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Abstract

Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful
electronics have enabled the recent development of wearable systems aimed to improve function for individuals
with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical
applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn
devices that interact with skin directly or through clothing and can be used in natural environments outside a
laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an
amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common
in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This
review found that wearable haptic devices improved function for a variety of clinical applications including:
rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables
development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and
biomechanical compliance for long-term usage.
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Introduction
Sensory impairments, including somatosensory, vision,
and audition loss can result from a spectrum of injuries
and diseases such as limb loss, vision loss, and stroke and
have long been known to reduce quality of life and pro-
long rehabilitation [1, 2]. As the world population ages,
the magnitude of these problems will likely increase given
the susceptibility to sensory impairments in older popula-
tions [3]. In the absence of treatments that completely re-
store natural sensory function, approaches focused on
replacing or augmenting deficits may serve as effective
alternatives.
Human skin has long been recognized as a receptor

for communicating information [4]. Skin sensations such
as pressure, vibration, and stretch can convey tactile
messages that are carried to the brain via afferent nerves
[5, 6]. For example, tactile feedback can be used to
encode pressure and vibration measurements from a
prosthesis to the skin of a user [7]. To train human

movement, kinematics can be measured in real time and
compared with predefined desired kinematics, and tact-
ile feedback amplitude or frequency can then be modu-
lated proportionally to error signals to alert users of
desired changes [8–10]. Similarly, tactile feedback has
been used to train repetitive movements such as swim-
ming or gait [11–13] in which case feedback is initiated
in periodic pulses instead of continuously. Another
approach is the expert-trainee paradigm in which the
expert performs movements, which are followed by the
trainee via haptic feedback based on the kinematic errors
between the expert and trainee [14].
Haptic wearables have the potential to address sensory

impairments. We define haptics broadly as the sense of
touch and includes vibration, texture, slip, temperature,
pain, force and proprioception sensations. Smaller, lighter,
and more powerful sensors, actuators, and processors
have enabled a recent rise in wearable technology for
clinical applications. Wearable systems have been used for
performing home rehabilitation, assessing functional ac-
tivity, detecting movement disorders, improving walking
stability, and reducing joint loading [15–17]. These

* Correspondence: pshull@sjtu.edu.cn
1State Key Laboratory of Mechanical System and Vibration, School of
Mechanical Engineering, Shanghai Jiao Tong University, Room 930,
Mechanical Engineering Bld, 800 Dong Chuan Road, Shanghai 200240, China
Full list of author information is available at the end of the article

J N E R JOURNAL OF NEUROENGINEERING
AND REHABILITATION

© 2015 Shull and Damian. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Shull and Damian Journal of NeuroEngineering and Rehabilitation  (2015) 12:59 
DOI 10.1186/s12984-015-0055-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-015-0055-z&domain=pdf
mailto:pshull@sjtu.edu.cn
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


systems give users mobility and the freedom to perform
normal tasks in natural environments.
Clinical applications of haptic wearables may be classi-

fied by degree of sensory impairment (Fig. 1). Total im-
pairment occurs when sensory function is completely lost,
often resulting from damaged, dysfunctional, or missing
sensory receptors or pathways such as for the blind and
amputees. Total impairment requires sensory replacement
either with the same sensing modality or as sensory sub-
stitution [18]. Incomplete sensory information may result
from noisy, degraded sensory signals coincident with old
age or the partial sensory loss from disease or injury. This
leads to partial sensory impairment and can further affect
function. For example, unilateral vestibular loss decreases
postural control, which can lead to difficulties in standing
or walking [19]. Haptic wearables may be useful for partial
sensory impairment as a means of sensory augmentation
facilitating motor control and rehabilitation [20]. In some
clinical applications, sensory information remains intact
but haptic wearables can be used to correct behavioral
deficits such as retraining gait patterns to reduce knee
loading for individuals with knee osteoarthritis. In this no
impairment case, haptic feedback operates as a trainer,
automatically guiding new movement patterns through
cutaneous cuing information.
Due to recent rapidly increasing interest in wearables

for clinical, research, and commercial purposes, there is a
need to clearly present the state-of-the-art as it relates to
impairments and rehabilitation. Thus, the purpose of this
review is to examine haptic wearables for applications of
varying degree of sensory impairment. While the focus
was on portable devices, tethered devices demonstrating
clinical benefits of wearable haptic feedback that could be
made portable (e.g. battery-powered instead of outlet-
powered) were also included. Wearable robotic rehabilita-
tion or powered exoskeleton devices were not included as
they have been the subject of previous review [21, 22].
The paper is organized by descending degree of sensory

impairment beginning with sensory replacement, then
sensory augmentation, and finally trainer.

Sensory replacement
Haptic wearables can act as a sensory replacement for
total impairments. This section covers haptic applications
involving missing upper and lower limbs followed by
vision and auditory loss.

Upper-limb prosthetics
Prosthetic hands have achieved remarkable mechatronic
capabilities (e.g. Revolutionizing Prosthetics and Otto
Bock), however, up to 39 % of amputees wearing myoelec-
trically controlled prostheses do not use them regularly or
at all due to a lack of tactile sensory feedback [23–26].
Current grasp information in prosthetic users occurs
through visual observation (77 %), listening (67 %) and re-
sidual limb sensations (57 %) [27]. Haptics for total im-
pairment aims to restore missing tactile or proprioceptive
information vital to prosthetic grasp to prolong sustained
prosthesis use [28–31]. A major challenge is orchestrating
spatial and temporal stimulation patterns and energy
demands such that they give rise to congruent neuronal
representations of vibration, contact, force, pressure, slip
or muscle impedance during long-term use.
Haptic feedback for upper limb prostheses restores

the sense of touch by relaying force, pressure, and slip
measurements to the user. Force and pressure feedback
are commonly used in tactile devices to relay informa-
tion about grip force. This information is typically
transmitted mechanically, such as through skin tapping
[32–35], or through electro- or vibro-stimulation [35–38]
(Fig. 2 (left)). Patterson et al. [33] translated grip pressure
from an object to hydraulic pressure in a cuff around the
upper arm. By comparing combinations of pressure,
vibration, and vision feedback, they found that pressure
feedback resulted in the highest grasp performance.
Rombokas et al. [39] found that vibrotactile feedback
applied to the upper arm in force-motion tasks improved
virtual manipulation performance for able bodied and
prosthetic users.
Slip, or shear forces between prosthesis and object held,

is pivotal for determining grasp stability and minimum
grasp force [40–44]. Slip and force feedback in combin-
ation allow manipulation of a virtual object with lower
forces than with force feedback alone [45]. Slip speed
feedback, implemented as electrotactile stimulation on the
skin, increases the success in stopping slip and regulates
the user’s grip reaction time [46]. Kim et al. [47] built a
tactile device for amputees after targeted nerve reinnerva-
tion surgery (Fig. 2 (right)). The device relays contact,
pressure, vibration and shear through a mechanically-
actuated tactor in contact with an 8 mm diameter patch
of skin. Damian et al. [48] developed a wearable haptic

Fig. 1 Haptic wearable applications classified by degree of sensory
impairment
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device that relays slip speed, through a series of tactors
that sweep across the skin and grip force through
frequency-encoded tapping on the skin.
While many skin sites have been explored for tactile

stimulation [49–52], fingertips are an attractive location
due to the high density of the mechanoreceptors and the
congruency of grasp sensation with the lost hand. Sites
closest to the lost limb are preferred for the exploitation
of redundant afferent terminals [35, 48, 53]. Other loca-
tions where skin sensation is used relatively less in normal
life such as the arm or back have a lower density of mech-
anoreceptors but do not interfere with manipulative tasks
[33, 52, 54]. However, it may be that the location of skin
stimulation is less important than other factors such as
learning rates [55].
Artificial motion proprioception allows prosthesis users

to reach targets more accurately and reduces visual atten-
tion during manipulation [56, 57]. Witteveen et al. [58]
used an array of eight vibrotactors on the arm to represent
eight discrete positions in closing a prosthetic hand during
grasping. Vibrotactile feedback was found superior to no
feedback in grasp success and duration during virtual ob-
ject grasping tasks. Bark et al. [6] introduce a wearable
haptic device for rotational skin stretch to display proprio-
ceptive limb motion. Users were able to discriminate rota-
tional displacements of stretch within 6 degrees of the
total range of motion. Artificial impedance feedback can
support prostheses users to adapt the interaction of their
prosthesis to a variety of environments. Blank et al. [59]
showed that human users provided with position and

force feedback are able to evaluate the effects of prosthesis
impedance and its adjustability improves the users’ per-
formance in minimizing contact forces with a moving ob-
ject. In addition, vibrotactile [60] and skin stretch [61]
have been used to provide users with the ability to regu-
late environment interaction forces.
These investigations show clear benefits of wearable

haptic feedback for upper-limb prosthetics by restoring
lost force, pressure, slip, and proprioception sensations.
Current studies have primarily focused on restoring a sin-
gle sensation, such as slip, while restoring multiple sensa-
tions simultaneously could endow users with more stable
grasp and higher dexterity in real-life manipulation sce-
narios. A major challenge is miniaturizing bulky multi-
function haptic wearables to a size where the benefits of
the wearable device outweigh discomfort and inconve-
niences of complex devices which have thus far limited
long-term user compliance.

Lower-limb prosthetics
While a variety of lower limb prostheses exist, relatively
few provide sensory feedback as compared to upper limb
prosthetics [62]. However, the absence of feedback can
lead to abnormalities in gait coordination, deficient bal-
ance, and prolonged rehabilitation [63–65]. To relay
ground-to-prosthesis contact force information, Fan et al.
[66] developed a tactile system consisting of a cuff of four
silicone pneumatic balloons placed around the thigh that
respond monotonically to pressure patterns recorded by
force sensors in the insole of the user. Six healthy subjects

Fig. 2 Haptic wearables for upper-limb prostheses. (left) Mechanical and vibroelectric haptic device for relaying pressure and vibration. Image
from [35] used with permission from IEEE. (right) Compact wearable device for contact, pressure, vibration, shear, and temperature for amputees
who underwent targeted nerve reinnervation surgery. Image from [47] used with permission from IEEE
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were able to differentiate inflation patterns and direction
of pressure stimuli, recognize three force levels and dis-
criminate gait movements with 99.0 %, 94.8 %, 94.4 % and
95.8 % accuracy, respectively. Crea et al. [67] mapped the
force recorded in the insole to vibrotactile feedback on the
thigh skin, providing information about gate-phase transi-
tion. They demonstrated that the spatial and temporal re-
lationships between vibrotactile time-discrete feedback
and gait-phase transitions can be learned. In a study on
twenty four transtibial prostheses users, Rusaw et al. [68]
conveyed body motion through vibratory feedback pro-
portional to signals from force sensors placed under the
prosthetic foot. Vibratory feedback improved postural
stability and reduced response time for avoiding falls.
Proprioceptive feedback in lower-limb prostheses was in-
vestigated by Buma et al. [69] using a spatial electrotactile
display of the prosthetic knee angle during gait. Subjects
wore electrodes on the medial side of the thigh just above
the knee, and the results showed that intermittent sti-
mulation reduced habituation after 15 minutes. Finally,
Sharma et al. [70] investigated the response in limb
motion given vibration stimuli applied to the thigh, and
showed that average response time was 0.8 sec, and
response accuracy was greater than 90 %.
Most studies involving wearable haptics for lower-limb

prosthetics have extracted various gait characteristics,
such as foot pressure patterns or gait phase detection,
from force-sensing insoles and then mapped these charac-
teristics to prosthetic users via haptic feedback. While
these initial studies are promising, future research should
focus on restoring missing proprioceptive sensations at
the ankle and knee joints in combination with foot pres-
sure patterns.

Vision aid for the blind
Engineers and scientists have long sought to enable visual
substitution for the blind. In a seminal study, Bach-Y-Rita
et al. [71] used a 20 x 20 array of tactors embedded in a
dental chair to stimulate the skin of the back of blind sub-
jects giving them a sense of “vision” through tactile substi-
tution. Research built on these initial efforts has resulted
in a host of haptic wearables as vision aids for the blind
(see survey articles [72, 73]).
Although the waist has low tactile acuity, it is a natural

location for haptic feedback as it moves relatively little
during ambulation. McDaniel et al. [74] developed a tact-
ile belt of 7 equidistantly spaced tactors around the waist
to cue a blind user of another person’s presence. Results
showed that the belt could convey another person’s direc-
tion via vibration location and another person’s distance
via vibration duration. Karcher et al. [75] used a tactile belt
consisting of 30 equidistantly spaced tactors in combin-
ation with a digital compass to display the direction of
magnetic north by continually vibrating the closest tactor

aligned with the magnetic north direction. Johnson and
Higgins [76] used a tactile belt with two attached web
cameras to convert visual information to a two-
dimensional tactile depth map. Sensed objects triggered
belt vibrations in the object’s direction, with closer objects
causing higher vibration frequencies. Several studies have
used tactile belts with GPS sensing for outdoor naviga-
tion by vibrating tactors in the direction of required
movement to reach an intended waypoint or final des-
tination [77–79].
The high density of mechanoreceptors in the hands and

fingers make these good locations for haptic feedback.
Amemiya et al. [80] attached vibrotactors to 3 fingers of
each hand (Fig. 3) for guidance and navigation for the
blind. Meers et al. [81] used electrostimulation gloves to
relay tactile stimulation proportional to the distance to ob-
jects in the environment. Blindfolded subjects were able
to report obstacle locations, avoid them, and walk to pre-
defined destinations while navigating through outdoor lo-
cations including a car parking lot and college campus.
Koo et al. [82] developed a soft, flexible fingertip tactile
display with 20 electroactive polymer for Braille and dis-
playing visual information through the skin. Shah et al.
[83] created a cylindrical handheld tactile device with 4
ultrasonic sensors pointing front, left, right, and below the
device held in front of the user. A 4 x 4 array of vibrotac-
tors embedded in the handle aligned with the fingers
grasping the device, with 4 tactors for each finger, exclud-
ing the thumb. Visual information from the ultrasonic
sensors mapped to the tactors and enabled blindfolded
subjects to navigate to a predefined location while avoid-
ing obstacles. Ito et al. [84] created a handheld device teth-
ered via a metal wire to the user’s belt. Users point the
device in the direction of intended navigation, and when
ultrasonic sensors detect objects, the wire tightens pulling
the hand toward the belt. When objects are far away, the

Fig. 3 Wearable finger vibrotactors can be used to encode Braille
characters and for guidance and navigation for the blind. Image
from [80] used with permission from IEEE
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wire loosens allowing the hand to extend. Gallo et al. [85]
equipped a white cane with tactile vibrators for distance
feedback and a spinning inertia wheel to augment the
contact sensation.
Other locations targeted for haptic feedback as vision

aids include the tongue, mouth, torso, head, and feet.
Bach-Y-Rita et al. [49] developed a tongue stimulator com-
posed of a 7 x 7 electrotactile elements. Users recognized
tactile stimulation patterns including circles, squares, and
triangles, which could potentially be used for blind naviga-
tion. Tang and Beebe [86] designed an oral tactile mouth-
piece which stimulates the roof of the mouth via a 7 x 7
electrotactile display. The device delivers basic navigation
direction cues including move left, right, forward, or back-
ward. Jones et al. [87] used a 4 x 4 array of vibrotactors
along the lower back to guide subjects through a grid of
cones outside in a field. Mann et al. [88] retrofitted a hel-
met with a Kinect camera and a vibrotactile array around
the forehead to display visual information haptically for
applications of blind navigation. Finally, tactors have been
embedded in insoles and used to give direction cues for
navigation and to communicate an elevated risk of falling
potential [89, 90] (Fig. 4).
There is a clear tradeoff between user comfort and

density of feedback information when deciding on the lo-
cation to apply haptic feedback as a vision aid. While ap-
plying tactile sensations to the waist or sole of the foot
may be natural locations given that most people already
wear belts and shoe insoles, stimulating high-density
mechanoreceptor areas such as the mouth and fingertips
enables higher resolution feedback that may more realis-
tically convey visual information. A key emphasis moving
forward should be identifying the most critical visual in-
formation for the blind and mapping this in an intuitive
way to the users. Given that human response to visual in-
formation tends to be application specific, such as
responding to non-verbal communication cues versus
changing gait patterns to avoid an identified obstacle dur-
ing navigation, haptic feedback strategies may also need to

be application-specific instead of attempting to generalize
all visual information.

Auditory aid for the deaf
To hold conversations, the hearing impaired typically rely
on visual or tactile cues, such as fingerspelling, lip reading,
or Tadoma. Alternatively, tactile vocoders perform a fre-
quency analysis of incoming auditory signals and display
spectral information as stimulation on the skin of the
hearing impaired [91, 92]. Saunders et al. [93] presented
an abdomen belt of electrotactile stimulators encoding
speech frequencies for speech recognition in profoundly
deaf children (hearing loss of greater than 90 dB for
250 Hz sound frequencies). Improvement in speech pro-
duction and intelligibility was observed after a 4-month
exploratory study. Boothroyd et al. [94] showed that in-
tonation can be more easily recognized using mechanical
strokes on the skin implemented as an array of eight sole-
noids actuated depending on the pitch extracted from a
microphone or accelerometer. A comparison between
multichannel vibrotactile and electrical tactile stimulation
for relaying sound frequency is presented in [95]. The two
tactile display devices differed in stimulation modality
(vibrotactile, electrotactile), location of stimulation (fore-
arm, abdomen), and voice processing (with and without
noise suppression). Results showed that both devices pro-
vide benefits beyond lipreading alone. Bernstein et al. [96]
compared three vibrotactile vocoders on the forearm in
normal and hearing-impaired subjects and found that
greater resolution in the second formant region and linear
output scaling led to significant improvements of sentence
lipreading with vocoders.
Apart from speech recognition, it is also difficult for the

hearing impaired to discriminate environmental sound.
Reed et al. [97] demonstrated that normal hearing and
profoundly deaf subjects equipped with a wearable spec-
tral tactual aid are able to identify two bits of information
in four 10-item sets of sounds. Furthermore, because it is
difficult for the hearing-impaired to control voice pitch, it
is challenging for them to maintain a stable tone while
speaking or singing. Sakajiri et al. [98] developed a device
of 64 piezoelectric vibrators arranged in rows of displacing
pins that contact the user’s finger. The pins push onto the
skin displaying the difference between user and target
pitch. Two hearing-impaired subjects with knowledge and
practice in music tested the device capability to aid their
singing. The tactile display system reduces the average
musical interval deviation to 117.5 cent (cent is a logarith-
mic unit of measure used for musical intervals), which is
comparable to that of normal hearing children.
The inherent complexity of language and subject-to-

subject differences raises serious challenges in developing
highly effective haptic displays for auditory replacements.
It may be more realistic for haptic feedback to supplement

Fig. 4 Vibration insoles can assist in navigation for the blind. Image
from [89] used with permission from IEEE
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existing auditory activities such as supplementing lipread-
ing to resolve ambiguous lip-read messages [96, 99]. Fur-
ther research should integrate more sensed auditory
modalities into wearable haptic technology, such as audio
frequencies, voice aspiration, and temporal characteristics
patterns. Further work to optimize voice signal filters to
comply with subject-specific impairments could bring
further benefits through haptic displays.

Sensory augmentation
For partial sensory impairments, wearable haptics may
provide complementary information to augment weak
and noisy sensory signals. This section covers wearable
haptics for improving standing balance, walking balance,
and rehabilitation for varied conditions such as vestibu-
lar loss, Parkinson’s disease, and stroke.

Standing balance
To improve balance for individuals with sensory impair-
ments such as vestibular loss, researchers have focused on
tactile feedback as sensory augmentation to reduce trunk
sway [100, 101]. Wall et al. [102] showed that vibrotactile
feedback applied to the sides of the trunk or shoulders
could be used to reduce head-tilt angle and center of pres-
sure displacements during standing posture with eyes
closed. Subsequent testing showed that vibrotactor arrays
placed around the waist could reduce anterior-posterior
trunk tilt during quiet standing in individuals with ves-
tibular deficits [101, 103]. Tactor vibrations cued subjects
to move in the opposite direction of vibration (Fig. 5), and
each tactor row indicated the severity of desired correc-
tion. Sienko et al. [104] found that 4 tactors spaced evenly
around the waist were as effective at training trunk tilt as
an array of 48 tactors (3 rows by 16 columns) placed
around the waist. Jeka and Lackner [105] showed that
touch and pressure stimulation at the fingertips can

improve standing posture through the influence of appar-
ent body orientation.
Vibrotactile sensations are typically used as a repulsive

instructional cue (i.e. move away from the vibration)
[103], though attractive instructional cues might be
compatible with non-volitional responses to vibrotactile
stimulation over certain anatomical regions [106, 107].
Haggerty et al. [108] tested the effect of the attentional
load of vibration feedback by requiring subjects to per-
form a secondary task during standing posture vibration
training. Ten healthy older adults performed standing bal-
ance training while simultaneously performing a second-
ary cognitive task (identifying a high or low pitched tone
either verbally or by pressing one of two buttons). Sub-
jects improved postural stability while performing a sec-
ondary task though their response times increased
suggesting that vibrotactile feedback can be used to im-
prove postural stability for older adults in cognitive load-
ing situations. While tactile feedback is typically given
based on trunk kinematic measurements, it has recently
been suggested that incorporating muscle activation mea-
surements in combination with kinematics may be more
effective [109].
While haptic feedback for posture sway training is usu-

ally applied to the torso, the head and tongue are also suit-
able stimulation locations [110, 111]. Vuillerme et al.
[112] used a 6 x 6 array (overall size of 1.5 cm × 1.5 cm)
of electrotactile electrodes (1.4 mm diameter) to map foot
center-of-pressure measurements to the tongue. The loca-
tion of electrode stimulation corresponds to the location
of the center of foot pressure thus augmenting each sub-
ject’s foot center-of-pressure perception. Tongue tactile
feedback has been used for standing posture rehabilitation
in individuals with unilateral and bilateral areflexia and
unilateral and bilateral vestibular losses [113].
In contrast with previous studies utilizing haptic wear-

ables as a cueing-based response for altering users of

Fig. 5 Tactor arrays can be used to improve standing posture through selective vibrations at the location needing correction. Image from [103]
used with permission from IEEE
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desired movement changes, stochastic resonance tactile
vibrations have been suggested to amplify natural human
afferent signals by adding white noise to a weak signal
[114, 115]. Priplata et al. [116] used gel-based insoles with
three embedded tactors to apply stochastic resonance
white noise vibration to the sole of the foot. Twenty-seven
elderly subjects stood quietly on insoles in conditions with
and without input white noise. The amplitude of the noise
was set to 90 % of the sensory perception threshold for
each subject (and thus the noise signal was imperceptible
during testing), and noise frequencies were 0–100 Hz. All
standing balance metrics improved with stochastic noise.
A similar study was performed showing stochastic reson-
ance also improves standing balance for individuals with
diabetic neuropathy and stroke [117].
Two primary strategies have emerged for applying

wearable haptic feedback to augment standing balance:
1) apply periodic tactile cues, often to the torso, to in-
struct a desired corrective movement, and 2) apply con-
tinuous vibrations to the foot sole to amplify natural
afferent signals. Combining these two methods could
enable a superior system with greater potential to im-
prove balance. Additionally, most studies assume wear-
able haptic devices need to be used indefinitely to
continue providing balance aid benefits, while ignoring
the effects of long-term learning and adaptation to such
devices, which is a critical aspect deserving future
consideration.

Walking balance
Trunk movement in the medial-lateral plane is crucial for
postural stability during gait [118]. Thus, research efforts
have focused on providing tactile feedback to reduce ex-
cessive medial-lateral trunk movements. Dozza et al. [19]
used a vibrotactile vest for gait training in nine subjects
with unilateral vestibular loss. The vest contained two col-
umns of three tactors on each side and pairs vibrated
when medial-lateral trunk tilt exceeded 2 degrees (lower
pair), 7 degrees (middle pair), and 12 degrees (higher pair).
This training resulted in reduced trunk tilt, center of mass
displacement, medial-lateral step width, and frequency of
stepping error during gait. Horak et al. [119] performed
two tactile feedback training sessions spaced two weeks
apart in 10 individuals with unilateral vestibular loss.
Feedback increased walking stability during tandem gait
(heel-to-toe walking) evidenced by reductions in center-
of-mass displacement, trunk tilt, and medial–lateral step
width. Janssen et al. [120] tested 40 healthy subjects and
showed that a vibrotactor visor utilizing tactile, visual, and
auditory feedback reduced trunk tilt velocity and angles
for a variety of gait tasks including walking: with eyes open
or closed, while rotating or pitching the head, while carry-
ing a glass of water, backwards, and up and down stairs.

Tactile feedback can increase attentional load during
gait. Verhoeff et al. [121] observed 16 healthy young and
13 healthy old subjects as they performed gait training
with a simultaneous secondary task, either walking while
counting backwards in 7’s (cognitive task) or walking
while carrying a tray with cups of water (motor task).
Young subjects were able to perform both dual tasks, but
elderly subjects could only perform the dual motor task
and not the dual cognitive task. In gait retraining, continu-
ous vibration feedback may be more appropriate than
short periodic vibration pulses. Sienko et al. [122] tested
seven subjects with vestibular loss who received either
continuous vibration feedback of their trunk tilt angle or a
periodic 200 ms vibration pulse immediately following
heel strike on each step. While both methods enabled
subjects to reduce medial-lateral trunk sway, continuous
feedback was more effective.
Similar to applications in standing balance, stochastic

resonance has been proposed as sensory augmentation to
boost weak afferent signals for gait. Galica et al. [123]
inserted three tactors into customized sandals to deliver
0–100 Hz white noise to 18 elderly recurrent fallers and
18 elderly non-fallers during 1 m/s walking gait. White
noise foot vibrations reduced stride, stance, and swing
time variability for elderly recurrent fallers and reduced
stride and stance time variability for elderly non-fallers.
The benefits of wearable haptic feedback during gait

must be weighed against the potential drawbacks. While
tactile cues can help improve balance by reducing trunk
sway, they also require additional cognitive attention
that could result in negative secondary effects such as
missing a curb while walking across a street. Future
work should implement wearable haptic training systems
that seek to minimize attentional load while maximizing
gait improvements.

Rehabilitation
For patients with neurological diseases, such as stroke, Par-
kinson’s disease, spinal cord injury, and peripheral neur-
opathy, haptic sensation is lost or distorted making
everyday tasks difficult [124]. Artificial haptic feedback can
play a role in regaining lost motor control [125]. Motor
function improvement is achieved through task-oriented
repetitive training during functionally related dynamic move-
ments and the provision of artificial feedback [125, 126].
Upper extremity rehabilitation is often performed via

vibrotactile feedback applied to the arm or hand to guide
limb movements [8, 9, 36, 100, 127]. Jiang et al. [36] built
a tactile wearable device to help multiple sclerosis patients
improve grasp force during manipulation tasks by trans-
mitting tactile information as a vibrotactile signal on the
fingernail. Amplitude-based vibrotactile feedback was use-
ful for patients with mild impairment in alerting them
when grip force exceeded a predefined threshold. For
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those with severe impairment, better results were achieved
by providing a feedback signal in which the frequency and
duty cycle were proportional to the magnitudes of the
contact forces. Lieberman et al. [8] developed a 5-DOF
wearable robotic suit for improving human motion learn-
ing in rehabilitation. The suit was equipped with vibrotac-
tile actuators placed near body joints which encoded arm
postures. Tactile feedback provided by the suit yielded a
27 % improvement in accuracy while performing the tar-
get motion, and an accelerated learning rate of up to 23 %,
compared to no feedback.
Haptic feedback for lower extremity rehabilitation is

generally superior to standard therapy, placebo treat-
ments, and verbal feedback for improving lower limb
movements, and these benefits are generally maintained
over time [128, 129]. Van Wegen et al. [130] presented a
vibrotactile cueing device on the wrist to investigate
whether Parkinson’s patients could adapt their stride fre-
quency to rhythmic cues under conditions of changing
walking speed and potentially distracting visual flow.
Training resulted in lower stride frequency and was robust
regardless of walking speed or visual distraction. Nanhoe-
Mahabier et al. [111] demonstrated improved balance via
a vibrotactile head-mounted display for twenty Parkinson’s
disease patients. When trunk tilt exceeded a predefined
threshold, vibration motors were activated in the direction
of tilt to enable subjects to reduce trunk tilt. Peripheral
neuropathy patients can improve postural instability and
alter gait patterns via tactile feedback delivered as a two-
segment ankle-foot orthoses in direct contact to the leg
[128]. Gait rehabilitation was performed in peripheral
neuropathy patients with sensory impairments on the bot-
tom of the foot, with positive results increasing walking
speed, step cadence or step length [131]. Insole pressure

measurements were mapped to arrays of pneumatically-
controlled silicone balloons on each ipsilateral thigh. In
another study, twenty-nine patients with chronic balance
impairments secondary to stroke were given tongue elec-
trotactile feedback through a matrix of electrodes on the
tongue (Fig. 6). The training was carried out 2 times per
day 5 times per week for 1 week in the clinic, followed by
7 weeks as a home exercise program, which resulted in
improvements in balance, balance confidence, gait func-
tion and quality of life [132].
While rehabilitation studies show increased performance

with tactile feedback, a major disadvantage remains the
variability between subjects, which impedes finding optimal
feedback standards. Rehabilitation platforms capable of in-
telligent, adaptable tactile feedback configurations could
provide subject-specific treatment more universally useful.

Trainer
While most haptic trainer studies have not been clinic-
ally focused (e.g. drumming [133] or snowboarding [134]
and jump landings [135]), increasing interest in haptic
wearables makes this a likely area of growth. For ex-
ample, haptic wearables can reduce knee loads by pro-
viding motion cues that alter risky walking patterns. One
approach is to give subjects haptic feedback information
directly related to knee loading and allow them to self-
select a new gait pattern to reduce knee loads. Wheeler
et al. [136] attached a single vibrotactor to the forearm
which vibrated when knee loads exceeded a predefined
threshold. No feedback was given when new gait pat-
terns resulted in lower knee loads. Although effective in
short-term, one drawback of this method is that subjects
often self-selected awkward gait patterns that would
likely not be maintained long-term.

Fig. 6 Sensory feedback applied to the tongue. (left) An electrotactile array for applying feedback to the tongue (Brainport balance device). (right)
An example of tactile stimulation applied to the tongue to give feedback on head tilt for individuals with vestibular loss. Images from [132] used
with permission from Elsevier
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Another approach is to explicitly train gait kinematics
to reduce knee loading. Dowling et al. [137] embedded a
pager motor inside a shoe to give vibration feedback to
the foot based on lateral foot pressure. On each step sub-
jects walked with lateral foot pressure above a predefined
threshold, measured with a force-sensing resistor on the
lateral underside of the shoe, the pager motor vibrated
instructing a change in gait. Subjects quickly learned the
medial foot pressure gait patterns, which resulted in sig-
nificantly reduced knee loads. In other studies, vibration
pulses on the lateral aspect of the shank just below the
knee have been used to train individuals with knee osteo-
arthritis to internally rotate their toes by 5–7 degrees
resulting in reduced knee loading and reduced knee pain
over time [138, 139].
Training multiple kinematic parameters simultaneously

[13] presents cognitive and motor challenges related to re-
ceiving and responding to multiple simultaneous channels
of information. Lurie et al. [140] trained subjects to walk
with new gait patterns involving kinematic changes to
trunk sway, tibia angle, and foot progression angle by
either giving error correction feedback cues on all parame-
ters simultaneously or one parameter at a time. Perception
accuracy was lower when all three vibrations were pre-
sented simultaneously on three consecutive steps as com-
pared to one distinct vibration on each of the three steps.
Subject performance was the same for all tactile feedback
simultaneously and one feedback parameter at a time
despite the fact that less feedback information was trans-
mitted in the one feedback per step scenario. In another
study, Jirattigalachote et al. [141] showed that when
presenting multiple tactile feedback channels at separate
skin locations simultaneously, subjects more accurately

perceive different haptic stimuli (e.g. fast-adapting mech-
anoreceptor activation at one location and slow-adapting
mechanoreceptor activation at the other location) com-
pared to alike haptic stimuli during standing, walking, and
jogging.
While haptic wearables have generally focused on

treating existing problems, a shift in focus towards pre-
ventative medicine could enable a greater depth and im-
pact in clinical applications. Knee osteoarthritis is one
application in which tactile feedback has already been
used to retrain gait movements to reduce knee loads
that could potentially prevent the future development of
osteoarthritis. Other future applications of wearable hap-
tics as trainer could include correcting sitting posture to
prevent back and neck injuries or correcting athletic
movements to prevent ligament tears or bone fractures.

Conclusions
For patients with total sensory impairment, haptic
wearables can transmit missing information related to
manipulation, walking, or speaking to complete the
otherwise broken sensorimotor control loop. Motor
disorders associated with partial sensory impairment
have been addressed with haptic wearables that trans-
mit behavioral cues, such as posture and gait guidance
based on kinematic error signals in specific rehabilita-
tion tasks. This same approach can be used for people
with no sensory impairment to instruct movement
changes to improve performance or prevent injury or
disease. In addition to the specific suggestions for fu-
ture work presented in each previous individual section
in the body of this paper, we identified the following
general design principles, based on the reviewed

Fig. 7 Future integrated haptic wearable systems. (left) Integrated haptic systems relay complete information about behavioral, physiological and
mental state of users. (right) Advanced computing controllers regulate patient information processing and flow, transferring information to users
and assistive staff
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studies, important for developing future wearable hap-
tic systems for sensory impairment:
From need to practice. A practical and efficient devel-

opment of haptic wearables should follow a rigorous
identification of the clinical requirements of the target
condition. Haptic wearables must be collaboratively and
comprehensively developed by involving clinicians, pa-
tients, scientists, and engineers, such that the devices
are a product of clinical observations, direct end-user
evaluation and feedback, up-to-date and integrative sci-
entific knowledge and wearable technology [24, 25, 28].
Bioelectrical/biomechanical compliance. While various

systems have been explored that demonstrate successful
haptic mapping, further work is needed to develop
mechanisms for long term efficacy and wearability, with
special attention taken to comply with user kinematics,
avoid user pain and fatigue, [142]. Reduced prosthesis
weight has been found to be the highest priority design
concern of prostheses users [25]. Miniature soft actua-
tors [143–145] could ensure light haptic devices that do
not impede the natural motions of the human body
where they are mounted.
Intuitive multimodal haptic representation. The haptic

representation of the transmitted information must be
intuitive and easy to use [146]. Depending on the sen-
sory impairment, haptic signals can display mechanics
information (e.g. forces or angles) or instructional cues
(e.g. desired movement change) encoded by signal mag-
nitude, frequency or location on the skin. This pursuit
becomes more challenging as multimodal feedback is in-
tegrated. Although most studies have only focused on a
single modality, integrating multiple haptic modalities is
necessary to comprehensively compensate for the miss-
ing sensation, e.g., force and slip feedback for upper ex-
tremity prosthetic manipulation, and limb position and
planar pressure feedback for walking rehabilitation.
Low energy demands. Long term wearables rely on sus-

tainable actuation and sensing. Novel energy sources and
energy management should be considered in the design of
the haptic device [147, 148]. For example, careful selection
of power sources with high power-to-weight ratios and
on-board computational algorithms to minimize power
consumption could help meet these demands for tasks re-
quiring extensive user training and long-term use.
Long term usage. Most haptic wearables are currently

tested in short term tasks under laboratory conditions.
Long-term testing is critical for developing and assessing
sustainable haptic devices. This pursuit could significantly
affect wearable device design and the implementation of
feedback schemes and adaptive control algorithms to
maintain the user performance over time.
One persistent question that repeatedly arose was, are

haptic wearables best suited as temporary or permanent
devices? Temporary devices can be used to train new

movements which would eventually be internalized.
Conversely, permanent feedback devices would be used
indefinitely much like a prosthesis [109]. Horak et al.
[119] showed that gait stability learning from biofeedback
was not retained when the biofeedback was removed for a
tandem gait task, and Dozza et al. [19] showed that a sin-
gle session of practice with feedback did not result in last-
ing after-effects, which both indicate the need for either
long-term training or permanent use. The duration of
haptic wearables use may depend on the severity of the
sensory impairment and the ability for long-term, sustain-
able motor learning in target populations. Ultimately, the
fundamental goal of the haptic wearables is to assist sen-
sory impairments in an unobtrusive manner, regardless of
the severity of the user’s condition or length of treatment
[149, 150].
Future haptic wearables could incorporate mental,

physiological, and behavioral measures (Fig. 7) to moni-
tor health and appropriately adjust device functionality.
Integrated haptic wearables could combine sensing of
user's behavioral performance (e.g., manipulation tasks),
physiological state (e.g. heart beat and electrodermal
response sensing [151]), and cognitive state (e.g., ques-
tionnaire assessing cognitive ability) with a portable
computing device, such as a smart phone.
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