120 research outputs found

    Polynomial Curve Slope Compensation for Peak-Current-Mode-Controlled Power Converters

    Get PDF
    Linear ramp slope compensation (LRC) and quadratic slope compensation (QSC) are commonly implemented in peak-current-mode-controlled dc-dc converters in order to minimize subharmonic and chaotic oscillations. Both compensating schemes rely on the linearized state-space averaged model (LSSA) of the converter. The LSSA ignores the impact that switching actions have on the stability of converters. In order to include switching events, the nonlinear analysis method based on the Monodromy matrix was introduced to describe a complete-cycle stability. Analyses on analog-controlled dc-dc converters applying this method show that system stability is strongly dependent on the change of the derivative of the slope at the time of switching instant. However, in a mixed-signal-controlled system, the digitalization effect contributes differently to system stability. This paper shows a full complete-cycle stability analysis using this nonlinear analysis method, which is applied to a mixed-signal-controlled converter. Through this analysis, a generalized equation is derived that reveals for the first time the real boundary stability limits for LRC and QSC. Furthermore, this generalized equation allows the design of a new compensating scheme, which is able to increase system stability. The proposed scheme is called polynomial curve slope compensation (PCSC) and it is demonstrated that PCSC increases the stable margin by 30% compared to LRC and 20% to QSC. This outcome is proved experimentally by using an interleaved dc-dc converter that is built for this work

    Advances in Control of Power Electronic Converters

    Get PDF
    This book proposes a list of contributions in the field of control of power electronics converters for different topologies: DC-DC, DC-AC and AC-DC. It particularly focuses on the use of different advanced control techniques with the aim of improving the performances, flexibility and efficiency in the context of several operation conditions. Sliding mode control, fuzzy logic based control, dead time compensation and optimal linear control are among the techniques developed in the special issue. Simulation and experimental results are provided by the authors to validate the proposed control strategies

    Stability analysis and control of DC-DC converters using nonlinear methodologies

    Get PDF
    PhD ThesisSwitched mode DC-DC converters exhibit a variety of complex behaviours in power electronics systems, such as sudden changes in operating region, bifurcation and chaotic operation. These unexpected random-like behaviours lead the converter to function outside of the normal periodic operation, increasing the potential to generate electromagnetic interference degrading conversion efficiency and in the worst-case scenario a loss of control leading to catastrophic failure. The rapidly growing market for switched mode power DC-DC converters demands more functionality at lower cost. In order to achieve this, DC-DC converters must operate reliably at all load conditions including boundary conditions. Over the last decade researchers have focused on these boundary conditions as well as nonlinear phenomena in power switching converters, leading to different theoretical and analytical approaches. However, the most interesting results are based on abstract mathematical forms, which cannot be directly applied to the design of practical systems for industrial applications. In this thesis, an analytic methodology for DC-DC converters is used to fully determine the inherent nonlinear dynamics. System stability can be indicated by the derived Monodromy matrix which includes comprehensive information concerning converter parameters and the control loop. This methodology can be applied in further stability analysis, such as of the influence of parasitic parameters or the effect of constant power load, and can furthermore be extended to interleaved operating converters to study the interaction effect of switching operations. From this analysis, advanced control algorithms are also developed to guarantee the satisfactory performance of the converter, avoiding nonlinear behaviours such as fast- and slowscale bifurcations. The numerical and analytical results validate the theoretical analysis, and experimental results with an interleaved boost converter verify the effectiveness of the proposed approach.Engineering and Physical Sciences Research Council (EPSRC), China Scholarship Council (CSC), and school of Electrical and Electronic Engineerin

    Unfocused ultrasound waves for manipulating and imaging microbubbles

    Get PDF
    With unfocused plane/diverging ultrasound waves, the capability of simultaneous sampling on each element of an array transducer has spawned a branch known as high-frame-rate (HFR) ultrasound imaging, whose frame rate can be two orders of magnitude faster than traditional imaging systems. Microbubbles are micron-sized spheres with a heavy gas core that is stabilized by a shell made of lipids, polymers, proteins, or surfactants. They are excellent ultrasound scatters and have been used as ultrasound contrast agents, and more recently researched as a mechanism for targeted drug delivery. With the Ultrasound Array Research Platform II (UARP II), the objective of this thesis was to develop and advance several techniques for manipulating and imaging microbubbles using unfocused ultrasound waves. These techniques were achieved by combining custom transmit/receiving sequencing and advanced signal processing algorithms, holding promise for enhanced diagnostic and therapeutic applications of microbubbles. A method for locally accumulating microbubbles with fast image guidance was first presented. A linear array transducer performed trapping of microbubble populations interleaved with plane wave imaging, through the use of a composite ultrasound pulse sequence. This technique could enhance image-guided targeted drug delivery using microbubbles. A key component of targeted drug delivery using liposome-loaded microbubbles and ultrasound is the ability to track these drug vehicles to guide payload release locally. As a uniquely identifiable emission from microbubbles, the subharmonic signal is of interest for this purpose. The feasibility of subharmonic plane wave imaging of liposome-loaded microbubbles was then proved. The improved subharmonic sensitivity especially at depth compared to their counterpart of bare (unloaded) microbubbles was confirmed. Following plane wave imaging, the combination of diverging ultrasound waves and microbubbles was investigated. The image formation techniques using coherent summation of diverging waves are susceptible to tissue and microbubble motion artefacts, resulting in poor image quality. A correlation-based 2-D motion estimation algorithm was then proposed to perform motion compensation for HFR contrast-enhanced echocardiography (CEE). A triplex cardiac imaging technique, consisting of B mode, contrast mode and 2-D vector flow imaging with a frame rate of 250 Hz was presented. It was shown that the efficacy of coherent diverging wave imaging of the heart is reliant on carefully designed motion compensation algorithms capable of correcting for incoherence between steered diverging-wave transmissions. Finally, comparisons were made between the correlation-based method and one established image registration method for motion compensation. Results show that the proposed correlation-based method outperformed the image registration model for motion compensation in HFR CEE, with the improved image contrast ratio and visibility of geometrical borders both in vitro and in vivo

    Techniques for low jitter clock multiplication

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 115-121).Phase realigning clock multipliers, such as Multiplying Delay-Locked Loops (MDLL), offer significantly reduced random jitter compared to typical Phase-Locked Loops (PLL). This is achieved by introducing the reference signal directly into their voltage controlled oscillators (VCO) to realign the phase to the clean reference. However, the typical cost of this benefit is a significant increase in deterministic jitter due to path mismatch in the detector as well as analog nonidealities in the tuning circuits. This thesis proposes a mostly-digital tuning technique that drastically reduces deterministic jitter in phase realigning clock multipliers. The proposed technique eliminates path mismatch by using a single-path digital detection method that leverages a scrambling time-to-digital converter (TDC) and correlated double sampling to infer the tuning error from the difference in cycle periods of the output. By using a digital loop filter that consists of a digital accumulator, the tuning technique avoids the analog nonidealities of typical tuning paths. The scrambling TDC is not a contribution of this thesis. A highly-digital MDLL prototype that uses the proposed tuning technique consists of two custom 0.13 [mu]m ICs, an FPGA board, a discrete digital-to-analog converter (DAC) with effective 8 bits, and a simple RC filter. The measured performance (for a 1.6 GHz output and 50 MHz reference) demonstrated an overall jitter of 0.93 ps rms, and estimated random and deterministic jitter of 0.68 ps rms and 0.76 ps peak-to-peak, respectively. The proposed MDLL architecture is especially suitable for digital ICs, since its highly-digital architecture is mostly compatible with digital design flows, which eases its porting between technologies.by Belal Moheedin Helal.Ph.D

    Acoustic cavitation characterisation in viscous deep eutectic solvents for optimisation of sonoprocessing of technology critical materials

    Get PDF
    The UK alone produced a total of 1.6 Mt of electronic waste in 2019, containing approximately 380,000 kg of technology critical metals worth $148 M per annum. Within this, printed circuit boards (PCBs) are the largest source of metals from electronic waste, containing up to 30-40 wt.% of technology critical metals. Traditional recycling techniques lack selectivity and have significant environmental and health impact. Ionometallurgy is a promising new technique for recovering metals from electronic waste using deep eutectic solvents (DESs). These solvents offer distinct advantage over traditional techniques, including much lower temperature requirements, avoidance of toxic reagents and reduced water consumption. DESs are cheap, readily available and can be adapted for selectivity. Despite these advantages, DESs are limited by slow dissolution kinetics primarily due to slow mass transport associated with their high viscosities. Power ultrasonics presents a useful solution to these issues. Sonication in DES is hypothesised to increase mass transport, remove passivating surface layers and promote cavitation-mediated effects. However, study into the cavitation activity in solutions other than water are limited. For efficient processing, cavitation generated at the tip of a sonotrode as a function of input power is required. This work is the first comprehensive investigation of cavitation in DESs, for process optimisation to enhance precious metal recycling. Detailed characterisation of the cavitation generated by two sonotrodes in a number of DESs of varying viscosity and water is performed. High-speed imaging (HSI) and acoustic detection from a novel in-house constructed cavitation detector, characterised and validated against a commercially available cavitation sensor (NPL CaviSensorTM), identifies potentially optimal sonication parameters in each liquid. Detailed characterisation of each DES combining synchronised acoustic detection and HSI reveals generation of specific cavitation dynamics and associated cavitation structure, often characterised by a densely packed bulbous cavitation cloud, generating multi-fronted shockwaves. The sonotrode is deployed in DES for the delamination of technology critical metals from waste PCBs. Sonication was observed to delaminate the metals from the PCB at a rate over thirty times faster than in silent conditions. Furthermore, an optimally identified lower power sonication was shown to delaminate a greater quantity of metals from the PCB compared to a higher power sonication, over the same duration. The sonotrode is also deployed to investigate delamination of alternative technology critical resources; lithium-ion batteries and photovoltaics, as well as for rate enhancement of electrodissolution of copper. Further collaborative studies investigate single-bubble dynamics for validation of modelling in the audible frequency range, with interesting potential applications. The results of the studies in this thesis demonstrate the utility and validity of proper cavitation characterisation in solutions intended for sonoprocessing. This characterisation can be performed simply, using bespoke, cheap passive cavitation detectors to gather acoustic measurements at sufficiently fine incremental input powers. Identification of optimal powers of any ultrasonic system for maximum cavitation efficiency is of relevance to many potential processes. In particular, the need for green technologies for electronic waste recycling, could present an ideal problem that can be tackled by ultrasonically enhanced ionometallurgy

    Optimization of System Identification for Multi-Rail DC-DC Power Converters

    Get PDF
    Ph. D. Thesis.There have been many recursive algorithms investigated and introduced in real time parameter estimation of Switch Mode Power Converters (SMPCs) to improve estimation performance in terms of faster convergence speed, lower computational cost and higher estimation accuracy. These algorithms, including Dichotomous Coordinate Descent (DCD) - Recursive Least Square (RLS), Kalman Filter (KF) and Fast Affine Projection (FAP), etc., are commonly applied for performance comparison of system identification of single-rail power converters. When they need to be used in multi-rail architectures with a single centralized controller, the computational burden on the processor becomes significant. Typically, the computational effort is directly proportional to the number of converters/rails. This thesis presents an iterative decimation approach to significantly alleviate the computational burden of centralized controllers applying real-time recursive system identification algorithms in multirail power converters. The proposed approach uses a flexible and adjustable update rate rather than a fixed rate, as opposed to conventional adaptive filters. In addition, the step size/forgetting factors are varied, as well, corresponding to different iteration stages. As a result, reduced computational burden and faster model update can be achieved. Recursive algorithms, such as Recursive Least Square (RLS), Affine Projection (AP) and Kalman Filter (KF), contain two important updates per iteration cycle. Covariance Matrix Approximation (CMA) update and the Gradient Vector (GV) update. Usually, the computational effort of updating Covariance Matrix Approximation (CMA) requires greater computational effort than that of updating Gradient Vector (GV). Therefore, in circumstances where the sampled data in the regressor does not experience significant fluctuations, re-using the Covariance Matrix Approximation (CMA), calculated from the last iteration cycle for the current update can result in computational cost savings for real- time system identification. In this thesis, both iteration rate adjustment and Covariance Matrix Approximation (CMA) re-cycling are combined and applied to simultaneously identify the power converter model in a three-rail power conversion architecture. Besides, in multi-rail architectures, due to the high likelihood of the at-the-same-time need for real time system identification of more than one rail, it is necessary to prioritize each rail to guarantee rails with higher priority being identified first and avoid jam. In the thesis, a workflow, which comprises sequencing rails and allocating system identification task into selected rails, was proposed. The multi-respect workflow, featured of being dynamic, selectively pre-emptive, cost saving, is able to flexibly change ranks of each rail based on the application importance of rails and the severity of abrupt changes that rails are suffering to optimize waiting time and make-span of rails with higher priorities
    • …
    corecore