller tunned for the model with the closest Step Response to the one of the patient

model (Step) (see Appendix A.8);

Remark : In the last two criteria, the controllers, Impulse and Response, are chosen in function

of the smaller quadratic mean error.

The corresponding chosen controllers are displayed in the tables of Appendix D (for the

atracurium models see Table D.1, and for the rocuronium models see Table D.2).

After the simulation of the NMB control with the total system mass controllers selected by

the previous criteria with the purpose of comparing the controllers choice, the total amount of

used drug normalized by the patient weight, the set-point, the settling time, and the tracking

quality (described in Section 3.3.4) were analyzed.

As a previous note, it should be noticed that the selected controllers with the Alpha proximity,

Norm2 and Vinnicombe metrics, as well as Impulse and Step response proximity are the same,

and so the values obtained with the application of these controllers are the same also, as will

be seen in the following tables. First the results obtained using the atracurium models (see the

models at Appendix C.1) will be presented.

Regarding the total input amount spent during the NMB control, it can be seen in Table 3.5

that in average the last controller of the switching strategy, the controller with the best reference

tracking, the controller with the most similar gamma, and the controller with the most similar
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Table 3.5: Total input amount during total mass control with different total mass controllers
chosen by different metrics (atracurium)

Total Input Control (in µg/kg)

Switching Ref Track Alpha Gamma Uss Norm2 Vinnicombe Impulse Step
N Valid 100 100 100 100 100 100 100 100 100

Mean 6833 6833 7231 6839 6836 7231 7231 7231 7231
Median 6065 6064 6376 6062 6062 6376 6376 6376 6376

Std. Deviation 2555 2591 2998 2581 2582 2998 2998 2998 2998
Range 11309 11481 16149 11481 11481 16149 16149 16149 16149

Minimum 3679 3679 3825 3679 3679 3825 3825 3825 3825
Maximum 14988 15160 19974 15160 15160 19974 19974 19974 19974
Percentiles 25 5013 5013 4959 5013 5013 4959 4959 4959 4959

75 8073 8065 8399 8065 8065 8399 8399 8399 8399

USS exhibit the lowest values. The same happens for the standard deviation showing that,

aside from the lower consumption, these controllers have the most similar values among them.

This conclusion is reinforced by the smaller values in the range. Analyzing the minimum and

maximum values these controllers present the best values. Summarizing the last controller from

the switching along with the controller with the best reference tracking, the gamma controller,

and the Uss controller lead to smaller drug input during the NMB total system mass control.

Table 3.6: Set-Point of the NMB level during total mass control with different total mass con-
trollers chosen by different metrics (atracurium)

Set-Point (in %)

Switching Ref Track Alpha Gamma Uss Norm2 Vinnicombe Impulse Step
N Valid 100 100 100 100 100 100 100 100 100

Mean 9,92 9,93 10,93 9,88 9,90 10,93 10,93 10,93 10,93
Median 9,90 9,93 9,40 9,85 9,90 9,40 9,40 9,40 9,40

Std. Deviation 0,55 0,54 8,69 0,55 0,55 8,69 8,69 8,69 8,69
Range 5,85 5,85 35,9 5,90 5,90 35,9 35,9 35,9 35,9

Minimum 7,55 7,55 0,10 7,55 7,55 0,10 0,10 0,10 0,10
Maximum 13,40 13,40 36,0 13,45 13,45 36,0 36,0 36,0 36,0
Percentiles 25 9,76 9,81 4,01 9,75 9,75 4,01 4,01 4,01 4,01

75 10,05 10,05 16,73 10,05 10,05 16,73 16,73 16,73 16,73

Analyzing the achieved set-point (see Table 3.6), once again the last controller from switching,

the controller with the best reference tracking, the controller with the most similar gamma, and

the controller with the most similar USS show the closest mean values to the desired reference

during the NMB control, of 10%, although the mean values obtained with the other controllers

are not much different. Besides that, the values for the standard deviation show that the other

controllers produce set-point values that have wide variability and so the reference tracking

is not quite satisfactory (this situation will be proven ahead with the results for the tracking

quality). The higher values for the range, as well as the smaller values in the minimum and the

higher values in the maximum that are obtained using the other controllers corroborate that

same conclusion. The standard deviation, range, minimum and maximum values from the first

controllers are quite good. Concluding, once again, the last controller from switching together

with the controller with the best reference tracking, the controller with the most similar gamma,

and the one with the most similar USS present better results in the set-points achieved during

the NMB control with total system mass control law.
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Table 3.7: Settling Time of the NMB level during total mass control with different total mass
controllers chosen by different metrics (atracurium)

Settling Time (in minutes)

Switching Ref Track Alpha Gamma Uss Norm2 Vinnicombe Impulse Step
N Valid 100 100 100 100 100 100 100 100 100

Mean 64 65 70 66 66 70 70 70 70
Median 67 67 68 67 67 68 68 68 68

Std. Deviation 21 22 21 22 22 21 21 21 21
Range 86 87 90 87 87 90 90 90 90

Minimum 25 24 27 24 24 27 27 27 27
Maximum 111 111 117 111 111 117 117 117 117
Percentiles 25 46 47 56 47 47 56 56 56 56

75 81 81 87 82 82 87 87 87 87

Regarding the results for the settling time, in Table 3.7, despite the lower values with the last

controllers of switching, the controllers with the best reference tracking, the controllers with the

most similar gamma, and the controllers with the most similar USS , the difference in relation

with the other controllers is not so significant since the mean values differ from each other from at

most 6 minutes. Also the values from the standard deviation, range, minimum and maximum are

very similar. Therefore the settling time is not enough to distinguish the controller performance.

Table 3.8: Reference tracking error during total mass control with different total mass controllers
chosen by different metrics (atracurium)

Reference Tracking Error (%)

Switching Ref Track Alpha Gamma Uss Norm2 Vinnicombe Impulse Step
N Valid 100 100 100 100 100 100 100 100 100

Mean 0,26 0,24 7,13 0,24 0,24 7,13 7,13 7,13 7,13
Median 0,14 0,12 6,17 0,11 0,11 6,17 6,17 6,17 6,17

Std. Deviation 0,46 0,46 5,19 0,46 0,46 5,19 5,19 5,19 5,19
Range 3,29 3,29 25,94 3,29 3,29 25,94 25,94 25,94 25,94

Minimum 0,02 0,02 0,21 0,02 0,02 0,21 0,21 0,21 0,21
Maximum 3,31 3,31 26,15 3,31 3,31 26,15 26,15 26,15 26,15
Percentiles 25 0,07 0,06 3,37 0,06 0,06 3,37 3,37 3,37 3,37

75 0,26 0,21 9,42 0,21 0,20 9,42 9,42 9,42 9,42

Finally, considering the results for the reference tracking quality (see Table 3.8), it can be

seen that the last controllers from switching, the controllers with the best reference tracking, the

controllers with the most similar gamma, and the controllers with the most similar USS present

the best mean values, once the errors are the lowest. Analyzing the standard deviation and

the range, the lower values presented for these controllers show once again that better reference

tracking can be achieved in comparison with the other controllers (Alpha, Norm2, Vinnicombe,

Impulse and Step). The smaller values for the minimum and maximum error reinforce the same

conclusion, a better reference tracking is achieved with the first controllers, as was previously

seen with respect to the set-point results.

As a conclusion, for atracurium models, the last controller from the switching together with

the controller with the best reference tracking, the controller from the model with the most

similar value of gamma to the one of the patient model, and the controller from the model

with the most similar USS to the one of the patient model present better control because lower
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input doses are required, the reference tracking quality is better, and the set-points achieved are

quite satisfactory in comparison with the desired NMB target of 10%. So one can say that, for

atracurium models, the switching strategy converges to a good controller since this one provides

a good control of the NMB level.

Table 3.9: Total input amount during total mass control with different total mass controllers
chosen by different metrics (rocuronium)

Total Input Control (in µg/kg)

Switching Ref Track Alpha Gamma Uss Norm2 Vinnicombe Impulse Step
N 37 37 37 37 37 37 37 37 37

Mean 3575 3604 3123 3603 3549 3123 3123 3123 3123
Median 3121 3284 3087 3284 3284 3087 3087 3087 3087

Std. Deviation 1954 1986 1607 1978 1921 1607 1607 1607 1607
Range 6661 6816 6798 6816 6816 6798 6798 6798 6798

Minimum 893 893 924 893 893 924 924 924 924
Maximum 7554 7709 7722 7709 7709 7722 7722 7722 7722
Percentiles 25 2091 2213 1977 2214 2214 1977 1977 1977 1977

75 4370 4442 3637 4331 4331 3637 3637 3637 3637

Analyzing now the results obtained with rocuronium models (see the models at Appendix

C.2), it can be seen that for the total input spent during the NMB control (see Table 3.9)

the controllers of the Alpha proximity, Norm2 and Vinnicombe metrics, and Impulse and Step

proximity lead to less input doses than the other controllers. Despite the minimum and maximum

values being quite similar for all the controllers, the mean values for the first controllers as well

as the standard deviation values, are smaller than the ones for the others. So in a global

appreciation, the last controllers from switching together with the controllers with best reference

tracking, the controllers with the most similar gamma, and the controllers with the most similar

USS show to spend more input dose during the NMB control.

Table 3.10: Set-Point of the NMB level during total mass control with different total mass
controllers chosen by different metrics (rocuronium)

Set-Point (in %)

Switching Ref Track Alpha Gamma Uss Norm2 Vinnicombe Impulse Step
N Valid 37 37 37 37 37 37 37 37 37

Mean 10,14 10,14 13,05 10,08 10,17 13,05 13,05 13,05 13,05
Median 10,15 10,05 11 10,05 10,05 11 11 11 11

Std. Deviation 1,07 0,97 10,30 0,98 0,97 10,30 10,30 10,30 10,30
Range 5,7 5,7 43 5,7 5,7 43 43 43 43

Minimum 7,9 7,9 0,05 7,9 7,9 0,05 0,05 0,05 0,05
Maximum 13,6 13,6 43,05 13,6 13,6 43,05 43,05 43,05 43,05
Percentiles 25 9,55 9,73 4,75 9,63 9,65 4,75 4,75 4,75 4,75

75 10,65 10,65 20,25 10,575 10,65 20,25 20,25 20,25 20,25

With respect to the results for the set-points achieved (see Table 3.10), the last controller

from switching, the controller with the best reference tracking, the gamma proximity controller,

and the USS controller present better results, once the mean set-point values for these controllers

are much closer to the NMB reference of 10%, used during the NMB control, than the mean set-

point values for the other controllers; also the standard deviation of the first controllers is much

smaller than the one verified for the Alpha, Norm2, Vinnicombe, Impulse and Step controllers,

showing that not only the mean behavior of the first controllers is closer to the NMB target, but

46



CHAPTER 3. AUTOMATIC CONTROL

also the range of set-points obtained are closer to the mean values; this situation is reinforced by

the higher values of minimum and the lower values of maximum. Therefore it can be said that

the last controller from switching along with the controller with the best reference tracking, and

the gamma and USS controllers present better set-point results. This better tracking quality will

be confirmed ahead when the results of Table 3.12 are analyzed.

Table 3.11: Settling Time of the NMB level during total mass control with different total mass
controllers chosen by different metrics (rocuronium)

Settling Time (in minutes)

Switching Ref Track Alpha Gamma Uss Norm2 Vinnicombe Impulse Step
N Valid 37 37 37 37 37 37 37 37 37

Mean 86 85 94 88 88 94 94 94 94
Median 76 76 80 85 88 80 80 80 80

Std. Deviation 40 40 43 40 40 43 43 43 43
Range 146 146 172 146 146 172 172 172 172

Minimum 35 35 37 35 35 37 37 37 37
Maximum 180 180 209 180 180 209 209 209 209
Percentiles 25 57 46 58 52 52 58 58 58 58

75 113 117 124 119 119 124 124 124 124

Regarding the settling time (see Table 3.11) once again the controllers from the last switch-

ing, the controller with the best reference tracking, the gamma proximity controller, and the

USS proximity controller have lower mean values, between 85 and 88 minutes, unlike the other

controllers that have a mean value of 94 minutes for settling the NMB level. About the standard

deviation and the minimum values, they are very similar for all the controllers, but when the

range and the maximum values are analyzed the first controllers show again better results, once

they register lower values. Overall the last controller from switching along with the best offline

controller, the controller with the most similar gamma, and the controller with the most similar

USS have better settling times because they reach the set-point earlier than the other controllers.

Table 3.12: Reference tracking error during total mass control with different total mass controllers
chosen by different metrics (rocuronium)

Reference Tracking Error (%)

Switching Ref Track Alpha Gamma Uss Norm2 Vinnicombe Impulse Step
N Valid 37 37 37 37 37 37 37 37 37

Mean 0,79 0,58 8,21 0,56 0,58 8,21 8,21 8,21 8,21
Median 0,68 0,31 5,74 0,38 0,38 5,74 5,74 5,74 5,74

Std. Deviation 0,66 0,67 6,96 0,65 0,68 6,96 6,96 6,96 6,96
Range 3,19 3,19 32,24 3,19 3,19 32,24 32,24 32,24 32,24

Minimum 0,02 0,02 1,02 0,02 0,02 1,02 1,02 1,02 1,02
Maximum 3,21 3,21 33,26 3,21 3,21 33,26 33,26 33,26 33,26
Percentiles 25 0,28 0,14 3,60 0,18 0,18 3,60 3,60 3,60 3,60

75 1,17 0,71 10,82 0,71 0,71 10,82 10,82 10,82 10,82

Finally considering the tracking quality with respect to the NMB reference level of 10% (see

Table 3.12) it can be seen that the mean error values for the last controller of switching, the

controller with the best reference tracking, the most similar controller by gamma proximity, and

the controller with the most closer USS are smaller. Analyzing the standard deviation, once again

the former controllers show better results with smaller values, as well as for the range, showing

a more similar reference tracking performance and with better quality in all the simulated cases

47



CHAPTER 3. AUTOMATIC CONTROL

with rocuronium models. The lower values for minimum and maximum tracking error reinforce

once again this same conclusion. Therefore the last controller from switching together with the

controller with the best reference tracking, the controller with the most similar gamma, and

the controller with the most similar USS present better reference tracking quality, a main goal

desired in the NMB control.

As a conclusion, for rocuronium models, the last controller from the switching together with

the controller with the best reference tracking, the controller from the model with the most

similar value of gamma to the one of the patient model, and the controller from the model with

the most similar USS to the one of the patient model do not show the best results regarding the

total input required to control the NMB level, but once again (as for the atracurium models) the

reference tracking quality is better, the set-points achieved are closer to the NMB target of 10%,

and now the settling time allows to differentiate the controllers because the former controllers

have lower values. So one can say that, for rocuronium models, the switching strategy converges

to a good controller since this one provides a good control of the NMB level.

3.3.6 Reference Tracking Improvement

Although the switching control scheme can take into account some problems related with the

variations on the patient behavior, like all the previously developed controllers, it is also nonop-

timal, and carries some issues especially related with the reference tracking. Indeed, since the

parameters (α, γ) as well as the value of M∗ for a real patient are unknown, and the bank has a

finite number of controllers, it is expected that the parameters of the control law are not strictly

equal to the real patient parameters, and so a reference steady state tracking error is expected.

In order to overcome this drawback a scheme to improve the tracking quality is here proposed.

This strategy, relying on the NMB response at steady state, performs the online tunning of the

patient parameter γ [Alonso et al. (2008)].

For this purpose the input applied to the patient must be at steady state, uss, and the

corresponding steady state NMB level response, rss, is supposed to be reached.

Notice that, in steady-state, equation (3.8) becomes:

rss =
100

1 +

(
yss
k.C50

)γ∗ , (3.32)
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where γ∗ is the correct value of the parameter γ.

Moreover,

yss = G(0).uss,

where

G(s) =
k1k2k3α

3

(s+ αk1)(s+ αk2)(s+ αk3)

is the reduced parameter model transfer function. Since G(0) = 1→ yss = uss and hence:

rss =
100

1 +

(
uss
k.C50

)γ∗ , (3.33)

Now solving for γ∗ yields:

γ∗ =

ln

(
100

rss
− 1

)
ln

(
uss
k.C50

) . (3.34)

In practice it is assumed that uss and rss are attained when the variation of the values of

u(t) and r(t) are smaller than an adequate threshold.

It turns out that a correct identification of this parameter will lead to the improvement of

the control law, since the value of M∗ = 3.yref only depends of the parameter γ (see (3.11) and

(3.26)). After this step the parameter γ is fixed as γ∗ and each control law ũi is adapted as:

ui(t) = max(0, ũi(t))

ũi(t) = (Σbj)
−1
i [1 · · · 1](−λI −Ai)x(t) + (Σbi)

−1λM∗.
(3.35)

Moreover the choice of the controller to be applied at each instant is now made based on

the cumulative quadratic error between the effect concentration response of the patient (ypatient)

and the effect concentration response of the i-th model in the bank (i = 1, . . . , N) (yi).

ei = ypatient − yi

This cumulative error is obtained from the instant where the controller of the patient NMB

level starts using the control law (3.35).
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In order to incorporate this improvement strategy a further step is added to the switching

strategy leading to a fifth step:

• Step 5 (if applied): Corresponds to the reference tracking improvement where γ is fixed as

γ∗ given by (3.34), and the selection of the controller Ki is then based on the minimization

of the cumulative error between the y response of the patient and the yi responses of each

of the models in the bank P in order to obtain αi for bi and Ai of the control law (3.35).

3.3.7 Reference Tracking Improvement Results

Figs. 3.17, 3.18 and 3.19 show the three worst results obtained with the switching strategy

using the bank P of atracurium models (see Appendix C.1). The models that produced these

results where M27, M34, and M38. In Table 3.13 the results obtained in these simulations can

be observed in columns where there is no value for Calibration Time. In all the three cases an

initial bolus of 500 µg/kg was used, and the total time of simulation was 300 minutes.

Table 3.13: Comparison between switching results with atracurium models with and without
reference tracking improvement

Patient Model 27 27 34 34 38 38
Recovery to the Initial Bolus (min) 41 41 47 47 24 24
First Controller K (Random) 74 74 5 5 32 32
Last Controller K 43 80 27 49 30 60
Patient Uss (µg/kg/min) 4,72 4,72 4,5 4,5 23,19 23,19
Real Uss (µg/kg/min) 4,92 4,66 4,72 4,44 17,37 21,03
∆NMB (%) 1,94 0,75 2,6 0,7 3,3 1,03
Calibration Time (min) - 109 - 200 - 74

Figure 3.17: NMB control simulation with M27 from the bank P of atracurium models with no
calibration.
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For the first case, Fig. 3.17, the controller K27, was removed from the controller bank. The

recovery time, and so the instant for the controller started up, was t∗=41 min, and the control

begins with controller K74. By the end of the simulation the controller chosen was K43 with a

steady-state dose of 4.92 µg/kg/min. Comparing with the steady-state dose of 4.72 µg/kg/min,

required to lead the NMB level of this model to the NMB target of 10%, it can be seen that there

is a difference between these doses, leading to a difference between the final NMB level and the

NMB target level (∆NMB) ∆NMB=1.94% (See Table 3.13).

Figure 3.18: NMB control simulation with M34 from the bank P of atracurium models with no
calibration.

In the second case, Fig. 3.18 the controller K34 was removed from the controller bank and

the recovery time occured at t∗=47 min. The control started up with controller K5 and ended

with the controller K27 with a steady-state dose of 4.72 µg/kg/min, different from the required

dose of 4.5 µg/kg/min needed to lead the NMB level to the target value of 10%. Therefore a

difference ∆NMB=2.6% between the final NMB level and the desired NMB target was observed

(See Table 3.13).

For the third case, Fig. 3.19, the controller removed from the controller bank was K38. The

recovery time was t∗=24 min, and at this time the control started up with the controller K32.

By the end of the simulation time the last applied controller was K30 with a steady-state dose

of 17.37 µg/kg/min, very different of the 21.03 µg/kg/min, required to lead the NMB level to

the target of 10%, and so a difference ∆NMB=3.3% between the final NMB level obtained and

the desired NMB target was observed (See Table 3.13).

Figs. 3.20, 3.21, and 3.22 show the results of applying the reference tracking improvement

technique to the cases of Figs. 3.17, 3.18, and 3.19 respectively. The values obtained for these
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Figure 3.19: NMB control simulation with M38 from the bank P of atracurium models with no
calibration.

cases can be visualized in Table 3.13 in the columns where there are values for the Calibration

Time. This time corresponds to the instant where the reference tracking improvement was

applied. As expected the last controller to be used was not the same as previously, the same

happens with the final steady-state dose applied, which obviously leads to different values of

∆NMB.

Figure 3.20: NMB control simulation with M27 from the bank P of atracurium models with
calibration at 109 minutes.

For the first case, Fig. 3.20, a reference tracking improvement to the case of Fig. 3.17 (M27),

the calibration occurred at t=109 min, and the last controller applied after the 300 minutes

of simulation was K80, with a steady-state dose of 4.66 µg/kg/min instead of the dose of 4.92

µg/kg/min (without calibration). As a consequence the difference between the final NMB level

and the NMB target level was decreased from ∆NMB=1.95% to ∆NMB=0.75%, which is a

significant improvement (See Table 3.13).
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Figure 3.21: NMB control simulation with M34 from the bank P of atracurium models with
calibration at 200 minutes.

In the second case, Fig. 3.21, a reference tracking improvement to the case of Fig. 3.18 (M34),

the calibration was applied at minute 200. The final controller was K49 with a steady-state dose

of 4.44 µg/kg/min instead of the dose of 4.72 µg/kg/min (without calibration). Therefore the

difference between the final NMB level and the NMB target level decreased from ∆NMB=2.6%

to ∆NMB=0.7%, once again showing a significant improvement (See Table 3.13).

Figure 3.22: NMB control simulation with M38 from the bank P of atracurium models with
calibration at 74 minutes.

In the third case, Fig. 3.22, a reference tracking improvement to the case of Fig. 3.19 (M38),

the calibration happened at minute 74, and as a consequence the last controller applied was K60

with a steady-state dose of 21.03 µg/kg/min instead of the dose of 17.37 µg/kg/min (without

calibration). Thus the difference between the final NMB level and the NMB target level decreased

from the ∆NMB=3.3% to ∆NMB=1.03%, once again showing a significantly better performance

(See Table 3.13).
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Summarizing, the reference tracking improvement, when properly applied (the input must

remain in a steady-state dose, and the steady-state NMB response to that dose must be achieved),

produces significant improvements to the reference tracking when atracurium models are used,

since the difference between the final NMB level and the NMB target level decrease.

Figs. 3.23, 3.24 and 3.25 show the three worst results obtained with the switching strategy

using the bank P for rocuronium models (see Appendix C.2). The models that produced these

results were M14, M22, and M28. In Table 3.14 the results obtained in these simulations can

be observed in columns where there is no value for the Calibration Time. In all the three cases

an initial bolus of 600 µg/kg was used, and the total time of simulation was 300 minutes.

Table 3.14: Comparison between switching results with rocuronium models with and without
reference tracking improvement

Patient Model 14 14 22 22 28 28
Recovery to the Initial Bolus (min) 93 93 88 88 33 33
First Controller K (Random) 18 18 2 2 15 15
Last Controller K 21 30 14 10 33 14
Patient Uss (µg/kg/min) 1,37 1,37 1,42 1,42 13,09 13,09
Real Uss (µg/kg/min) 1,42 1,36 1,37 1,39 9,03 11,37
∆NMB (%) 1,71 0,82 1,84 1,23 3,24 1,14
Calibration Time (min) - 200 - 180 - 109

Figure 3.23: NMB control simulation withM14 from the bank P of rocuronium models with no
calibration.

In the first case, Fig. 3.23, where the model M14 is used to simulate the patient dynamics,

the respective controller K14 was removed from the controller bank. The recovery time was

t∗=93 min, and the control was initiated with the controller K18, and ended with the controller

K21 with a steady-state dose of 1.42 µg/kg/min leading to a difference between the final NMB

level and the desired NMB target ∆NMB=1.71% (see Table 3.14).
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Figure 3.24: NMB control simulation withM22 from the bank P of rocuronium models with no
calibration.

For the second case, Fig. 3.24, the controller corresponding to the model used to simulate

the patient dynamics, K22, was removed from the controller bank, and when the recovery hap-

pened, t∗=88 min, the control initiate with the controller K2, and ended with the controller

K14 with a steady-state dose of 1.37 µg/kg/min. In comparison with the steady-state dose

of 1.42 µg/kg/min, required to lead the NMB level to the desired NMB target, a difference

∆NMB=1.84% was observed (see Table 3.14).

Figure 3.25: NMB control simulation withM28 from the bank P of rocuronium models with no
calibration.

Then, in the third case, Fig. 3.25 the respective controller to the model used to simulate

the patient dynamics, K28, was removed from the controller bank. The recovery time was t∗=33

min, and the control started with the controller K15, and at the end of the simulation the

controller applied was K33 with a steady-state dose of 9.03 µg/kg/min. This dose is significantly
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different from the dose of 13.09 µg/kg/min, required to drive the NMB level to the desired NMB

target. Therefore a final difference between the achieved NMB level and the desired NMB target

∆NMB=3.24% occurred (see Table 3.14).

Figs. 3.26, 3.27, and 3.28 show the results of the application of the reference tracking im-

provement technique to the cases of Figs. 3.23, 3.24, and 3.25, respectively. The values obtained

with this improvement technique are in the columns where there are values for the Calibration

Time in Table 3.14. As happened in the case of atracurium, the calibration time corresponds to

the instant were the reference tracking improvement was applied. Once more, as expected, the

last controller was not the same as previously, and the same occurred with the final steady-state

dose applied, which obviously leads to different values of ∆NMB.

Figure 3.26: NMB control simulation with M14 from the bank P of rocuronium models with
calibration at 200 minutes.

For the first case, Fig. 3.26, the calibration was applied at minute 200. This time the

final controller was K30, with a steady-state dose of 1.36 µg/kg/min instead of the dose of 1.42

µg/kg/min (without calibration). Therefore the difference between the final NMB level achieved

and the desired NMB target decreased from ∆NMB=1.71% to ∆NMB=0.82%, showing better

tracking results (see Table 3.14).

In the second case, Fig. 3.27, the calibration was applied at minute 180, and the last controller

applied was K10 with a steady-state dose of 1.39 µg/kg/min instead of the previously dose of 1.37

µg/kg/min (without calibration). The difference between the final NMB level achieved and the

NMB target level decreased from ∆NMB=1.84% to ∆NMB=1.23%, revealing an enhancement

of the reference tracking quality once again (see Table 3.14).
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Figure 3.27: NMB control simulation with M22 from the bank P of rocuronium models with
calibration at 180 minutes.

Figure 3.28: NMB control simulation with M28 from the bank P of rocuronium models with
calibration at 109 minutes.

For the third case, in Fig. 3.28, the calibration was applied at minute 109. The final con-

troller applied was K14 with a steady-state dose of 11.37 µg/kg/min instead of the dose of 9.03

µg/kg/min (without calibration). Therefore the difference between the achieved NMB level and

the desired NMB target decreased from ∆NMB=3.24% to ∆NMB=1.14%, showing once more a

significant improvement in the reference tracking quality (See Table 3.14).

In summary, once again, when properly applied (the input must remain in a steady-state

dose, and the steady-state NMB response to that dose must be achieved), the reference tracking

improvement produces significant improvements in the reference tracking quality for rocuronium

models, since the difference between the final NMB level and the desired NMB target is reduced.
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Chapter 4

Clinical Environment

The NMB control strategy presented in this work based on a switching total system mass control

law was implemented at the Unidade Local de Saúde de Matosinhos - Hospital Pedro Hispano

(ULSM-HPH) with the supervision of the anesthesiologist Dr. Rui Rabiço.

In order to apply the NMB control to real patients it was necessary to use the appropiate NMB

control hardware and software, and to follow a suitable protocol defined by the anesthesiologist.

The protocol varies according to the surgery type and the patient characteristics.

4.1 Hardware for NMB Control

Figure 4.1: Datex-Ohmeda modular system for anesthesia monitoring.

The NMB control system applied at the ULSM-HPH consists of:

• A Datex-Ohmeda device (a modular monitoring family with a full line-up of monitors

and accessories, like the anesthesia monitor, a complex solution for anesthesia patient
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Figure 4.2: Alaris GH Pump for drug infusion.

monitoring during surgeries), in Fig. 4.1, along with a NMT (neuromuscular transmission)

module (Fig. 2.3) in order to obtain the NMB level of the patient during surgery;

• A drug delivery system: an Alaris GH syringe pump (Fig. 4.2) is used in order to administer

the muscle relaxant to the patient;

• A computer: a portable computer with two USB serial ports for connecting the Datex-

Ohmeda device and the infusion pump, in order to run the NMB control software.

The Datex-Ohmeda system and the Alaris GH Pump are connected to the portable computer

by RS232-USB cables.

4.2 Software for NMB Control

To perform the NMB control a proper software is necessary in order to read the patient NMB

level from the Datex-Ohmeda system, and then compute the respective NMB control input using

the switching total system mass control strategy. The software must allow the transmission of

that input value to the Alaris GH pump.

For that purpose two programs were used namely the Data Acquisition System and the

Monitoring Control Anesthesia. These programs were developed by researchers of the Galeno

Project.

The first software (Fig. 4.3) does the collection of all the data acquired by the Datex-Ohmeda

system, registers the infusion information related to the syringe pump, and also allows to control

the pump’s infusion rate. It also permits the user to insert special notes about the surgery,

like intubation and incision, and to mark the administration of a manual bolus (when drugs are

administered manually). This software creates three .txt files, one with the values collected from

the Datex-Ohmeda, another with the information about the infusion given by the Alaris GH

pump, and a last one with all the information related to the patient (Gender, Age, Height and

Weight) and to the surgery (protocol, surgery name, special notes and manual bolus).
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Figure 4.3: Data Acquisition System program developed by Galeno researchers.

The second program (Fig. 4.4) has the main objective to perform the NMB control but it

can also realize the plot of some interest variables related with the Datex-Ohmeda and the Alaris

GH pump. This program was developed in the MATLAB environment and was designed in a

modular way so that any user can develop his own NMB control strategy as a MATLAB function

and then incorporate it in the main software.

Figure 4.4: Monitoring and Control in Anesthesia program developed by Galeno researchers.

The program makes a connection with the former one in order to obtain from it the collected

values. In this way the information necessary to perform the NMB control is provided and the
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control input can be determined. Afterwards the Monitoring and Control in Anesthesia program

sends out that input value to the former program so that it imposes it to the Alaris GH Pump.

A more detailed explanation about these two programs can be read in Appendix B.

4.3 Protocol

The protocol used during the surgeries with the application of the switching strategy to control

the NMB level based on a bank of total system mass control laws was designed by the anesthe-

siologist. It varies according to the characteristics of the patient, the type of surgery and the

protocols implemented by the hospital. Since the real cases control was performed at the Unidade

Local de Saúde de Matosinhos - ULSM, the specific protocol was made by the anesthesiologist

Rui Rabiço according to the general protocols implemented at this hospital.

For the hypnotic induction a bolus of propofol was used in order to achieve a quick induction.

After this induction the maintenance was made with sevoflurane, a volatile drug. The choice of

a volatile drug for the maintenance is due to the possibility of using the Datex Ohmeda device

that is able to make the automatic administration of this drug; the anesthesiologist only needs

to define the infusion rate. For analgesia a single bolus of fentanil was used at the beginning.

Finally, for the arreflexia, the drug rocuronium was used. this drug is nowadays the most widely

used due to its special properties, in particular the existence of sugamadex, a drug that makes

the full reversion of the NMB level possible at any time. At the end of the surgery either the

NMB reverser neostigmine with atropine or the sugamadex were used.

The process of general anesthesia with NMB control during surgeries can be summarized as

follows:

• Step 1 Administration of a fentanil bolus.

• Step 2 Administration of a propofol bolus followed by sevoflurane administration when

the BIS signal starts to recover from the propofol bolus.

• Step 3 Calibration of the NMB Sensor.

• Step 4 t = 0: An initial bolus of rocuronium is given to the patient (Automatic adminis-

tration performed by the Monitoring and Control in Anesthesia software).

• Step 5 0 < t < t∗ (before recovery from the initial bolus of rocuronium): The control input

remains zero.
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• Step 6 t = t∗ (t∗ computed by the OLARD algorithm introduced in da Silva et al. (2009)):

A random controller from bankK is chosen in order to start the control of the NMB response

of the patient.

• Step 7 t ≥ t∗: A controller Ki is chosen at each time instant based on the minimization of

the cumulative error between the patient response and the responses of each of the models

in the bank P.

• Step 8 At the end of the surgery: Administration of either the NMB reverser or the

rocuronium antagonist according to the patient characteristics and his/her NMB level at

this stage.

4.4 Results

Figure 4.5: Results of the application of the switching strategy with a bank of total system mass
control laws in a surgery at ULSM-HPH (2012/03/29 Case 2)

In Fig. 4.5 the case collected on March 29th 2012 at ULSM-HPH is represented. At the top

of this figure some information regarding the clinical case can be seen: Protocol (name of the

surgery), ASA, Gender, Age, Weight (kg), and Height (cm) of the patient.

Remark : The ASA information that appears in Figs. 4.5, 4.6, 4.7, 4.8, and 4.9 corresponds to

the ASA classification system that represents the evaluation done by the anesthesiologist about

the general health and well-being of the patient. Usually there are six classes:

1. A normal healthy patient;
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2. A patient with mild systemic disease;

3. A patient with severe systemic disease;

4. A patient with severe systemic disease that is a constant threat to life;

5. A moribund patient who is not expected to survive without the operation;

6. A declared brain-dead patient whose organs are being removed for donor purposes.

Remark : In these real cases the switching signal was not accessible, so the only information

about the occurrence of switching is the change in the rocuronium infusion rate after the recovery

to the initial bolus happened (a sudden change in the drug infusion rate means a switching in

the controller).

The upper plot of Fig. 4.5 contains all the information about the drugs administered to the

patient that have effect on the NMB level. So, initially, around minute 10, the rocuronium bolus

of 50 mg is represented, then, around minute 60, the recovery occurred and the controller started

up with the infusion of rocuronium. At the end, the reverser, neostigmine together with atropine,

was delivered to the patient (around the minute 170).

In the lower plot of Fig. 4.5 the NMB level of the patient during the surgery is plotted in blue

and the NMB target in red. For this case, three artefacts occurred during the surgery, and they

are marked by a green circle. These sudden changes have no reasonable explanation, since if they

were sensor faults these artefacts should have been momentary, and after a while they should

have come back to the previous values, but in this case after the sudden changes the NMB level

stays in those news values. Despite this, the switching control shows to have a good behavior,

once the NMB level was stabilized around the NMB target, although after the second artefact

the stabilization took more time to happen. Therefore in this case the switching control shows

reasonable results, once no abnormal values were registered. The anesthesiologist considered it

a good performance as the NMB level remained within an acceptable interval of NMB values,

in any moment reach high values. The surgeons did not complain about the muscle relaxation

level, and the controller did not deliver an excess of muscle relaxant to the patient.

In Fig. 4.6 the first case collected on April 12th 2012 at ULSM-HPH is represented. At the

top of this figure once again the same information regarding the patient as in Fig. 4.5 can be

seen.

The upper plot contains all the information about the drugs related with the NMB response

that were administered to the patient. In this plot it can be seen that an initial bolus of 50
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Figure 4.6: Results of the application of the switching strategy with a bank of total system mass
control laws in a surgery at ULSM-HPH (2012/04/12 Case 1).

mg was given to the patient around minute 10, at about minute 45 the OLARD algorithm

identified the recovery of the NMB level, and as a consequence the controller began with the

rocuronium infusion. At the end of the surgery, around minute 235, the antagonist sugamadex

was administered to the patient.

The lower plot shows the NMB level of the patient during the surgery (in blue), and the

NMB target (in red). In a quick preview of the NMB signal, it can be seen that the NMB level

remains closely to the NMB target. In a detailed analysis, since the beginning of the control

procedure and until minute 60 the NMB response was stabilized around the target. After that

the NMB level remained slightly under the target, which means that a larger dose than the

required was administered to the patient, but over time the controller was able to follow again

the target (around minute 120). Once again, around minute 140, an artefact appears in the

signal, in the same way as in the case of Fig. 4.5, but once again the controller was able to

adjust the NMB level to the target thereafter. From this point on, and until the end of the

surgery, the NMB level was constantly kept within a small range of values around the target.

The anesthesiologist considered this controller performance good because the NMB level was

kept within a very reasonable interval, and once again no complains from the surgeons were

registered about the muscle paralysis of the patient. The NMB level did not reach any abnormal

value, and the control did not give an overall excessive dose of rocuronium to the patient. So the

goal of liberating the anesthesiologist for more important tasks was achieved. As a final note,

the changes in the rocuronium infusion rate during the control are a sign that switching among

the controllers in the bank occurred.
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Figure 4.7: Results of the application of the switching strategy with a bank of total system mass
control laws in a surgery at ULSM-HPH (2012/04/12 Case 2).

In Fig. 4.7 the second case collected on April 12th 2012 at ULSM-HPH is represented. At the

top of this figure once again the same patient information as in the previous figures is displayed.

The upper plot represents all the information about the NMB drugs administered to the

patient. For this case a rocuronium bolus of 50 mg was administered around minute 10, and the

recovery to this bolus occurred around the minute 50, and therefore the controller was initiated by

that time. In this case there is no record of any reverser or antagonist having been administered

to the patient at the end of the surgery.

The lower plot shows the NMB level of the patient during the surgery (in blue), as well

as the NMB target desired (in red). For this case the NMB control remains in an acceptable

interval from 0 to 20 % approximately. Around minute 60 the controller did some switching,

specially due to the overshoot in the NMB level registered in the beginning of the control; in

order to compensate this, more dose than the required was administered, but afterwards, until

the change of the NMB target from 10% to 5% around minute 140, the NMB level of the patient

followed the NMB target quite well. When the target was reduced, the NMB level decreased

more than expected and remained close to 0% from minute 150 until minute 170. At the end of

the procedure, the same happened again. In general the switching controller was not optimal, but

for the anesthesiologist Dr. Rui Rabiço it was satisfactory, since he never had to be concerned

about the patient NMB level during the surgery, no excessively high values were verified, and

once again the surgeons did not complain about undesired patient movements. However this

time the controller gave a little more dose than the required one. Once again, by the changes
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occurred in the rocuronium infusion rate, the occurrence of switching can be inferred.

Figure 4.8: Results of the application of the switching strategy with a bank of total system mass
control laws in a surgery at ULSM-HPH (2012/05/10 Case 2).

Fig. 4.8 contains the results acquired on May 10th 2012 at ULSM-HPH. Once again, at the

top of this figure some information about the patient and the surgery is shown.

The upper plot, which presents all the information regarding to the NMB drugs administered

to the patient, shows that an initial bolus of 40 mg was given to the patient around minute 10,

and the recovery occurred about minute 50. At this same moment the controller begins to work

by applying the continuous infusion of rocuronium to the patient. In this case, at the end of the

surgery, the antagonist, sugamadex, was administered to the patient (around minute 260).

The lower plot shows the NMB response of the patient during the surgery (in blue), as well

as the NMB target applied to this case (in red). This case shows a good performance of the

controller. In this surgery the NMB level was always kept between 6 and 14%, and no abnormal

value was registered during the surgery. The infusion rate of rocuronium was neither excessive

not scarce. The surgeons did not complain at any time about the muscle paralysis of the patient,

the anesthesiologist did not have to worry about the muscle relaxation of the patient, and so this

case can be considered very satisfactory. Once again, through the several changes in the infusion

rate of rocuronium it can be inferred that the switching occurred.

Fig. 4.9 shows the case collected on May 31th 2012 at ULSM-HPH. At the top of this figure

once again the same patient information as in the previous figures is displayed.

The upper graphic of Fig. 4.9 displays all the drugs related to the NMB level that were
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Figure 4.9: Results of the application of the switching strategy with a bank of total system mass
control laws in a surgery at ULSM-HPH (2012/05/31 Case 1).

administered to the patient. For this case an initial bolus of 50 mg of rocuronium was given to

the patient around minute 20, around minute 75 the recovery to the initial bolus was detected

and so the NMB control started up with the infusion of rocuronium. At the end of the surgery,

around minute 180, the reverser, neostigmine together with atropine, was administered for a full

reversion of the NMB.

In the lower plot, the patient NMB response is represented (blue line) as well as the NMB

target (red line). During the surgery two artefacts were registered due to the action of the

anesthesiology, who needed to make new accesses for the intravenous drug administration (green

circles): the first one occurred quite after the initial bolus administration, and the second one

right after the recovery to the initial bolus. Although the second one appeared during the NMB

control procedure, the controller was able to adjust to the new situation and to control the NMB

level around the desired target. In general, the NMB level was kept around 6 and 14% (except

when the second artefact happened), and the patient relaxation was never a problem for the

anesthesiologist and for the surgeons. Also the anesthesiologist never needed to take any extra

action to adjust the patient muscle relaxation. Overall it can be considered that the controller

had a good performance. Once again the rocuronium infusion rate changes during the NMB

control indicate that switching has occurred.

As a conclusion it can be said that the switching strategy shows to provide good results for the

NMB level control during general anesthesia. The anesthesiologist needed not interfere to adjust

the level of muscle relaxation of the patient, the surgeons did not complain about the patient
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muscle relaxation, the NMB level was kept between good minimum and maximum values, and

the controller was able to respond to artefacts and sudden changes in the patients NMB level.

Despite these results, some precautions have to be taken into account to ensure a good NMB

level control with the switching strategy. The first one is related with the calibration of the

sensor used to measure the NMB level of the patient. This step of calibration is essential to

know the normal behavior of the patient without the presence of neuromuscular blockade agents

(NMBA) and so to be able to quantify the NMB level during the administration of NMBA. If the

calibration is wrong the values measured during the NMB control will also be wrong. Another

aspect to take into account is the distance between the NMBA access and the intravenous access.

This distance must be as short as possible in order to assure that the NMBA dose computed

by the controller and administered by the infusion pump is delivery to the patient, and not

in the access that connects the NMBA access to the patient intravenous system. Prolonged

sensor faults and external interference in the patient NMB response must be avoided in order

not to compromise the NMB switching criterion and the respective NMB control. Also, it was

necessary to put valves at the end of the NMBA access in order to prevent the reflux of other

drugs administered intravenously, which would modify the NMBA concentration. Finally, if the

patient’s arm could be placed open rather than along the body the NMB signal would be free of

noise and the computation of the error between the patient’s response and the responses of the

models, necessary to implement the switching criterion, would be more accurate. This problem

with the patient’s arm positioning occurred with the signals acquired in the Hospital Geral de

Santo António where the surgeries are made with the patient’s arm along the body and the NMB

signal has noise presence. The noise was constant even when the NMB sensor was changed, but

not when the surgery took place with the patient’s arm open.

After starting to take into account the precautions, an improvement of the NMB control

performance was achieved during surgeries.
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Conclusions

The aim of this work was to study the performance of a switching strategy based on a bank of

total system mass control laws to perform the NMB level control of patients during surgery.

Chapter 2 presented information related with medical aspects, like the definition of general

anesthesia, neuromuscular blockade (NMB) anatomy and physiology, and neuromuscular block-

ade agents (NMBA) like atracurium and rocuronium.

In Chapter 3 all the theoretical work used in this thesis were presented. The compartmental

models, for the PK/PD model and for the new reduced parameter model, describing the linear

part that relates the drug input with the effect concentration, together with the non-linear part,

also for both models, which allow to establish a relationship between the effect concentration

and the obtained NMB level, were described. It is important to notice that the modelling for

atracurium and rocuronium only differs in the patient-dependent parameters and in the value of

the fixed parameter C50. Then the NMB open-loop control law (TCI ) was presented together

with the closed-loop control law with real interest for this work, the total system mass control

law. After the NMB control was explained, the switching strategy was described along with the

criterion used to perform the switching within a bank of pre-designed controllers.

Hereafter the simulated results of the application of this strategy to control the NMB level are

presented. Good control performances with a good reference tracking quality were achieved. The

total system mass of the patient was able to follow the value M∗ performed by the controller and

this switching strategy allowed to compute a better M∗ value over time (closer to the real M∗

value required to drive the patient NMB level to the NMB target level) and so the patient NMB

level was driven to the NMB target level as desired. Therefore it can be said that theoretically

the main goal of having a good closed-loop control was achieved.

After that, a study to evaluate the switching strategy was made through a comparison with
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a well known technique of parameter identification, the Extended Kalman Filter (EKF). So for

the banks of available models (atracurium and rocuronium) a simulation of NMB control with

total system mass control was performed using these two techniques. As a result the switching

strategy shows to perform a better NMB control, specially when the recovery to the initial bolus

is prolonged, this situation is very usual in quick NMB inductions where the initial bolus is higher

than the normal. In these cases the EKF showed to perform a bad identification, which made

the NMB control law lead the NMB level far from the desired target. The switching strategy

presents the advantage not to be dependent from the recovery time to the initial bolus. Also

the switching strategy shows to spend less total input dose, during the NMB control, than the

control law corresponding to the model parameters identified with the EKF. Despite that the

settling time with the switching strategy is much longer, but such situation is due to the way

the strategy is conceived (switching the controller over time). The differences between these two

techniques are more evident with the atracurium models; with the rocuronium models they are

lower but still exist.

Afterwards a study in order to analyze if the switching strategy provides a good controller

over time was made. Several total system mass controllers selected offline with different metrics,

among which the last controller used during the switching strategy, were applied. The last

controller of the switching strategy along with the best controller from the controller bank chosen

offline, the controller with the most similar gamma to the one of the patient model, and the

controller with the most similar USS to the one of the patient model show better results regarding

the total input amount required for the NMB control with atracurium models because they spend

less dose, but not with rocuronium models where they spend more dose. Despite that, these

controllers show better reference tracking quality for both NMBA models and so, even if with

rocuronium models these controllers spend more dose, the reference tracking quality justifies

their qualification as better controllers. As for the settling time, the results obtained are similar

for all the controllers studied. Summarizing, the last controller of the switching procedure shows

to provide a good total system mass control leading to consequent good NMB control results

both for atracurium and rocuronium, proving that the switching provides in the course of time

a good controller for the NMB level control.

Finally in Chapter 3 a technique to perform the reference tracking improvement was pre-

sented. For this purpose a steady-state dose, USS , along with the corresponding achieved steady-

state NMB level are used in order to identify a better approximation for the parameter γ of the

total system control law and thus perform a recalibration of the controller. Therefore the three

worst results obtained with the switching strategy with atracurium models and the three worst

cases with rocuronium models were considered and the respective recalibration was applied to

those cases. It was possible to see that this recalibration strategy provided a better reference
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tracking quality. Although the off-set between the NMB level achieved and the NMB target

desired was not completely eliminated, it has been substantially reduced. For practical purposes

this technique is not optimal because it is hard to obtain steady-state doses and NMB levels and

so a good calibration of the parameter γ is hard to achieve.

In Chapter 4 the practical work related with this thesis was presented. Here all the informa-

tion related with hardware, software and protocol used during the real NMB control cases was

initially explained, and then the results obtained were illustrated graphically. Five real cases

were presented with good NMB control using the switching strategy. After analyzing those cases

it can be concluded that this strategy presents good results when applied in real surgeries. The

NMB level was kept inside an acceptable range (between 5 and 15% more or less), the patient

muscle stiffness was never a point of discussion for the surgeons, the anesthesiologist never have

to perform any manual control on the patient muscle relaxation, and even when sudden changes

in the NMB level occurred the controller was able to respond and again drive the NMB level

closer to the desired target. Also when some momentary sensor faults were verified the controller

continues to work correctly. Another aspect of this control strategy is its ability to adapt to

changes in the patient dynamics in the course of time. Despite these encouraging results some

care is needed in order to avoid a bad controller performance. For example, a good sensor cal-

ibration is essential, it is desirable to place the patient arm opened instead of along the body

(to avoid noise), to use a short access as possible to connect the NMBA access to the patient

intravenous access, and to use reflux valves in order to avoid changes in the NMBA concentration.

In summary, this work shows the performance of a NMB control strategy based on switching

among controllers with a total system mass control law. More important than the exploitation

of this technique are the good results obtained both in theory and in practice. The total system

mass control shows to work properly with switching and this strategy is able to select a good

controller for the patient. Moreover this strategy provides good results even in the presence of

momentary sensor faults and sudden changes, and is also able to respond to the variations in

the patient dynamics over time, which was one of the major problems with the previously used

controllers. Therefore this control scheme is able to overcome not only the intervariability among

patients but also the intravariability.

For the future, the construction of a population model for the action of rocuronium is sug-

gested, in a similar way to what has been done for atracurium models. Thus will allow to generate

any desired bank P of rocuronium models, and as a consequence any desired controller bank K.

This study will make the switching strategy for the NMB control with rocuronium more robust,
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once the bank of controllers will be more complete, and hence more able to fit the wide inter-

and intra-patient system variability.

Another aspect is related to pursuing the application of the switching strategy to real cases

in the operating room, in order to increase the number of acquired data and so to be able to

perform a statistic study to evaluate the switching performance in real cases.

Finally a further study of the filter used to remove artefacts from the NMB signal needs to

be made. Actually a combined FIR+Median+Non Linear filter is used in order to perform such

action, but still some undesired noise or sensor faults are not corrected. The obstacle to the use

of a higher order filter is the increasing of the delay that the filter will incorporate in the NMB

level, which is an undesired situation as it will affect the performance of the NMB control.
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Appendix A

MATLAB Routines

A.1 Simulation of the response to an initial bolus

1 function Offline_Bolus_Inicial_RED

2 clear all

3 clc

4 %% Load da base de dados com os parâmetros Alpha e Gamma

5 % load([cd ’\Base de Dados\Alpha_Gamma_Atr_100.mat’])

6 load([cd ’\Base de Dados\Alpha_Gamma_Roc_41.mat’])

7 %% Determinar o numero de modelos na base de dados

8 num_modelos = length(NEW_THETA_100(1,:));

9 indice_modelo = [1:1:num_modelos]’;

10 %% Identificação das variáveis iniciais

11 y_modelos = [];

12 NMB_modelos = [];

13 for l=1:num_modelos

14 NMB_modelos(1,l) = 100; % Definir o primeiro valor de todos os NMBs

15 end

16 h = 20; % Tempo de Discretização em segundos

17 h = h/60; % Tempo de Discretização em minutos

18 tempo_simulacao = 300; % Tempo de simulação em minutos

19 tempo_simulacao = tempo_simulacao/h; % Em instantes de amostragem

20 % bolus_inicial = 500/h; % Bolus inicial m ug/kg para o Atracurium

21 bolus_inicial = 600/h; % Bolus inicial em ug/kg para o Rocuronium

22 % c50 = 0.6487*5; % C50 para o Atracurium

23 c50 = 1; % C50 para o Rocuronium
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24 %% Obtenção dos modelos compartimentais.

25 [Ad_REDM,Bd_REDM,x_modelos,gamma_modelos] = modelo_reduzido_modelos

(NEW_THETA_100,h,num_modelos,indice_modelo);

26 %% Simulação

27 for i=1:tempo_simulacao

28 for j=1:num_modelos

29 x_modelos2(:,1) = x_modelos{i,j};

30 Ad_modelos = Ad_REDM{j};

31 Bd_modelos = Bd_REDM{j};

32 if j==1

33 if i==1

34 u_RED(i) = bolus_inicial;

35 else

36 u_RED(i) = 0;

37 end

38 end

39 x_modelos2(:,2) = Ad_modelos*x_modelos2(:,1)+Bd_modelos*u_RED(i);

40 x_modelos{i+1,j} = x_modelos2(:,2);

41 y_modelos(i+1,j) = [0 0 1]*x_modelos2(:,2);

42 NMB_modelos(i+1,j) = [100/(1+((y_modelos(i+1,j)/c50)ˆ

gamma_modelos(j)))];

43 end

44 end

45 %% Plot dos Resultados

46 % Definir a escala de tempo em minutos

47 t=[0:1:tempo_simulacao]; % Criar escala para o eixo do tempo

48 t=t*h; % Converter o eixo do tempo em minutos

49 % Plot das Concentrações de Efeito

50 subplot(2,1,1),plot(t,y_modelos)

51 title(’Concentração de Efeito’)

52 xlabel(’minutos’)

53 ylabel(’ug/kg’)

54 % Plot dos Relaxamentos Musculares

55 subplot(2,1,2),plot(t,NMB_modelos)

56 title(’Relaxamento Muscular’)

57 xlabel(’minutos’)
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58 ylabel(’% NMB’)

59 end

60

61 function [Ad_REDM,Bd_REDM,x_modelos,gamma_modelos] = modelo_reduzido_modelos

(NEW_THETA_100,h,num_modelos,indice_modelo)

62 k1=1; k2=4; k3=10;

63 x_modelos = [];

64 x_modelos2 = [];

65 for k=1:num_modelos

66 % Obtenção dos parâmetros para os modelos simulados

67 alpha_modelos(k) = NEW_THETA_100(1,indice_modelo(k,1));

68 gamma_modelos(k) = NEW_THETA_100(2,indice_modelo(k,1));

69 % Construção das matrizes do modelo compartimental

70 Ac_modelos = [(-k3*alpha_modelos(k)) 0 0;(k2*alpha_modelos(k)) -

(k2*alpha_modelos(k)) 0;0 (k1*alpha_modelos(k)) -(k1*alpha_modelos(k))];

71 Bc_modelos = [k3*alpha_modelos(k) 0 0]’;

72 % Discretização do sistemas compartimentais

73 [Ad_modelos,Bd_modelos] = c2d(Ac_modelos,Bc_modelos,h);

74 % Guardar as matrizes de todos os modelos do banco de dados

75 Ad_REDM{k} = Ad_modelos;

76 Bd_REDM{k} = Bd_modelos;

77 % Definir os estados iniciais de cada modelo

78 x_RED_modelos = Bc_modelos;

79 x_modelos{1,k} = x_RED_modelos;

80 end

81 end

A.2 Switching Strategy

1 function Control_Law_Switching_RED_Olard

2 clear all

3 clc

4 %% Load da base de dados com os parametros Alpha e Gamma

5 load([cd ’\Base de Dados\Alpha_Gamma_Atr_100.mat’]) % Para o Atracurium

6 % load([cd ’\Base de Dados\Alpha_Gamma_Roc_37.mat’]) % Para o Rocuronium
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7 %% Determinar tamanho da base de dados

8 length1 = length(NEW_THETA_100(1,:));

9 %% Definir algumas variáveis

10 h = 20; % Tempo de discretização em segundos.

11 h = h/60; % Tempo de discretização em minutos.

12 bolus_inicial = 500/h; % Em ug/kg, e no tempo discreto, para o Atracurium

13 % bolus_inicial = 600/h; % Em ug/kg, e no tempo discreto, para o Rocuronium

14 nmb_ref = 10; % Referência desejada em %

15 lambda = 0.5; % Parametro intrinseco ao controlador

16 c50 = 0.6487*5; % Valor de C50 para o Atracurium

17 % c50 = 1; % Valor de C50 para o Rocuronium

18 %% Definir tempo de simulação e converter para instantes de 20s

19 tempo_simulacao = 300; % Em minutos

20 tempo_simulacao = tempo_simulacao/h; % Em instantes de 20s

21 %% Limpar algumas variáveis para evitar erros de cálculos

22 NMB_paciente = 100;

23 erro = [];

24 ChangePoint = [];

25 M_Estrela = [];

26 flag1 = 0;

27 %% Definir o modelo que vai ser usado para simular o paciente

28 paciente = 1; % Definir qual o modelo do banco de dados usado como paciente

29 parametros_paciente(:,1) = NEW_THETA_100(:,paciente);

30 %% Definir o banco de dados para identificação e controlo do paciente

31 for s=1:length1

32 if s<paciente

33 parametros_modelos(:,s) = NEW_THETA_100(:,s);

34 else if s==paciente

35 else if s>paciente

36 parametros_modelos(:,s-1) = NEW_THETA_100(:,s);

37 end

38 end

39 end

40 end

41 %% Identificação do numero de modelos presentes na base de dados

42 num_modelos = length(parametros_modelos(1,:));
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43 indice_modelo = [1:1:num_modelos]’;

44 %% Obter as variaveis necessárias à simulação

45 [Ad_paciente,Bd_paciente,x_paciente,gamma_paciente,M_E_Paciente,U_SS_Real] =

modelo_reduzido_paciente(parametros_paciente,h,c50,nmb_ref);

46 [Ad_REDM,Bd_REDM,x_modelos,gamma_modelos,Ce_estrela] = modelo_reduzido_

modelos(parametros_modelos,h,num_modelos,indice_modelo,nmb_ref,c50);

47 %% Simulação

48 for i=1:tempo_simulacao

49 for j=1:num_modelos

50 Ad_modelos = Ad_REDM{j};

51 Bd_modelos = Bd_REDM{j};

52 if isempty(ChangePoint)

53 if i==1

54 u_RED(i) = bolus_inicial;

55 else

56 u_RED(i) = 0;

57 end

58 if j==1

59 x_paciente = Ad_paciente*x_paciente+Bd_paciente*u_RED(i);

60 y_paciente(i+1) = [0 0 1]*x_paciente;

61 NMB_paciente(i+1) = [100/(1+((y_paciente(i+1)/c50)

ˆgamma_paciente))];

62 end

63 x_modelos{1,j} = Ad_modelos*x_modelos{1,j}+Bd_modelos*u_RED(i);

64 y_modelos(i+1,j) = [0 0 1]*x_modelos{1,j};

65 NMB_modelos(i+1,j) = [100/(1+((y_modelos(i+1,j)/c50)

ˆgamma_modelos(j)))];

66 else

67 if j==1

68 Ad_control = Ad_REDM{Controlador};

69 Bd_control = Bd_REDM{Controlador};

70 x_control = x_modelos{1,Controlador};

71 M_Estrela2(i) = M_E_Paciente;

72 M_paciente(i) = sum(x_paciente);

73 if flag1==0

74 M_Estrela(i) = 3*Ce_estrela(Controlador);
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75 else

76 Ce_calibrado = [(((100*(c50ˆGamma_Calibrado))-((c50

ˆGamma_Calibrado)*nmb_ref))/nmb_ref)ˆ(1/Gamma_Calibrado)];

77 M_Estrela(i) = 3*Ce_calibrado;

78 end

79 u_RED(i) = min(80,max(0,(((sum(Bd_control))ˆ(-1))*[1 1 1]*

(lambda*eye(3)-Ad_control)*x_control+(((sum(Bd_control))ˆ(-1))

*(1-lambda)*M_Estrela(i)))));

80 x_paciente = Ad_paciente*x_paciente+Bd_paciente*u_RED(i);

81 y_paciente(i+1) = [0 0 1]*x_paciente;

82 NMB_paciente(i+1) = [100/(1+((y_paciente(i+1)/c50)ˆ

gamma_paciente))];

83 end

84

85 x_modelos{1,j} = Ad_modelos*x_modelos{1,j}+Bd_modelos*u_RED(i);

86 y_modelos(i+1,j) = [0 0 1]*x_modelos{1,j};

87 NMB_modelos(i+1,j) = [100/(1+((y_modelos(i+1,j)/c50)

ˆgamma_modelos(j)))];

88

89 erro(i+1,j) = ((NMB_paciente(i+1)-NMB_modelos(i+1,j)).ˆ2);

90 erro2(i+1,j) = ((y_paciente(i+1)-y_modelos(i+1,j)).ˆ2);

91 end

92 end

93 %% Função que identifica automaticamente o inicio da recuperação

94 [ChangePoint] = OLARD_bloco(NMB_paciente);

95 %% Escolher o primeiro controldador aleatoriamente

96 if i==(ChangePoint-1)

97 Controlador = randi(length(NMB_modelos(1,:)),1)

98 end

99 %% Escolher os restantes controladores

100 if i>=ChangePoint & flag1==0

101 erro_acumulado(i+1,:) = sum(erro);

102 min_1 = min(erro_acumulado(i+1,:));

103 Controlador = find(erro_acumulado(i+1,:)==min_1);

104 tabela_Controladores(i+1) = Controlador;

105 elseif i>=ChangePoint & flag1==1
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106 erro_acumulado(i+1,:) = sum(erro2);

107 min_1 = min(erro_acumulado(i+1,:));

108 Controlador = find(erro_acumulado(i+1,:)==min_1);

109 tabela_Controladores(i+1) = Controlador;

110 end

111 %% Calibração U Steady State

112 if i==270

113 Gamma_Calibrado = log(100/NMB_paciente(i+1))/log(u_RED(i)/c50);

114 flag1 = 1;

115 end

116 end

117 %% Limar algumas variáveis para o plot

118 NMB_paciente(end) = [];

119 tabela_Controladores(end) = [];

120 erro(end,:) = [];

121 erro_acumulado(end,:) = [];

122 u_RED(1) = 0;

123 %% Construção de algumas variáveis de interesse

124 Lei_Controlo = tabela_Controladores(end)

125 Switching = tabela_Controladores;

126 Inicio_Recuperacao = ChangePoint*20/60

127 Delta_NMB_SS = abs(NMB_paciente(end)-nmb_ref)

128 Dose_SS = u_RED(end)

129 end

130

131 function [Ad_paciente,Bd_paciente,x_paciente,gamma_paciente,M_E_Paciente,

U_SS_Real] = modelo_reduzido_paciente(parametros_paciente,h,c50,nmb_ref)

132 % Obtenção dos parâmetros para o modelo do paciente

133 k1=1; k2=4; k3=10;

134 alpha_paciente = parametros_paciente(1,1);

135 gamma_paciente = parametros_paciente(2,1);

136 % Construção das matrizes do modelo compartimental

137 Ac_paciente = [(-k3*alpha_paciente) 0 0;(k2*alpha_paciente) -(k2*alpha_paciente)

0;0 (k1*alpha_paciente) -(k1*alpha_paciente)];

138 Bc_paciente = [k3*alpha_paciente 0 0]’;

139 % Discretização do sistema compartimental
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140 [Ad_paciente,Bd_paciente] = c2d(Ac_paciente,Bc_paciente,h);

141 % Definir estado inicial do paciente

142 x_paciente = [];

143 x_paciente = Bc_paciente; % Estado Inicial discreto é igual à matriz B contı́nua

144 % Obter M* do modelo do paciente

145 M_E_Paciente = 3*((((100*(c50ˆgamma_paciente))-((c50ˆgamma_paciente)*nmb_ref))

/nmb_ref)ˆ(1/gamma_paciente));

146 % Obter U Steady State do Paciente

147 Var1 = (alpha_paciente*k1*k2*k3);

148 Var2 = (Var1/((k2-k1)*(k3-k1)))/(alpha_paciente*k1);

149 Var3 = (Var1/((k1-k2)*(k3-k2)))/(alpha_paciente*k2);

150 Var4 = (Var1/((k1-k3)*(k2-k3)))/(alpha_paciente*k3);

151 Var5 = Var2+Var3+Var4;

152 U_SS_Real = c50*((((100/nmb_ref)-1)ˆ(1/gamma_paciente))/Var5);

153 end

154

155 function [Ad_REDM,Bd_REDM,x_modelos,gamma_modelos,Ce_estrela] =

modelo_reduzido_modelos(parametros_modelos,h,num_modelos,indice_modelo,

nmb_ref,c50)

156 k1=1; k2=4; k3=10;

157 x_modelos = [];

158 for k=1:num_modelos

159 % Obtenção dos parâmetros para os restantes modelos

160 alpha_modelos(k) = parametros_modelos(1,indice_modelo(k,1));

161 gamma_modelos(k) = parametros_modelos(2,indice_modelo(k,1));

162 % Construção das matrizes dos modelos compartimentais

163 Ac_modelos = [(-k3*alpha_modelos(k)) 0 0;(k2*alpha_modelos(k)) -

(k2*alpha_modelos(k)) 0;0 (k1*alpha_modelos(k)) -(k1*alpha_modelos(k))];

164 Bc_modelos = [k3*alpha_modelos(k) 0 0]’;

165 % Discretização dos sistemas compartimentais

166 [Ad_modelos,Bd_modelos] = c2d(Ac_modelos,Bc_modelos,h);

167 % Guardar as matrizes de todos os modelos do banco de dados

168 Ad_REDM{k} = Ad_modelos;

169 Bd_REDM{k} = Bd_modelos;

170 % Definir estado inicial dos modelos

171 x_RED_modelos = Bc_modelos;
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172 x_modelos{1,k} = x_RED_modelos;

173 % Obter Ce* dos modelos

174 Ce_estrela(k) = [(((100*(c50ˆgamma_modelos(k)))-((c50ˆgamma_modelos(k))

*nmb_ref))/nmb_ref)ˆ(1/gamma_modelos(k))];

175 end

176 end

177

178 function [ChangePoint] = OLARD_bloco(NMB_paciente)

179 ChangePoint=[];

180 index = 0; holdindex = 0; Subindex = 0;

181 if length(NMB_paciente)>54

182 baseline = mean(NMB_paciente(49-4:49+5));

183 for jj=54:length(NMB_paciente)

184 if (NMB_paciente(jj) > NMB_paciente(jj-1)) && (NMB_paciente(jj)

> baseline+1)

185 index = index + 1; Subindex = Subindex + 1; holdindex =0;

P(Subindex) = NMB_paciente(jj);

186 if (NMB_paciente(jj) > 7) && (Subindex >= 3)

187 index = 15; P(Subindex)=NMB_paciente(jj);

188 end

189 elseif (NMB_paciente(jj) <= NMB_paciente(jj-1)) && (index >= 1)

190 holdindex = holdindex + 1; Subindex = 0;

191 if (NMB_paciente(jj) > 7 ) && (holdindex > 3)

192 index = 0; holdindex =0;

193 elseif(NMB_paciente(jj) <= 7 ) && (holdindex >= 3)

194 index = 0; holdindex =0; Subindex = 0;

195 end

196 end

197 if index >= 15

198 ChangePoint=jj;

199 return

200 end

201 end

202 end

203 end
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A.3 Controller Choice by the Best Reference Tracking

1 function Control_Law_Offline_RED_Olard

2 clear all

3 clc

4 %% Load da base de dados com parametros Alpha e Gamma

5 % load([cd ’\Base de Dados\Alpha_Gamma_Atr_100.mat’])

6 load([cd ’\Base de Dados\Alpha_Gamma_Roc_37.mat’])

7 %% Determinar numero de modelos presentes no banco de dados

8 length1 = length(NEW_THETA_100(1,:));

9 for m=1:length1

10 %% Definir variaves iniciais

11 h = 20; % Tempo de discretização em segundos

12 h = h/60; % Tempo de discretização em minutos

13 tempo_simulacao = 300; % Tempo de simulação em minutos

14 tempo_simulacao = tempo_simulacao/h; % Em instantes de amostragem

15 % bolus_inicial = 500/h; % Bolus inicial em ug/kg, para o Atracurium

16 bolus_inicial = 600/h; % Bolus inicial em ug/kg, para o Rocuronium

17 nmb_ref = 10; % Target para o NMB

18 lambda = 0.5; % Parametro do controlador da Lei de Controlo de Massa

19 ChangePoint = [];

20 % c50_red = 0.6487*5; % C50 para o Atracurium

21 c50_red = 1; % C50 para o Rocuronium

22 NMB_paciente = 100;

23 NMB_paciente2 = [];

24 NMB_paciente2 = 100;

25 erro = [];

26 %% Retirar da base de dados um modelo para ser o paciente e construção

de uma matriz com os restantes modelos que sobram como base de dados

27 paciente = m; % Modelo usado como paciente

28 parametros_paciente(:,1) = NEW_THETA_100(:,paciente);

29 for e=1:length1

30 if e<paciente

31 parametros_modelos(:,e) = NEW_THETA_100(:,e);

32 else if e==paciente

33 else if e>paciente
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34 parametros_modelos(:,e-1) = NEW_THETA_100(:,e);

35 end

36 end

37 end

38 end

39 %% Identificação do numero de modelos presentes na base de dados

40 num_modelos = length(parametros_modelos(1,:));

41 indice_modelo = [1:1:num_modelos]’;

42 %% Obter as matrizes e parametros necessários à simulação

43 [Ad_paciente,Bd_paciente,gamma_paciente,x_paciente] =

modelo_reduzido_paciente(parametros_paciente,h,num_modelos);

44 [Ad_REDM,Bd_REDM,x_modelos,gamma_modelos,Ce_estrela] =

modelo_reduzido_modelos(parametros_modelos,h,num_modelos,indice_modelo,

c50_red,nmb_ref);

45 %% Simulação

46 for i=1:tempo_simulacao

47 for j=1:num_modelos

48 x_paciente2(:,1) = x_paciente{i,j};

49 x_modelos2(:,1) = x_modelos{i,j};

50 Ad_modelos = Ad_REDM{j};

51 Bd_modelos = Bd_REDM{j};

52 if isempty(ChangePoint)

53 if i==1

54 u_RED(i,j) = bolus_inicial;

55 else

56 u_RED(i,j) = 0;

57 end

58 x_paciente2(:,2) = Ad_paciente*x_paciente2(:,1)+Bd_paciente

*u_RED(i,j);

59 x_paciente{i+1,j} = x_paciente2(:,2);

60 y_paciente(i+1,j) = [0 0 1]*x_paciente2(:,2);

61 NMB_paciente(i+1,j) = [100/(1+((y_paciente(i+1,j)/c50_red)

ˆgamma_paciente))];

62 if j==1

63 NMB_paciente2(i+1) = NMB_paciente(i+1,j);

64 end
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65 x_modelos2(:,2) = Ad_modelos*x_modelos2(:,1)+Bd_modelos

*u_RED(i,j);

66 x_modelos{i+1,j} = x_modelos2(:,2);

67 y_modelos(i+1,j) = [0 0 1]*x_modelos2(:,2);

68 NMB_modelos(i+1,j) = [100/(1+((y_modelos(i+1,j)/c50_red)

ˆgamma_modelos(j)))];

69 else

70 modelo = indice_modelo(j);

71 Ad_control = Ad_REDM{modelo};

72 Bd_control = Bd_REDM{modelo};

73 x_control = x_modelos{i,j};

74 M_estrela = 3*Ce_estrela(modelo);

75 M_paciente = x_paciente2(1,1)+x_paciente2(2,1)+x_paciente2(3,1);

76 u_RED(i,j) = min(80,max(0,(((sum(Bd_control))ˆ(-1))*[1 1 1]*

(lambda*eye(3)-Ad_control)*x_control(:,1)+(((sum(Bd_control))ˆ

(-1))*(1-lambda)*M_estrela))));

77 x_paciente2(:,2) = Ad_paciente*x_paciente2(:,1)+Bd_paciente

*u_RED(i,j);

78 x_paciente{i+1,j} = x_paciente2(:,2);

79 y_paciente(i+1,j) = [0 0 1]*x_paciente2(:,2);

80 NMB_paciente(i+1,j) = [100/(1+((y_paciente(i+1,j)/c50_red)

ˆgamma_paciente))];

81 x_modelos2(:,2) = Ad_modelos*x_modelos2(:,1)+Bd_modelos

*u_RED(i,j);

82 x_modelos{i+1,j} = x_modelos2(:,2);

83 y_modelos(i+1,j) = [0 0 1]*x_modelos2(:,2);

84 NMB_modelos(i+1,j) = [100/(1+((y_modelos(i+1,j)/c50_red)

ˆgamma_modelos(j)))];

85 erro(i+1,j) = abs(NMB_paciente(i+1,j)-nmb_ref);

86 end

87 end

88 [ChangePoint] = OLARD_bloco(NMB_paciente2);

89 end

90 %% Determinar qual o melhor controlador

91 Erro_Acumulado = sum(erro);

92 min_1 = min(Erro_Acumulado);

92



APPENDIX A. MATLAB ROUTINES

93 modelo1 = find(Erro_Acumulado==min_1);

94 %% Construir variáveis

95 Leis_de_Controlo(m) = modelo1; % Guardar qual foi o melhor Controlador

96 Inicio_Recuperacao(m) = ChangePoint*h; % Inicio da recurperação em minutos

97 NMB(:,m) = NMB_paciente(:,modelo1); % NMB do paciente com a melhor lei de

controlo

98 All_NMBs{m} = NMB_paciente; % Guardar o NMB do paciente com a melhor lei

de controlo

99 end

100 %% Construir variáveis

101 numero_paciente = [1:1:length1];

102 Resultados_Offline_RED(1,:) = numero_paciente;

103 Resultados_Offline_RED(2,:) = Leis_de_Controlo;

104 %% Save das variáveis

105 % save Dados_Offline_RED_Atr Resultados_Offline_RED NMB Inicio_Recuperacao

All_NMBs

106 save Dados_Offline_RED_Roc Resultados_Offline_RED NMB Inicio_Recuperacao

All_NMBs

107 end

108

109 function [Ad_paciente,Bd_paciente,gamma_paciente,x_paciente] =

modelo_reduzido_paciente(parametros_paciente,h,num_modelos)

110 %% Obtenção dos parâmetros para o modelo do paciente

111 k1=1; k2=4; k3=10;

112 alpha_paciente = parametros_paciente(1,1);

113 gamma_paciente = parametros_paciente(2,1);

114 %% Construção das matrizes do modelo compartimental

115 Ac_paciente = [(-k3*alpha_paciente) 0 0;(k2*alpha_paciente) -

(k2*alpha_paciente) 0;0 (k1*alpha_paciente) -(k1*alpha_paciente)];

116 Bc_paciente = [k3*alpha_paciente 0 0]’;

117 %% Discretização do sistema compartimental

118 [Ad_paciente,Bd_paciente] = c2d(Ac_paciente,Bc_paciente,h);

119 %% Definir estado inicial do paciente

120 x_paciente = [];

121 x_paciente2 = [];

122 x_RED_paciente = Bc_paciente; % Estado Inicial discreto = à matriz B contı́nua
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123 for gg=1:num_modelos

124 x_paciente{1,gg} = x_RED_paciente;

125 end

126 end

127

128 function [Ad_REDM,Bd_REDM,x_modelos,gamma_modelos,Ce_estrela] =

modelo_reduzido_modelos(parametros_modelos,h,num_modelos,indice_modelo,

c50_red,nmb_ref)

129 k1=1; k2=4; k3=10;

130 x_modelos = [];

131 x_modelos2 = [];

132 for k=1:num_modelos

133 % Obtenção dos parâmetros para os restantes modelos

134 alpha_modelos(k) = parametros_modelos(1,indice_modelo(k,1));

135 gamma_modelos(k) = parametros_modelos(2,indice_modelo(k,1));

136 % Construção das matrizes dos modelos compartimentais

137 Ac_modelos = [(-k3*alpha_modelos(k)) 0 0;(k2*alpha_modelos(k)) -

(k2*alpha_modelos(k)) 0;0 (k1*alpha_modelos(k)) -(k1*alpha_modelos(k))];

138 Bc_modelos = [k3*alpha_modelos(k) 0 0]’;

139 % Discretização dos sistemas compartimentais

140 [Ad_modelos,Bd_modelos] = c2d(Ac_modelos,Bc_modelos,h);

141 % Guardar as matrizes de todos os modelos

142 Ad_REDM{k} = Ad_modelos;

143 Bd_REDM{k} = Bd_modelos;

144 % Definir estados iniciais dos modelos

145 x_RED_modelos = Bc_modelos;

146 x_modelos{1,k} = x_RED_modelos;

147 % Obter Ce* dos modelos

148 Ce_estrela(k) = [(((100*(c50_redˆgamma_modelos(k)))-((c50_red

ˆgamma_modelos(k))*nmb_ref))/nmb_ref)ˆ(1/gamma_modelos(k))];

149 end

150 end

151

152 function [ChangePoint] = OLARD_bloco(NMB_paciente2)

153 ChangePoint=[];

154 index = 0; holdindex = 0; Subindex = 0;
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155 if length(NMB_paciente2)>54

156 baseline = mean(NMB_paciente2(49-4:49+5));

157 for jj=54:length(NMB_paciente2)

158 if (NMB_paciente2(jj) > NMB_paciente2(jj-1)) && (NMB_paciente2(jj) >

baseline+1)

159 index = index + 1; Subindex = Subindex + 1; holdindex = 0;

P(Subindex) = NMB_paciente2(jj);

160 if (NMB_paciente2(jj) > 7) && (Subindex >= 3)

161 index = 15; P(Subindex)=NMB_paciente2(jj);

162 end

163 elseif (NMB_paciente2(jj) <= NMB_paciente2(jj-1)) && (index >= 1)

16 4 holdindex = holdindex + 1; Subindex = 0;

165 if (NMB_paciente2(jj) > 7 ) && (holdindex > 3)

166 index = 0; holdindex =0;

167 elseif(NMB_paciente2(jj) <= 7 ) && (holdindex >= 3)

168 index = 0; holdindex =0; Subindex = 0;

169 end

170 end

171 if index >= 15

172 ChangePoint=jj;

173 return

174 end

175 end

176 end

177 end

A.4 Model choice by Alpha or Gamma proximity

1 function Proximidade_Alpha_Gamma_RED

2 clear all

3 clc

4 %% Load da base de dados com os parametros Alpha e Gamma

5 % load([cd ’\Base de Dados\Alpha_Gamma_Atr_100.mat’])

6 load([cd ’\Base de Dados\Alpha_Gamma_Roc_37.mat’])

7 %% Determinar o numero de modelos no banco de dados
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8 length1 = length(NEW_THETA_100(1,:));

9 %% Retirar da base de dados um modelo para ser o paciente e construção

de uma matriz com os restantes modelos que sobram da base de dados

10 for i=1:length1

11 paciente = i; % Modelo usado para simular o paciente

12 parametros_paciente(:,1) = NEW_THETA_100(:,paciente);

13 for e=1:length1

14 if e<paciente

15 parametros_modelos(:,e) = NEW_THETA_100(:,e);

16 else if e==paciente

17 else if e>paciente

18 parametros_modelos(:,e-1) = NEW_THETA_100(:,e);

19 end

20 end

21 end

22 end

23 %% Identificação do numero de modelos presentes na base de dados

24 num_modelos = length(parametros_modelos(1,:));

25 indice_modelo = [1:1:num_modelos]’;

26 %% Recolher os parametros Alpha e Gamma

27 [alpha_paciente,gamma_paciente] = modelo_reduzido_paciente

(parametros_paciente);

28 [alpha_modelos,gamma_modelos] = modelo_reduzido_modelos

(parametros_modelos,num_modelos,indice_modelo);

29 %% Determinar o modelo com o alpha mais próximo ao do paciente

30 delta_alpha = abs(alpha_paciente-alpha_modelos);

31 [MIN, modelo2] = min(delta_alpha);

32 Alpha_Proximo(i) = modelo2;

33 %% Determinar o modelo com o gamma mais próximo ao do paciente

34 delta_gamma = abs(gamma_paciente-gamma_modelos);

35 [MIN, modelo3] = min(delta_gamma);

36 Gamma_Proximo(i) = modelo3;

37 end

38 %% Guardar Dados

39 % save Dados_Proximidade_Alpha_Gamma_RED_Atr Alpha_Proximo Gamma_Proximo

40 save Dados_Proximidade_Alpha_Gamma_RED_Roc Alpha_Proximo Gamma_Proximo
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41 end

42

43 function [alpha_paciente,gamma_paciente] = modelo_reduzido_paciente

(parametros_paciente)

44 %% Obtenção dos parâmetros para o modelodo paciente

45 alpha_paciente = parametros_paciente(1,1);

46 gamma_paciente = parametros_paciente(2,1);

47 end

48

49 function [alpha_modelos,gamma_modelos] = modelo_reduzido_modelos

(parametros_modelos,num_modelos,indice_modelo)

50 for k=1:num_modelos

51 %% Obtenção dos parâmetros para os restantes modelos

52 alpha_modelos(k) = parametros_modelos(1,indice_modelo(k,1));

53 gamma_modelos(k) = parametros_modelos(2,indice_modelo(k,1));

54 end

55 end

A.5 Model choice by Steady-State Input

1 function U_SteadyState_RED

2 clear all

3 clc

4 %% Load do banco de dados com os parametros Alpha e Gamma

5 % load([cd ’\Base de Dados\Alpha_Gamma_Atr_100.mat’])

6 load([cd ’\Base de Dados\Alpha_Gamma_Roc_37.mat’])

7 %% Determinar o numero de modelos na banco de dados

8 length1 = length(NEW_THETA_100(1,:));

9 for i=1:length1

10 Alpha = NEW_THETA_100(1,i);

11 Gamma = NEW_THETA_100(2,i);

12 C50 = 1; % C50 para o Rocuronium

13 % C50 = 0.6487*5; % C50 para o Atracurium

14 k1=1;k2=4;k3=10;

15 Var1 = (Alpha*k1*k2*k3);
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16 Var2 = (Var1/((k2-k1)*(k3-k1)))/(Alpha*k1);

17 Var3 = (Var1/((k1-k2)*(k3-k2)))/(Alpha*k2);

18 Var4 = (Var1/((k1-k3)*(k2-k3)))/(Alpha*k3);

19 Var5 = Var2+Var3+Var4;

20 U_SS(i) = C50*((((100/nmb_ref)-1)ˆ(1/Gamma))/Var5);

21 end

22 for d=1:length1

23 %% Obtenção do Uss do paciente

24 paciente = d;

25 Uss_paciente = U_SS(d);

26 %% Obtenção dos Uss dos restantes modelos

27 for s=1:length1

28 if s<paciente

29 Uss_modelos(s) = U_SS(s);

30 else if s==paciente

31 else if s>paciente

32 Uss_modelos(s-1) = U_SS(s);

33 end

34 end

35 end

36 end

37 for j=1:length1-1

38 Delta_Uss(j) = abs(Uss_paciente-Uss_modelos(j));

39 end

40 %% Determinação do modelo mais próximo

41 [MIN, modelo] = min(Delta_Uss);

42 Modelos_Uss(d) = modelo;

43 %% Guardar dados

44 % save Dados_U_SteadyState_Atr Modelos_Uss U_SS

45 save Dados_U_SteadyState_Roc Modelos_Uss U_SS

46 end
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A.6 Model choice by the Norm 2 metric

1 function Metrica_Norma_OpenLoop_RED

2 clear all

3 clc

4 %% Load da base de dados com os parametros Alpha e Gamma

5 % load([cd ’\Base de Dados\Alpha_Gamma_Atr_100.mat’])

6 load([cd ’\Base de Dados\Alpha_Gamma_Roc_37.mat’])

7 %% Determinar o numero de modelos no banco de dados

8 length1 = length(NEW_THETA_100(1,:));

9 %% Definir o tempo de discretização

10 h = 20; % Tempo de discretização em segundos.

11 h = h/60; % Tempo de discretização em minutos.

12 %% Retirar da base de dados um modelo para ser o paciente e construção de

uma matriz com os restantes modelos que sobram da base de dados

13 for i=1:length1

14 paciente = i; % Modelo usado para simular o paciente

15 parametros_paciente(:,1) = NEW_THETA_100(:,paciente);

16 for e=1:length1

17 if e<paciente

18 parametros_modelos(:,e) = NEW_THETA_100(:,e);

19 else if e==paciente

20 else if e>paciente

21 parametros_modelos(:,e-1) = NEW_THETA_100(:,e);

22 end

23 end

24 end

25 end

26 %% Identificação do numero de modelos presentes na base de dados

27 if i==1

28 num_modelos = length(parametros_modelos(1,:));

29 indice_modelo = [1:1:num_modelos]’;

30 end

31 %% Obter os sistemas do modelo do paciente e dos modelos da base de dados

32 [sysc_paciente,sysd_paciente] = modelo_reduzido_paciente

(parametros_paciente,h);
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33 [sysc_modelos,sysd_modelos] = modelo_reduzido_modelos(parametros_modelos,

num_modelos,indice_modelo,h);

34 %% Norma dos modelos do paciente e dos modelos da base de dados

35 Norma_Paciente1 = norm(sysc_paciente,2);

36 Norma_Paciente2 = norm(sysd_paciente,2);

37 for k=1:num_modelos

38 sysc_modelos2 = sysc_modelos{k};

39 sysd_modelos2 = sysd_modelos{k};

40 Norma_Modelos1(k) = norm(sysc_modelos2,2);

41 Norma_Modelos2(k) = norm(sysd_modelos2,2);

42 end

43 %% Encontrar modelo com Norma2 mais semelhante ao paciente

44 [Min1,Modelo1] = min(abs(Norma_Paciente1-Norma_Modelos1));

45 Modelos(1,i) = Modelo1;

46 [Min2,Modelo2] = min(abs(Norma_Paciente2-Norma_Modelos2));

47 Modelos(2,i) = Modelo2;

48 end

49 %% Construção da variável com resultados finais

50 numero_paciente = [1:1:length1];

51 Resultados_Norma_RED(1,:) = numero_paciente;

52 Resultados_Norma_RED(2,:) = Modelos(1,:);

53 Resultados_Norma_RED(3,:) = Modelos(2,:);

54 %% Guardar Dados

55 % save Dados_Norma_OpenLoop_RED_Atr Resultados_Norma_RED

56 save Dados_Norma_OpenLoop_RED_Roc Resultados_Norma_RED

57 end

58

59 function [sysc_paciente,sysd_paciente] = modelo_reduzido_paciente

(parametros_paciente,h)

60 %% Obtenção dos parâmetros para o modelo do paciente

61 k1=1; k2=4; k3=10;

62 alpha_paciente = parametros_paciente(1,1);

63 %% Construção das matrizes do modelo compartimental

64 Ac_paciente = [(-k3*alpha_paciente) 0 0;(k2*alpha_paciente) -(k2*alpha_paciente)

0;0 (k1*alpha_paciente) -(k1*alpha_paciente)];

65 Bc_paciente = [k3*alpha_paciente 0 0]’;
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66 Cc_paciente = [0 0 1];

67 Dc_paciente = 0;

68 %% Obtenção do sistema compartimental

69 sysc_paciente = ss(Ac_paciente,Bc_paciente,Cc_paciente,Dc_paciente);

70 sysd_paciente = c2d(sysc_paciente,h,’zoh’);

71 end

72

73 function [sysc_modelos,sysd_modelos] = modelo_reduzido_modelos

(parametros_modelos,num_modelos,indice_modelo,h)

74 %% Identificação das variáveis fixas

75 k1=1; k2=4; k3=10;

76 for k=1:num_modelos

77 num = [];

78 den = [];

79 %% Obtenção dos parâmetros para os restantes modelos

80 alpha_modelos(k) = parametros_modelos(1,indice_modelo(k,1));

81 %% Construção das matrizes dos modelos compartimentais

82 Ac_modelos = [(-k3*alpha_modelos(k)) 0 0;(k2*alpha_modelos(k)) -

(k2*alpha_modelos(k)) 0;0 (k1*alpha_modelos(k)) -(k1*alpha_modelos(k))];

83 Bc_modelos = [k3*alpha_modelos(k) 0 0]’;

84 Cc_modelos = [0 0 1];

85 Dc_modelos = 0;

86 %% Obtenção dos sistemas compartimentais

87 sysc_modelos{k} = ss(Ac_modelos,Bc_modelos,Cc_modelos,Dc_modelos);

88 sysd_modelos{k} = c2d(sysc_modelos{k},h,’zoh’);

89 end

90 end

A.7 Model choice by the Vinnicombe metric

1 function Metrica_Vinnicombe_OpenLoop_RED

2 clear all

3 clc

4 %% Load da base de dados com os parametros Alpha e Gamma

5 % load([cd ’\Base de Dados\Alpha_Gamma_Atr_100.mat’])
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6 load([cd ’\Base de Dados\Alpha_Gamma_Roc_37.mat’])

7 %% Determinar numero de modelos presentes no banco de dados

8 length1 = length(NEW_THETA_100(1,:));

9 %% Retirar da base de dados um modelo para ser o paciente e construção

de uma matriz com os restantes modelos que sobram da base de dados

10 for i=1:length1

11 paciente = i; % Modelo usado como paciente

12 parametros_paciente(:,1) = NEW_THETA_100(:,paciente);

13 for e=1:length1

14 if e<paciente

15 parametros_modelos(:,e) = NEW_THETA_100(:,e);

16 else if e==paciente

17 else if e>paciente

18 parametros_modelos(:,e-1) = NEW_THETA_100(:,e);

19 end

20 end

21 end

22 end

23 %% Identificação do numero de modelos presentes na base de dados

24 if i==1

25 num_modelos = length(parametros_modelos(1,:));

26 indice_modelo = [1:1:num_modelos]’;

27 end

28 %% Obter as equações de transferência

29 [tf_paciente] = modelo_reduzido_paciente(parametros_paciente);

30 [tf_modelos] = modelo_reduzido_modelos(parametros_modelos,num_modelos,indice_modelo);

31 %% Métrica de Vinnicombe

32 for k=1:num_modelos

33 tf_modelos2 = tf_modelos{k};

34 [gap,nugap] = gapmetric(tf_paciente,tf_modelos2);

35 valores_gap(k) = gap;

36 valores_vinnicombe(k) = nugap;

37 end

38 %% Encontrar modelo mais semelhante ao paciente

39 min1_nugap = min(valores_vinnicombe);

40 modelo_nugap = find(min1_nugap==valores_vinnicombe);
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41 Modelos{1,i} = modelo_nugap;

42 xx = length(modelo_nugap);

43 if xx>1

44 modelo_Vinnicombe(i) = modelo_nugap(1);

45 else

46 modelo_Vinnicombe(i) = modelo_nugap;

47 end

48 end

49 %% Construção da variável com resultados finais

50 numero_paciente = [1:1:length1];

51 Resultados_Vinnicombe_RED(1,:) = numero_paciente;

52 Resultados_Vinnicombe_RED(2,:) = modelo_Vinnicombe;

53 Resultados_Vinnicombe_RED(3,:) = modelo_Gap2;

54 %% Guardar Dados

55 % save Dados_Vinnicombe_OpenLoop_RED_Atr Resultados_Vinnicombe_RED Modelos

56 save Dados_Vinnicombe_OpenLoop_RED_Roc Resultados_Vinnicombe_RED Modelos

57 end

58

59 function [tf_paciente] = modelo_reduzido_paciente(parametros_paciente)

60 num = [];

61 den = [];

62 %% Obtenção dos parâmetros do modelo do paciente

63 k1=1; k2=4; k3=10;

64 alpha_paciente = parametros_paciente(1,1);

65 gamma_paciente = parametros_paciente(2,1);

66 %% Construção das matrizes do modelo compartimental

67 Ac_paciente = [(-k3*alpha_paciente) 0 0;(k2*alpha_paciente) -

(k2*alpha_paciente) 0;0 (k1*alpha_paciente) -(k1*alpha_paciente)];

68 Bc_paciente = [k3*alpha_paciente 0 0]’;

69 Cc_paciente = [0 0 1];

70 Dc_paciente = 0;

71 %% Obtenção da equação de transferência

72 [num,den] = ss2tf(Ac_paciente,Bc_paciente,Cc_paciente,Dc_paciente);

73 tf_paciente = tf(num,den);

74 end

75
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76 function [tf_modelos] = modelo_reduzido_modelos(parametros_modelos,

num_modelos,indice_modelo)

77 %% Identificação das variáveis fixas

78 k1=1; k2=4; k3=10;

79 for k=1:num_modelos

80 num = [];

81 den = [];

82 %% Obtenção dos parâmetros dos restantes modelos

83 alpha_modelos = parametros_modelos(1,indice_modelo(k,1));

84 gamma_modelos = parametros_modelos(2,indice_modelo(k,1));

85 %% Construção das matrizes dos modelos compartimentais

86 Ac_modelos = [(-k3*alpha_modelos) 0 0;(k2*alpha_modelos) -

(k2*alpha_modelos) 0;0 (k1*alpha_modelos) -(k1*alpha_modelos)];

87 Bc_modelos = [k3*alpha_modelos 0 0]’;

88 Cc_modelos = [0 0 1];

89 Dc_modelos = 0;

90 %% Obtenção das equações de transferência

91 [num,den] = ss2tf(Ac_modelos,Bc_modelos,Cc_modelos,Dc_modelos);

92 tf_modelos2 = tf(num,den);

93 tf_modelos{k} = tf_modelos2;

94 end

95 end

A.8 Model choice by Impulse or Step Response proximity

1 function Comp_Impulse_Step_RED

2 clear all

3 clc

4 %% Identificação das variáveis iniciais

5 h = 20; % Tempo de discretização em segundos

6 h = h/60; % Tempo de discretização em minutos

7 tempo_simulacao = 300; % Tempo de simulação em minutos

8 tempo_simulacao = tempo_simulacao/h; % Em instantes discretizados

9 % dose_impulso = 500; % Dose do impulso para o Atracurium

10 dose_impulso = 600; % Dose do impulso para o Rocuronium
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11 % dose_step = 5; % Dose do degrau para o Atracurium

12 dose_step = 6; % Dose do degrau para o Rocuronium

13 % c50_red = 0.6487*5; % C50 para o Atracurium

14 c50_red = 1; % C50 para o Rocuronium

15 %% Load da base de dados com os parametros Alpha e Gamma

16 % load([cd ’\Base de Dados\Alpha_Gamma_Atr_100.mat’])

17 load([cd ’\Base de Dados\Alpha_Gamma_Roc_37.mat’])

18 %% Determinar o numero de modelos no banco de dados

19 length1=length(NEW_THETA_100(1,:));

20 %% Retirar da base de dados um modelo para ser o paciente e construção

de uma matriz com os restantes modelos que sobram da base de dados

21 for i=1:length1

22 paciente = i; % Modelo usado para simular o paciente

23 parametros_paciente(:,1) = NEW_THETA_100(:,paciente);

24 for s=1:length1

25 if s<paciente

26 parametros_modelos(:,s) = NEW_THETA_100(:,s);

27 else if s==paciente

28 else if s>paciente

29 parametros_modelos(:,s-1) = NEW_THETA_100(:,s);

30 end

31 end

32 end

33 end

34 %% Identificação do numero de modelos presentes na base de dados

35 num_modelos = length(parametros_modelos(1,:));

36 indice_modelo = [1:1:num_modelos]’;

37 %% Obter as respostas ao impulso e ao degrau do modelo do paciente e

dos modelos da base de dados

38 [imp_cont_paciente,imp_disc_paciente,step_cont_paciente,step_disc_paciente,

NMB_imp_cont_paciente,NMB_imp_disc_paciente,NMB_step_cont_paciente,

NMB_step_disc_paciente] = modelo_reduzido_paciente(parametros_paciente,

h,dose_impulso,dose_step,tempo_simulacao,c50_red);

39 [imp_cont_modelos,imp_disc_modelos,step_cont_modelos,step_disc_modelos,

NMB_imp_cont_modelos,NMB_imp_disc_modelos,NMB_step_cont_modelos,

NMB_step_disc_modelos] = modelo_reduzido_modelos(parametros_modelos,h,
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dose_impulso,dose_step,tempo_simulacao,num_modelos,indice_modelo,c50_red);

40 %% Comparar as respostas ao impulso e ao degrau

41 for g=1:tempo_simulacao

42 for f=1:num_modelos

43 imp_cont_modelos2 = imp_cont_modelos{f};

44 erro_imp_cont(g,f) = sqrt((imp_cont_paciente(g)-

imp_cont_modelos2(g))ˆ2);

45 step_cont_modelos2 = step_cont_modelos{f};

46 erro_step_cont(g,f) = sqrt((step_cont_paciente(g)-

step_cont_modelos2(g))ˆ2);

47 imp_disc_modelos2 = imp_disc_modelos{f};

48 erro_imp_disc(g,f) = sqrt((imp_disc_paciente(g)-

imp_disc_modelos2(g))ˆ2);

49 step_disc_modelos2 = step_disc_modelos{f};

50 erro_step_disc(g,f) = sqrt((step_disc_paciente(g)-

step_disc_modelos2(g))ˆ2);

51

52 NMB_imp_cont_modelos2 = NMB_imp_cont_modelos{f};

53 erro_NMB_imp_cont(g,f) = sqrt((NMB_imp_cont_paciente(g)-

NMB_imp_cont_modelos2(g))ˆ2);

54 NMB_step_cont_modelos2 = NMB_step_cont_modelos{f};

55 erro_NMB_step_cont(g,f) = sqrt((NMB_step_cont_paciente(g)-

NMB_step_cont_modelos2(g))ˆ2);

56 NMB_imp_disc_modelos2 = NMB_imp_disc_modelos{f};

57 erro_NMB_imp_disc(g,f) = sqrt((NMB_imp_disc_paciente(g)-

NMB_imp_disc_modelos2(g))ˆ2);

58 NMB_step_disc_modelos2 = NMB_step_disc_modelos{f};

59 erro_NMB_step_disc(g,f) = sqrt((NMB_step_disc_paciente(g)-

NMB_step_disc_modelos2(g))ˆ2);

60 end

61 end

62 %% Fazer o somatório dos erros das diferenças

63 erro2_imp_cont = sum(erro_imp_cont);

64 erro2_imp_disc = sum(erro_imp_disc);

65 erro2_step_cont = sum(erro_step_cont);

66 erro2_step_disc = sum(erro_step_disc);
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67

68 erro2_NMB_imp_cont = sum(erro_NMB_imp_cont);

69 erro2_NMB_imp_disc = sum(erro_NMB_imp_disc);

70 erro2_NMB_step_cont = sum(erro_NMB_step_cont);

71 erro2_NMB_step_disc = sum(erro_NMB_step_disc);

72 %% Identificar o somatório mais pequeno

73 erro_min_imp_cont = min(erro2_imp_cont);

74 erro_min_imp_disc = min(erro2_imp_disc);

75 erro_min_step_cont = min(erro2_step_cont);

76 erro_min_step_disc = min(erro2_step_disc);

77

78 erro_min_NMB_imp_cont = min(erro2_NMB_imp_cont);

79 erro_min_NMB_imp_disc = min(erro2_NMB_imp_disc);

80 erro_min_NMB_step_cont = min(erro2_NMB_step_cont);

81 erro_min_NMB_step_disc = min(erro2_NMB_step_disc);

82 %% Identificar o modelo com o somatório mais pequeno

83 modelo_imp_cont = find(erro_min_imp_cont==erro2_imp_cont);

84 modelo_imp_disc = find(erro_min_imp_disc==erro2_imp_disc);

85 modelo_step_cont = find(erro_min_step_cont==erro2_step_cont);

86 modelo_step_disc = find(erro_min_step_disc==erro2_step_disc);

87

88 modelo_NMB_imp_cont = find(erro_min_NMB_imp_cont==erro2_NMB_imp_cont);

89 modelo_NMB_imp_disc = find(erro_min_NMB_imp_disc==erro2_NMB_imp_disc);

90 modelo_NMB_step_cont = find(erro_min_NMB_step_cont==erro2_NMB_step_cont);

91 modelo_NMB_step_disc = find(erro_min_NMB_step_disc==erro2_NMB_step_disc);

92 %% Guardar modelos em variáveis

93 Modelo_Impulso_Continuo(i) = modelo_imp_cont;

94 Modelo_Impulso_Discreto(i) = modelo_imp_disc;

95 Modelo_Degrau_Continuo(i) = modelo_step_cont;

96 Modelo_Degrau_Discreto(i) = modelo_step_disc;

97

98 Modelo_NMB_Impulso_Continuo(i) = modelo_NMB_imp_cont;

99 Modelo_NMB_Impulso_Discreto(i) = modelo_NMB_imp_disc;

100 Modelo_NMB_Degrau_Continuo(i) = modelo_NMB_step_cont;

101 Modelo_NMB_Degrau_Discreto(i) = modelo_NMB_step_disc;

102 end
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103 %% Guardar dados

104 numero_paciente = [1:1:length1];

105 Resultados_Imp_Step(1,:) = numero_paciente;

106 Resultados_Imp_Step(2,:) = Modelo_Impulso_Continuo;

107 Resultados_Imp_Step(3,:) = Modelo_Degrau_Continuo;

108 Resultados_Imp_Step(4,:) = Modelo_Impulso_Discreto;

109 Resultados_Imp_Step(5,:) = Modelo_Degrau_Discreto;

110

111 Resultados_NMB_Imp_Step(1,:) = numero_paciente;

112 Resultados_NMB_Imp_Step(2,:) = Modelo_NMB_Impulso_Continuo;

113 Resultados_NMB_Imp_Step(3,:) = Modelo_NMB_Degrau_Continuo;

114 Resultados_NMB_Imp_Step(4,:) = Modelo_NMB_Impulso_Discreto;

115 Resultados_NMB_Imp_Step(5,:) = Modelo_NMB_Degrau_Discreto;

116

117 % save Dados_Imp_Step_RED_Atr Resultados_Imp_Step Resultados_NMB_Imp_Step

118 save Dados_Imp_Step_RED_Roc Resultados_Imp_Step Resultados_NMB_Imp_Step

119 end

120

121 function [imp_cont_paciente,imp_disc_paciente,step_cont_paciente,

step_disc_paciente,NMB_imp_cont_paciente,NMB_imp_disc_paciente,

NMB_step_cont_paciente,NMB_step_disc_paciente] = modelo_reduzido_paciente

(parametros_paciente,h,dose_impulso,dose_step,tempo_simulacao,c50_red)

122 %% Limpar variáveis

123 imp_cont = [];

124 imp_disc = [];

125 step_cont = [];

126 step_disc = [];

127 NMB_imp_cont_paciente = [];

128 NMB_imp_disc_paciente = [];

129 NMB_step_cont_paciente = [];

130 NMB_step_disc_paciente = [];

131 imp_cont_paciente = [];

132 imp_disc_paciente = [];

133 step_cont_paciente = [];

134 step_disc_paciente = [];

135 %% Obtenção dos parâmetros para o modelo do paciente
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136 k1=1; k2=4; k3=10;

137 alpha_paciente = parametros_paciente(1,1);

138 gamma_paciente = parametros_paciente(2,1);

139 %% Construção das matrizes do modelo compartimental

140 Ac_paciente = [(-k3*alpha_paciente) 0 0;(k2*alpha_paciente) -

(k2*alpha_paciente) 0;0 (k1*alpha_paciente) -(k1*alpha_paciente)];

141 Bc_paciente = [k3*alpha_paciente 0 0]’;

142 Cc_paciente = [0 0 1];

143 Dc_paciente = 0;

144 %% Discretização do sistema compartimental

145 sysc_paciente=ss(Ac_paciente,Bc_paciente,Cc_paciente,Dc_paciente);

146 sysd_paciente=c2d(sysc_paciente,h,’zoh’);

147 %% Obtenção das Respostas ao Impulso e ao Degrau para o Modelo do Paciente

148 % Em tempo contı́nuo

149 [imp_cont,t] = impulse(sysc_paciente,0:1:(tempo_simulacao-1));

150 [step_cont,t] = step(sysc_paciente,0:1:(tempo_simulacao-1));

151 imp_cont_paciente = imp_cont.*dose_impulso;

152 step_cont_paciente = step_cont.*dose_step;

153 for g=1:length(imp_cont)

154 NMB_imp_cont_paciente(g) = [100/(1+(((imp_cont(g)*dose_impulso)/c50_red)

ˆgamma_paciente))];

155 NMB_step_cont_paciente(g) = [100/(1+(((step_cont(g)*dose_step)/c50_red)

ˆgamma_paciente))];

156 end

157 % Em tempo discreto

158 [imp_disc,t] = impulse(sysd_paciente,0:h:(tempo_simulacao-1)/3);

159 [step_disc,t] = step(sysd_paciente,0:h:(tempo_simulacao-1)/3);

160 imp_disc_paciente = imp_disc.*dose_impulso;

161 step_disc_paciente = step_disc.*dose_step;

162 for g=1:length(imp_disc)

163 NMB_imp_disc_paciente(g) = [100/(1+(((imp_disc(g)*dose_impulso)/c50_red)

ˆgamma_paciente))];

164 NMB_step_disc_paciente(g) = [100/(1+(((step_disc(g)*dose_step)/c50_red)

ˆgamma_paciente))];

165 end

166 end
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167

168 function [imp_cont_modelos,imp_disc_modelos,step_cont_modelos,

step_disc_modelos,NMB_imp_cont_modelos,NMB_imp_disc_modelos,

NMB_step_cont_modelos,NMB_step_disc_modelos] = modelo_reduzido_modelos

(parametros_modelos,h,dose_impulso,dose_step,tempo_simulacao,num_modelos,

indice_modelo,c50_red)

169 %% Limpar variáveis

170 imp_cont = [];

171 imp_disc = [];

172 step_cont = [];

173 step_disc = [];

174 NMB_imp_cont = [];

175 NMB_imp_disc = [];

176 NMB_step_cont = [];

177 NMB_step_disc = [];

178 imp_cont_modelos = [];

179 imp_disc_modelos = [];

180 step_cont_modelos = [];

181 step_disc_modelos = [];

182 %% Identificação das variáveis fixas

183 k1=1; k2=4; k3=10;

184 for k=1:num_modelos

185 %% Obtenção dos parâmetros para os restantes modelos

186 alpha_modelos(k) = parametros_modelos(1,indice_modelo(k,1));

187 gamma_modelos(k) = parametros_modelos(2,indice_modelo(k,1));

188 %% Construção das matrizes dos modelos compartimentais

189 Ac_modelos = [(-k3*alpha_modelos(k)) 0 0;(k2*alpha_modelos(k)) -

(k2*alpha_modelos(k)) 0;0 (k1*alpha_modelos(k)) -(k1*alpha_modelos(k))];

190 Bc_modelos = [k3*alpha_modelos(k) 0 0]’;

191 Cc_modelos = [0 0 1];

192 Dc_modelos = 0;

193 %% Discretização dos sistemas compartimentais

194 sysc_modelos = ss(Ac_modelos,Bc_modelos,Cc_modelos,Dc_modelos);

195 sysd_modelos = c2d(sysc_modelos,h,’zoh’);

196 %% Obtenção das Respostas ao Impulso e ao Degrau para os restantes modelos

197 % Em tempo contı́nuo
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198 [imp_cont,t] = impulse(sysc_modelos,0:1:(tempo_simulacao-1));

199 [step_cont,t] = step(sysc_modelos,0:1:(tempo_simulacao-1));

200 imp_cont_modelos{k} = imp_cont.*dose_impulso;

201 step_cont_modelos{k} = step_cont.*dose_step;

202 for g=1:length(imp_cont)

203 NMB_imp_cont(g) = [100/(1+(((imp_cont(g)*dose_impulso)/c50_red)

ˆgamma_modelos(k)))];

204 NMB_step_cont(g) = [100/(1+(((step_cont(g)*dose_step)/c50_red)

ˆgamma_modelos(k)))];

205 end

206 NMB_imp_cont_modelos{k} = NMB_imp_cont;

207 NMB_step_cont_modelos{k} = NMB_step_cont;

208 % Em tempo discreto

209 [imp_disc,t] = impulse(sysd_modelos,0:h:(tempo_simulacao-1)/3);

210 [step_disc,t] = step(sysd_modelos,0:h:(tempo_simulacao-1)/3);

211 imp_disc_modelos{k} = imp_disc.*dose_impulso;

212 step_disc_modelos{k} = step_disc.*dose_step;

213 for g=1:length(imp_cont)

214 NMB_imp_disc(g) = [100/(1+(((imp_disc(g)*dose_impulso)/c50_red)

ˆgamma_modelos(k)))];

215 NMB_step_disc(g) = [100/(1+(((step_disc(g)*dose_step)/c50_red)

ˆgamma_modelos(k)))];

216 end

217 NMB_imp_disc_modelos{k} = NMB_imp_disc;

218 NMB_step_disc_modelos{k} = NMB_step_disc;

219 end

220 end
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GALENO Software

B.1 Datex SAD - Data Acquisition

The program Datex SAD allows the user to collect all the data related with the anesthesia

performed during a surgery. This program collects all the data obtained from the Datex Ohmeda

equipment and the drug infusion pumps, and was developed by researchers of the GALENO

project.

Besides the data acquisition, this program allows the user to see the data values collected,

insert notes about the surgery (like instant of intubation, incision, and other things) and any

bolus administered manually, to register the patient information, the name and the protocol of

the surgery, among other aspects related with the surgery.

Figure B.1: Datex SAD Program - Status Separator.

Fig. B.1 presents the Status separator of the Datex SAD program. Here, any information

that the program needs to transmit to the user is represented, such as errors occurred, and tests

performed to the connection between the computer and the Datex Ohmeda equipment and drug
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pump infusions.

Figure B.2: Datex SAD Program - Setup Separator.

Fig. B.2 presents the Setup separator of the Datex SAD program. This part allows the user

to define the drug of each pump infusion, as well as the drug concentration, the sampling time

of the Datex Ohmeda and infusion pump data, the path to save all the data collected, among

other minor things.

Figure B.3: Datex SAD Program - Main Data Separator.

Fig. B.3 shows the Separator that allows the user to see the values acquired from Datex

Ohmeda equipment like BIS signal, BIS-SQI signal, TOF signal, and from the drug infusion

pumps like infusion rate.

Fig. B.4 represents the Special Notes separator, where the user can register all the information

related with the surgery and the patient, like:
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Figure B.4: Datex SAD Program - Special Notes Separator.

• Patient Gender, Age, Height, Weight and ASA;

• Name of the surgery;

• Protocol of the surgery;

• NMB sensor used.

Also, the user is able to insert any bolus administered manually to the patient, by recording

the name, dose and instant of administration of the drug. Other possibility of this separator is the

possibility to insert any desirable note at any instant during the surgery, and so any remarkable

aspect of the surgery can be recorded.

Figure B.5: Datex SAD Program - VAI Bolus Separator.

Fig. B.5 shows the separator that allows the user to give a bolus through a direct order sent

to the drug infusion pump.
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B.2 Monitoring and Control in Anesthesia

The second program, called Monitoring and Control in Anesthesia is developed in a MATLAB

environment by GALENO researchers, and has the main goal to monitoring the process of

anesthesia and also to perform the automatic control of the NMB level, if desired.

Figure B.6: Monitoring and Control in Anesthesia Program.

In Fig. B.6 the interface of this program can be seen. This program receives data collected

by the former program and allows the visualization of that data in function of time. Also, this

program allows the control of the NMB; for this purpose, the user only needs to enable the pump

(in the upper left corner) and choose the NMB control function. For that, the user must have

the NMB control functions, or if desired, create a new one. This program works in a modular

way, and in order to perform a new control the user only needs to make the control function and

incorporate it in this program.

This program is also able to working offline as an important tool to analyze and study the

data collected previously.

Another function of this software is their ability to decode data collected from the Datex

Ohmeda equipment by the Datex SAD software. That data is collect in binary code and a

translation into decimal code is necessary, in order to become that information easily interpreted.

Furthermore the data collected from the drug infusion pumps is placed together with the former

decoded data in a same file (a .mat and a .txt file). The user can choose which data is to

transcribed to this files. Using the Setup button the desired variables can be chosen from a list
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Figure B.7: Data Decoder and NMB Synchronizer.

with all the collected variables (Fig. B.7, DATEX & PUMP Data Decoder).

In this program, the user can also synchronize all the data related with the NMB process

(muscle relaxant bolus and/or infusions and TOF Twitch1 signal) (Fig. B.7, NMB Synchronizer).

This program is able to define the beginning of the TOF Twitch1 signal (when the first muscle

relaxant bolus is administered) and the end (when the reverser or antagonist is given to the

patient). A FIR+Median+Nonlinear filter is applied to the former signal in order to eliminate

momentary artefacts. All the information about bolus and/or infusions of NMB agents is also

synchronized together with the TOF Twitch1 signal. After that the user can perform a plot of

that same data at any time in order to see the synchronized data.
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Bank of Models

C.1 Bank of Atracurium Models

Table C.1: Bank P of 100 atracurium models
Model Alpha Gamma Model Alpha Gamma Model Alpha Gamma

1 0,044825 2,246444 35 0,035803 3,761446 69 0,031645 3,98684
2 0,041211 2,973995 36 0,035529 3,434949 70 0,039477 3,279347
3 0,037808 1,855902 37 0,03927 2,948437 71 0,044602 2,226665
4 0,039477 2,025008 38 0,034499 1,117047 72 0,038253 2,89103
5 0,033515 4,541045 39 0,037355 4,599891 73 0,041705 2,221494
6 0,048703 1,805011 40 0,048026 2,247864 74 0,037062 2,382454
7 0,037713 2,861148 41 0,042657 1,812593 75 0,051218 3,081781
8 0,049477 1,306051 42 0,038965 1,333677 76 0,04317 2,437369
9 0,038941 2,274889 43 0,032347 3,045493 77 0,028146 2,293676
10 0,042818 1,886052 44 0,036958 5,276774 78 0,037572 4,407872
11 0,029811 2,88261 45 0,03824 2,952315 79 0,028174 2,329105
12 0,03349 3,956473 46 0,034253 3,732466 80 0,043878 2,724829
13 0,045396 3,181219 47 0,035452 2,610205 81 0,039743 1,942959
14 0,033817 4,182405 48 0,039871 3,552253 82 0,041292 2,245287
15 0,040894 2,632453 49 0,047662 1,367506 83 0,042835 2,750104
16 0,035324 3,264164 50 0,025507 4,793415 84 0,049133 3,076152
17 0,036584 1,926236 51 0,031476 3,57673 85 0,035545 2,477095
18 0,030266 2,683396 52 0,04453 2,21595 86 0,036573 3,020124
19 0,030641 4,637471 53 0,040921 2,66494 87 0,04114 2,317859
20 0,04358 3,193266 54 0,035816 4,597099 88 0,043534 2,4034
21 0,037106 3,089448 55 0,039865 2,57324 89 0,031392 2,057052
22 0,032983 1,950344 56 0,032074 3,967723 90 0,034291 2,719511
23 0,033157 3,228414 57 0,031856 1,966477 91 0,037601 4,294171
24 0,042751 2,747081 58 0,039268 3,771905 92 0,025354 2,690111
25 0,03704 2,355365 59 0,047352 4,047775 93 0,044781 1,538782
26 0,040488 2,76778 60 0,042008 2,03076 94 0,031832 4,977276
27 0,039756 5,844767 61 0,034518 2,037591 95 0,044745 3,415907
28 0,042052 2,113837 62 0,042909 1,771183 96 0,033047 3,756672
29 0,039779 1,515875 63 0,035947 3,429255 97 0,041262 1,549427
30 0,030303 1,309313 64 0,033359 2,265309 98 0,042476 4,020024
31 0,039622 2,001249 65 0,034858 2,717931 99 0,036354 2,243404
32 0,044547 1,890872 66 0,033955 1,814073 100 0,040799 1,694015
33 0,041872 1,683731 67 0,036166 3,810206
34 0,025775 6,717481 68 0,040797 1,959553

Table C.1 contains the 100 atracurium models used to build the bank P for the atracurium
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drug. From this bank P the total mass system control law was tuned for each model leading to

a bank K with total mass system controllers for atracurium.

C.2 Bank of Rocuronium Models

Table C.2: Bank P of 41 rocuronium models
Model Alpha Gamma Model Alpha Gamma

1 0,054415 1,269884 22 0,054164 1,663375
2 0,038213 1,7086 23 0,068183 1,482369
3 0,058058 1,446245 24 0,078358 1,414203
4 0,010252 3,79457 25 0,031073 1,024188
5 0,025788 4,447869 26 0,031736 6,324634
6 0,065598 1,793064 27 0,052867 1,608939
7 0,036549 2,626389 28 0,081144 1,291639
8 0,034114 2,480481 29 0,027712 1,057524
9 0,093514 1,462093 30 0,033816 1,392472

10 0,030824 2,024059 31 0,044985 1,546866
11 0,070261 1,562036 32 0,028992 0,854272
12 0,020998 6,456394 33 0,02354 1,49399
13 0,031634 3,699414 34 0,027631 3,67053
14 0,05355 2,074754 35 0,030673 1,310781
15 0,081388 0,986952 36 0,039037 1,602996
16 0,060556 1,601377 37 0,051239 1,056976
17 0,030002 6,916275 38 0,038301 0,998537
18 0,045182 2,178904 39 0,062052 1,482878
19 0,037963 2,395231 40 0,030789 3,556661
20 0,095264 5,022601 41 0,03945 1,146665
21 0,091863 1,748396

Table C.3: Bank P of 37 rocuronium models
Model Alpha Gamma Model Alpha Gamma

1 0,054415 1,269884 20 0,078358 1,414203
2 0,038213 1,7086 21 0,031073 1,024188
3 0,058058 1,446245 22 0,031736 6,324634
4 0,065598 1,793064 23 0,052867 1,608939
5 0,036549 2,626389 24 0,081144 1,291639
6 0,034114 2,480481 25 0,027712 1,057524
7 0,093514 1,462093 26 0,033816 1,392472
8 0,030824 2,024059 27 0,044985 1,546866
9 0,070261 1,562036 28 0,028992 0,854272
10 0,031634 3,699414 29 0,02354 1,49399
11 0,05355 2,074754 30 0,027631 3,67053
12 0,081388 0,986952 31 0,030673 1,310781
13 0,060556 1,601377 32 0,039037 1,602996
14 0,030002 6,916275 33 0,051239 1,056976
15 0,045182 2,178904 34 0,038301 0,998537
16 0,037963 2,395231 35 0,062052 1,482878
17 0,091863 1,748396 36 0,030789 3,556661
18 0,054164 1,663375 37 0,03945 1,146665
19 0,068183 1,482369

Table C.2 contains the 41 models obtained from a set of real data acquired during 41 surgeries.

For each of these real cases, the parameters α and γ were identified, and the corresponding models

were taken as the bank for rocuronium drug. The models 4, 5, 12, and 20 (red models in table

C.2) were discarded because no good NMB control can be to obtain with the switching strategy.
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This led to table C.3. These models were used to build the bank P for the rocuronium drug.

From this bank P the total system mass control law was tuned for each model leading to a bank

K with total system mass controllers for rocuronium.
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Controller Choice (in Section

3.3.5)

Table D.1: Controllers chosen by different metrics for atracurium models

Patient Model Switching Ref Track Alpha Gamma Uss Norm2 Vinnicombe Impulse Step

1 39 39 92 81 81 92 92 92 92

2 44 44 96 44 44 96 96 96 96

3 40 9 6 9 9 6 6 6 6

4 59 59 69 59 59 69 69 69 69

5 53 53 11 53 53 11 11 11 11

6 40 40 83 40 40 83 83 83 83

7 10 71 3 10 10 3 3 3 3

8 41 29 83 29 29 83 83 83 83

9 39 63 41 63 63 41 41 41 41

10 31 31 82 31 31 82 82 82 82

11 7 71 17 71 71 17 17 17 17

12 55 55 5 55 55 5 5 5 5

13 19 19 1 19 19 1 1 1 1

14 90 90 65 90 90 65 65 65 65

15 46 52 52 46 46 52 52 52 52

16 69 69 46 69 69 46 46 46 46

17 21 80 85 80 80 85 85 85 85

18 52 52 29 91 91 29 29 29 29

19 53 38 29 38 38 29 29 29 29

20 13 13 87 13 13 87 87 87 87

21 42 74 73 74 74 73 73 73 73

22 56 80 95 80 80 95 95 95 95

23 16 16 95 20 16 95 95 95 95

24 82 82 10 82 82 10 10 10 10
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25 73 73 73 78 73 73 73 73 73

26 82 82 67 82 82 67 67 67 67

27 43 43 80 43 43 80 80 80 80

28 59 88 59 88 88 59 59 59 59

29 92 92 27 92 92 27 27 27 27

30 41 8 18 8 8 18 18 18 18

31 4 4 80 4 4 80 80 80 80

32 10 10 51 10 10 51 51 51 51

33 99 99 59 99 99 59 59 59 59

34 27 27 49 27 27 49 49 49 49

35 95 57 53 95 95 53 53 53 53

36 62 62 84 62 62 84 84 84 84

37 44 44 57 44 44 57 57 57 57

38 30 30 60 8 8 60 60 60 60

39 53 53 77 53 53 77 77 77 77

40 1 1 48 1 1 48 48 48 48

41 6 65 24 65 65 24 24 24 24

42 8 30 9 30 30 9 9 9 9

43 85 83 55 85 85 55 55 55 55

44 93 93 25 93 93 25 25 25 25

45 37 37 71 37 37 71 71 71 71

46 35 95 89 95 95 89 89 89 89

47 15 15 36 15 15 36 36 36 36

48 50 50 54 50 50 54 54 54 54

49 42 42 58 42 42 58 58 58 58

50 93 19 91 19 19 91 91 91 91

51 48 48 88 48 48 88 88 88 88

52 72 72 32 72 72 32 32 32 32

53 18 18 15 18 18 15 15 15 15

54 39 39 35 39 39 35 35 35 35

55 47 47 48 47 47 48 48 48 48

56 12 68 56 12 12 56 56 56 56

57 22 22 93 67 67 93 93 93 93

58 35 35 37 35 35 37 37 37 37

59 97 97 49 97 97 49 49 49 49

60 4 4 28 4 4 28 28 28 28

61 4 60 38 60 60 38 38 38 38

62 6 65 82 6 6 82 82 82 82

63 36 36 54 36 36 54 54 54 54

64 98 9 12 9 9 12 12 12 12

65 89 79 61 89 89 61 61 61 61

66 41 41 14 41 41 14 14 14 14

67 95 58 98 58 58 98 98 98 98

68 80 57 99 57 57 99 99 99 99

69 56 97 51 56 56 51 51 51 51
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70 16 16 4 16 16 4 4 4 4

71 72 72 32 72 72 32 32 32 32

72 7 11 45 11 11 45 45 45 45

73 52 71 33 71 71 33 33 33 33

74 87 87 25 87 87 25 25 25 25

75 83 83 8 83 83 8 8 8 8

76 87 84 62 87 87 62 62 62 62

77 78 64 78 9 9 78 78 78 78

78 90 5 90 90 90 90 90 90 90

79 77 77 77 86 86 77 77 77 77

80 65 89 20 89 89 20 20 20 20

81 68 22 27 22 22 27 27 27 27

82 1 1 96 1 1 96 96 96 96

83 24 24 10 24 24 10 10 10 10

84 75 75 8 75 75 8 8 8 8

85 76 76 36 76 76 36 36 36 36

86 43 43 17 43 43 17 17 17 17

87 25 79 2 79 79 2 2 2 2

88 74 74 20 74 74 20 20 20 20

89 61 61 51 61 61 51 51 51 51

90 65 80 46 65 65 46 46 46 46

91 14 78 78 14 78 78 78 78 78

92 18 18 50 18 18 50 50 50 50

93 96 96 94 96 96 94 94 94 94

94 50 50 57 50 50 57 57 57 57

95 63 63 93 63 63 93 93 93 93

96 35 35 22 35 35 22 22 22 22

97 93 93 82 93 93 82 82 82 82

98 59 59 41 59 59 41 41 41 41

99 82 82 67 82 82 67 67 67 67

100 33 33 68 33 33 68 68 68 68
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Table D.2: Controllers chosen by different metrics for rocuronium models

Patient Model Switching Ref Track Alpha Gamma Uss Norm2 Vinnicombe Impulse Step

1 23 23 17 23 23 17 17 17 17

2 31 16 33 16 16 33 33 33 33

3 34 6 12 6 6 12 12 12 12

4 2 16 18 16 16 18 18 18 18

5 5 5 15 5 5 15 15 15 15

6 5 5 25 15 15 25 25 25 25

7 19 3 16 3 3 16 16 16 16

8 14 10 35 10 10 35 35 35 35

9 12 26 18 26 26 18 18 18 18

10 35 29 21 29 29 21 21 21 21

11 14 8 17 8 8 17 17 17 17

12 33 33 23 33 33 23 23 23 23

13 22 22 34 31 31 34 34 34 34

14 21 21 30 21 21 30 30 30 30

15 8 8 26 11 11 26 26 26 26

16 6 6 2 6 6 2 2 2 2

17 4 4 7 2 2 7 7 7 7

18 22 2 1 2 2 1 1 1 1

19 34 34 9 34 34 9 9 9 9

20 7 25 23 25 25 23 23 23 23

21 33 33 8 33 33 8 8 8 8

22 14 14 10 14 14 10 10 10 10

23 13 31 11 31 31 11 11 11 11

24 1 1 12 30 30 12 12 12 12

25 32 32 29 32 32 29 29 29 29

26 30 20 6 20 20 6 6 6 6

27 23 9 15 9 9 15 15 15 15

28 12 12 14 12 12 14 14 14 14

29 31 19 29 34 34 29 29 29 29

30 10 10 25 10 10 25 25 25 25

31 26 24 35 24 24 35 35 35 35

32 23 23 36 13 13 36 36 36 36

33 25 25 23 25 25 23 23 23 23

34 21 12 2 12 12 2 2 2 2

35 19 19 13 19 19 13 13 13 13

36 10 30 8 30 30 8 8 8 8

37 25 33 32 25 1 32 32 32 32
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Real Case Reports

The reports from the real cases acquired during surgeries are developed by the software Moni-

toring and Control in Anesthesia (see Appendix B). These reports provide a summary from the

surgeries where the switching strategy was applied, once the Gender, Age, Height and Weight

from the patient, the name of the surgery, the protocol used by the anesthesiologist, and the

controllers used during the surgery can be promptly seen, and any variable acquired with the

software Datex SAD - Data Acquisition (see Appendix B) during the surgery can be plotted.

Also, this report allows an access to all the information collected in the Special Notes Tab of the

Datex SAD - Data Acquisition software (for more details see Appendix B).

This tool is very important to provide quick information, easily interpreted by the user. The

whole surgery can be easily summarized and, most important, the NMB level control can be

easily explained and described through these reports.
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Figure E.1: Report from a real case acquired at ULSM-HPH (2012/03/29 Case 2)
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Figure E.2: Report from a real case acquired at ULSM-HPH (2012/04/12 Case 1).
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Figure E.3: Report from a real case acquired at ULSM-HPH (2012/04/12 Case 2).
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Figure E.4: Report from a real case acquired at ULSM-HPH (2012/05/10 Case 2).
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Figure E.5: Report from a real case acquired at ULSM-HPH (2012/05/31 Case 1).
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