2,249 research outputs found

    A Factor Graph Approach to Multi-Camera Extrinsic Calibration on Legged Robots

    Full text link
    Legged robots are becoming popular not only in research, but also in industry, where they can demonstrate their superiority over wheeled machines in a variety of applications. Either when acting as mobile manipulators or just as all-terrain ground vehicles, these machines need to precisely track the desired base and end-effector trajectories, perform Simultaneous Localization and Mapping (SLAM), and move in challenging environments, all while keeping balance. A crucial aspect for these tasks is that all onboard sensors must be properly calibrated and synchronized to provide consistent signals for all the software modules they feed. In this paper, we focus on the problem of calibrating the relative pose between a set of cameras and the base link of a quadruped robot. This pose is fundamental to successfully perform sensor fusion, state estimation, mapping, and any other task requiring visual feedback. To solve this problem, we propose an approach based on factor graphs that jointly optimizes the mutual position of the cameras and the robot base using kinematics and fiducial markers. We also quantitatively compare its performance with other state-of-the-art methods on the hydraulic quadruped robot HyQ. The proposed approach is simple, modular, and independent from external devices other than the fiducial marker.Comment: To appear on "The Third IEEE International Conference on Robotic Computing (IEEE IRC 2019)

    Control of free-flying space robot manipulator systems

    Get PDF
    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail

    Dynamic update of a virtual cell for programming and safe monitoring of an industrial robot

    Get PDF
    A hardware/software architecture for robot motion planning and on-line safe monitoring has been developed with the objective to assure high flexibility in production control, safety for workers and machinery, with user-friendly interface. The architecture, developed using Microsoft Robotics Developers Studio and implemented for a six-dof COMAU NS 12 robot, established a bidirectional communication between the robot controller and a virtual replica of the real robotic cell. The working space of the real robot can then be easily limited for safety reasons by inserting virtual objects (or sensors) in such a virtual environment. This paper investigates the possibility to achieve an automatic, dynamic update of the virtual cell by using a low cost depth sensor (i.e., a commercial Microsoft Kinect) to detect the presence of completely unknown objects, moving inside the real cell. The experimental tests show that the developed architecture is able to recognize variously shaped mobile objects inside the monitored area and let the robot stop before colliding with them, if the objects are not too small

    Teleoperation of industrial robot manipulators based on augmented reality

    Get PDF
    This research develops a novel teleoperation for robot manipulators based on augmented reality. The proposed interface is equipped with full capabilities in order to replace the classical teach pendant of the robot for carrying out teleoperation tasks. The proposed interface is based on an augmented reality headset for projecting computer-generated graphics onto the real environment and a gamepad to interact with the computer-generated graphics and provide robot commands. In order to demonstrate the benefits of the proposed method, several usability tests were conducted using a 6R industrial robot manipulator in order to compare the proposed interface and the conventional teach pendant interface for teleoperation tasks. In particular, the results of these usability tests show that the proposed approach is more intuitive, ergonomic, and easy to use. Furthermore, the comparison results also show that the proposed method clearly improves the velocity of the teleoperation task, regardless of the user's previous experience in robotics and augmented reality technology

    Trajectory generation of space telerobots

    Get PDF
    The purpose is to review a variety of trajectory generation techniques which may be applied to space telerobots and to identify problems which need to be addressed in future telerobot motion control systems. As a starting point for the development of motion generation systems for space telerobots, the operation and limitations of traditional path-oriented trajectory generation approaches are discussed. This discussion leads to a description of more advanced techniques which have been demonstrated in research laboratories, and their potential applicability to space telerobots. Examples of this work include systems that incorporate sensory-interactive motion capability and optimal motion planning. Additional considerations which need to be addressed for motion control of a space telerobot are described, such as redundancy resolution and the description and generation of constrained and multi-armed cooperative motions. A task decomposition module for a hierarchical telerobot control system which will serve as a testbed for trajectory generation approaches which address these issues is also discussed briefly
    • …
    corecore