68,951 research outputs found

    Investigations into the assembly behaviour of a 'rigidified': P-carboxylatocalix[4]arene

    Get PDF
    The p-carboxylatocalix[4]arenes have been shown to be versatile supramolecular building blocks capable of forming a range of bi-layers, capsules and nanoscale tubules in the solid state. Here we report the synthesis of a new 'rigidified' analogue, as well as investigations into its self-assembly and related coordination chemistry. These behaviours are reminiscent of other p-carboxylatocalix[4]arenes despite the presence of rigidifying groups at the lower-rim, suggesting that this building block may be further exploited in the assembly of a range of new metal-organic cages and coordination polymers

    Active Colloidal Molecules

    Full text link
    Like ordinary molecules are composed of atoms, colloidal molecules consist of several species of colloidal particles tightly bound together. If one of these components is self-propelled or swimming, novel "active colloidal molecules" emerge. Active colloidal molecules exist on various levels such as "homonuclear", "heteronuclear" and "polymeric" and possess a dynamical function moving as propellers, spinners or rotors. Self-assembly of such active complexes has been studied a lot recently and this perspective article summarizes recent progress and gives an outlook to future developments in the rapidly expanding field of active colloidal molecules

    Dynamic Combinatorial Libraries: From Exploring Molecular Recognition to Systems Chemistry

    Get PDF
    Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines.

    Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot

    Get PDF
    Over the past ten years, the global biopharmaceutical market has remarkably grown, with ten over the top twenty worldwide high performance medical treatment sales being biologics. Thus, biotech R&D (research and development) sector is becoming a key leading branch, with expanding revenues. Biotechnology offers considerable advantages compared to traditional therapeutic approaches, such as reducing side effects, specific treatments, higher patient compliance and therefore more effective treatments leading to lower healthcare costs. Within this sector, smart nanotechnology and colloidal self-assembling systems represent pivotal tools able to modulate the delivery of therapeutics. A comprehensive understanding of the processes involved in the self assembly of the colloidal structures discussed therein is essential for the development of relevant biomedical applications. In this review we report the most promising and best performing platforms for specific classes of bioactive molecules and related target, spanning from siRNAs, gene/plasmids, proteins/growth factors, small synthetic therapeutics and bioimaging probes.Istituto Italiano di Tecnologia (IIT)COST Action [CA 15107]People Program (Marie Curie Actions) of the European Union's Seventh Framework Program under REA [606713 BIBAFOODS]Portuguese Foundation for Science and Technology (FCT) [PTDC/AGR-TEC/4814/2014, IF/01005/2014]Fundacao para a Ciencia e Tecnologia [SFRH/BPD/99982/2014]Danish National Research Foundation [DNRF 122]Villum Foundation [9301]Italian Ministry of Instruction, University and Research (MIUR), PRIN [20109PLMH2]"Fondazione Beneficentia Stiftung" VaduzFondo di Ateneo FRAFRAinfo:eu-repo/semantics/publishedVersio

    Is the Cell Really a Machine?

    Get PDF
    It has become customary to conceptualize the living cell as an intricate piece of machinery, different to a man-made machine only in terms of its superior complexity. This familiar understanding grounds the conviction that a cell's organization can be explained reductionistically, as well as the idea that its molecular pathways can be construed as deterministic circuits. The machine conception of the cell owes a great deal of its success to the methods traditionally used in molecular biology. However, the recent introduction of novel experimental techniques capable of tracking individual molecules within cells in real time is leading to the rapid accumulation of data that are inconsistent with an engineering view of the cell. This paper examines four major domains of current research in which the challenges to the machine conception of the cell are particularly pronounced: cellular architecture, protein complexes, intracellular transport, and cellular behaviour. It argues that a new theoretical understanding of the cell is emerging from the study of these phenomena which emphasizes the dynamic, self-organizing nature of its constitution, the fluidity and plasticity of its components, and the stochasticity and non-linearity of its underlying processes

    An electron acceptor molecule in a nanomesh: F4TCNQ on h-BN/Rh(111)

    Get PDF
    The adsorption of molecules on surfaces affects the surface dipole and thus changes in the work function may be expected. The effect in change of work function is particularly strong if charge between substrate and adsorbate is involved. Here we report the deposition of a strong electron acceptor molecule, tetrafluorotetracyanoquinodimethane C12_{12}F4_4N4_4 (F4_{4}TCNQ) on a monolayer of hexagonal boron nitride nanomesh (hh-BN on Rh(111)). The work function of the F4_{4}TCNQ/hh-BN/Rh system increases upon increasing molecular coverage. The magnitude of the effect indicates electron transfer from the substrate to the F4_{4}TCNQ molecules. Density functional theory calculations confirm the work function shift and predict doubly charged F4_{4}TCNQ2−^{2-} in the nanomesh pores, where the hh-BN is closest to the Rh substrate, and to have the largest binding energy there. The preferred adsorption in the pores is conjectured from a series of ultraviolet photoelectron spectroscopy data, where the σ\sigma bands in the pores are first attenuated. Scanning tunneling microscopy measurements indicate that F4_{4}TCNQ molecules on the nanomesh are mobile at room temperature, as "hopping" between neighboring pores is observed

    Multi-Architecture Monte-Carlo (MC) Simulation of Soft Coarse-Grained Polymeric Materials: SOft coarse grained Monte-carlo Acceleration (SOMA)

    Full text link
    Multi-component polymer systems are important for the development of new materials because of their ability to phase-separate or self-assemble into nano-structures. The Single-Chain-in-Mean-Field (SCMF) algorithm in conjunction with a soft, coarse-grained polymer model is an established technique to investigate these soft-matter systems. Here we present an im- plementation of this method: SOft coarse grained Monte-carlo Accelera- tion (SOMA). It is suitable to simulate large system sizes with up to billions of particles, yet versatile enough to study properties of different kinds of molecular architectures and interactions. We achieve efficiency of the simulations commissioning accelerators like GPUs on both workstations as well as supercomputers. The implementa- tion remains flexible and maintainable because of the implementation of the scientific programming language enhanced by OpenACC pragmas for the accelerators. We present implementation details and features of the program package, investigate the scalability of our implementation SOMA, and discuss two applications, which cover system sizes that are difficult to reach with other, common particle-based simulation methods

    The Real Combination Problem : Panpsychism, Micro-Subjects, and Emergence

    Get PDF
    Panpsychism harbors an unresolved tension, the seriousness of which has yet to be fully appreciated. I capture this tension as a dilemma, and offer panpsychists advice on how to resolve it. The dilemma, briefly, is as follows. Panpsychists are committed to the perspicuous explanation of macro-mentality in terms of micro-mentality. But panpsychists take the micro-material realm to feature not just mental properties, but also micro-subjects to whom these properties belong. Yet it is impossible to explain the constitution of a macro-subject (like one of us) in terms of the assembly of micro-subjects, for, I show, subjects cannot combine. Therefore the panpsychist explanatory project is derailed by the insistence that the world’s ultimate material constituents (ultimates) are subjects of experience. The panpsychist faces a choice of abandoning her explanatory project, or recanting the claim that the ultimates are subjects. This is the dilemma. I argue that the latter option is to be preferred. This needn’t constitute a wholesale abandonment of panpsychism, however, since panpsychists can maintain that the ultimates possess phenomenal qualities, despite not being subjects of those qualities. This proposal requires us to make sense of phenomenal qualities existing independently of experiencing subjects, a challenge I tackle in the penultimate section. The position eventually reached is a form of neutral monism, so another way to express the overall argument is to say that, keeping true to their philosophical motivations, panpsychists should really be neutral monists.Peer reviewedFinal Accepted Versio
    • …
    corecore