581 research outputs found

    Laser-based packaging of micro-devices

    Get PDF
    In this PhD thesis the development of laser-based processes for packaging applications in microsystems technologies is investigated. Packaging is one of the major challenges in the fabrication of micro-electro-mechanical systems (MEMS) and other micro-devices. A range of bonding processes have become established in industry, however, in many or even most cases heating of the entire package to the bonding temperature is required to effect efficient and reliable bonding. The high process temperatures of up to 1100°C involved severely limit the application areas of these techniques for packaging of temperature sensitive materials. As an alternative production method, two localised heating processes using a laser were developed where also the heat is restricted to the joining area only by active cooling. Silicon to glass joining with a Benzocyclobutene adhesive layer was demonstrated which is a typical MEMS application. In this laser-based process the temperature in the centre of the device was kept at least 120°C lower than in the bonding area. For chip-level packaging shear forces as high as 290 N were achieved which is comparable and some cases even higher than results obtained using conventional bonding techniques. Furthermore, a considerable reduction of the bonding time from typically 20 minutes down to 8 s was achieved. A further development of this process to wafer-level packaging was demonstrated. For a simplified pattern of 5 samples the same quality of the seal could be achieved as for chip-level packaging. Packaging of a more densely packed pattern of 9 was also investigated. Successful sealing of all nine samples on the same wafer was demonstrated proving the feasibility of wafer-level packaging using this localised heating bonding process. The development of full hermetic glass frit packaging processes of Leadless Chip Carrier (LCC) devices in both air and vacuum is presented. In these laser-based processes the temperature in the centre of the device was kept at least 230°C below the temperature in the joining region (375°C to 440°C). Testing according to MIL-STD-883G showed that hermetic seals were achieved in high yield processes (>90%) and the packages did withstand shear forces in excess of 1 kN. Residual gas analysis has shown that a moderate vacuum of around 5 mbar was achieved inside the vacuum packaged LCC devices. A localised heating glass frit packaging process was developed without any negative effect of the thermal management on the quality of the seal

    Diode laser processing of PMMA and LCP materials for microsystem packaging

    Get PDF
    The thesis describes the development of laser-assisted bonding methods for assembly of microfluidic devices and MEMS packaging. A laser microwelding technique for assembly of transparent polymer substrates for fabrication of microfluidic devices was studied. The transparent PMMA substrates were bonded together using a high power diode laser system with a broad top-hat beam profile and an intermediate titanium thin film consisting of 0.7 mm diameter spots. A tensile strength of 6 MPa was achieved for this novel method which is comparable to that of the previous work in laser welding of polymers. It has been demonstrated that the method is capable of leak free encapsulation of a microfluidic channel. Furthermore, a novel laser-based method using an LCP film for packaging of MEMS, sensors and other microelectronic devices has been investigated. The results show that it is possible to use a laser based method with an LCP polymer for high quality substrate bonding applications. Glass-glass based cavities allow optical transmission and have potential applications for optical sensors and other photonic devices. For glass-glass bonding, it was shown that thin film titanium material can be used as an effective optical absorber in the laser based LCP bonding technique. Laser bonding of glass and silicon using an LCP film has also been achieved but in this case the silicon substrate acted as the absorber to capture the laser power. Laser bonding of a silicon cap to a molded LCP package has also been demonstrated successfully. The results of temperature monitoring using embedded sensors show that the temperature at the base of the LCP package (~130C) is substantially lower than the bonding temperature (> 280C). The results of shear and leak test show good reliability and hermeticity of the laser bonded microcavities. Both two-dimensional and three-dimensional models of heat transfer are developed and studied using the COMSOL Multiphysics software tool to understand the localised laser heating effects. The results are in good agreement with those of the practical work

    Thin Film Encapsulation of Radio Frequency (RF) Microelectromechanical Systems (MEMS) Switches

    Get PDF
    Microelectromechanical systems (MEMS) radio frequency (RF) switches have been shown to have excellent electrical performance over a wide range of frequencies. However, cost-effective packaging techniques for MEMS switches do not currently exist. This thesis involves the design of RF-optimized encapsulations consisting of dielectric and metal layers, and the creation of a novel thin film encapsulation process to fabricate the encapsulations. The RF performance of several encapsulation designs are evaluated with an analytical model, full wave electromagnetic simulation, and laboratory testing. Performance degradation due to parasitic and reflection losses due to the package is considered, and RF feed-throughs of the transmission line into and out of the package are designed and assessed. Ten different encapsulation designs were created and their RF performance was characterized in terms of insertion loss, return loss, and isolation. A switch without an encapsulation and a switch with a dielectric encapsulation were fabricated and tested by the Air Force Research Laboratory (AFRL), and the test data was used to verify the data from analytical modeling and electromagnetic simulation performed in this work. All results were used to design an optimized encapsulation. An RF MEMS switch with this encapsulation was shown to have an overall insertion loss of less than -0.15 dB at 20 GHz compared to an unencapsulated switch insertion loss of about -0.1 dB. The isolation of the switch was slightly improved with the encapsulation. The fabrication process proposed to manufacture these encapsulations uses a low temperature solder as the metal encapsulation layer. As the final step in the fabrication, the solder is brought to melting temperature and reflowed over the etch holes to form a hermetic encapsulation

    Introducing porous silicon as a sacrificial material to obtain cavities in substrate of SOI wafers and a getter material for MEMS devices

    Get PDF
    Microelectromechanical system (MEMS) resonators have been a subject of research for more than four decades. The reason is the huge potential they possess for frequency applications. The use of a MEMS resonator as the timing element has an experimental history and huge progress has been made in this direction. Vacuum encapsulated MEMS resonators are required for high precision frequency control. Hence, a device with a high quality factor and durability is needed. In this effort, a new process for producing a cavity in the substrate of Silicon on insulator (SOI) MEMS devices and augmenting it with a getter using porous silicon is developed. The process involves a mask-less, self-aligned cost effective electrochemical etching process. A 10 μm cavity is introduced in the substrate of SOI dies. This helps in increasing the packaging volume of the SOI resonators along with mitigating the viscous damping effects. The stiction problem in MEMS devices is effectively eliminated and millimeter long slender MEMS structures do not get stuck to the substrate. It also helps in reducing the parasitic capacitance between the device side and the substrate. The porous silicon getter is introduced as a getter material for vacuum encapsulated MEMS devices. This getter needs no external mask and is self-aligned. It requires no external heat or additional materials to operate. The highly reactive porous silicon can readily react with the oxygen gas and form an oxide layer that can trap other gas molecules. This helps in maintaining low pressures in the cavity of the bonded MEMS resonators. A tuning fork resonator with a resonant frequency of 245 kHz was used to realize the benefits of the cavity and the getter. It was observed that the unpackaged device with the cavity in the substrate showed two times better quality factor at different pressures, than the device with no cavity. In order to understand the benefits of porous silicon as a getter, the MEMS devices (one with only a cavity in the substrate and the other with a cavity and getter) were anodic bonded and tested. The devices with a getter reported two times better quality factor than the non-getter devices

    Wafer bonding technologies for nano-, micro- and macro-system realization and integration

    Get PDF
    This paper is providing an overview about most common wafer bonding technologies used for the realization of nano-, micro,- and macro systems and for system integration. At first, the general aspects of wafer bonding applications are discussed. This is followed by the technological description of different wafer bonding processes, since for different bonding applications different processes are required related to process integration and the actual surface layers on the wafers which should be bonded. Finally, benefits and drawbacks as well as technology and application aspects are shown in an overview table, providing systematization and detailed comparison of the described bonding processes. This overview should help to choose the best suitable process for wafer level bonding and other applications

    Etudes des procédés d'encapsulation hermétique au niveau du substrat par la technologie de transfert de films

    Get PDF
    Les micro-dispositifs comportant des structures libérées et mobiles sont d une part très sensibles aux variations de leur environnement de travail, et d autre part très fragiles mécaniquement. L étape de découpe du substrat en plusieurs puces est extrêmement agressive et peut entrainer la destruction totale des micro-dispositifs. L encapsulation avant la découpe va alors prémunir les micro-composants lors de cette étape critique et continuer à garantir leur bon fonctionnement tout au long de leur utilisation en conservant la stabilité et la fiabilité de leur performance. Le conditionnement doit en outre interfacer les micro-dispositifs encapsulés avec le monde macroscopique en vue de leur utilisation. De nombreux procédés de fabrication ont déjà été développés pour l élaboration d un conditionnement. C est le cas de l encapsulation puce par puce, substrat - substrat, par couche sacrificielle par exemple. Ils sont toutefois très contraignants (encombrement, compatibilité, coût, ). Nous avons étudié, au cours de cette thèse, un procédé innovant de conditionnement hermétique par transfert de film utilisant une couche à adhésion contrôlée. Cette technologie consiste à élaborer des capots protecteurs sur le substrat moule puis à les reporter collectivement pour encapsuler les micro-dispositifs. Ce procédé est totalement compatible avec un interfaçage électrique de composant qui traverse les cordons de scellement ou le capot. Ce procédé nécessite la maîtrise de la croissance de divers films (C, CxFy, Ni, AlN, parylène, BCB, Au-In) et permet d obtenir des boitiers étanches, hermétiques et robustes qui devraient très rapidement pouvoir être utilisés pour le conditionnement de MEMS.Micro-devices which are composed of free standing or mobile structures are very sensitive to the working condition and mechanically very fragile. The saw dicing steps is very aggressive and it can destroy the micro-devices. Packaging will prevent the micro devices from any damage during this critical step and also take care of it all along its life by controlling its performance stability and reliability. Moreover, the suited devices use needs a connection to the macroscopic word through the packaging. Many packaging process flow has already developed such as pick and place, wafer to wafer, thin film packaging with a sacrificial layer. Nevertheless, they have got many drawbacks (footprint, process compatibility, cost ). We have developed an attractive wafer level hermetic packaging process by film transfer technology during this these. It relies on a transferred molded film cap from a carrier wafer to the donor wafer. Electrical path can be done through the cap or the bonding ring. Cap manufacturing need a high layer growth skill for example in C, CxFy, Ni, AlN, parylène, BCB, Au-In films to make robust, hermetic encapsulation which should be soon used for MEMS packaging.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Advances in panel glass packaging of mems and sensors for low stress and near hermetic reliability

    Get PDF
    MEMS based sensing is gaining widespread adoption in consumer electronics as well as the next generation Internet of Things (IoT) market. Such applications serve as primary drivers towards miniaturization for increased component density, multi-chip integration, lower cost and better reliability. Traditional approaches like System-on-Chip (SoC) and System on Board (SoB) are not ideal to address these challenges and there is a need to find solutions at package level, through heterogeneous package integration (HPI). However, existing MEMS packaging techniques like laminate/ceramic substrate packaging and silicon wafer level packaging face challenges like standardization, heterogeneous package integration and form factor miniaturization. Besides, application specific packages take up the largest fraction of the total manufacturing cost. Therefore, advanced packaging of MEMS sensors for HPI plays a critical role in the short and long run towards the SOP vision. This dissertation demonstrates a low stress, reliable, near-hermetic ultra-thin glass cavity MEMS packages as a solution that combines the advantages of LTCC/laminate substrates and silicon wafer level packaging while also addressing their limitations. These glass based cavity packages can be scaled down to 2x smaller form factors (<500μm) and are fabricated out of large panel fabrication processes thereby addressing the cost and form factor requirements of MEMS packaging. Flexible cavity design, advances in through-glass via technologies and dimensional stability of thin glass also enable die stacking and 3D assembly for sensor-processor integration towards sensor fusion. The following building block technologies were explored: (a) reliable cavity formation in thin glass panels (b) low stress glass-glass bonding, and (c) high throughput, fully filled through-package-via metallization in glass. Three main technical challenges were overcome to realize the objectives: (a) glass cracking, side wall taper, side wall roughness and defects, (b) interfacial voids at glass-polymer-glass interface and (c) electrical opens and high frequency performance of copper paste filled through-package-vias in glass.M.S

    Polyimide reinforcement of capped MEMS devices : soft and simple

    Get PDF

    High performance 3-folded symmetric decoupled MEMS gyroscopes

    Get PDF
    This thesis reports, for the first time, on a novel design and architecture for realizing inertial grade gyroscope based on Micro-Electro-Mechanical Systems (MEMS) technology. The proposed device is suitable for high-precision Inertial Navigation Systems (INS). The new design has been investigated analytically and numerically by means of Finite Element Modeling (FEM) of the shapes, resonance frequencies and decoupling of the natural drive and sense modes of the various implementations. Also, famous phenomena known as spring softening and spring hardening are studied. Their effect on the gyroscope operation is modeled numerically in Matlab/Simulink platform. This latter model is used to predict the drive/sense mode matching capability of the proposed designs. Based on the comparison with the best recently reported performance towards inertial grade operation, it is expected that the novel architecture further lowers the dominant Brownian (thermo-mechanical) noise level by more than an order of magnitude (down to 0.08º/hr). Moreover, the gyroscope\u27s figure of merit, such as output sensitivity (150 mV/º/s), is expected to be improved by more than two orders of magnitude. This necessarily results in a signal to noise ratio (SNR) which is up to three orders of magnitude higher (up to 1,900mV/ º/hr). Furthermore, the novel concept introduced in this work for building MEMS gyroscopes allows reducing the sense parasitic capacitance by up to an order of magnitude. This in turn reduces the drive mode coupling or quadrature errors in the sensor\u27s output signal. The new approach employs Silicon-on-Insulator (SOI) substrates that allows the realization of large mass (\u3e1.6mg), large sense capacitance (\u3e2.2pF), high quality factors (\u3e21,000), large drive amplitude (~2-4 µm) and low resonance frequency (~3-4 KHz) as well as the consequently suppressed noise floor and reduced support losses for high-performance vacuum operation. Several challenges were encountered during fabrication that required developing high aspect ratio (up to 1:20) etching process for deep trenches (up to 500 µm). Frequency Response measurement platform was built for devices characterization. The measurements were performed at atmospheric pressures causing huge drop of the devices performance. Therefore, various MEMS gyroscope packaging technologies are studied. Wafer Level Packaging (WLP) is selected to encapsulate the fabricated devices under vacuum by utilizing wafer bonding. Through Silicon Via (TSV) technology was developed (as connections) to transfer the electrical signals (of the fabricated devices) outside the cap wafers
    corecore