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Abstract

Over the past ten years, the global biopharmaceutical market has grown impressively, with ten over 

the top twenty worldwide high performance medical treatment sales being biologics. Thus, biotech 

R&D (research and development) sector is becoming a key leading market, with emerging revenues 

to progressively expand. Biotechnology offers considerable advantages compared to traditional 

pharmaceuticals, such as reducing side effects, targeted treatments, higher patient compliance and 

therefore more effective treatments leading to lower healthcare costs. Within this sector, smart 

nanotechnology and colloidal self-assembling systems represent pivotal tools able to modulate the 

delivery of therapeutics. A comprehensive understanding of the processes involved in the self-

assembly of the colloidal structures discussed therein is essential for the development of relevant 

biomedical applications.

In this review we report the most promising and best performing platforms for specific classes of 

bioactive molecules and related target, spanning from siRNAs, gene/plasmids, proteins/growth 

factors, small synthetic therapeutics and bioimaging probes. 
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Introduction

The application of emerging nanotechnology to biomedical and pharmaceutical research allowed 

real progresses in the development of temporal and site specific drug delivery, leading to a new 

field of research defined as nanomedicine which nowadays is one of key fields of research [1]. Such 

a breakthrough was supported by the advanced scientific knowledge and technological development 

of different types of systems, such as carbon nanomaterials (fullerenes, nanotubes) [2], polymeric 

carriers (micelles, niosomes, nanoparticles, nanogels and macrogels) and lipid-based nanosystems 

(lipid nanovesicles, cubosomes and solid lipid nanoparticles) [3]. 

The use of colloidal delivery systems proved to be an efficient approach to improve the 

bioavailability and pharmacokinetics of small therapeutic molecules; hereby we describe the most 

recent advances in the field, with particular focus on the most suitable system depending on the 

desired bioactive molecule to be delivered. 

1. Hydrogels and colloidal stuctures for drug delivery

Hydrogels can be defined as coherent systems composed by a three-dimensional fibrous network, 

usually of polymeric origins, containing a huge amount of a continuous aqueous phase which 

cannot dissolve the network due to the presence of interconnections, called crosslinks [4]. 

Interestingly, despite the remarkable amount of the aqueous phase that these systems are able to 

host (the solid network volume fraction can be lower than 1%), hydrogels show rheological-

mechanical properties closer to solids rather than to liquids [4], mimicking living tissues [5]. 

Hydrogels can be classified according to the nature of the crosslinks, their origin, composition, 

charge and configuration [6]. From a crosslinking point of view, hydrogels can be chemical or 

physical. In chemical hydrogels, crosslinks between different chains (fibers) are strong, permanent 

and punctual, due to covalent bonds. Conversely, physical hydrogels are characterized by either 

chains topological entanglements (spaghetti-like configuration, Fig. 1) or physical interactions (this 

being typical of polysaccharides such as glucans and xanthan) such as H-bonds, ionic, Coulombic, 

van der Waals, dipole-dipole and hydrophobic interactions.
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Figure 1. Representative examples of chemical and physical crosslinks occurring in hydrogels. 
Adapted from [4].

Additional junctions can occur, with long chain segments departing from the ordered junction zones 

towards further chains, generating a polymeric three-dimensional network. Physical interactions are 

often transient, with non-strong bonding points, able to lead to a network characterized by a 

constant average crosslink density (i. e. moles of crosslinks per gel unit volume) and a time 

dependent spatial distribution of crosslinks. Thus, network meshes configure as a dynamic 

equilibrium, due to chains segments size and related Brownian motions, being the average mesh 

number and dimension constant [4,7]. The formation of ordered zones is favored/hindered by 

environmental conditions such as temperature and ionic strength [8]. For instance, agarose 

undergoes a thermo-reversible gelation process occurring when hot solutions are cooled below ∼ 

40°C. In the hot state, agarose chains appear to behave as stiffened coils whereas, after cooling, a 

particularly extensive re-organization takes place, resulting in a hydrogel aggregation, at very low 

polymer concentrations (≥ 0.1% w/w) [9]. Physical crosslinks are usually associated with 
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mechanically weak gels, except for e.g., the case of alginates, where a strong physical hydrogel 

arises. Alginates are linear polymers of vegetal or bacterial origin containing β-D-mannuronic (M) 

and α-L-guluronic (G) acid [10], where the addition of different cations, such as Ca2+, Cu2+, Ba2+ 

and Sr2+, can induce gelation. These cations bind to stretches of guluronic acid residues within the 

polysaccharide chain, leading to the formation of junctions, which physically hold together the 

polysaccharide chains in a 3D continuum according to the egg-box model (see Fig. 1). Pectins are 

another outstanding example of polysaccharides leading to strong physical hydrogels, triggered by 

the presence of divalent cations, although with some differences connected to the existence of 

neutral sugars in the chains (that should hinder inter-chain association) and the methylation of some 

galactunorate residues (that do not contribute to the electrostatic ion binding).

With reference to their origin, hydrogels can be natural or synthetic. Among the plethora of natural 

hydrogels, those based on agar, collagen, chitosan, alginate, hyaluronic acid, gelatin, fibrin and 

polysaccharides (animal, vegetal and microorganisms origin [10]) are most represented [11]. 

Conversely, D,L-lactide-co-glycolide (PLGA), polyamidoamine (PAMAM), poly(caprolactone-co-

ethylethylene phosphate) (PCLEEP) and poly(N-vinyl-2-pyrrolidone) PVP can be included in the 

synthetic class.

For homopolymeric hydrogels, the network is formed towards a polymer constituted by a single 

species of monomer, whereas in copolymeric hydrogels two or more different monomer species 

compose the chains of the polymeric network. Finally, interpenetrating polymeric hydrogels (IPN) 

are made up of two (or more) independent cross-linked synthetic and/or natural polymeric chains 

[12].

Hydrogels can be categorized depending on their charge features, as nonionic (neutral), ionic 

(anionic or cationic), amphoteric electrolyte (ampholytic) containing both acidic and basic groups, 

zwitterionic (polybetaines) containing both anionic and cationic groups in each structural repeating 

unit. From a configuration perspective, they can be amorphous, semicrystalline (a mixture of 

amorphous and crystalline phases) and crystalline [6].
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Hydrogel production can be achieved by means of any technique allowing the formation of bonds 

among different polymeric chains, such as chemical reaction, ionizing radiations, physical 

interactions (e.g. entanglements and electrostatics) and crystallite formation. Moreover, hydrogels 

can be obtained thanks to polymerization techniques, including bulk, solution, and suspension 

polymerization [6]. However, when hydrogels are formed starting from a solution containing the 

polymer and hydrophilic drugs that can easily undergo denaturation such proteins, peptides and 

drugs based on nucleic acid (NABDs), an aqueous environment and room temperature are 

mandatory to perform a safe crosslinking procedure. For example, these requirements are perfectly 

accomplished by the ionic gelation of polysaccharides such as alginates and galacturonic [13]. Ionic 

gelation can also occur in the case of polycations with an anion as the crosslinker. Specifically, the 

ionic interaction between chitosan (polycation) and the trivalent negatively charged glycerol 

phosphate was shown to induce hydrogel formation [14].

Both macroscopic and micro/nanoscopic properties of hydrogels play an important role in 

biomedical applications. It has been recently demonstrated that, in three-dimensional culturing, the 

(macroscopic) viscoelastic properties of hydrogels used as substitutes of natural extracellular matrix 

(EM) can affect cells behaviour in terms of spreading, proliferation and differentiation. Chaudhuri 

and co-workers [15] demonstrated that the osteogenic differentiation of mesenchymal stem cells 

(MSCs) strictly depends on the viscoelastic properties of the alginates hydrogels used as substitute 

of EM. In detail, mesenchymal stem cells form mineralized, collagen-1-rich matrix similar to bone 

only when they are in contact with highly elastic hydrogels.

On the other hand, when hydrogels are devoted to the release of active agents, the mesh size 

distribution of the three-dimensional network (nanoscopic property) is a core characteristic. Indeed, 

it can represent the key parameter ruling the release kinetics of an embedded drug, or it can be 

essential to protect hydrogel load (drug, cells and so on) by external factors such as enzymes and 

the immune system agents as it can happen in the case of hydrogel based implantable systems. An 
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interesting example is represented by immunoisolant membranes, which serve to protect 

encapsulated pancreatic cells (aimed at the production of insulin) from antibodies [16]. 

In terms of release mechanisms, hydrogels drug depot can be controlled by physical, 

physicochemical and system related strands [17]. Swelling/shrinking processes are related to 

physical phenomena, whereas erosion, drug dissolution (recrystallization), drug transport (by 

diffusion and convection) and drug interaction throughout the matrix structure constitute the 

physicochemical phenomena. System related mechanisms depend on the initial drug distribution 

and concentration inside the hydrogel, hydrogel geometry (cylindrical, spherical, etc.) and size 

distribution in the case of polydispersed ensembles of hydrogels. 

The swelling/shrinking process occurs upon variation of external factors (temperature and pH, more 

frequently), inducing a new equilibrium condition or when the dry hydrogel is in contact with an 

aqueous environment. The above mentioned process relies on the chemical potential difference 

between the water inside and outside the hydrogel [18].

Hydrogel erosion can be ruled out by chemical and/or physical factors. Erosion can be defined as 

peripheral or heterogeneous, when it affects only hydrogel surface. On the other hand, bulk or 

homogeneous erosion involves the whole hydrogel volume [19]. Chemical erosion is due to 

hydrolytic/enzymatic degradation of polymeric chains, while physical erosion depends on chains 

disentanglement due to the hydrodynamic conditions of the external aqueous environment. 

Stability restrictions often require a hydrogels storage in the dry status. In such a case, drug release 

will begin as soon as an external aqueous fluid diffuses towards the polymeric network and a key 

step can be represented by the drug dissolution over the water permeating the network. When 

metastable bioactive molecules like polymorphs, amorphous or nano-crystalline drugs are present in 

the dry hydrogel, the dissolution process may correlate with recrystallization which leads to the 

formation of a new, more stable, drug crystallographic organization induced by the contact with the 

absorbed water [20].
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Bioactive molecule depot and mobility towards colloidal networks can be strongly affected by the 

hydrogel mesh size distribution, as well as by the drug physical and chemical interactions with the 

3D polymeric network [21]. For instance, drug adsorption/desorption phenomena may be due to 

electrostatic interactions, such as charged polypeptides and antibiotics in collagen matrices [22]. 

Further elements able to influence and drive bioactive molecule depot involve hydrogen bonds [23], 

lipophilic [24], as well as non-covalent interactions among imprinted polymeric networks and 

template molecules that need to be recognized in a physiological environment [25].

Colloidal and hydrogel frameworks are key structures for several bioactive molecule controlled 

delivery, with a specific application for Nucleic Acid based Drugs (NABDs) release.

NABDs are constituted by short sequences of either DNA or RNA, including antisense 

oligonucleotides, decoys oligonucleotides, aptamers, triple helix forming oligonucleotides, 

DNAzymes, Ribozymes, small interfering RNAs (siRNAs) and micro interfering RNAs (miRNAs) 

[10]. Despite their huge therapeutic potential towards different hyper-proliferative diseases [26], 

their daily clinic application is still very limited because of their rapid degradation by several 

enzymes, such as blood and cellular nucleases [27]. Moreover, as detailed in the next section (2.2), 

considering that both NABDs and cellular membranes are negatively charged, crossing the cellular 

membrane represents the core drawback, due to electrostatic repulsion. Thus, if delivered as naked 

NABDs, they have no chance to exploit their therapeutic activity. Delivery vectors can be divided 

into three classes, based on their size [28]: nano, micro and macro scales vectors. Nanoscale vectors 

are represented by polycationic polymers or lipids that self-assemble with NABDs to form 

polyelectrolyte complexes (poly- or lipo-plexes, respectively, as detailed in section 2). Microscale 

vectors can be outlined, for example, as hydrogels entrapping the poly- or lipo-plexes. Macroscale 

vectors are three dimensional matrices (such as hydrogels) that can host microvectors containing, in 

turn, poly- lipo-plexes to give rise to a chimeric system [29]. An outstanding example of chimeric 

system has been proposed by Knipe and co-workers [30], who dealt with the oral release of siRNA 

targeting TNF-β, an inflammatory cytokine that is a clinical target of inflammatory bowel diseases. 
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The chimeric delivery system consists of micro-gels (size < 30 µm) composed of poly(methacrylic 

acid-co-N-vinyl-2-pyrrolidone) (PMANVP) crosslinked with a trypsin – degradable peptide linker. 

PMANVP micro-gels contained siRNA-loaded polycationic nanogels (2-(diethylamino)ethyl 

metacrylate) (size ≈ 120 nm) that proved to guarantee siRNA protection and cells transfection. 

PMANVP matrix was designed to collapse around nanogels to protect them from degradation in the 

stomach (pH 2 – 4), while PMANVP swelling in the small intestine environment at pH 6 – 7.5, 

allowed matrix degradation, due to the uptake of intestinal fluids containing trypsin. Consequently, 

nano-gels could be released and internalized by cells, resulting in a considerable TNF-β knockdown 

in a murine macrophage model.

Chimeric systems can be used for the systemic delivery of NABDs too. Indeed, following injection 

administration, the NABD-vector complex is supposed to circulate towards capillaries and 

microvasculature structures (blood vessel diameter < 100 µm), cross the blood vessel wall and 

finally reach the target cells. Thus, the NABD-vector complex is required to move radially towards 

the vessel wall, by means of a margination mechanism. D’Apolito and co-workers [31] 

experimentally showed that margination is due to red blood cells and NABD-vector complexes 

interaction. The mentioned process is possible whether complexes size spans in diameter range > 1 

μm, with 3 µm vectors better marginating than 1 µm sized particles. Accordingly, nano-sized 

complexes have poor chances to get the blood wall. However, nano complexes embedding into 

micro-vectors allows the overall structure to reach blood vessel wall. Therein, nano-vectors can be 

released, for example, by micro-vectors surface or bulk erosion.

2. siRNA delivery

2.1. Small interfering RNAs

In recent years the most commonly tested NABDs have been siRNAs. These short double stranded 

RNA molecules approximately 22 nucleotides in length, are mostly of exogenous origin, being 

generated from invasive nucleic acids such as viruses and transposons [32]. With reference to the 
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mechanism of the two siRNAs filaments (Fig. 2A), mostly the antisense strand is uptaken by the 

cytoplasmic RNA-induced silencing protein complex (RISC). The antisense strand drives RISC to a 

target RNA via a perfect sequence complementarity to the target. Following binding, RISC 

mediates the degradation of the target RNA thus resulting in the downregulation of gene expression. 

It is possible to take advantage of this mechanism of action to generate siRNAs able to target RNAs 

causing disease as shown by many works [33-36]. 

Figure 2. Schematic representation of (A) siRNA cascade towards cytoplasmic RNA-induced 
silencing protein complex (RISC) and (B) siRNA metabolism throughout cellular mechanisms.

2.2. siRNA delivery problems

Despite the great siRNA therapeutic potential, their practical use is limited by their chemical nature. 

Following systemic administration, siRNAs encounter blood nucleases, which can rapidly degrade 

their nucleic acid structure (Fig. 2B). 

Moreover, siRNAs tend to be removed by the reticulo-endothelial system, by kidney filtration [37] 

and, depending on the sequence, to activate the innate immune response [38]. Additional barriers to 

siRNAs cellular uptake are represented by the vessel wall and the cellular membrane, due to the 

electrostatic repulsion between the negatively charged phosphate groups present on siRNAs and the 

negatively charged surface of cellular membranes. Moreover, cell uptake is difficult by the 

hydrophilic nature of siRNAs that does favor the crossing of the hydrophobic layer of the cell 

membranes. 
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The fraction of siRNAs that succeed crossing the cell membrane, further will face with cytosolic 

nucleases that can reduce their amount. Finally, siRNAs experience the problem of cellular 

trafficking [39]. Depending on the mechanism of cellular internalization, siRNAs can be uptaken by 

endosomes. At this stage, when confined into these intracellular vesicles, siRNAs have no chance to 

reach their targets and thus to exert any biological effect. Based on the above mentioned 

considerations, the administration of naked siRNA results in negligible therapeutic effects. 

2.3. Strategies to minimize siRNA delivery issues

To minimize the delivery issues of exogenous siRNAs, two main strategies can be employed. The 

first consists of the chemical modification of siRNA structure to make these molecules more 

resistant to degradation. The second strategy is based on the siRNA complexation with synthetic 

engineered vectors to effectively bind and protect siRNAs and to allow their delivery to the target 

cells [40]. Frequently, the two strategies are used in combination, despite some chemical 

modifications may affect siRNA effectiveness. 

The choice of the optimal delivery materials is not a trivial task [10,32,40,41], with the net 

superficial charge of the delivery carrier/siRNA complex playing a key role. Anionic and cationic 

complexes usually show good solubility/stability in the physiological environment, despite they 

exhibit some drawbacks. Anionic complexes cannot transfect cells per se, due to the electrostatic 

repulsion with the negatively charged cell membrane. Conversely, cationic complexes bind to cell 

membrane towards strong electrostatic interactions, leading to non-specific cellular uptake and cell 

toxicity if the positive charge is not optimal [42]. On the other hand, neutral complexes tend to 

associate in the physiological environment, resulting in a limited solubility. Thus, the development 

of optimal delivery carriers requires a careful evaluation of different parameters such as the surface 

charge density, within a multidisciplinary team.

Besides providing for siRNA protection and targeting, the ideal delivery vector should be able to 

allow efficient extravasation of the siRNA. This feature is crucial for siRNA-vector complexes 

systemic administration. Therein, the size of 



12

siRNA-vector complexes plays a relevant role, as above mentioned for NABDs. It has been recently 

showed that particles in the 1-3 µm diameter range [31] tend to localize closer to the endothelial 

layer (margination effect) of the vessel, compared to smaller particles. Thus, 1-3 µm particles 

localize closer to the vessel fenestration, being more susceptible to extravasation compared to 

smaller particles, which, alternatively, tend to localize in the middle of the vessel. Despite this 

advantage, it should be considered that particles bigger than 0.2 µm are readily scavenged non-

specifically by monocytes and the reticuloendothelial system, thus not be efficiently uptaken by 

cells [43,44]. A possible solution may rely on the preparation of microparticles able to undergo a 

disassembly, upon extravasation, originating nano-metric particles. As previously introduced, the 

preparation of micro-sized delivery systems containing nano-metric particles can be included within 

the class of delivery strategies known as “chimeric systems” [28,45]. This approach present a dual 

advantage: on one side, micro-particles are easy to handle, to produce on large scale and to store, 

whereas on the other hand, nanostructures are characterized by an extremely high surface/volume 

ratio, with a valuable drug payload efficiency. Polycationic polymers and lipids are most commonly 

employed to form nanoscale vectors. On the other hand, microscale vectors entrapping nanoscale 

vectors usually consist of two/three dimensional scaffolds or matrices mainly made by polymers.

The following sections will focus on the presentation of strategies most commonly used to prepare 

nanoscale vectors, i.e. lipid and polymers nanoparticles [46-50]. 

2.3.1 Lipidic nanoparticles

Lipid-based nanoparticles (LNPs) have been extensively used as delivery systems for drugs and 

siRNAs, showing promising results both in vivo and in vitro. LNPs have appropriate delivery 

characteristics as their structure mimics cellular membranes, thus enhance the fusion with the target 

cell. Moreover, LNPs can be easily loaded with several cargo molecules. 

2.3.1.1 Liposomes

Liposomes are spherical self-assembled vesicles, deriving from synthetic or natural phospholipids 

containing aqueous compartments (Fig. 3A). 
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The polar heads of phospholipids interact with the hydrophilic environment thus stabilizing lipids 

structure; in contrast, the long phospholipid chains interact each other, forming lipid layers in 

aqueous solution. Liposomes can be structured as unilamellar or multilamellar lipid bilayers. Due to 

the amphiphilic nature of phospholipids, these molecules can generate hydrophilic and hydrophobic 

compartments in the same system, thus allow for both hydrophobic and hydrophilic molecules 

(siRNA) hosting. Liposomes can also accumulate into tumours, present a low immunogenicity and 

are biodegradable [51]. 

2.3.1.2 Cationic liposomes 

Positively charged (cationic) liposomes are most frequently used for siRNA delivery. They can 

electrostatically interact with the negatively charged siRNAs and allow an efficient molecule 

loading [41,52]. Additionally, cationic liposomes can easily interact with the negatively charged 

cell membrane. Sometimes, to further improve the ability to integrate with cell membrane, they are 

added with non-cationic lipids, such as DOPE (dioleoylphosphatidylethanolamine) and DSPC (1,2-

Distearoyl-sn-glycero-3-phosphocholine). The positive surface charge is favourable for siRNA 

binding, but it can cause the side interaction with negatively charged serum protein such as 

albumin. In such a case, the negatively charged serum protein can displace siRNA from the 

positively charged liposome, thus significantly reducing the amount of siRNA delivered to the 

target tissue. The modification of liposomes with the neutral lipids such as cholesterol can 

contribute to overcome this limitation [53]. Moreover, cholesterol can be used also to bind other 

molecules such as polyethylene glycol (PEG), a polymer able to improve the delivery properties 

both in vitro and in vivo [51].

There are different types of cationic liposomes for siRNA delivery, such as monovalent cationic 

liposomes and multivalent cationic liposomes. For instance, N-[1-(2,3-dioleyloxy) propyl]-N,N,N-

trimethylammonium chloride (DOTMA), 1,2-bis(oleoyloxy)-3-(trimethylammonio)-propane 

(DOTAP) and 3β-[N-(N'N'-dimethylaminoethane) carbamoyl]cholesterol (DC-Chol) are 

monovalent cationic lipids, characterized by a high in vitro transfection efficiency [54].
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Multivalent cationic lipids (MCLs), synthetized from monovalent cationic lipids, exhibit an 

increased positive charge compared to monovalent cationic lipids. However, they tend to be more 

toxic than monovalent cationic lipids [55]. A widely used MCL transfection agent is Lipofectamine 

(2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-pro-paneammonium 

trifluoroacetate and dioleoyl-hosphatidylethanolamine in ratio 3:1 (DOSPA/DOPE 3/1)), which 

contains the multivalent cationic lipid DOSPA. This mixture of lipids forms multilayers structures 

with the siRNA being embedded between adjacent lipid bilayers [56]. Lipofectamine can efficiently 

deliver siRNAs to a broad range of cells, although they exert a significant unspecific cell toxicity. 

For example, siRNAs directed against the mRNAs of the cell cycle promoting genes cyclin E and 

E2F resulted in a relevant inhibition of smooth muscle cells (SMC) proliferation. As SMC aberrant 

proliferation is a key event in many coronary artery diseases [44,57], the mentioned approach has 

the potential to minimize this pathological event. Per se, the cationic liposome-mediated delivery of 

siRNAs to the coronary wall is not sufficient to guarantee an effective delivery. In this case, the 

delivery of siRNA-cationic liposomes entrapped into gel matrix has been proposed, in order to 

prevent the rapid wash out of siRNA complexes due to blood flow [58]. 

2.3.1.3 Stable nucleic acid lipid particles (SNALPs)

Recently, stable nucleic acid lipid particles (SNALPs) have been developed for siRNAs delivery 

(Fig. 3B) [41]. SNAPLs are constituted by a lipid bilayer containing the ionisable cationic lipid 1,2-

dilinoleyloxy-3-dimethylaminopropane (DLinDMA) or  2,2-dilinoleyl-4-(2-dimethylaminoethyl)-

[1,3]-dioxolane (DLin-KC2-DMA) in the inner part, to allow the binding with siRNAs. Moreover, 

they contain PEG, which can stabilize the complex and a neutral lipid, like DSPC  or cholesterol, 

which enhances the endosomal escape of the SNALP/siRNA complex [59]. Thus, whereas the inner 

part of SNALPs is hydrophilic and allows the electrostatic binding with siRNAs, the surface charge 

is nearly neutral. Appropriate modifications in SNALPs, for example in the type and ratio of the 

different components, can extend the circulation time and minimize complement system activation 

[51].
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SNALPs delivery systems were for example used to encapsulate a COP9 Signalosome Subunit 5 

(CSN5) siRNA [60]. CSN5 is the catalytic center of the COP9 Signalosome that is involved in the 

control of proteolysis via the ubiquitin proteasoma pathway. CSN5 seems also to act as 

transcriptional coactivator for MYC and TGFβ1, gene products involved in the control of 

proliferation, apoptotic cell death and hepatocellular carcinoma (HCC) progression. This delivery 

system significantly inhibited tumor growth in an orthotopic mouse model of HCC [60].

2.3.1.4 Lipidoid nanoparticles 

Lipidoid nanoparticles are made up of synthetic lipids obtained by the chemical combination of 

alkyl-amines with alkyl-acrylates containing carbon chain tail of variable length [61] (Fig. 3C). The 

particles containing the lipidoid have a polar and ionisable core, surrounded by hydrophobic carbon 

tails. The particles can also contain cholesterol and PEG, two types of molecules that can enhance 

particles stability and delivery efficiency [56]. In addition, their easy synthetic protocol allows the 

production of a considerable amount of different particles, which can be tailored to any different 

delivery purpose. For example, a siRNA embedded into lipidoid-based nanoparticles was used to 

downregulate β1 and αν integrin subunits in the hepatocytes of a xenograft mice model of HCC 

[62]. β1 and αν integrins are relevant extracellular matrix receptors involved in many cellular 

processes. Moreover, they play critical biological roles both in normal liver and in HCC tumor 

cells. Integrin silencing had, as major outcome, an extended morbidity-free survival of HCC tumor-

bearing mice[62]. 

A) Liposome  B) SNALP

C) Lipidoid
 D) Solid Lipid Nanoparticle

Ionisable cationic lipid

Neutral lipid

PEG 

Lipid core

siRNA

Nautral/Anionic /Cationic
lipid

Cholesterol

Synthetic lipid
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Figure 3. Schematic representation of the main nanoscale vectors: (A) liposomes, (B) stable nucleic 
acid lipid particles (SNALPs), (C) lipidoids and (D) solid lipid nanoparticles.

2.3.1.5 Solid-lipid nanoparticles

Solid-lipid nanoparticles (SLN) are novel siRNAs carriers derived from nano-emulsions where the 

oil emulsion component is replaced by a solid lipid dispersed in a surfactant solution (Fig. 3D). The 

loaded molecules are incorporated in the solid lipophilic matrix. SLN, solid at room temperature, 

are stable, non-cytotoxic, present a large surface area and can efficiently protect the encapsulated 

molecules [63]. However, they present some disadvantages such as the low molecules loading 

capacity and the possible expulsion of the incorporated molecules during storage. The chemical 

nature of the solid-lipid matrix determines the loading capacity, as well as the type of molecule to 

be loaded [64]. SLN usually contain a combination of triglycerides, partial glycerides, fatty acids, 

steroids and waxes. To decrease cytotoxicity and immune responses, SLN can be prepared using 

physiological lipids present in the natural low density lipoprotein (LDL) such as cholesteryl ester, 

triglyceride, cholesterol, DOPE, and DC-cholesterol [65]. Lipids found in the natural high-density 

lipoproteins (HDL) represent an alternative. Overall, chemical modifications are required to allow 

the incorporation of the hydrophilic siRNA [66]. An example of siRNA delivery by SLN has been 

reported by Jin J. et al. [67]. Considering that c-mesenchymal-epithelial transition (c-MET) is a 

signaling receptor for hepatocyte growth factor, SLN were reconstituted from natural components 

of protein-free LDL and further conjugated to PEGylated c-Met siRNA. Inappropriate c-Met 

activation relates to different form of human tumours including glioblastomas (GBMs). The latter is 

the most frequent and malignant form of brain tumor, with limited treatment options due to the 

blood-brain barrier. In orthotopic U-87MG xenograft tumour model of GBM, intravenous 

administration of the complex significantly inhibited c-Met expression and suppressed tumour 

growth. Notably, no major signs of systemic toxicity were observed in mice. 

2.3.2 Polymers 
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Polymers are solid and biodegradable molecules widely employed for siRNA delivery. Many 

different polymers have been tested so far, such as Chitosan (CH), Polyethylenimine (PEI), PEG, 

α,β-poly(N-2-hydroxyethyl)-D,L-aspartamide and Inulin-derived polymers. 

CH is a polymer characterized by low toxicity, high biocompatibility and biodegradability [10]. CH 

is derived from chitin, has a carbohydrate backbone characterized by two types of repeating 

residues, 2-amino-2-deoxy-glucose (glucosamine) and 2-N-acetyl-2-deoxy-glucose (N-

glucosamine), linked by (1-4)-β-glycosidic linkage. Furthermore, CH has a positive charge, due to 

the presence of positively charged amino groups present in its structure, thus, it can easily and 

efficiently bind negatively charged molecules such as siRNAs. On the other hand, CH has some 

disadvantages such as the low transfection efficiency and low solubility, which can be avoided via 

the conjugation with other molecules such as PEI, PEG, Poly (amidoamine) (PAMAM) dendrimers. 

As an alternative, CH physicochemical and biological properties can be improved by modulating 

the deacetylation rate and/or modifying the molecular weight [68].

PEI contains repeating units composed of an amine group and two aliphatic CH2-CH2 spacers. It 

can exist both in linear and branched forms. It is one of the most used cationic polymers, even 

though it tends to be more toxic than natural polymers [69]. Usually, PEI with high molecular 

weight has higher cytotoxicity compared to low molecular weight PEI, despite its transfection 

effectiveness. To decrease toxicity, PEI can undergo chemical modifications, such as the addition of 

hydrophilic and hydrophobic segments or cell/tissue-specific ligands [70]. As previously described 

for CH, PEI easily binds negatively charged molecule such as siRNAs. Moreover, PEI favours 

siRNA escape from endosomes, thanks to its “proton sponge effect” [71]. Finally, liposome coating 

with PEI results in an increased liposomes circulatory time [72], thus improving systemic delivery. 

PEG is a polymer of ethylene oxide monomers considered to be non-toxic and safe [73,74]. It is 

widely used because of its solubility in aqueous environment and organic solvents. PEG addition 

(PEGylation) to deliver particles reduces toxicity and stabilizes the particles, as it is the case of 
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PEGylated liposomes where PEG is added into the liposomal bilayer [75]. PEG is also used to bind 

specific ligands to be fixed on the liposome surface [76]. 

For instance, a copolymer based on α,β-poly(N-2-hydroxyethyl)-D,L-aspartamide (PHEA) bearing 

positively chargeable side oligochains, with diethylamino ethyl methacrylate (DEAEMA) as 

monomer has been developed [77]. The PHEA-DEAEMA polymer was able to efficiently forming 

complexes with siRNA, demonstrated stability in liquid fluids and protected siRNA without being 

significantly cytotoxic in the HCC cell line HuH-7. The copolymer was loaded with an anti E2F1 

siRNA and tested in JHH6. E2F1 is a transcription factor promoting cell proliferation that plays an 

important role in the growth of HCC cells [26]. A significant down regulation of JHH6 cell growth 

was observed, in addition to a reduction in siRNA target.

As an alternative polymer for HCC cell delivery, a siRNA delivery system based on inulin (Inu) 

was reported. This is an abundant and natural polysaccharide functionalized for the specific 

requirements of siRNA delivery by conjugation with diethylenetriamine (DETA) residues (Inu-

DETA) [78]. Inu-DETA copolymers can effectively bind siRNAs, are highly biocompatible and, in 

the HCC cell line JHH6, can effectively deliver functional siRNAs. The Inu-DETA particles loaded 

with a siRNA anti E2F1 [26], effectively reduced the levels of E2F1 and the proliferation of JHH6. 

Moreover, the uptake and trafficking mechanisms, mainly based on micropinocytosis and clatrin 

mediated endocytosis, allowed a triggered release of siRNA within the cytoplasm of JHH6.

The above mentioned examples clearly indicate how cationic copolymers can bind siRNAs via 

electrostatic interaction, thus forming complexes able to promote cellular uptake and significantly 

improve the half-life. However, polymers can be also used in the form of micelles for delivery 

purposes. Micelles are spherical structures containing simple units (unimers) oriented with the 

hydrophobic tail towards the inner part of the micelles and the hydrophilic heads towards the 

external shell (Fig. 4). Unimers can be generated conjugating cationic polymers with stearic acid 

(SA), a saturated fatty acid with an 18-carbon chain. For example, CH polymer does not self-

assembly into micelles; nevertheless, following the conjugation with stearic acid (SA), CH polymer 
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can form micelles. This example indicates the great plasticity of polymers and their derivatives to 

prepare siRNA delivery systems [79]. Other example of cationic polymer able to form micelles in 

solution is PEG and poly(propylene sulfide) [80,81].

Hydrophilic shell

Hydrophobic core

Polymeric micelle

Figure 4. Schematic representation of a polymeric micelle.

3. Plasmid, gene and probiotic delivery

Considering drug-based treatments are limited to treat symptoms, gene delivery emerged as a very 

promising method for the treatment (or elimination) of the causes associated to a broad range of 

diseases related to genetic factors [82]. This approach relies on the effective delivery and transfer of 

genes into specific cells to alter the expression of the existing ones. Theoretically, it should either 

cure the disease or, at least, slowdown its progression [82]. There are two main components in the 

system: the carrier (i. e. gene delivery vector) and the therapeutic agent (i. e. genetic material). The 

delivery system should be able to carry, protect and delivery the genes in a safe and effective mode 

to a wide range of different cells [83]. Although viral based vectors are extremely efficient carriers 

to deliver genes, several drawbacks associated to their high cost, difficulties in large scale 

production and safety issues (e.g immunogenicity, tumorigenic mutations) have driven the attention 

to other technological alternatives. In this context, during the last decades, a lot of attention has 

been paid to the development of efficient non-viral vectors for gene delivery. Despite the low 

efficiency compared to viral vectors, these systems present several important advantages, such as 
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low immunogenicity, absence of endogenous virus recombination, low production cost, easy 

implementation in large scale [84,85].

As previously discussed, within the non-viral systems class, cationic polymers have received a 

growing interest due to the possibility to easily tune their structure and characteristics (e.g 

molecular weight and composition) in order to enhance the performance of the gene delivery 

system [86]. The positive charges of the cationic polymers interact electrostatically with the 

negative charges of the gene material, leading to the formation of complexes known as polyplexes. 

Since the pioneer work of Vaheri and Pagamo, in 1965, that proposed the use of dextran 

functionalized with diethylaminoethyl groups [87], an enormous library of cationic polymers have 

been suggested for gene delivery, such as chitosan [88,89], poly(L-Lysine) (PLL) [90], 

poly(ethylenimine) (PEI) [91], poly [(2-dimethylamino) ethyl methacrylate] (PDMAEMA) [92] and 

poly(β-amino ester) (PβAE) [93]. Despite branched PEI [91] (Mw=25000g.mol-1) has been 

considered as the “gold standard” due to the high transfection efficiency, its high toxicity seriously 

compromises its use [94].

Figure 5. Schematic examples of cationic polymers used as nonviral gene delivery vectors
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Generically, two main problems are associated to the polymer-based systems: minor efficiency due 

to the deficient capacity to overcome some extra- and intracellular gene delivery obstacles (e.g 

diffusion to the endothelial membrane, endosomal escape, unpacking among others); and 

cytotoxicity [95]. These issues have been mitigated using different approaches that include: the use 

of poly(ethylene glycol) (PEG); introduction of hydrophobic segments [95]; and the 

functionalization of polymers with moieties such as sugar molecules, antibodies, growth factors, 

etc. [85].

Despite the remarkable advances registered over the last decades on gene therapy, the levels of 

efficiency are generally very unsatisfactory to turn their clinical usage a routine. One promising 

approach to overcome this limitation involves the use of stimuli-responsive polymers that can 

change their physico-chemical characteristics upon the application of a specific stimulus. In the 

gene therapy area, these stimuli can be endogenous like enzyme concentration, pH, redox potential, 

or exogenous such as temperature, light and ultrasounds. The remarkable feature of this class of 

polymers relies on the possibility to rationally adapt the physical/chemical characteristics of 

polyplexes during their path to maximize their efficiency. The binding capability of the cationic 

segment should be high to afford dense and stable polyplex, while during the unpacking step 

weaker bindings are required [96,97]. Therefore, the use of stimuli-responsive polymers can be a 

very effective approach to tailor the properties of polyplexes in the different environments both 

outside and inside the cell. Aiming to explore the potential of these smart systems, several carriers 

have been used in gene therapy [98-100]. PDMAEMA is a thermoresponsive and pH-responsive 

polymer, being one of the most used systems in gene delivery, able to easily complex with DNA 

[92].

Reversible Deactivation Radical Polymerization (RDRP) methods brought an outstanding toolbox 

of techniques that allows to synthesize tailor-made polymers with controlled composition, 

architecture, molecular weight and active chain-end functional groups [101]. Advances on “click” 

chemistry techniques [102] as 1,3-dipolar azide-alkyne cycloaddition (CuAAC) [103] and/or thiol-



22

ene [104] reactions has opened important routes to the synthesis of novel block copolymers and in 

the functionalization with different moieties (e.g proteins, sugars) to well-defined polymer 

backbone.

Nowadays, it is possible to establish precise structure/properties relationships for the different 

polymers due to the ability to control their composition, structure, and functionality. Atom Transfer 

Radical Polymerization (ATRP) [101,105] and RAFT (Reversible Addition Fragmentation 

Transfer) [106-108] are the most used ones to develop block copolymers for gene delivery. Several 

recent reviews have highlighted the important progresses achieved with these two advanced 

polymerization techniques in biomedical applications and gene delivery [109,110]. Controlled 

molecular architectures in terms of chain topology [101,106] (cycles, stars, combs, brushes), 

composition [101,106] (block, graft, alternating, gradient copolymers), and functionality are now 

easily accessible for most type of monomers used to afford stimuli-responsive structures. Star 

polymers, due to the higher ability of forming spherical polyplexes, which facilitates the 

internalization in the cell, have received particular attention [111]. Indeed, several contributions 

have shown promising results for stars regarding transfection efficiency when compared to their 

linear or randomly branched counterparts [112-114].

The simultaneous development of the polymer synthesis strategies over the next years will allow 

the preparation of new block copolymers with innovative sequential addition of new monomers. 

Consequently, it can be easily envisaged that there will be the appearance of the new cationic block 

copolymers rationally designed to overcome the aforementioned limitations (e.g biological barriers) 

leading to broad use of non-viral vectors in clinical practice. 

Surfactants, such as polymers, are excellent candidates for non-viral methods in gene delivery. As 

previously discussed, depending on surfactant architecture, they can self-assembly into different 

structures and work as efficient nano-compartments for gene delivery [115]. For this purpose, many 

synthetic surfactants or lipids have been designed to increase the performance of cellular uptake, 

transfection efficiency [116] and to enhance the solubility of hydrophobic molecules, making them 
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suitable for parenteral administration. An extensive number of contributions encompassing the 

advantages of surfactant based gene delivery systems is available in the literature [117-122]. 

Surfactant based nanoparticles are already been used to treat genetic and acquired disorders [123] 

due to their demonstrated high ability to condense and deliver nucleic acid molecules [124]. As 

mentioned in the previous section, the stabilization of the vectors composed of surfactant or lipid 

aggregates can be achieved by the addition of different additives such as cholesterol to increase the 

packing of phospholipid [125,126], or polyethylene glycol (PEG) to protect nanoparticles from the 

immune system [127].

A large range of reports suggests the use of cationic surfactants as vectors for the delivery of 

nucleic acids [124,128,129]. Their success is related to easy synthetic pathways and to an efficient 

condensation and delivery of anionic nucleic acids through electrostatic interactions. 

The cellular uptake of the nucleic acid-cationic surfactant complexes is driven by the disruption of 

the endosomal membrane due to the ion pair of the cationic surfactant and anionic lipids within the 

endosome membrane [130]. Regarding the structure, the complexes of the cationic surfactants and 

anionic phospholipids are usually arranged as inverted hexagonal phases, which apparently 

facilitates the release of the plasmid from the endosome into the cytoplasm [130].

Gemini are another class of very promising type surfactants that has been highly effective in 

delivering genetic material to cells. These systems show a very low critical micelle concentration 

which allows the use of less surfactant to achieve the same encapsulation capability [115].

Polymers and surfactants are able to encapsulate genes and drugs, as well as further cargo of 

interest for the treatment of different diseases or health problems. There have been considerable 

efforts in understanding and proving beneficial effects via the use of probiotic bacteria for different 

types of health issues ranging from gastric diseases to atopic dermatitis [131]. Probiotics are living 

microorganisms giving beneficial health effects to the host by replenishing natural gastrointestinal 

microbiota. The effectiveness of probiotics intake in some clinical cases is already recognized e.g. 

in acute gastroenteritis [132]. An estimation of about 1014 viable probiotic cells to potentially 
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harmful bacteria harbor the gastrointestinal tract of an adult and their balance is strictly depended 

on the diet of the host, medication intake, hygiene habits and diseased state [133]. Recent evidences 

highlight the remarkable role played by the gut microbiota in the predisposition to different disease 

phenotypes, which are often followed by dysbiosis, and are a major public health concern, e.g. 

obesity, diabetes and intestinal syndromes [134-136]. In this context, probiotics play a key role in 

the modification of the gene expressions, which are involved in immunomodulation, nutrient 

absorption, suppression of pathogens, energy metabolism and intestinal barrier function such as 

stimulation of epithelial cell proliferation or induction of mucin secretion [131,137-139].

The positive health benefits provided by these probiotic agents are essentially strain- and disease-

dependent. Moreover, designing a delivery vehicle capable to overcome the physiological variations 

(i.e. temperature, pH, ionic strength, etc) with an efficient approach and without any harmful effect 

to the cells and the tissues is a challenging task. As previously discussed for the gene delivery, 

several (but rather similar) barriers can delay or prevent the delivery of probiotic bacteria in a safe 

and effective fashion. Probiotics are often administered orally and, in such case, the cells are 

primarily microencapsulated in order to protect them from the harsh conditions of the 

gastrointestinal passage, i.e. low pH, presence of bile salts and enzymes. The microcapsules are 

usually formed by extrusion, emulsion, spray- and freeze-drying [140,141]. Polysaccharides 

(alginate, chitosan, gellan and xanthan gums) and milk proteins are among the most commonly used 

encapsulating agents [142]. From a formulation point of view, alginate-based materials are by far 

the most explored due to their biocompatibility, biodegradability, very good cytocompatibility and 

mucoadhesive properties. Nevertheless, new systems which can exhibit a wide variety of “smart” 

responses according to the changes in the surrounding physiological parameters are being used for 

the encapsulation and delivery of probiotics [143]. As in the gene delivey, it is possible to have, for 

instance, pH- or thermo-sensitive systems with delivery triggered by precise changes on those 

parameters [144]. As mentioned in previous sections, among the many based systems developed, 

high focus has been given to sugar-based biopolymers for biocompatibility and availability reasons 
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[145]. The use of new tailor-made polymers with smart responses (for instance, using the 

aforementioned RDRP methods) for probiotic delivery emerges as a promising field to be explored 

in the future soon which will definitely generalize the use of probiotics in the treatment of different 

health issues. 

4. Proteins and growth factor delivery

Smart biomaterial approach is one of the fastest growing segments for the treatment of high impact 

diseases, such as cancers, dietary-related disorders, ischemic diseases and dramatic inflammatory 

responses. It is set to expand over the near future, fuelled mainly by the unmet requirements from 

the market for less invasive and more successful treatments, in particular in the key areas of 

inflammatory pathological conditions. The convenience and home use appeal for patients is the 

main driving factor of this industrial branch.

In this context, the most high impact cause of death and/or disability in developed countries refers 

to enzyme and protein disorders and related consequences [146,147]. Currently, affected patients 

cannot rely on a wide variety of surgical and medical options; this condition involves an urgent 

need of possible treatment alternatives, with a main challenge lying in the decrease of side effects 

and specific tailoring of the therapeutic approach. In detail, a promising strategy concerns the study 

of key pathological signalling mechanisms and related pathways involved in the switch control 

between normal and aberrant conditions. The rationale behind such an innovative perspective is on 

stage for the development of more effective chances to therapeutically tune the inflammatory 

pathways. An important target disorder where inflammatory processes are actively incorporated 

deals with cancers: therein, biosensing approaches, such as tuning and silencing of protein and 

enzymatic activity, as well as regulation of small molecule signalling are clever strategies with a 

huge potential for impact of people’s daily life, towards the industrial nanobiotechnology sector 

growth. Over the years, nanotechnology has developed considerably as a result of novel 

technological discoveries, in the area of smart materials and related application. One area in 

bionanomaterials that offers great potential is represented by self-assembly approaches, thanks to 
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their easy strategy for preparation and suitability for biotech engineering tailored modification. Self-

assembly is the process of inter- and intra-molecular bonding through van der Waals forces, ionic 

interactions, H-bonding or hydrophobic interactions, which results in the formation of particularly 

formed structures, that can either form colloidal crystals or particle cluster among others. The 

intrinsic mobility of self-assembled complexes leads to ordered nanostructures upon equilibration 

between aggregated and non-aggregated states, thus providing a number of interesting properties 

such as error correction, self-healing, and high sensitivity to external stimuli. These structuring 

features are nowadays well understood and can be finely controlled in order to introduce and tune 

functional properties of self-assembled nanomaterials used for a wide range of applications.

Polymer-based self-assembled nanostructures, as well as organic nanomaterials (e. g. carbon nano-

onions [148]) have great potential as drug delivery vehicles for invasive cancers, mainly as a result 

of their good biocompatibility [149] and natural degradation/resorption pathways [150]. On the 

other hand, self-assembled hydrogels, composed of biocompatible and amphiphilic polymer 

conjugates, have been shown to exhibit prolonged circulation in blood and preferential 

accumulation when administrated either in vitro or in vivo. From a targeted responsiveness point-of-

view, cancers and aberrant conditions, demonstrated to be associated to low pH [151]. Thus, pH 

proved to be an excellent trigger for targeted cancer release carriers and further silencing of key 

pathological mechanisms therein involved. Another target involves small molecule changes in the 

cellular environment, such as Reactive Oxygen Species (ROS) [152] and formation of small 

amines/alcohol [153].

Besides, intercommunication between cells is mainly driven by growth factors, polypeptides which 

can modulate cellular behavior related to differentiation, proliferation and their ability to synthesize 

extra cellular matrix (ECM), by specifically targeting receptors on the cell surface [154]. Most 

biological processes are initiated by self-assembly reactions in the body. For example, assembly of 

amino acids to peptides to specific secondary, tertiary and quaternary structures that give rise to 

structural and functional proteins. From a material point-of-view, this naturally occurring 
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phenomenon can be recapitulated artificially through spontaneous and random assembly of 

naturally occurring proteins or with a bottom-up approach by incorporating functional sequences, 

which dictate a specific biological response. In this context, hydrogel systems have been 

successfully employed for growth factor delivery and regenerative purposes, thanks to their ability 

to ensure a controlled cell migration [155,156]. Moreover, as previously discussed, hydrogels are 

widely applied for drug delivery purposes, as they mimic the natural ECM [157,158] and allow a 

dual responsive drug release, offering the advantage of incorporation of further supramolecular 

structure, such as liposomes and further micro/nano carriers.

For instance, the peptide sequence (Pro-Lys-Gly)4(Pro-Hyp-Gly)4(Asp-Hyp-Gly)4 simulates the 

collagen self-assembly into a fibrous structure, which eventually triggers a hydrogel formation 

[159]. Similarly, α helical peptides [160], β sheet peptides [161], β hairpin peptides [162], 

amphiphilic peptides [163] and multi-domain peptides [164,165] can lead to self-assembled 

hydrogels based on the chirality and nature of the aminoacidic side chains. As a result, the 

supramolecular hydrogels may vary in their physico-chemical properties such as stiffness, porosity 

and degradation properties. 

The physico-chemical properties of hydrogel platforms play an important role in controlled delivery 

of bioactive factors or cells with a therapeutic potential. A recent study has shown the use of a 

three-dimensional, self-assembled type-I collagen microgel in modulating angiogenic responses of 

human mesenchymal stem cells [166]. Such ECM based microniches also help in promoting 

phenotypic changes by mimicking the signature matrix microenvironment of the predominant cell 

population in the tissue [167,168]. Design of self-assembling peptides using phage display with 

high affinity to growth factors have been utilized for spatio-temporal release of growth factors such 

as BMP-2 (YPVHPST) and TGF-B1 (LPLGNSH) for cartilage and bone regeneration [169]. 

Stimulus responsiveness property has also been incorporated in self-assembling hydrogels, where 

degradation is triggered in presence of an enzyme or reactive species as catalyst. The self-assembly 

of such multi-domain peptides allows greater control on fiber length and diameter, gelling and 
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viscoelastic properties due to its modular design. K(SL)3RG(SL)3K-GRGDS is one example of a 

MMP2 cleavage specific peptide which undergoes the proteolytic degradation by collagenase IV 

[164]. For drug delivery, peptide amphiphiles loaded with therapeutic drugs self-assemble into 

fibrous nanostructures that disassembles and releases the drug upon enzymatic phosphorylation of 

the serine residue [170]. However, in vivo it becomes increasingly challenging to predict the local 

concentration of reactive enzymes. Hence, peptide self-assembling strategies incorporating ester 

groups, which hydrolyze in a more controlled manner than enzymatic reactions are favourable 

[171].

Self-assembled hydrogels made from functional extracellular matrix components have the 

advantage of achieving better biological recognition in a 3D tissue like environments with high 

fidelity. But the complexity, lack of control of the self-assembly process and variation from batch to 

batch may affect reproducibity. However, a semi synthetic approach in designing peptide sequences 

known to influence a biological function such as differentiation, maintenance of stemness or 

influence cellular secretome can be easily fabricated or coupled to a polymeric framework to match 

the physical properties of the tissue. This approach will endorse the need for designing a customised 

3D hydrogel with tunable mechanical and biochemical features using functional recognition 

sequences. Another perspective which has been thoroughly investigated involves spherical 

microgels, that are an interesting bridging among macro-hydrogels and spherical microcarriers 

[156,172]. They can be defined as microscale hydrogels, offering a higher surface to volume ratio, 

compare to macroscale hydrogels. This unique feature enhances both microgels stability and their 

integration within the local tissue mass transport, by decreasing the bulk resistance [173,174]. 

In a size and structural complexity decreasing progression, soft self-assembling frameworks for 

protein delivery can be encompassed by catanionic vesicles, colloidal hollow structures, based on 

pairing of oppositely charged ionic amphiphiles. In detail, the above mentioned amphiphiles easily 

self-aggregate [175] into multi-walled vesicular structures [176]. Vesicles are of increasing interest 

in the biotechnological field [177,178], mimicking biological membranes and their 
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compartmentalization features [179]. Moreover, triggering factors for these structures involves 

salt/co-solutes addition, chain length and temperature, able to provide to multi-to-unilamellar 

transition and thus a controlled therapeutic release [180]. On the other side, liposomes offer another 

‘soft’ alternative for tunable compartmentalization and biological responsive protein delivery. 

Microspheres and hollow spheres are an additional tool for tailored delivery of proteins and growth 

factors, which have been extensively studied. Both synthetic (i.e. polyethyetylene glycol-PEG and 

polydimetylacrylamide-PDMA) and natural based polymers have been employed in their 

fabrication [181,182] Different strategies for their production were proposed, such as emulsion, 

sacrifical template coating, chemical binding. Furthermore, ECM mimicking motifs allow the 

specifi targeting of cellular proteins: this unique feature provide these reservoir systems with 

excellent performances and targeting properties, for growth factors delivery [183,184].

Still keep on decreasing the available protein vehicle systems, there is considerable interest for 

carbon nano-onion [148]. These multi-shell fullerene structures pertain unique physicochemical 

properties of, such as ultra-small size, large surface to mass ratio, high flexibility and capability to 

be complexed (either covalently or non-covalently) with bioactive molecules, including small 

proteins like enzyme binding moieties [148].
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Figure 6. Schematic representation recapitulating platforms for protein/growth factor delivery. 
Scaffold size is decreasing clockwise, from (A) to (F).

5. Synthetic therapeutics delivery

5.1 Challenges of small molecules in drug delivery

Despite in the last twenty years the main trend in pharmaceutical research was driven towards a 

growing interest in macromolecular therapeutics [185], most of the active ingredients still belongs 

to the class of small molecules under 500 Da. For instance, in cancer research, almost 75% of these 

therapeutics derive from synthetic sources [186]. The major issue of small molecule therapeutics is 

represented by the toxic side effects of high doses, due to an overall poor biodistribution and rapid 

clearance [187]. Moreover, when a low invasive and high patient friendly administration route is 

chosen, such as the oral approach, additional factors can influence and reduce the therapeutic 

efficacy of the majority of Active Pharmaceutical Ingredients (APIs) with poor solubility and low 

permeability in gastro-intestinal environment [188]. Besides solubility issues of hydrophobic 

compunds, a larger group of drugs are susceptible to several biochemical barriers, such as 

enzymatic attack, hydrolysis, degradation in the low gastric pH, unspecific endocytosis of the 
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extended mucosa surface [189], pre-systemic metabolic pathways [190], intracellular 

biotrasformations [191] and plasma proteins complexation and recognition by the cells of the 

mononuclear phagocyte system [192].

Nowadays, the low bioavailability still represents a concrete issue: more than 90% of active 

compounds discovered and approved since 1995 belong either to class II or IV in the standard of 

Biopharmaceutical Classification System (BCS) [193]. Several strategies were developed to 

enhance both solubility and permeability of APIs. These approaches include the modification of 

both physical and chemical properties of the API [194]. The modification of physical characteristics 

is mainly focused on micronization techniques [195,196] reduction of crystal sizes, amorphization 

and stabilization of such solid dispersions [197,198]. Recently, further efforts have been paid to 

enhance specific organs and tissues targeting, while improving drug permeability on specific 

diseased cell targets. 

5.2 Lipid based- nanovesicles

As previously mentioned, lipid based nanovesicles (LNVs) are defined as spherical vesicles 

constituted by a bilayered lipid membrane. In a size-driven perspective, these colloidal carriers can 

be divided into small unilamellar vesicles (SUVs, with diameter <200 nm and single bilayer 

membrane), large unilamellar vesicles (LUVs, diameter ranging 200-1000 nm, single bilayer 

membrane), giant unilamellar vesicles (GUVs, diameter >1000 nm, single bilayer membrane), 

multilamellar vesicles (MLVs composed by concentric vesicles, or multiple concentric bilayers) 

and multi vesicular vesicles (MVVs, composed by multiple vesicles confined inside a larger one). 

Figure 7 groups the different types of nanovesicular systems, with increasing size characteristics. 

Since the first LNV proposed by Gregoriadis in 1974 [120], a large number of nanovesicicular 

systems were developed. Such an impressive success is due to their ability to incorporate functional 

biomacromolecules on the lipid bilayer, proposing as smart, flexible, stimuli responsive systems. 
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Key features of these colloidal carriers involve the API encapsulation efficiency (EE), the particle 

size distribution and the z potential.

Figure 7. Schematic representation of the main lipid based nanovesicular systems.

Over lipidic nanovesicles class, liposomes were the first discovered structures, composed by natural 

phospholipids membranes in the form of SUV and MLV. Nowadays, further in-depth researches 

explored the use of many synthetic phospholipids like phosphatidylglycerol, 

phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine [199]. The first method 

developed for the encapsulation of hydrophilic compounds refers to the thin layer hydration (TLH), 

characterized by a very low EE due to the highly non-favoured partition of hydrophilic molecules 

inside the vesicle cavity versus the surrounding aqueous medium. Further methods involved the 

combination of TLH with other approached to enhance the EE of hydrophilic molecules: reiterated 

freeze–thaw (FT), reverse phase evaporation (REV) and dehydration–rehydration of empty vesicles 

(DRV).

The FT method allows the spontaneous MLVs disruption by the water ice crystals produced in the 

freezing process, leading to the fabrication of SUVs. The EE can be modulated by tuning the FT 

cycle rate, the aqueous solute and lipid concentrations. Additional extrusion steps after FT have 

shown to improve the size distribution, such as the encapsulation of the hydrophilic drug itopride in 

liposomes [200]. On the other hand, multiple FT cycles can increase liposome diameter and 
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polydispersity, when liposome components are highly susceptible to salt concentration (i.e. egg 

phosphatidylcholine) [201].

Reverse phase evaporation method (REV) is another approach to encapsulate small hydrophilic 

drugs. Therein, the lipids are dissolved in an organic phase and further incorporated in an aqueous 

phase with the drug. The obtained emulsion is subsequently treated with evaporation-hydration 

cycles, leading to the formation of liposomes, mainly LUVs with large EE. For example, the 

addition of the REV step to TLH introduced an EE increase in the case of sumatriptan succinate 

[202]. Conversely the utilization of REV can result in a decrease of hydrophobic drugs 

encapsulation efficiency, compared to TFH, as in the case of acetazolamide, inside multilamellar 

vesicles [203] and ketoprofen-hydroxypropyl-β-cyclodextrin complexes included into large 

unilamellar vesicles [204]. Liposomal vesicles can be fabricated by means of a dehydration–

rehydration method (DRV), adding a buffer to the thin film and further lyophilize. The solid pellet 

is then rehydrated with the drug solution. Compared to conventional TFH, DRV produced a high 

drug/lipid ratio in the case of vancomycin [205], with an impressive increase of EE (30 and 130 

fold), for both non-decorated and pegylated liposomes, respectively. Recent reviews discussed 

innovative methods for liposomes fabrication [206-208], including microfluidics [209,210], 

compressed/supercritical fluids for the incorporation of both hydrophilic and lipophilic drugs into 

the vesicles [211,212].

A large variety of liposomal formulations was developed by incorporating one or more multitasking 

ligands within the vesicle membrane. Liposomes can exert a passive targeting by enhancing the 

permeability retention time [213] or by depletion of macrophages, as shown in the case of the 

hydrophobic drug amphotericin B [214]. On the other hand, active targeting features can involve 

the binding mechanisms of liposomes towards bioactive receptors, such as antibody conjugates 

[215] or permeation enhancers, like cell-penetrating peptides (CPPs) [216]. Stimuli-responsiveness 

is an attractive perspective for specifically triggered drug release towards liposomes, aiming to 

reduce the side effects of unspecific targeting through a dual action. In the first instance, by 
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targeting the lower pH inside the endosome; secondly, while providing for conformational changes 

of dioleylphosphoethanolamine (DOPE) and cholesterylhemisuccinate, the therapeutic cargo can be 

released in the cytoplasm [217]. At present, doxorubicin is one of the most studied drugs for 

liposomal triggered-release, with a thermosensitive formulaton, ThermoDox®, in clinical trials. 

Other liposomal formulations with small bioactive molecules are available in the market, with good 

encapsulation efficiency. Nevertheless targeted formulations or stimuli-responsive liposomes are 

still challenging at a research stage.

The main reason for such a limited transfer of liposomal formulation into the bipharmaceutical 

market relies on the drawback of their low physico-chemical stability, due to the intrinsic poor 

aqueous solubility of phospholipids, which tend to aggregate into bigger clusters [218]. As a 

consequence, liposome suspensions are usually lyophilized and stored as dry products [219]. 

5.3 Non-liposomal nanovesicles

The limited efficacy of liposomes broadens research horizons towards employing lipids in 

combination with alternative self-assembling materials, such as surfactants [220,221], polymers 

[222] and peptides [223]. 

Non-liposomal nanovesicles can be classified according to the alternative component versus 

phospholipid: niosomes, sphingosomes, pharmacosomes and quatsomes.

Niosomes are prepared by hydrating a mixture of lipids with non-ionic surfactants, such as alkyl 

ethers, alkylesters alkylamides, fatty acids and amino acids. Niosomes are able to encapsulate both 

hydrophilic and hydrophobic drugs. The use of cholesterol as lipid component leads to a more rigid 

and less leaky bilayers, which makes it particularly suitable for small drugs such as calcein [224] or 

poorly soluble beclomethasone dipropionate [221]. Niosomes exhibit an overall short-term stability, 

which strongly depends on the additional membrane components [225]. 

Sphingosomes are composed by natural or synthetic sphingolipids, which form nanovesicles in the 

form of SUVs and LUVs. Compared to niosomes, they show an enhanced stability, as well as an 

improved resistance against hydrolysis, compared to liposomes. A promising application of 
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sphingosomes was found in the encapsulation of alchaloids like vinorelbine [226].

In pharmacosomes, normal phospholipids are replaced by lipids covalently bonded to the API to be 

delivered. Pharmacosomes demonstrated higher encapsulation efficiency than liposomes [227].

Quatsomes are unilamellar nanovesicles composed by quaternary ammonium surfactants and sterols 

(e. g. cholesterol and β-sitosterol) [228]. Several surfactants were utilized so far: cetrimonium 

bromide (CTAB), myristalkonium chloride (MKC) and cetylpyridinium chloride (CPC). Their 

unilamellar and homogeneous morphology proposes these nanovesicles as excellent candidates for 

stable functionalization aimed to passive targeting [212]. Their key features consist of their very 

low size, good dispersion, as well as the remarkable and long-term stability [229]. 

Conventional fabrication methods like TFH were combined with size reducing post formation steps. 

Extensively studied examples are ultrasound sonication, proposed for liposomal encapsulation of 

anticancer drugs [230], extrusion reduced polydispersity and size of niosomes loaded with tretinoin 

[231] or high-pressure homogenization with a uniform dispersion of SUVs containing the poorly 

soluble drug fenofibrate [232]. The most novel technologies are based on compressed fluids (CFs) 

[212,233], microfluidics [209,230] and freeze-drying of emulsions [234]. In compressed fluid 

technology (CFs), the gas is rapidly pressurized, which modulate the solvent density. Fast density 

variations are more significant when there is a phase transition crossing the critical point. The 

broadest fluid employed in this field is carbon dioxide (CO2) thanks to its mild critical conditions 

(Pc= 74 bar, Tc=30.95 ºC), which allow the application to thermosensitive compounds. Within this 

group, it is worth to mention the Depressurization of Expanded Liquid Organic Solution-

SUSPension (DELOS SUSP) [212,229] and DESAM (Depressurization of an Expanded Solution 

into Aqueous Media) [235]. 

Another unconventional method for nanovesicles production is based on the freeze-drying of 

emulsions. Herein, the hydrophilic components (i. e. drug and or cryoprotectant) and hydrophobic 

components (i. e. drugs and lipids) are dissolved respectively in water and organic phases, leading 

to an emulsion by mixing. The emulsion is freeze-dried and the solid pellet is resuspended prior its 
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use. Several small molecule drugs including both hydrophobic (e. g. flurbiprofen) and hydrophilic 

(e. g. paeoniflorin) and amphiphilic (e. g. barberin) APIs were encorporated into liposomal SUVs 

[234].

The new generation of nanovesicles shows complementary features compared to liposomes, 

overcoming most of their drawbacks in terms of formulation stabililty, easy technology and cost-

effectiveness. Besides liposomes have already shown a complete potential as nanocarriers, non-

liposomal L-NVs propose as promising frontiers in the near future, from the lab bench to clinical 

practice. 

6. Nanocarriers for bioimaging and diagnostic

High-resolution cellular and tissue imaging is a highly interdisciplinary field, merging expertise in 

materials chemistry, nanotechnology, biology, physics and medicine. In this context, optical and 

fluorescent imaging is a research branch of increasing interest because is non-invasive, involves the 

use of visible, ultraviolet and infrared light decreasing the exposure to harmful radiation, and can 

produce images of organs, soft tissue and cells both in vitro and in vivo. 

Applications of fluorescent carriers span from in vitro biologically relevant processes associated 

with diseases and aberrant situation (i.e. cancers) to in vivo imaging of biological pathways. Thus, 

the main characteristics for a colloidal platform involve highly tunable size and surface, ability to 

further target the cell surface with enzyme-binding motifs penetration and imaging capabilities. In 

the past years fluorescent carriers to be applied as optical imaging tools have been developed both 

for the localization of specialized nanoparticles in the cells and for diagnostic applications. The 

cellular uptake of nanoparticles and the compartmentalization of the latter in a specific organ or 

tissue or inside the cell can be achieved by this method. Moreover imaging as a non-invasive 

technique for live study event at a molecular level and as diagnostic tool which can identify 

abnormalities on patients before or after the development of the disease is needed. 
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One of the main strategies to enhance bio-imaging rely on the development of imaging probes for 

the biologically relevant near-infra red (NIR) and far-red region, where tissue exhibit minimal 

absorbance [236].  Therefore the development of new organic dies molecule emitting in the far-red 

and NIR region [237].  is increasing thanks to their ability to reduce the tissue auto-fluorescence, 

allowing a high resolution imaging and a deeper tissue penetration. 

Carbon Nano Materials (CNMs) have arisen great interest for biomedical application due to their 

biocompatibility, low toxicity, small size, and large surface area. Surface functionalization on these 

materials is possible and well explored, usually through chemical reaction directly with the sp2 

carbon atoms present on the material surface. This allows their surface modification to make CNMs 

soluble in aqueous environments and biocompatible, besides readily internalized by cells. On the 

other hand this chemically controlled surface functionalization both by covalent and noncovalent 

approach (e.g π-π stacking), allowed chemist to create specialized nanoparticle specific for 

bioimaging. Moreover, some CNMs such as single walled carbon nanotubes (SWCNTs) [238], 

carbon dots (CDs) [239].  and graphene, can also act as imaging agents themselves, due to their 

intrinsic optical properties [240]. 

Multi-shell fullerenes, known as carbon nano-onions (CNOs), have recently gathered great interest 

among researchers and have been successfully applied in a variety of different fields of application 

such as energy storage [241,242], catalysis [243], supercapacitors  [244] and imaging [245].  

CNOs are attractive platforms for imaging, diagnostic and therapeutic applications, thanks to their 

small size. Moreover, their surface can be chemically modified modulating cell penetration and cell 

recognition respectively [148]. Recent reports showed that fluorescently labelled CNOs, with an 

average of 5 nm, exhibit weak inflammatory potential and a low cytotoxicity [246]. They are 

readily internalized by cancer cells and deposited in the lysosomes [247,248]. Toxicological studies 

were conducted on fluorescein-functionalized CNOs both in vitro and in vivo. A comparison among 

the above mentioned functionalized CNOs and functionalized carbon nanotubes (CNTs) in terms of 

cytotoxicity and immunomodulatory properties demonstrated that CNOs exhibit efficient cellular 
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uptake and reveal a bright fluorescence signal [246].  These biologically relevant features proposed 

CNOs at the forefront for biomedical applications. Moreover, in vivo studies on zebrafish (Danio 

Rerio) in the development stage, confirmed their ecocompatibility and homogenous distribution in a 

vertebrate model system, exhibiting excellent performances as biomedical probes [249].   An 

example of multi-functionalized CNOs (f-CNOs) as targeted delivery system have been reported, 

where CNOs were surface functionalized with fluorescein and folic acid moieties for both imaging 

and targeting of cancer cells [248].  The f-CNOs showed a bright fluorescence and a selective and 

rapid internalization in cancer cells (HeLa and KB cells) without toxicity. The f-CNOs were 

localized into specific cell compartments using a correlative approach with confocal and 

transmission electron microscopy [248].
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Figure 8.  High resolution TEM image (a) and AFM topograph (b) of pristine CNOs. Confocal 
microscopy of C57BL/6 BMDCs incubated in the presence of fluorescein-CNOs (green), stained 
with wheat germ agglutinin-Alexa Fluor594 (red) and nuclei stain Hoescht (blue) (c). a) b) and c) 
are reproduced from [246], Copyright 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced 
with permission. (d) Representative optical images of zebrafish exposed to BODIPY-CNOs (green). 
Maximum intensity projections of the superior part (left) and tail (right) (Scale bars, 100 μm). 
Reprinted with permission from [249]. Copyright 2016 Nature Publishing Group.

Fullerene C60 is a symmetrical sphere made of carbon atoms with a diameter of 1 nm, which has 

been widely used for biomedical application. Nevertheless the increasing interest on other CNMs 
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such as CNTs and graphene, several examples of fullerene used for drug delivery and bio-imaging 

are present in literature. For examples, biocompatible color-tunable photoluminescent fullerene 

nanomaterials were synthetized by conjugating C60 particles with tetraethylene glycol (TEG) 

molecules [250].  Their high quantum yield and water solubility make them suitable for bio-

imaging application. Recently a biocompatible and water-soluble mesoporous silica nanoparticle 

(MSN) coated with fullerene molecules was reported for the drug release of doxorubicin (DOX) in 

a mild acidic environment [251].  Furthermore, C60-modified MSN showed a green fluorescence of 

peculiar interest for cellular imaging. 

Several carbon nanomaterials are known to emit fluorescence light upon photo-excitation [240].  

The leading examples on CNMs with intrinsic optical properties are semiconducting SWCNTs, 

which show a structure dependent fluorescence in the biologically important 1300-1400 nm near-

infrared window (NIR-IIa window). 

The live imaging of mouse cerebral vasculature using SWCNTs was previously achieved without 

the necessity of craniotomy, cranial windows and skull thinning techniques which are usually 

required [252].  The reduced short-wavelength photon scattering in the NIR-IIa window, allowed an 

improved imaging resolution to a depth of  > 2 mm using three-dimensional in vivo imaging 

through confocal or two-photon techniques. Carbon nanotubes offer also a promising tool as drug 

delivery system, due to their spectroscopic properties and easy surface functionalization. Targeted 

drug delivery system have been reported with CNTs where a drug is loaded on their surface, either 

covalently or by absorption, together with a ligand to facilitate the targeting of selective cancer 

cells. An example is the loading of DOX on SWCNTs through π-π stacking which is feasible due to 

the aromatic moiety of the drug  [253,254]. The DOX was loaded on a high ratio on the SWCNTs 

surface, and the drug was readily released within the acidic tumor microenvironment.  Similarly to 

the adsorption of an aromatic drug molecule, an aromatic organic dye molecule can be absorbed on 

the surface of CNMs. For instance boron dipyrromethene (BODIPY)–pyrene/CNTs [255] and 
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pyrene–BODIPY/CNOs [256] hybrids have been reported as imaging probes, where pyrene is used 

as an anchoring group. 

Similarly to SWCNTs, CDs are biocompatible carbonaceous nanoparticles with intrinsic 

fluorescence easing the inconvenient of functionalizing these nano-probes with small organic 

fluorophore molecules. On the other hand their surface can be chemically modified allowing their 

functionalization with a therapeutic agent and a targeted ligand to apply them as a targeted drug 

delivery system. With a diameter below 10 nm and their low toxicity, they are widely used for 

biomedical applications. Favorable characteristic of CDs are their size- and excitation wavelength- 

dependent photoluminescence (PL) behavior, high stability and resistance to photo bleaching.  

Biocompatibility studies and bio distribution of CDs have been explored on zebrafish as an 

vertebrate model system, proving their compatibility with life and validating their application as 

multi-color imaging probe   [257].

CDs have a tunable emission wavelength, depending on the excitation wavelength, and their 

reported fluorescence wide-ranged from NIR [258], to visible [239], to deep ultraviolet [259].  

Their versatile optical properties allowed them to be employed in several biomedical applications, 

from in vivo imaging to drug delivery. 

Furthermore, fullerene [260] and CNTs [261]  have been proposed for the  development of  new 

MRI contrast agents. In detail, fullerenes can encapsulate gadolinium, decreasing its toxicity. An 

example is represented by gadolinium (Gd)-containing C80 endohedrals (Trimetaspheres™,TMS, 

Gd3N@C80) which was used as an atherosclerotic targeting contrast agents (ATCA) for 

cardiovascular magnetic resonance (CMR) [262].  Similarly gadolinium-functionalized MWCNTs 

as contrast agent for MRI cell labelling and tracking was recently reported [261].   

Multi-modal molecular imaging technique, which is the synergistic combination of two or more 

detection techniques [263], is also used. Examples of the ‘‘dual active’’ approach include the 

development of nanoparticles combining fluorescence and magnetic resonance imaging as they 
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merge effectively the high sensitivity of the fluorescence phenomenon with the high spatial 

resolution of MRI. 

CNMs are quite promising for biomedical applications, as imaging tools, due to their small size, 

biocompatibility and optical characteristics. Besides their intrinsic optical properties and resistance 

to photo bleaching, their quantum yield is lower than small organic molecule. However a 

synergistic combination strategy of synthetic dyes and CNMs hybrids can lead to extreme powerful 

imaging probe for both in vitro and in vivo applications.

7. Conclusions and future outlook

Self-assembly mechanisms mimick biological processes by recapitulating morphological structure 

and organization of native tissues. Overall, all strategies discussed herein, explain the use of 

different colloidal systems to be employed for a tailored bioactive molecule depot. These strategies 

depend on the hierarchical and functional complex stuctures involved, including the target living 

tissues. The functional design of the constructs is encoded by the properties of the fundamental 

units. The tunable characteristics of the systems therefore generated, can ensure precise release of 

bioactive factors or induce a conformational change at the tissue interface. Thus, controlled 

fabrication and selection of colloidal-based scaffolds can help in rapid development of cost-

effective engineered solutions for clinical use. 
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Highlights

Tailored bioactive molecule delivery can be targeted towards several colloidal structures, such as: 

• Hydrogels
• Microgels
• Liposomes
• Surfactant self-assembly
• Covalently functionalized colloidal structures
• Polymers assembly features
• Carbon nano materials
• Polyplexes
• Lipoplexes
• Hollow spheres


