66 research outputs found

    Algorithm Portfolio for Individual-based Surrogate-Assisted Evolutionary Algorithms

    Full text link
    Surrogate-assisted evolutionary algorithms (SAEAs) are powerful optimisation tools for computationally expensive problems (CEPs). However, a randomly selected algorithm may fail in solving unknown problems due to no free lunch theorems, and it will cause more computational resource if we re-run the algorithm or try other algorithms to get a much solution, which is more serious in CEPs. In this paper, we consider an algorithm portfolio for SAEAs to reduce the risk of choosing an inappropriate algorithm for CEPs. We propose two portfolio frameworks for very expensive problems in which the maximal number of fitness evaluations is only 5 times of the problem's dimension. One framework named Par-IBSAEA runs all algorithm candidates in parallel and a more sophisticated framework named UCB-IBSAEA employs the Upper Confidence Bound (UCB) policy from reinforcement learning to help select the most appropriate algorithm at each iteration. An effective reward definition is proposed for the UCB policy. We consider three state-of-the-art individual-based SAEAs on different problems and compare them to the portfolios built from their instances on several benchmark problems given limited computation budgets. Our experimental studies demonstrate that our proposed portfolio frameworks significantly outperform any single algorithm on the set of benchmark problems

    A new evolutionary search strategy for global optimization of high-dimensional problems

    Get PDF
    Global optimization of high-dimensional problems in practical applications remains a major challenge to the research community of evolutionary computation. The weakness of randomization-based evolutionary algorithms in searching high-dimensional spaces is demonstrated in this paper. A new strategy, SP-UCI is developed to treat complexity caused by high dimensionalities. This strategy features a slope-based searching kernel and a scheme of maintaining the particle population's capability of searching over the full search space. Examinations of this strategy on a suite of sophisticated composition benchmark functions demonstrate that SP-UCI surpasses two popular algorithms, particle swarm optimizer (PSO) and differential evolution (DE), on high-dimensional problems. Experimental results also corroborate the argument that, in high-dimensional optimization, only problems with well-formative fitness landscapes are solvable, and slope-based schemes are preferable to randomization-based ones. © 2011 Elsevier Inc. All rights reserved

    Constrained Optimization with Evolutionary Algorithms: A Comprehensive Review

    Get PDF
    Global optimization is an essential part of any kind of system. Various algorithms have been proposed that try to imitate the learning and problem solving abilities of the nature up to certain level. The main idea of all nature-inspired algorithms is to generate an interconnected network of individuals, a population. Although most of unconstrained optimization problems can be easily handled with Evolutionary Algorithms (EA), constrained optimization problems (COPs) are very complex. In this paper, a comprehensive literature review will be presented which summarizes the constraint handling techniques for COP

    Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    Get PDF
    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions

    A Comparison of Selected Modifications of the Particle Swarm Optimization Algorithm

    Get PDF
    We compare 27 modifications of the original particle swarm optimization (PSO) algorithm. The analysis evaluated nine basic PSO types, which differ according to the swarm evolution as controlled by various inertia weights and constriction factor. Each of the basic PSO modifications was analyzed using three different distributed strategies. In the first strategy, the entire swarm population is considered as one unit (OC-PSO), the second strategy periodically partitions the population into equally large complexes according to the particle’s functional value (SCE-PSO), and the final strategy periodically splits the swarm population into complexes using random permutation (SCERand-PSO). All variants are tested using 11 benchmark functions that were prepared for the special session on real-parameter optimization of CEC 2005. It was found that the best modification of the PSO algorithm is a variant with adaptive inertia weight. The best distribution strategy is SCE-PSO, which gives better results than do OC-PSO and SCERand-PSO for seven functions. The sphere function showed no significant difference between SCE-PSO and SCERand-PSO. It follows that a shuffling mechanism improves the optimization process

    Analysis of future hydropower development and operational scenarios on the zambezi river basin

    Get PDF
    The Zambezi River basin is the fourth largest in Africa. Covering an area of about 1 400 000 km2 that is shared among 8 countries, it is the home of over 30 million people. There are ample opportunities for development in the region, including on the hydropower sector, whose estimated potential still to be exploited amounts to over 8 000 MW. In the future, the Zambezi is thought to be particularly vulnerable to climatic changes, with sizable expected impacts on average runoff, and will play a key role in the challenges posed by regional water scarcity. How future and current hydropower schemes are laid out and operate will affect the valuable ecosystems still thriving in the riparian areas of the basin and impact economic, as well as societal aspects. The present contribution employs a daily flow routing model in order to evaluate the impacts of different future hydropower development scenarios on the Zambezi River basin. Resorting to it and a multi-objective optimization technique the trade-offs between environmental and hydropower production concerns were clearly identified

    A hybrid, auto-adaptive, and rule-based multi-agent approach using evolutionary algorithms for improved searching

    Full text link
    Selecting the most appropriate heuristic for solving a specific problem is not easy, for many reasons. This article focuses on one of these reasons: traditionally, the solution search process has operated in a given manner regardless of the specific problem being solved, and the process has been the same regardless of the size, complexity and domain of the problem. To cope with this situation, search processes should mould the search into areas of the search space that are meaningful for the problem. This article builds on previous work in the development of a multi-agent paradigm using techniques derived from knowledge discovery (data-mining techniques) on databases of so-far visited solutions. The aim is to improve the search mechanisms, increase computational efficiency and use rules to enrich the formulation of optimization problems, while reducing the search space and catering to realistic problems.Izquierdo Sebastián, J.; Montalvo Arango, I.; Campbell, E.; Pérez García, R. (2015). A hybrid, auto-adaptive, and rule-based multi-agent approach using evolutionary algorithms for improved searching. Engineering Optimization. 1-13. doi:10.1080/0305215X.2015.1107434S113Becker, U., & Fahrmeir, L. (2001). Bump Hunting for Risk: a New Data Mining Tool and its Applications. Computational Statistics, 16(3), 373-386. doi:10.1007/s001800100073Bouguessa, M., & Shengrui Wang. (2009). Mining Projected Clusters in High-Dimensional Spaces. IEEE Transactions on Knowledge and Data Engineering, 21(4), 507-522. doi:10.1109/tkde.2008.162Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1-2), 103-112. doi:10.1016/j.chemolab.2004.12.011CHONG, I., & JUN, C. (2008). Flexible patient rule induction method for optimizing process variables in discrete type. Expert Systems with Applications, 34(4), 3014-3020. doi:10.1016/j.eswa.2007.05.047Cole, S. W., Galic, Z., & Zack, J. A. (2003). Controlling false-negative errors in microarray differential expression analysis: a PRIM approach. Bioinformatics, 19(14), 1808-1816. doi:10.1093/bioinformatics/btg242FRIEDMAN, J. H., & FISHER, N. I. (1999). Statistics and Computing, 9(2), 123-143. doi:10.1023/a:1008894516817Geem, Z. W. (2006). Optimal cost design of water distribution networks using harmony search. Engineering Optimization, 38(3), 259-277. doi:10.1080/03052150500467430Goncalves, L. B., Vellasco, M. M. B. R., Pacheco, M. A. C., & Flavio Joaquim de Souza. (2006). Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 36(2), 236-248. doi:10.1109/tsmcc.2004.843220Hastie, T., Friedman, J., & Tibshirani, R. (2001). The Elements of Statistical Learning. Springer Series in Statistics. doi:10.1007/978-0-387-21606-5Chih-Ming Hsu, & Ming-Syan Chen. (2009). On the Design and Applicability of Distance Functions in High-Dimensional Data Space. IEEE Transactions on Knowledge and Data Engineering, 21(4), 523-536. doi:10.1109/tkde.2008.178Hwang, S.-F., & He, R.-S. (2006). A hybrid real-parameter genetic algorithm for function optimization. Advanced Engineering Informatics, 20(1), 7-21. doi:10.1016/j.aei.2005.09.001Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777-784. doi:10.1016/j.camwa.2008.02.007Javadi, A. A., Farmani, R., & Tan, T. P. (2005). A hybrid intelligent genetic algorithm. Advanced Engineering Informatics, 19(4), 255-262. doi:10.1016/j.aei.2005.07.003Jin, X., Zhang, J., Gao, J., & Wu, W. (2008). Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-II. Journal of Zhejiang University-SCIENCE A, 9(3), 391-400. doi:10.1631/jzus.a071448Johns, M. B., Keedwell, E., & Savic, D. (2014). Adaptive locally constrained genetic algorithm for least-cost water distribution network design. Journal of Hydroinformatics, 16(2), 288-301. doi:10.2166/hydro.2013.218Jourdan, L., Corne, D., Savic, D., & Walters, G. (2005). Preliminary Investigation of the ‘Learnable Evolution Model’ for Faster/Better Multiobjective Water Systems Design. Evolutionary Multi-Criterion Optimization, 841-855. doi:10.1007/978-3-540-31880-4_58Kamwa, I., Samantaray, S. R., & Joos, G. (2009). Development of Rule-Based Classifiers for Rapid Stability Assessment of Wide-Area Post-Disturbance Records. IEEE Transactions on Power Systems, 24(1), 258-270. doi:10.1109/tpwrs.2008.2009430Kang, D., & Lansey, K. (2012). Revisiting Optimal Water-Distribution System Design: Issues and a Heuristic Hierarchical Approach. Journal of Water Resources Planning and Management, 138(3), 208-217. doi:10.1061/(asce)wr.1943-5452.0000165Keedwell, E., & Khu, S.-T. (2005). A hybrid genetic algorithm for the design of water distribution networks. Engineering Applications of Artificial Intelligence, 18(4), 461-472. doi:10.1016/j.engappai.2004.10.001Kehl, V., & Ulm, K. (2006). Responder identification in clinical trials with censored data. Computational Statistics & Data Analysis, 50(5), 1338-1355. doi:10.1016/j.csda.2004.11.015Liu, X., Minin, V., Huang, Y., Seligson, D. B., & Horvath, S. (2004). Statistical Methods for Analyzing Tissue Microarray Data. Journal of Biopharmaceutical Statistics, 14(3), 671-685. doi:10.1081/bip-200025657Marchi, A., Dandy, G., Wilkins, A., & Rohrlach, H. (2014). Methodology for Comparing Evolutionary Algorithms for Optimization of Water Distribution Systems. Journal of Water Resources Planning and Management, 140(1), 22-31. doi:10.1061/(asce)wr.1943-5452.0000321Martínez-Rodríguez, J. B., Montalvo, I., Izquierdo, J., & Pérez-García, R. (2011). Reliability and Tolerance Comparison in Water Supply Networks. Water Resources Management, 25(5), 1437-1448. doi:10.1007/s11269-010-9753-2McClymont, K., Keedwell, E., Savić, D., & Randall-Smith, M. (2013). A general multi-objective hyper-heuristic for water distribution network design with discolouration risk. Journal of Hydroinformatics, 15(3), 700-716. doi:10.2166/hydro.2012.022McClymont, K., Keedwell, E. C., Savić, D., & Randall-Smith, M. (2014). Automated construction of evolutionary algorithm operators for the bi-objective water distribution network design problem using a genetic programming based hyper-heuristic approach. Journal of Hydroinformatics, 16(2), 302-318. doi:10.2166/hydro.2013.226Michalski, R. S. (2000). Machine Learning, 38(1/2), 9-40. doi:10.1023/a:1007677805582Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-448. doi:10.1111/mice.12062Montalvo, I., Izquierdo, J., Schwarze, S., & Pérez-García, R. (2010). Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling, 52(7-8), 1219-1227. doi:10.1016/j.mcm.2010.02.017Nguyen, V. V., Hartmann, D., & König, M. (2012). A distributed agent-based approach for simulation-based optimization. Advanced Engineering Informatics, 26(4), 814-832. doi:10.1016/j.aei.2012.06.001Nicklow, J., Reed, P., Savic, D., Dessalegne, T., Harrell, L., … Chan-Hilton, A. (2010). State of the Art for Genetic Algorithms and Beyond in Water Resources Planning and Management. Journal of Water Resources Planning and Management, 136(4), 412-432. doi:10.1061/(asce)wr.1943-5452.0000053Onwubolu, G. C., & Babu, B. V. (2004). New Optimization Techniques in Engineering. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-39930-8Pelikan, M., Goldberg, D. E., & Lobo, F. G. (2002). Computational Optimization and Applications, 21(1), 5-20. doi:10.1023/a:1013500812258Reed, P. M., Hadka, D., Herman, J. D., Kasprzyk, J. R., & Kollat, J. B. (2013). Evolutionary multiobjective optimization in water resources: The past, present, and future. Advances in Water Resources, 51, 438-456. doi:10.1016/j.advwatres.2012.01.005Shang, W., Zhao, S., & Shen, Y. (2009). A flexible tolerance genetic algorithm for optimal problems with nonlinear equality constraints. Advanced Engineering Informatics, 23(3), 253-264. doi:10.1016/j.aei.2008.09.001Vrugt, J. A., & Robinson, B. A. (2007). Improved evolutionary optimization from genetically adaptive multimethod search. Proceedings of the National Academy of Sciences, 104(3), 708-711. doi:10.1073/pnas.0610471104Vrugt, J. A., Robinson, B. A., & Hyman, J. M. (2009). Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces. IEEE Transactions on Evolutionary Computation, 13(2), 243-259. doi:10.1109/tevc.2008.924428Xie, X.-F., & Liu, J. (2008). Graph coloring by multiagent fusion search. Journal of Combinatorial Optimization, 18(2), 99-123. doi:10.1007/s10878-008-9140-6Xiao-Feng Xie, & Jiming Liu. (2009). Multiagent Optimization System for Solving the Traveling Salesman Problem (TSP). IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 489-502. doi:10.1109/tsmcb.2008.2006910Zheng, F., Simpson, A. R., & Zecchin, A. C. (2013). A decomposition and multistage optimization approach applied to the optimization of water distribution systems with multiple supply sources. Water Resources Research, 49(1), 380-399. doi:10.1029/2012wr013160Zheng, F., Simpson, A. R., & Zecchin, A. C. (2014). Coupled Binary Linear Programming–Differential Evolution Algorithm Approach for Water Distribution System Optimization. Journal of Water Resources Planning and Management, 140(5), 585-597. doi:10.1061/(asce)wr.1943-5452.000036

    Injecting problem-dependent knowledge to improve evolutionary optimization search ability

    Full text link
    The flexibility introduced by evolutionary algorithms (EAs) has allowed the use of virtually arbitrary objective functions and constraints even when evaluations require, as for real-world problems, running complex mathematical and/or procedural simulations of the systems under analysis. Even so, EAs are not a panacea. Traditionally, the solution search process has been totally oblivious of the specific problem being solved, and optimization processes have been applied regardless of the size, complexity, and domain of the problem. In this paper, we justify our claim that far-reaching benefits may be obtained from more directly influencing how searches are performed. We propose using data mining techniques as a step for dynamically generating knowledge that can be used to improve the efficiency of solution search processes. In this paper, we use Kohonen SOMs and show an application for a well-known benchmark problem in the water distribution system design literature. The result crystallizes the conceptual rules for the EA to apply at certain stages of the evolution, which reduces the search space and accelerates convergence. (C) 2015 Elsevier B.V. All rights reserved.Izquierdo Sebastián, J.; Campbell-Gonzalez, E.; Montalvo Arango, I.; Pérez García, R. (2016). Injecting problem-dependent knowledge to improve evolutionary optimization search ability. Journal of Computational and Applied Mathematics. 291:281-292. doi:10.1016/j.cam.2015.03.019S28129229
    corecore