585 research outputs found

    Wearable and BAN Sensors for Physical Rehabilitation and eHealth Architectures

    Get PDF
    The demographic shift of the population towards an increase in the number of elderly citizens, together with the sedentary lifestyle we are adopting, is reflected in the increasingly debilitated physical health of the population. The resulting physical impairments require rehabilitation therapies which may be assisted by the use of wearable sensors or body area network sensors (BANs). The use of novel technology for medical therapies can also contribute to reducing the costs in healthcare systems and decrease patient overflow in medical centers. Sensors are the primary enablers of any wearable medical device, with a central role in eHealth architectures. The accuracy of the acquired data depends on the sensors; hence, when considering wearable and BAN sensing integration, they must be proven to be accurate and reliable solutions. This book is a collection of works focusing on the current state-of-the-art of BANs and wearable sensing devices for physical rehabilitation of impaired or debilitated citizens. The manuscripts that compose this book report on the advances in the research related to different sensing technologies (optical or electronic) and body area network sensors (BANs), their design and implementation, advanced signal processing techniques, and the application of these technologies in areas such as physical rehabilitation, robotics, medical diagnostics, and therapy

    Haptic wearables as sensory replacement, sensory augmentation and trainer - a review

    Get PDF
    Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage

    An investigation into the utility of wearable sensor derived biofeedback on the motor control of the lumbar spine

    Get PDF
    Lower back pain (LBP) is a disability that affects a large proportion of the population and treatment for this has been shifting towards a more individualized, patient-centered approach. There has been a recent uptake in the utilization and implementation of wearable sensors that can administer biofeedback in various industrial, clinical, and performance-based settings. The overall aim of this Master’s thesis was to investigate how wearable sensors can be used in a sensorimotor (re)training approach, including how sensory biofeedback from wearable sensors can be used to improve measures of spinal motor control and proprioception. Two complementary research studies were completed to address this overall aim. As a systematic review, Study #1 focused on addressing the lack of consensus surrounding wearable sensor derived biofeedback and spine motor control. The results of this review suggest that haptic/vibrotactile feedback is the most common and that it is administered in an instantaneous real-time manner within most experimental paradigms. Further, study #1 identified clear gaps within the research literature. Specifically, future research would benefit from more clarity regarding study design, and movement instructions, and explicit definitions of biofeedback parameters to enhance reproducibility. The aim of Study #2 was to assess the acute effects of wearable sensor-derived auditory biofeedback on gross lumbar proprioception. To assess this, participants completed a target repositioning protocol, followed by a training period where they were provided with auditory feedback for two of four targets based on a percentage of their lumbar ROM. Results suggest that mid-range targets benefitted most from the acute auditory feedback training. Further, individuals with poorer repositioning abilities in the pre-training assessment showed the greatest improvements from the auditory feedback training. This suggests that auditory biofeedback training may be an effective tool to improve proprioception in those with proprioceptive deficits. Collectively these complimentary research studies will improve the understanding surrounding the ecological utility of wearable sensor derived biofeedback in industrial, clinical, and performance settings to enhance to sensorimotor control of the lumbar region

    Analysis of Wireless Body-Centric Medical Sensors for Remote Healthcare

    Get PDF
    Aquesta tesi aborda el problema de trobar solucions confortables, de baixa potència i sense fils per aplicacions mèdiques. La tesi tracta els avantatges i les limitacions de tres tecnologies de comunicació diferents per la mesura de paràmetres del cos i mètodes per redissenyar sensors per avaluacions òptimes centrades en el cos. La tecnologia RFID es considera una de les solucions més influents per superar el problema del consum d'energia limitat, a causa de la presència de molts sensors connectats. També s'ha estudiat la tecnologia Bluetooth de baixa energia per resoldre els problemes de seguretat i la distància de lectura que, en general, representen el coll d'ampolla de RFID pels sensors de cos. Els dispositius analògics poden reduir dràsticament les necessitats d'energia a causa dels sensors i les comunicacions, considerant pocs elements i un mètode de transmissió simple. S'estudia un mètode de comunicació completament passiu, basat en FSS, que permet una distància de lectura raonable amb capacitats de detecció precises i confiables, que s'ha discutit en aquesta tesi. L'objectiu d'aquesta tesi és investigar múltiples tecnologies sense fils per dispositius portàtils per identificar solucions adequades per aplicacions particulars en el camp mèdic. El primer objectiu és demostrar la facilitat d'ús de les tecnologies econòmiques sense bateria com un indicador útil de paràmetres fisiopatològics mitjançant la investigació de les propietats de les etiquetes RFID. A més a més, s'ha abordat un aspecte més complex respecte a l'ús de petits components passius com sensors sense fils per trastorns del son. Per últim, un altre objectiu de la tesi és el desenvolupament d'un sistema completament autònom que utilitzi tecnologia BLE per obtenir propietats avançades mantenint baix tant el consum com el preuEsta tesis aborda el problema de encontrar soluciones confortables, inalámbricas y de baja potencia para aplicaciones médicas. La tesis discute las ventajas y limitaciones de tres tecnologías de comunicación diferentes para la medición en el cuerpo y los métodos para elegir y remodelar los sensores para evaluaciones óptimas centradas en el cuerpo. La tecnología RFID se considera una de las soluciones más influyentes para superar el consumo de energía limitado debido a la presencia de muchos sensores conectados. Además, la baja energía de Bluetooth se ha estudiado se ha estudiado la tecnologia Bluetooth de baja energia para resolver los problemas de seguridad y la distancia de lectura que, en general, representan el cuello de botella de la RFID para los sensores de cuerpo. Los dispositivos analógicos pueden reducir drásticamente las necesidades de energía debido a los sensores y las comunicaciones, considerando pocos elementos y un método de transmisión simple. Se estudia un método de comunicación completamente pasivo, basado en FSS, que permite una distancia de lectura razonable con capacidades de detección precisas y confiables, que se ha discutido en esta tesis. El objetivo de esta tesis es investigar múltiples tecnologías inalámbricas para dispositivos portátiles para identificar soluciones adecuadas para aplicaciones particulares en campos médicos. El primer objetivo es demostrar la facilidad de uso de las tecnologías económicas sin batería como un indicador útil de dichos parámetros fisiopatológicos mediante la investigación de las propiedades de las etiquetas RFID. Además, se ha abordado un aspecto más complejo con respecto al uso de pequeños componentes pasivos como sensores inalámbricos para enfermedades del sueño. Por último, un resultado de la tesis es desarrollar un sistema completamente autónomo que utilice la tecnología BLE para obtener propiedades avanzadas que mantengan la baja potencia y un precio bajo.This thesis addresses the problem of comfortable, low powered and, wireless solutions for specific body-worn sensing. The thesis discusses advantages and limitations of three different communication technologies for on body measurement and investigate methods to reshape sensors for optimum body-centric assessments. The RFID technology is considered one of the most influential solutions to overcome the limitated power consumption due to the presence of many sensors connected. Further, the Bluetooth low energy has been studied to solve security problems and reading distance that overall represent the bottleneck of the RFID for the body-worn sensors. Analog devices can drastically reduce the energy needs due to the sensors and the communications, considering few elements and a simple transmitting method. An entirely passive communication method, based on FSS is studied, enabling a reasonable reading distance with precise and reliable sensing capabilities, which has been discussed in this thesis. The objective of this thesis is to investigate multiple wireless technologies for wearable devices to identify suitable solutions for particular applications in medical fields. The first objective is to demonstrate the usability of the inexpensive battery-less technologies as a useful indicator of such a physio-pathological parameters by investigating the properties of the RFID tags. Furthermore, a more complex aspect regards the use of small passive components as wireless sensors for sleep diseases has been addressed. Lastly, an outcome of the thesis is to develop an entirely autonomous system using the BLE technology to obtain advanced properties keeping low power and a low price

    Evaluating devices for the measurement of auditory-evoked fetal movement

    Get PDF
    Determining normal and abnormal fetal function in utero in order to better predict which fetuses are at risk for adverse outcome is critical. However, the medical imaging tools that could assist with diagnosis are very expensive and rarely available in the developing world. In this study, we developed a prototype audio-motio-tachograph (AMTG), which measures fetal movements through the recording of abdominal wall deformations and tested it in Rwanda. First, we showed that AMTG detected fetal signals and that fetuses respond to complex acoustic stimuli. In order to improve the sensitivity of the device, we then measured whole abdominal wall deformations in an automated way using a lab-based 3D optical measurement system, in which fringes are projected and the deflections recorded with a camera. We found that abdominal wall deformations can be measured accurately with a non-invasive measurement apparatus. Overall, we conclude that wearable modalities provide a promising alternative assessment capacity in fetal research, especially in low income countries

    Analysis of Android Device-Based Solutions for Fall Detection

    Get PDF
    Falls are a major cause of health and psychological problems as well as hospitalization costs among older adults. Thus, the investigation on automatic Fall Detection Systems (FDSs) has received special attention from the research community during the last decade. In this area, the widespread popularity, decreasing price, computing capabilities, built-in sensors and multiplicity of wireless interfaces of Android-based devices (especially smartphones) have fostered the adoption of this technology to deploy wearable and inexpensive architectures for fall detection. This paper presents a critical and thorough analysis of those existing fall detection systems that are based on Android devices. The review systematically classifies and compares the proposals of the literature taking into account different criteria such as the system architecture, the employed sensors, the detection algorithm or the response in case of a fall alarms. The study emphasizes the analysis of the evaluation methods that are employed to assess the effectiveness of the detection process. The review reveals the complete lack of a reference framework to validate and compare the proposals. In addition, the study also shows that most research works do not evaluate the actual applicability of the Android devices (with limited battery and computing resources) to fall detection solutions.Ministerio de Economía y Competitividad TEC2013-42711-

    Multimodal, Embodied and Location-Aware Interaction

    Get PDF
    This work demonstrates the development of mobile, location-aware, eyes-free applications which utilise multiple sensors to provide a continuous, rich and embodied interaction. We bring together ideas from the fields of gesture recognition, continuous multimodal interaction, probability theory and audio interfaces to design and develop location-aware applications and embodied interaction in both a small-scale, egocentric body-based case and a large-scale, exocentric `world-based' case. BodySpace is a gesture-based application, which utilises multiple sensors and pattern recognition enabling the human body to be used as the interface for an application. As an example, we describe the development of a gesture controlled music player, which functions by placing the device at different parts of the body. We describe a new approach to the segmentation and recognition of gestures for this kind of application and show how simulated physical model-based interaction techniques and the use of real world constraints can shape the gestural interaction. GpsTunes is a mobile, multimodal navigation system equipped with inertial control that enables users to actively explore and navigate through an area in an augmented physical space, incorporating and displaying uncertainty resulting from inaccurate sensing and unknown user intention. The system propagates uncertainty appropriately via Monte Carlo sampling and output is displayed both visually and in audio, with audio rendered via granular synthesis. We demonstrate the use of uncertain prediction in the real world and show that appropriate display of the full distribution of potential future user positions with respect to sites-of-interest can improve the quality of interaction over a simplistic interpretation of the sensed data. We show that this system enables eyes-free navigation around set trajectories or paths unfamiliar to the user for varying trajectory width and context. We demon- strate the possibility to create a simulated model of user behaviour, which may be used to gain an insight into the user behaviour observed in our field trials. The extension of this application to provide a general mechanism for highly interactive context aware applications via density exploration is also presented. AirMessages is an example application enabling users to take an embodied approach to scanning a local area to find messages left in their virtual environment

    Multimodal, Embodied and Location-Aware Interaction

    Get PDF
    This work demonstrates the development of mobile, location-aware, eyes-free applications which utilise multiple sensors to provide a continuous, rich and embodied interaction. We bring together ideas from the fields of gesture recognition, continuous multimodal interaction, probability theory and audio interfaces to design and develop location-aware applications and embodied interaction in both a small-scale, egocentric body-based case and a large-scale, exocentric `world-based' case. BodySpace is a gesture-based application, which utilises multiple sensors and pattern recognition enabling the human body to be used as the interface for an application. As an example, we describe the development of a gesture controlled music player, which functions by placing the device at different parts of the body. We describe a new approach to the segmentation and recognition of gestures for this kind of application and show how simulated physical model-based interaction techniques and the use of real world constraints can shape the gestural interaction. GpsTunes is a mobile, multimodal navigation system equipped with inertial control that enables users to actively explore and navigate through an area in an augmented physical space, incorporating and displaying uncertainty resulting from inaccurate sensing and unknown user intention. The system propagates uncertainty appropriately via Monte Carlo sampling and output is displayed both visually and in audio, with audio rendered via granular synthesis. We demonstrate the use of uncertain prediction in the real world and show that appropriate display of the full distribution of potential future user positions with respect to sites-of-interest can improve the quality of interaction over a simplistic interpretation of the sensed data. We show that this system enables eyes-free navigation around set trajectories or paths unfamiliar to the user for varying trajectory width and context. We demon- strate the possibility to create a simulated model of user behaviour, which may be used to gain an insight into the user behaviour observed in our field trials. The extension of this application to provide a general mechanism for highly interactive context aware applications via density exploration is also presented. AirMessages is an example application enabling users to take an embodied approach to scanning a local area to find messages left in their virtual environment

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Spatial representation and visual impairement - Developmental trends and new technological tools for assessment and rehabilitation

    Get PDF
    It is well known that perception is mediated by the five sensory modalities (sight, hearing, touch, smell and taste), which allows us to explore the world and build a coherent spatio-temporal representation of the surrounding environment. Typically, our brain collects and integrates coherent information from all the senses to build a reliable spatial representation of the world. In this sense, perception emerges from the individual activity of distinct sensory modalities, operating as separate modules, but rather from multisensory integration processes. The interaction occurs whenever inputs from the senses are coherent in time and space (Eimer, 2004). Therefore, spatial perception emerges from the contribution of unisensory and multisensory information, with a predominant role of visual information for space processing during the first years of life. Despite a growing body of research indicates that visual experience is essential to develop spatial abilities, to date very little is known about the mechanisms underpinning spatial development when the visual input is impoverished (low vision) or missing (blindness). The thesis's main aim is to increase knowledge about the impact of visual deprivation on spatial development and consolidation and to evaluate the effects of novel technological systems to quantitatively improve perceptual and cognitive spatial abilities in case of visual impairments. Chapter 1 summarizes the main research findings related to the role of vision and multisensory experience on spatial development. Overall, such findings indicate that visual experience facilitates the acquisition of allocentric spatial capabilities, namely perceiving space according to a perspective different from our body. Therefore, it might be stated that the sense of sight allows a more comprehensive representation of spatial information since it is based on environmental landmarks that are independent of body perspective. Chapter 2 presents original studies carried out by me as a Ph.D. student to investigate the developmental mechanisms underpinning spatial development and compare the spatial performance of individuals with affected and typical visual experience, respectively visually impaired and sighted. Overall, these studies suggest that vision facilitates the spatial representation of the environment by conveying the most reliable spatial reference, i.e., allocentric coordinates. However, when visual feedback is permanently or temporarily absent, as in the case of congenital blindness or blindfolded individuals, respectively, compensatory mechanisms might support the refinement of haptic and auditory spatial coding abilities. The studies presented in this chapter will validate novel experimental paradigms to assess the role of haptic and auditory experience on spatial representation based on external (i.e., allocentric) frames of reference. Chapter 3 describes the validation process of new technological systems based on unisensory and multisensory stimulation, designed to rehabilitate spatial capabilities in case of visual impairment. Overall, the technological validation of new devices will provide the opportunity to develop an interactive platform to rehabilitate spatial impairments following visual deprivation. Finally, Chapter 4 summarizes the findings reported in the previous Chapters, focusing the attention on the consequences of visual impairment on the developmental of unisensory and multisensory spatial experience in visually impaired children and adults compared to sighted peers. It also wants to highlight the potential role of novel experimental tools to validate the use to assess spatial competencies in response to unisensory and multisensory events and train residual sensory modalities under a multisensory rehabilitation
    • …
    corecore