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Abstract

Microelectromechanical systems (MEMS) radio frequency (RF) switches have

been shown to have excellent electrical performance over a wide range of frequencies.

However, cost-effective packaging techniques for MEMS switches do not currently exist.

This thesis involves the design of RF-optimized encapsulations consisting of dielectric

and metal layers, and the creation of a novel thin film encapsulation process to fabricate

the encapsulations. The RF performance of several encapsulation designs are evaluated

with an analytical model, full wave electromagnetic simulation, and laboratory testing.

Performance degradation due to parasitic and reflection losses due to the package is con-

sidered, and RF feed-throughs of the transmission line into and out of the package are

designed and assessed.

Ten different encapsulation designs were created and their RF performance was

characterized in terms of insertion loss, return loss, and isolation. A switch without an

encapsulation and a switch with a dielectric encapsulation were fabricated and tested by

the Air Force Research Laboratory (AFRL), and the test data was used to verify the data

from analytical modeling and electromagnetic simulation performed in this work. All re-

sults were used to design an optimized encapsulation An RF MEMS switch with this en-

capsulation was shown to have an overall insertion loss of less than -0.15 dB at 20 GHz

compared to an unencapsulated switch insertion loss of about -0.1 dB. The isolation of

the switch was slightly improved with the encapsulation.

xviii



The fabrication process proposed to manufacture these encapsulations uses a low

temperature solder as the metal encapsulation layer. As the final step in the fabrication,

the solder is brought to melting temperature and reflowed over the etch holes to form a

hermetic encapsulation. Analysis was performed to determine the necessary dimensions

of the solder thickness and the etch hole width in order to guarantee that the hole will

close when the solder is reflowed. The results found that for a square etch hole with a

width of 5 ltm, the minimum solder layer thickness to guarantee hole closure is 5.17 ltm.
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THIN FILM ENCAPSULATION OF RADIO FREQUENCY (RF)

MICROELECTROMECHANICAL SYSTEMS (MEMS) SWITCHES

1. Introduction

The field of microelectromechanical systems (MEMS) is rapidly growing, and re-

search is ongoing in many different MEMS devices for a wide range of applications. One

such device is the radio frequency (RF) MEMS switch. RF MEMS switches are used for

the switching of RF electrical signals, and have been shown to have excellent electrical

performance at a wide range of frequencies (DC to greater than 120 GHz) [1]. Although

excellent devices have been demonstrated in research, many obstacles still remain before

MEMS switches will be viable for widespread use. Packaging remains as one of the main

areas to be addressed. Only after cost-effective packaging methods are developed will RF

MEMS switches be able to transition from research and high-end defense applications to

commercially viable products, as is the case with semiconductor-based RF switches to-

day.

1.1. Background

New technologies are always being explored with the goal of increasing the per-

formance of defense and consumer products. One field that has been growing very

quickly in recent years is wireless systems. Wireless systems all employ radio frequency
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(RF) or microwave electronics in order to transmit and receive signals. One of the com-

ponents in most of these RF systems that has a direct impact on the overall performance

of the system is the RF switch. For example, many wireless devices are battery powered,

and battery life is a performance metric for the system. A more efficient RF switch results

in a longer battery life in a battery powered system. Other performance rnetrics of RF

switches also directly result in higher performance for the systems in which they are

used. This motivation has lead consumer companies to research RF switches for use in

systems such as mobile phones and instrumentation systems. Similarly, some defense ap-

plications that will benefit from better RF switches are radars, communication systems,

and satellite systems.

Current state-of-the-art RF switches are based on MESFETs (Metal-

Semiconductor Field Effect Transistor) and PIN diodes. RF MEMS switches have been

shown to have superior electrical performance to semiconductor-based switches, but are

not yet cost-effective for use in anything but high-end defense and research applications.

One of the major challenges to date for producing RF MEMS switches is how to package

them. Because MEMS devices are mechanical in nature, they require a stable environ-

ment for consistent and reliable operation. Ideally the packaging for these switches will

incorporate a hermetic (air tight) seal. The only economically feasible way to do this is

wafer-level packaging, where every device on a wafer is sealed at once in some type of

encapsulation

The Air Force Research Laboratory (AFRL) has demonstrated a novel packaging

process for RF MEMS switches based on the same thin film processes that were used to

fabricate the RF MEMS switches they also developed. Their technique involves deposit-
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ing a sacrificial layer over the MEMS switch, then depositing a structural encapsulation

layer of a dielectric such as silicon nitride over the sacrificial layer. The sacrificial layers

are then removed, leaving an encapsulated device.

The work in this thesis will differ from existing packaging research in several

ways. First, it will use low temperature thin film fabrication techniques that are compati-

ble with RF MEMS switches. Second, the analysis on the designs will be used to create

an optimized encapsulation in terms of its RF performance. Third, the encapsulations will

incorporate a metal layer of a low melting temperature solder as part of the encapsulation,

which is reflowed in the last step of the encapsulation to seal the etch holes.

1.2. Problem Statement

High performance RF switches are in demand for many defense and consumer

applications. RF switches based on MEMS technology have been shown to have very

high performance, but packaging them in a cost-effective manner is difficult. Packaging

for RF MEMS switches must provide protection from physical damage and contamina-

tion, and must provide the switch with a hermetic encapsulation for reliable, long-term

operation. Also, the packaging must have little or no detrimental effect on the RF per-

formance of the switch. Due to these special requirements for RF MEMS switch packag-

ing, cost-effective methods for this packaging do not currently exist. The specific

problem for this research is to design an encapsulation for RF MEMS switches that is op-

timized in its RF performance, based on modeling and experimentation. These encapsula-

tions will incorporate a metal layer, and will be able to be fabricated with standard thin

film techniques. A fabrication process than can be used to fabricate the encapsulations

will also be created.
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1.3. Proposed Solution

An optimized RF encapsulation will be designed based on results from analytical

modeling and electromagnetic simulation of preliminary design. AFRL has fabricated

and tested RF MEMS switches with dielectric encapsulations that were fabricated using

thin film methods. The work in this thesis will build on the AFRL research by incorporat-

ing a metal layer in the encapsulation. The geometry of the encapsulations and the mate-

rials used for the encapsulations will be considered in the designs. The test data from

AFRL's unencapsulated RF MEMS switch and one with a dielectric encapsulation will

be used to verify the analytical model and electromagnetic simulation The model and

simulation are then used to evaluate other designs and to create an optimized design. RF

feed-throughs of the transmission line into and out of the encapsulation will also be de-

signed and evaluated to increase the overall performance of the encapsulated switch.

Next, an analysis of metal reflow over etch holes will also be performed to determine the

proper geometry for the metal layer to seal the etch holes shut when the metal is brought

to melting temperature. Finally, a fabrication process based on thin film techniques will

be devised that can be used to fabricate the encapsulations.

1.4. Novel Contributions of This Work

The novel contributions of this work are summarized briefly below:

"* Design of MEMS encapsulations that consist of a dielectric layer and a
metal layer

"* Development of an analytical model for assessing the performance of RF
MEMS switch encapsulations that consist of dielectric and metal layers

"* Development of a novel thin film fabrication process for fabricating the
proposed MEMS encapsulations
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"* Creation of an optimized RF MEMS package through the use of analytical
modeling and electromagnetic simulation

"* The proposal of using sputtered silicon nitride as a dielectric encapsulation
layer

"* The proposal of using solder reflow to seal the etch holes in a MEMS en-
capsulation

"* Analysis, based on fluid surface energy, of the required thickness and
width of a square etch hole to ensure that the hole will seal shut when the
solder is reflowed

1.5. Document Road Map

A thorough explanation of conventional RF switches, MEMS, RF MEMS

switches, RF MEMS packaging, and RF performance measures are provided in Chap-

ter 2. Chapter 3 describes in detail the encapsulation designs that were created and evalu-

ated as part of this work, including their geometries and material parameters. Chapter 4

provides the development of the analytical models used to describe the performance of

the encapsulations over each RF MEMS switch, and the development of an RF feed-

through of the transmission line into the encapsulation. It also describes the methodology

for modeling metal reflow over an etch hole. In Chapter 5 the procedures and details of

the full-wave electromagnetic simulation that was used to assess the performance of the

encapsulation designs are described. In Chapter 6 the instrumentation set up and meas-

urement procedures for collecting test data are given. In Chapter 7, all results from mod-

eling, simulation, and testing are compared and discussed, including the results from

metal reflow modeling. Based on the results, an optimized encapsulation design is given

in Chapter 8, along with a detailed explanation of the thin film fabrication process that is

proposed to fabricate the encapsulations. Chapter 9 summarizes all work that was com-
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pleted and gives direction for areas of follow-on research. Appendix A gives the details

from the software package that was used to perform finite element modeling on the struc-

tures to determine accurate values for capacitance. Appendix B gives the computer code

that was written to calculate the model parameters for the analytical model. Appendix C

gives some coplanar waveguide theory and design calculations that were used to calculate

the RF feed-through, along with the computer code that was written to make the calcula-

tions. Appendix D gives the input file to the metal reflow modeling software that was

used in this research. Appendix E gives the code that was written to create the data plots

that are shown in Chapter 7 of this thesis.

1.6. References

[1] Rebeiz, G. M., RF MEMS Theory Design, and Technology, Hoboken, NJ: Wiley-
Interscience, 2003.
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2. Background

Switches are essential components in most electrical systems. The concept of a

switch is quite simple: it makes or breaks a circuit. A great deal of research is currently

being done on how to design and produce efficient switch circuits for high frequencies.

At radio frequencies (RF) and microwave frequencies, the design of any electrical circuit

becomes more difficult because the corresponding wavelengths for these frequencies are

on the order of the feature sizes of the circuits. When this occurs, the phase of the voltage

or current on a circuit is different at different points in the circuit, and standard lumped

element theory does not accurately model the circuit. Electromagnetic theory based on

Maxwell's Equations must be used to model high frequency circuits and devices such as

switches.

Many different types of switches exist today for high frequency applications.

Electromechanical switches, such as waxial switches, offer outstanding electrical per-

formance, but are relatively large, heavy, and expensive. RF switches based on semicon-

ductor technologies, the PIN diode and MESFET, offer very good electrical performance

and small size, and consequently are what is used predominantly in RF applications to-

day. Recently, much attention has been given to high frequency switches based on

MEMS technologies. MEMS switches offer superior electrical performance over semi-

conductor-based switches in many areas, and these improvements contribute directly to

increased performance in the systems in which they are used.

This section will describe the motivation for RF MEMS switches by first describ-

ing the predominant RF switches today, those based on semiconductor technology, and

their shortcomings. Next MEMS are introduced as a new technology for RF switches that
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can improve on the performance of semiconductor-based RF switches. The field of

MEMS is described and a typical MEMS fabrication process is explained. Next, MEMS

switch operation, advantages, and disadvantages are described. This leads to the identifi-

cation of one current challenge of RF MEMS switches: packaging. Several different

MEMS packaging technologies are surveyed and explained, along with their advantages

or shortcomings for packaging RF MEMS switches. Next, a packaging process that is

under research at the Air Force Research Laboratory (AFRL) is discussed. This process is

the baseline for further research described in this thesis. Finally, RF figures-of-merit for

RF MEMS switch performance characterization are defined. These figures-of-merit will

be used throughout this report to describe and compare RF MEMS switch and encapsula-

tion performance. Also included is a survey of research on design and performance char-

acterization RF MEMS switch packaging.

2.1. Semiconductor-based RF Switches

2.1.1. PIN Diode Switches

A PIN diode's name indicates its makeup; Figure 2.1 shows in a simplified draw-

ing of the semiconductor regoins that it consists of a P-type semiconductor and anN-type

semiconductor that sandwich an intrinsic region It is specified by cross section area A,

and intrinsic region width W. PIN diodes operate similarly to p-n junction diodes, but the

addition of the intrinsic region results in very high values for the breakdown voltage in

reverse bias. When used as a switch, the devices are biased as to operate in a binary

scheme: they are reverse biased to attain the highest resistance possible from the device

for an open circuit, and they are forward biased to attain the lowest resistance possible for

a closed circuit [1].
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Figure 2.1. Simplified drawing of the structure of a PTN diode showing the electrical
contacts and the three semiconductor regions.

The forward bias case occurs when a positive voltage is applied across the diode

(from P to N). In this case, holes from the p-region and electrons from the N-region are

injected into the intrinsic region. These charges do not recombine immediately, so a net

charge always exists in the intrinsic region under forward bias. This net charge causes the

resistivity of the region to decrease. When the device is fully forward biased, the resistiv-

ity is very small, but finite. This results in a finite loss for these devices when operated in

series with the RF signal, which is usually the case when used in RF switch circuits.

The negative bias case occurs when a negative voltage is applied across the diode

(also from P to N). In reverse bias, the voltage causes any charge carriers in the I-region

to move out of the I-region, fully depleting it, and a very high resistance across the diode

results. At high frequencies in reverse bias, the device's performance is best characterized

by the capacitance across the N- and P-regions. This capacitance determines the device's

isolation-a measure of how well the device prevents current from 'leaking' through in

the 'off' state. This physical separation of the P- and N-regions makes the PTN diode

more suited for RF applications than a standard p-n diode.
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Due to its ability to have a low resistance in forward bias, and very high resistance

and large capacitance in the reverse biased state, the PIN diode works Well as a switch.

One of the main disadvantages of PIN diode based switch circuits is that they must al-

ways have a bias current applied to them. This results in continuous power consumption

which makes them unsuitable for many applications, especially those that rely on batter-

ies for power.

2.1.2. MESFET Switches

The MESFET (Metal Semiconductor Field Effect Transistor) is another common

active device for RF and microwave frequencies [1]. GaAs (Gallium Arsenide) is fre-

quently used as the substrate to maximize the performance of the device for high fre-

quencies. Electron mobility is 5-10 times higher in GaAs than it is in Si, which results in

higher speeds of operation for GaAs devices than for Si devices. The higher electron mo-

bility of GaAs compared to Si also results in a lower resistance in the channel for transis-

tors of similar area.

GaAs MESFETs, like silicon MOSFETs can be viewed as voltage controlled re-

sistors. By controlling the gate bias, the channel can be switched between a low imped-

ance state (closed circuit) and a high impedance state (open) circuit. The standard

MESFET is a depletion-type device. Figure 2.2 shows a drawing of a MESFET, with the

different semiconductor regions identified. At zero bias, the active region conducts cur-

rent freely since no depletion region is introduced into the active region below the gate.

Because current flows in the unbiased state, it is referred to as 'normally on.' As negative

voltage is applied to the gate, a depletion region is formed under the gate. Current cannot

flow through the depletion region, so as the negative bias voltage is increased (more

2-4



negative) the channel made narrower, and the resistance of the channel is increased. As

gate voltage is increased, the conducting channel is eventually is pinched off, preventing

current from flowing through the channel.

Source Gate Drain

N+ GaAs Active Layer N+

UndICopedC Ga.-s
(Inisulatiing Layer')

GaAs Substrate

Figure 2.2. Simplified drawing of the material structure of a MESFET.

This ability to bias the MESFET to have an open or closed channel is exploited to

use the device as a switch. MESFET-based switches have higher speeds that P1N diode

switches, but suffer from higher insertion loss due to the finite resistance of the semicon-

ducting channel. Again, one example of how lossy switches affect RF systems is de-

creased battery life of battery-powered systems.

2.2. MEMS

Effective RF switches can also be fabricated with MEMS technology. This sec-

tion describes what is meant by "MEMS," and how MEMS are fabricated.

2.2.1. What are MEMS?

Microelectromechanical Systems (MEMS) refers to the field of fabricating sys-

tems and devices with dimensions on the order of 1 micron (or 1 ýtm). Although the name

"MEMS" implies the systems employ both mechanical and electrical aspects, many
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MEMS systems have neither. The name MEMS is used as more of a general term for mi-

cron-scale systems and devices and the discipline around designing, fabricating, and un-

derstanding them. The discipline of MEMS involves knowledge of the intended

application, material properties, microfabrication, and scaling laws [2]. In order to appre-

ciate what MEMS are, an understanding is needed of how they are fabricated, which is

discussed in the next section.

2.2.2. MEMS Fabrication

The three most common technologies for fabricating MEMS today are bulk ni-

cromachining, surface micromachining, and micromolding. In the area of RF MEMS

switches, surface micromachining is used almost exclusively for fabrication, so it will be

covered in greater detail here, while bulk micromachining and micromolding will only be

briefly described.

Micromolding is a technology that was developed in Germany. The original proc-

ess that was developed and used today is called LIGA. LIGA is an acronym for the Ger-

man words "Llthographie, Galvanoformung, Abformung," meaning lithography,

electroplating, and molding. LIGA employs a thick layer (micrometers to millimeters) of

x-ray resist that is exposed through a mask to high power x-rays. The subsequent devel-

opment of this resist results in a high aspect ratio resist structure that can subsequently be

used as a sacrificial mold to create microstruc tures by filling it with metal through metal

deposition processes. The resulting metal microstructure may be the end product itself, or

it may be used to produce additional, identical nicromolds. These micromolds can be

made of cheap, easy to use materials such as plastic, which makes mold creation and fill-

ing cheaper and easier than with resist. These resulting micromolds can then be used to
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mass produce metallic structures through metal deposition. LIGA is capable of yielding

extremely high aspect ratio (>100:1) metallic structures of thicknesses up to the millime-

ter range [3]. One of the reasons this method is not more widespread is because it re-

quires a high precision Yray source known as a synchrotron, a highly specialized and

very expensive piece of equipment.

Bulk micromachining is a subtractive process that refers to the selective etching

of the substrate to sculpt desired geometries from it. This etching is typically performed

with wet chemical etchants. Control over the geometry of the etching is enabled by the

use of anisotropic etchants that etch different crystal planes of crystalline substrate mate-

rials (usually silicon) at different rates. This property is exploited to create high aspect

ratio structures and suspended mechanical parts. An example is shown in Figure 2.3. In

the figure, silicon has been etched by bulk micromachining. The piece of silicon shown

was assumed to have had a square etch mask on its surface, and was exposed to a anisot-

ropic etchant. The top view in Figure 2.3(a) shows the square area of the substrate that

was allowed to be etched. Figure 2.3(b) shows a side cross-section of the pit that was

etched into the substrate. Control over the depth of the pit is achieved through timing of

the etch. A longer etch would continue to deepen the pit until it etched all the way

through the substrate. This procedure is used to create micronozzles for fluid flow.

Viewed from the bottom side of the wafer, the pit shown in Figure 2.3(b) is a thin mem-

brane where the substrate has been etched away underneath it. Membranes such as this

are the basis for many MEMS sensor designs. Standard integrated circuit electronics can

then be fabricated onto the wafer and membrane to create an integrated sensor.
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Figure 2.3. (a) Top view and (b) side cut-away drawings of a v-shaped pit created by
bulk micromachining of silicon using anisotropic etching.

Surface micromachining is an additive process that is an extension of well-

established integrated circuit (IC) fabrication technologies such as photolithography, thin

film growth and deposition, and dry etching. Surface micromachining involves the depo-

sition and patterning of two types of layers: structural and sacrificial The structural lay-

ers make up the mechanical parts and electrical conductors, and are typically made of

polysilicon, gold, aluminum, titanium, platinum, nickel, silicon carbide, silicon dioxide,

silicon nitride, or other similar materials. The material for the structural layer is chosen

based on its material properties. Based on the application for the device, it may be desir-

able to have favorable mechanical or electrical properties. The sacrificial layers are used

in the process to create suspended parts, gaps, and 3-dimensional structures. In MEMS

fabrication, the sacrificial layer is etched away, or released, as the last step in surface mi-

cromachining to create movable or freestanding microstructures. The sacrificial layer is

typically made of resist, phosphophosilicate glass (PSG), silicon dioxide, photoresist, or

other easily patterned and etched materials.
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Surface micromachining is the fabrication process used by AFRL to create their

RF MEMS switches. In their process, gold is used as the structural material for the de-

formable suspended beam and for the electrical conductors. Polymethylglutarimide

(PMGI) is used as the sacrificial layer for the suspended beam. PMGI is polymer-based

electron beam (e-beam) resist that has a higher reflow temperature than optical resist, is

not affected by UV light, can be used in conjunction with optical resist without chemical

interactions, and is not affected by optical resist developers or strippers. Silicon nitride or

aluminum oxide (alumina) is used as the RF dielectric, whose function will be described

in Section 2.3.2.

The fabrication process is shown in Figure 2.4. The process starts with a dielectric

substrate, such as alumina, quartz, or sapphire. First, 300 nm of gold is deposited by

evaporation and patterned with lift-off using 1813 or 1805 optical resist to create the co-

planar waveguide (CPW) lines as shown in Figure 2.4(a). Next, Figure 2.4(b) shows that

200-250 nm of aluminum oxide is deposited and patterned with photolithography over

the center conductor of the CPW at the point where the bridge will contact it when actu-

ated. This layer is the RF dielectric, whose function is described in Section2.3.2. Fig-

ure 2.4(c) shows the next step, where 3 ptm of PMGI is spun over the wafer, and

patterned with photolithography to create the sacrificial layer between the CPW and the

bridge that will be formed over it. After patterning, the PMGI is reflowed at 250'C to

create rounded sidewalls on the sacrificial layer. These rounded sidewalls are necessary

because evaporation is again used to deposit the gold suspended beam layer, and evapora-

tion provides poor step coverage because it is a non-conformal deposition method [4].

Figure 2.4(d) shows the next step, where a 600-700 nm layer of gold is deposited by
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evaporation and patterned with lift-off using optical resist. This layer is the suspended

bridge, and it is anchored at each end to the ground planes of the CPW and suspended by

the sacrificial layer between the anchors. The final step is a bath in PMGI stripper to re-

move the sacrificial layer and release the bridge as a suspended, movable structure as

shown in Figure 2.4(e). Immediately following the release the switch is dried using a su-

percritical CO 2 drying process to avoid stiction. A scanning electron microscope (SEM)

image of a switch fabricated with this process is shown in Figure 2.5, with all dimensions

annotated on the image. A cut-away drawing of the switch is also shown so the vertical

dimensions (layer thicknesses and gap widths) can be shown.

(a) (b)

(c) (d)

S350 ýtm

(e)

Figure 2.4. Step-by-step top view and side cut-away drawings of the fabrication process
for AFRL capacitive switches: (a) the gold CPW lines are deposited and patterned; (b)
the RF dielectric layer is deposited and patterned; (c) the sacrificial layer for the sus-
pended beam is deposited, patterned, and reflowed; (d) the gold suspended beam is de-
posited and patterned; (e) the sacrificial layer is released. Note that the vertical dimension
is greatly exaggerated for clarity.
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The additional steps that AFRL is currently adding to the process to create encap-

sulations for each switch will be described in Section 2.7.3. Now that MEMS and their

fabrication have been described, in the next section the advantages of applying MEMS

technology toward RF switches will be explained.

Figure 2.5. Annotated SEM image of the AFRL capacitive switch that was tested and
packaged, including a cut-away drawing of the center of the switch to show vertical

dimensions [5 ].

2.3. RF MEMS Switches

Clearly there is much motivation to have efficient RF switches. A great deal of re-

search has been done and is ongoing in creating RF switches using MEMS technoblgy

because of several demonstrated advantages of RF MEMS switches over existing tech-

2-11



nologies. However, several disadvantages or challenges exist for RF MEMS switches that

are the focus of much of the ongoing research on the devices.

2.3.1. Advantages and Disadvantages

The following advantages are inherent to MEMS switches, and are in most cases

improvements over the performance of MESFET and PIN diode based switches: [2]:

Low Power Consumption: electrostatically actuated MEMS switches often require

high actuation voltages (20-80 V), but need almost no current, so the resulting power dis-

sipated in driving the switch is very small.

High Isolation: MEMS switches are fabricated with an air gap when the switch is

open. This air gap results in high values for isolation over a broad band of frequencies.

Low Insertion Loss: This figure of merit is often the most critical in high perform-

ance systems, and semiconductor-based switches do not excel in insertion loss. MEMS

switches have shown insertion losses on the order of -0.1 dB up to 40 GHz.

Low Intermodulation Products: MEMS switches are very linear, so they have

very low intermodulation products. Semiconductor-based switches have much poorer in-

termodulation performance since semiconductors are inherently nonlinear devices.

RF MEMS switches also have several disadvantages and challenges. Some of

them are inherent to the devices, but others are challenges that have not been solved with

research at this time since RF MEMS switches are a relatively new technology. The nu-

jor disadvantages and challenges are:

Slow ,Switching ,Speed: Because MEMS are mechanical devices, they are limited

in how fast they can effectively actuate. Semiconductor switches are very fast because

they have no moving parts, and the limiting factor is the speed of the electrons within the

2-12



device. In some communications and radar applications, MEMS switches do not meet

switching speed requirements.

Low Power Handling: Most MEMS switches cannot handle more than 50 mW,

and even the best examples of power handling in research can only handle about 500 mW

of power with any reliability.

High Actuation Voltage: Although they consume very little power, they often re-

qure high voltages for actuation, which will increase the complexity of the drive circuitry,

and therefore the cost of using the switch in a system.

Reliability: Long term reliability that is required for many applications (20-

200 billion cycles) has not been achieved or proven in most MEMS switches. In addition,

the mechanisms that cause premature switch failure are not well understood.

Packaging: Because they have delicate microstructures, MEMS switches require

special handling and packaging, and cost-effective methods for packaging have not been

demonstrated to date. This topic will be discussed in more detail in Sections 2.4-2.8.

2.3.2. Design and Operation

A variety of physical mechanisms exist for actuating MEMS structures: electro-

static, electromagnetic, electrothermal, residual stress, and shape memory. Electrostatic

actuation is regarded to be the most feasible mechanism to use for actuating MEMS

switches due to low power consumption, simplicity in design and fabrication, and favor-

able scaling of electrostatic forces to the micro-scale. Electrostatic switches exploit the

electrostatic attraction of oppositely charged objects. Although electrostatic force in the

macroscopic world is negligible, at the microscopic scale (feature sizes on the order of

one micron, or 10-6 meters), the forces scale favorably and can be used for actuation. The
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AFRL RF MEMS switch designs are electrostatically actuated, and are what will be con-

sidered in this research exclusively.

Most electrostatically actuated MEMS switch designs are either a suspended can-

tilever (diving board) design as shown in Figure 2.6(a), or a bridge structure as shown in

Figure 2.6(b). Both of these structures exploit electrostatic force by applying a voltage

across the suspended beam and the electrode on the substrate directly below it. When

enough actuation voltage has been applied to the lower electrode, the beam collapses

down onto the electrode. A drawing of how this would look for a fixed- fixed beam elec-

trostatic actuator is shown in Figure 2.7. The amount of voltage that is required to do this

is called the pull-down voltage, pull-in voltage, snap-down voltage, or the snap-through

voltage. The pull-in voltage is important in a MEMS switch because it is the minimum

voltage required to actuate the switch. Note that although a voltage is necessary to actuate

the switch, very little power is consumed in the process because of low current. This is

achieved by designing the electrical connection lines to the electrodes to be high resis-

tance lines.

The operation of this switch is relatively simple, and this simplicity is an inherent

advantage of electrostatically actuated switches. In the "up" state (or "off' state), the

beam is separated from the RF signal line by the thickness of the RF dielectric and by the

air gap. This distance is relatively large, so the capacitance between the RF signal line

and the bridge is very small, and the resulting electromagnetic coupling between them is

also small. This negligible coupling in the "up" state results in very low insertion loss for

this switch. To actuate the switch, a bias (actuation) voltage is applied to the RF signal

line, while the outer conductors of the CPW are held at zero potential. At pull-in, the
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beam collapses downward and rests on the RF dielectric. Because the gap between the

beam and the RF signal line is very small (only the thickness of the RF dielectric), the

resulting capacitance between the two conductors is much larger than before (than the

non-actuated state), and the signal electromagnetically couples very efficiently through

the RF dielectric layer to the collapsed bridge. This results in the RF signal being

switched off by being connected to ground. RF MEMS switches that use electromagnetic

coupling as just described instead of ohmic contact are known as capacitive switches.

These switches are designed only for high frequency operation, and do not work at all at

DC. The avoidance of any metal-to-metal contact in capacitive switches allows them to

avoid the long-term reliability issues that plague metal contact switches.

deformable beam

anchor pull-down electrode
(a)

deformable beam

anchor pull-down electrode anchor
(b)

Figure 2.6. Simplified drawings of the two main types of electrostatically actuated
MEMS switches; (a) cantilever switch; (b) fixed- fixed beam switch, showing the an-
chors, deformable beams, and pull-down electrodes.

One reason the AFRL switches are based on CPW is the simplicity of testing

CPW-based devices on-wafer. However, these designs can easily be modified to operate

on different transmission lines such as microstrip lines.
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(a) (b)

Figure 2.7. Side view drawings of a fixed- fixed beam MEMS switch in operation: (a)
switch in the unactuated (up) state; (b) switch in the actuated (down) state, where the
beam is deformed down to the lower electrode. Note: the vertical dimension is exag-
gerated for clarity.

While designing efficient RF switches is challenging, one additional challenge is

packaging the switches in a cost-effective manner that still allows the switches to operate

at optimum performance. These challenges and some packaging approaches are covered

in the following sections.

2.4. RF MEMS Switch Packaging

While development and maturity of MEMS switches has been rapid over the last

several years, the development of suitable packaging technologies has not kept pace. Cur-

rently it is relatively inexpensive on a per-unit basis to batch produce MEMS switches.

However, packaging these switches with existing technologies pushes the per-unit cost

into levels that make them too expensive for most applications. Because of this, research

is ongoing on several different approaches to cost-effective packaging of RF MEMS

switches. This section will discuss what is meant by packaging, why MEMS switches

must be packaged, special requirements for MEMS switch packaging, and current ap-

proaches to the problem

The discipline of packaging is very broad. For microelectronics, packaging n-

volves connection of power and signals to a chip-level die, heat dissipation, and protec-
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tion from the environment. The package must meet these requirements at the same time

as meeting performance requirements for the packaged device. As defined in the packag-

ing text by Pecht, packaging is done on five levels, each with its own requirements [6]:

"* Zero-level packaging - The die itself that includes interconnections be-
tween different components on the die.

"* Level 1 packaging - The die is put in a larger package made of metal, ce-
ramic, plastic, or other materials, and the die is wired to the package.

"* Level 2 packaging - Multiple chips are packaged together into one mod-
ule. This level of packaging is sometimes not used or needed.

"* Level 3 packaging - Several Level 1 and/or Level 2 packages, along with
discrete circuit components, are integrated into a circuit board, often with
interconnections printed on it.

"* Level 4 packaging - Several circuit boards are integrated together, along
with associated power circuits, cooling, and an enclosure, to create a fully
packaged working product.

In general, MEMS components can't be packaged with the same standard tech-

nologies that are used for microelectronics packaging, especially for Level 0 and Level 1

packaging. Because MEMS switches have fragile microstructures, they must be handled

more carefully in the packaging process. In addition, the structures may be destroyed if

they are contaminated by dirt or debris during the packaging. Because of these facts,

many believe each MEMS switch on the wafer must be packaged at Level 0 before the

wafer is subdiced. These zero level packages will encapsulate each MEMS switch on the

wafer and protect them from the later stages of packaging. Furthermore, the only cost-

effective way to encapsulate each device on the wafer is to encapsulate all of them at

once. This is known as wafer-level encapsulation, or wafer-level packaging. Once each

device is packaged, the wafer may be subdiced and each die handled and packaged with

2-17



standard technologies. The encapsulated dies would not require special handling, which

would save money over attempting to package MEMS switches with conventional pack-

aging technologies without a zero- level encapsulation

Some other special requirements exist for MEMS switch packaging. First, MEMS

switches must be packaged in sealed encapsulations because they are very sensitive to

humidity, dirt, or contaminants. Ideally the cavity will be filled with a dry, inert gas, and

the package will be hermetically (air tight) sealed. Humidity and contamination must be

kept out of the encapsulation because they may cause a switch to stick in the "down" po-

sition, a phenomenon known as stiction. Once a MEMS switch is stuck down due to stic-

tion, it is useless, so it is critical that this condition be avoided.

It is possible to package MEMS switches using conventional packaging tech-

niques. The process and its shortcomings are explained in the next section.

2.5. Conventional Packaging of RF MEMS Switches

Packaging of MEMS using conventional (IC) methods involves subdicing the

MEMS wafer and attaching each die to a ceramic chip carrier with a low-temperature ep-

oxy. Figure 2.8 shows a drawing of a MEMS device that is undergoing conventional

packaging in a standard chip carrier package. The MEMS devices are then released, so all

subsequent steps must be carried out in ways as not to damage or contaminate the device.

Next, in a controlled pressure environment, a top cover (usually glass) is placed over the

chip carrier and hermetically sealed, as shown in the figure. This sealing requires a local

temperature at the sealing ring of 300-6000C, but the MEMS chip does not necessarily

reach those temperatures. Again, special handling is required in this process because each

die is unprotected during packaging. This special handling, and the inherently serial

2-18



packaging process results in a per-unit packaging cost of $30-$50 for a package with two

RF ports and several DC ports, suitable for 6-18 GHz applications, according to Rebeiz

[2]. These costs make the parts viable only for high-end defense applications. Clearly, to

make packaging cost-effective, it is generally understood that packaging needs to occur at

the wafer level. That is, the individual devices need to be protected by an encapsulation

before the wafer is cut into individual units. Two general approaches exist for wafer level

packaging. The first involves aligning an encapsulating wafer over the MEMS device AU-

fer and bonding the wafers together to form encapsulations. The second method employs

surface nicromachined structural and sacrificial layers to create encapsulations through

standard thin film deposition and patterning processes. These approaches, along with

published examples of each, are explained in the following sections.

Figure 2.8. Illustration of conventional packaging for MEMS devices using a ceramic
package with a sealing lid [7].

2.6. Wafer Bonding

As shown in Figure 2.9, a generic wafer bonding method involves fabricating

MEMS devices on one wafer, and fabricating the encapsulations for each MEMS device

on another wafer. The two wafers are then aligned and bonded together to create hermeti-
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cally sealed encapsulations for each device. Next, the wafer can be subdiced (scribed into

individual units) for further packaging. The wafer bonding method has an advantage of

producing a zero-level package that is very strong, and can easily withstand standard IC

packaging processes such as plastic injection molding. Several technologies for wafer

bonding exist, and will be described briefly below.

bonding areas

cappingu wafer-

substr-ateJ

MEMS devices encapsulations

Figure 2.9. Drawing depicting the wafer bonding approach to MEMS encapsulation.
The upper wafer has cavities fabricated in it that align over the MEMS devices on the
lower wafer. Next, the two wafers are bonded together using various methods. After
bonding, the wafer is cut into individual units for further packaging.

2.6.1. Anodic Bonding

Anodic bonding, sometimes also called electrostatic bonding, exploits the fact that

glass can be bonded to other materials such as silicon or metals at temperatures below the

melting point of glass if it is in the presence of a strong electric field. Figure 2.10 shows a

drawing of anodic bonding of glass silicon. In the figure, the glass wafer is attached to a

metal cathode and the silicon wafer is attached to a metal chuck. The cathode and chuck

are attached to a high voltage source, and the wafers are put in an oven at 300-1000°C.

This bonding method can be applied to wafer bonding for MEMS packaging. In a study

by Ziaie et al., voltages of 300-2000 V were used at temperatures from 300-450°C [8].

This method results in a mechanically strong hermetic seal and is useful for many MEMS
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devices. In fact, experimentation has shown the resulting bond to be stronger than the ma-

terials it bonded. However it is not an option for MEMS switches because they typically

consist of at least one layer of metal. The temperatures required for anodic bonding

would damage or destroy the metal in the switches, rendering them useless. In addition,

the bonding of two different materials at a high temperature will result in residual stresses

in the wafer due to thermal expansion mismatches in the two wafer materials. Yet another

factor that must be accounted for in anodic bonding is the surface roughness of the two

surfaces that are being bonded. Surfaces that are too rough may result in a mechanically

weak bond that is not hermetically sealed. Anodic bonding can also be used to bond sili-

con to silicon if a thin layer of glass is deposited between the two wafers at the bonding

points.

400-1000°C oven

metal cathode

gasanodicIsbond hg '

- voltag +
CILCýsupply

Figure 2.10. Drawing depicting the anodic bonding process for wafer bonding of sili-
con to glass.

2.6.2. Silicon Fusion Bonding

Silicon can be bonded directly to silicon using fusion bonding. This bonding oc-

curs due to a chemical reaction between the wafers at elevated temperatures. According
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to Cheng et al., fusion bonding typically takes place at temperatures above 1000°C [9].

Figure 2.11 gives a drawing of two silicon wafers that are undergoing fusion bonding in

an oven at 300-800'C. The result is a hermetically sealed, mechanically strong bond.

Thermal mismatch stress is not an issue because the two wafers that are bonded are of the

same material. However it is not suitable for MEMS switches because they contain metal

parts that would be damaged by high temperatures required in the bonding process. In

addition, the hermeticity of the seal is highly dependent on surface roughness, further

complicating the process.

300-800'C oven

silicon capp..ing... x. fer. fusion
,--bond

silicon substrate

chemical reaction forms bond

Figure 2.11. Drawing depicting the silicon fusion bonding process for wafer bonding
of silicon to silicon.

2.6.3. Eutectic Bonding

At 363' C, gold and silicon diffuse together to form an alloy known as a eutectic

mixture. This is the lowest temperature for bonding silicon and gold, even though it is

below the melting point of both materials. This mechanism can be used to bond silicon to

silicon if a layer of gold exists between them, as described by Cheng et al. [9]. Fig-

ure 2.12(a) shows a eutectic bond being formed with silicon and gold in an oven at

363°C. Figure 2.12(b) shows the wafers after the bond has cooled. As in the case of an-
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odic and fusion bonding, the high temperature required to reach the eutectic state is too

high for RF MEMS switches, so it is not a suitable bonding process for these devices.

363°C oven

silicon cappin1g, \Nfer silicon capp)ingLie

gold layer eutectiC

bondc

silicon1 substrate silicon sdbstrate

(a) (b)

Figure 2.12. Drawing depicting the eutectic bonding process (a) before the eutectic
bond forms and (b) after the bond has formed.

2.6.4. Thermocompression Bonding

Another bonding technology is thermocompression bonding. This bonding is

achieved by the simultaneous application of pressure and heat between two surfaces that

have a metal layer between them at the bonding ring. Ideally a bond would be made by

melting the metal at the bonding ring, but the high temperatures required for this would

damage the MEMS switch inside the package. Instead the temperature can be reduced to

a level where the metal softens and pressure can be applied to the wafers to form a ther-

mocompression bond. Figure 2.13 shows a thermocompression bond being formed be-

tween two wafers with gold between them. The wafers have a pressure force applied to

them, and are situated in an oven at around 300°C. Tsau et al. demonstrated thermocom-

presson bonding of gold at a temperature of 300°C and a pressure of 7 MPa for wafer

bonding [10]. Gold is often chosen as the bonding metal because it resists oxidation,
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which would hinder the bonding mechanism. One disadvantage of the process is that it

requires high temperatures to achieve strong bonds that are hermetically sealed, espe-

cially if the bonding areas have significant surface roughness.

300'C oven mechanical force

c appin wa fr

gold .... •

silicon substrate

Figure 2.13. Drawing depicting the thermocompression bonding process for wafer
bonding using gold as the bonding metal between the wafers.

2.6.5. Solder Bonding

Another bonding method utilizes a solder ring as the bonding agent between the

wafers. The bonding process is shown in Figure 2.14. In Figure 2.14(a) the wafers and

solder are brought to the melting point of the solder by placing them in an oven. This

forms a bond when cooled as shown in Figure 2.14(b). Kim et al. presented a hermetic

MEMS package using an AuSn solder ring to bond silicon to silicon [ 1 ]. Solder bonding

produces a reliable hermetic seal, but the wafers must be heated to the melting point of

the solder which is 400'C for AuSn solder. Other solder compounds allow the bonding to

occur at lower temperatures due to their lower melting points. Tilmans et al. present a

variation of solder bonding by using solder reflow to create the seal [7]. Their method

also exploits the surface tension of molten solder to self-align the encapsulations with the
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device wafer. This process is known as the indent reflow sealing (IRS) technique. The

main disadvantages of solder bonding techniques is the potential outgassing from the sol-

der into the encapsulation, which can cause the switch to degrade in performance or fail

by adhering in the "down" position Other than the potential for outgassing, methods us-

ing solder reflow show much promise for MEMS switches due to the low temperatures

necessary and the hermetic seal it provides.

150-600'C oven

cappinig waferll

solderr

la e

siliconl substrate silicon substrate

(a) (b)

Figure 2.14. Drawing depicting the solder reflow bonding process (a) before the sol-
der was brought to its melting temperature, and (b) after the solder has been reflowed
(melted) and cooled.

2.6.6. Epoxy Bonding

Another wafer bonding method uses epoxy or polymers to form the bond, as

shown in Figure 2.15. Park et al. bonded a quartz MEMS substrate wafer to a glass cap-

ping wafer using a nonconductive t3stage epoxy that was cured at 200'C [12]. Epoxy

bonding has the advantage of low curing temperatures (60-200'C), low cost, and high

reliability, but has not been shown to produce a fully hermetic seal to date. Since it is

generally understood that a hermetic seal is a requirement for reliable RF MEMS

switches, epoxy sealing currently doesn't meet their packaging requirements. According
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to Rebeiz, some packages produced with this method have been shown to be near her-

metic [2]. Further research is necessary on epoxy bonding to determine its suitability for

RF MEMS switch packaging. Future research may show that epoxy sealing is a suitable

bonding and sealing alternative for the wafer bonding approach to encapsulation.

60-200'C oven

epoxy
or

silicon stbstrate

Figure 2.15. Drawing depicting the wafer bonding process using epoxy as the bonding
agent between the wafers. The epoxy must be placed in an oven at a relatively low
temperature to cure it.

2.6.7. Localized Heating and Bonding

Clearly a common problem among most wafer bonding methods is the high tem-

perature required to form the bonds. This heating is typically achieved by placing the 'wa-

fers in an oven, which subjects the MEMS devices to high temperatures. Figure 2.16

shows a drawing of the localized heating method. At the bonding ring, resistive micro-

heaters are fabricated through surface micromachining to provide localized heating for

the bonding process. Due to the localization of the heating, the MEMS structures are not

subjected to high temperatures. Cheng et al. used localized heating to achieve silicon fa-

sion bonding and gold-silicon eutectic bonding [9], silicon-aluminum eutectic bonding

[13], and solder bonding [14]. Lin also used localized heating for gold-silicon eutectic

bonding, silicon-silicon fusion bonding, and Pb-Sn solder bonding [15]. The bcalized
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heating method has shown to provide hermetic seals of high strength and yield. The main

disadvantage of this method is the potential outgassing into the encapsulation from the

solder that is typically used for these methods. In addition, it requires the fabrication of

microheaters on the substrate wafers whose layout and placement may not be compatible

with the MEMS devices on the wafer.

room temperature

bonding
material

S1miCro- heaters

silicon substrate

Figure 2.16. Drawing depicting the wafer bonding process using localized heating and
bonding. This is accomplished by fabricating and using micro-heaters only on the ar-
eas to be bonded, and using one of the several high- temperature bonding methods
available. Because the heating is localized to the bonding ring, the MEMS device in
the cavity is not subjected to high temperatures.

2.6.8. Summary of Wafer Bonding Techniques

Most of the wafer bonding techniques are very similar, but they use different

techniques for the actual bonding and sealing of the wafers. One major disadvantage of

wafer bonding techniques is the requirement for a bonding area around each device

where the bond is made. This results in a large amount of wafer area being used for the

bonding area. This decreases the number of devices that can be fabricated on a wafer, and

therefore increases the cost of each device. Another disadvantage of wafer bonding tech-

niques is that packaging is a completely different and separate series of steps from the

fabrication of the MEMS structures that are being packaged. When the packaging is done
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separately of the device fabrication, it is referred to as post-packaging. The surface mi-

cromachining encapsulation method to be discussed next avoids costly post-packaging by

integrating the fabrication of the encapsulation with the fabrication of the MEMS devices

they are encapsulating.

2.7. Surface Micromachined Encapsulations

The third approach to zero-level packaging of RF MEMS devices is surface mi-

cromachining. In this approach, a thin film "shell" is fabricated directly over each MEMS

device using similar deposition and patterning techniques that are used to fabricate the

switch. The structure is released through etch holes in the encapsulation, and the etch

holes are sealed at a desired pressure to ensure a hermetically sealed cavity with a known

pressure in the encapsulation.

One of the earliest published realizations of a microfabricated cavity was pub-

lished in 1990 by Ikeda et al. [16]. In that work, an encapsulation was created around a

resonator in order to maximize the resonator's quality factor (Q factor). The cavity that

was fabricated was sealed with a pressure of less than 1 mTorr, could withstand 100 MPa

of pressure, and had wall thicknesses of 10 tn-L This fabrication process was very spe-

cialized, and involved five selective epitaxial growth steps, one deposition step, and three

selective etch steps.

Lin et al. devised a fabrication process for wafer-level encapsulation that uses

standard surface micromachining processes and materials [17]. In their method, a MEMS

resonator is first covered with 7 ptm of phosphosilicate glass as the sacrificial layer. This

layer is then patterned to define the encapsulation. Next, 1 ptm of silicon-rich silicon 6i-

tride is deposited as the encapsulation shell over the sacrificial layer, with etch holes de-
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fined in it to enable release of the sacrificial layers. Next, the sacrificial layers are etched

away in a bath of concentrated hydrofluoric acid (HF). The wafer is then cleaned and

dried using a supercritical CO 2 dryer. In the supercritical CO 2 drying process, the liquid

used in the last step of the release step is replaced directly by CO 2 gas to prevent the sur-

face tension of the fluid from drawing the parts of the MEMS switch together as the fluid

evaporates. This surface tension would draw the MEMS switch into the down position

where it would be permanently stuck, and therefore useless. Finally, 2 ptm of low-stress

nitride is deposited with low pressure chemical vapor deposition (LPCVD) to seal the

etch holes. This deposition is done at low pressure in order to create a low-pressure en-

capsulation for optimal (high Q) resonator performance. Further research has been per-

formed Liu and Tai on the use of chemical vapor deposition CVD) methods for the

sealing of microcavities [18]. Their study covered deposition methods, sealing materials,

and seal performance.

Another surface micromachined encapsulation method uses epitaxially grown

polysilicon as the encapsulation layer [19]. This method not only can provide a hermetic

seal, but is also very durable to better protect the MEMS device from standard handling

and packaging that will occur after encapsulation Epitaxial silicon was chosen as the en-

capsulant because of its mechanical strength and ease of deposition and patterning. This

process is not suitable for MEMS switches due to the high temperatures required during

epitaxial silicon growth (-1000° C). Sealing of the etch holes in the encapsulation was

performed by depositing a low temperature oxide (LTO).

Although the earliest realizations of surface micromachined encapsulations for

MEMS devices were being published in the early 1990's, it was not until 2002 that the
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first patent was obtained for this technology, by Wood and Dudley. [20]. In this patent,

specific materials or processes are not described, but the patent is rather for the general

idea of using surface micromaching to encapsulate a MEMS device to protect it from fur-

ther packaging.

2.7.1. Nickel Electroplated Encapsulations

Stark and Najafi demonstrated another method of producing hermetic packages

using a thick layer of electroplated nickel as the encapsulation [21 ]. This provides a me-

chanically strong encapsulation, which aids in protecting the device in later packaging

steps. Figure 2.17 shows an SEM image of one of their nickel electroplated encapsula-

tions. Etch holes were not defined in the encapsulation, but rather tunnels were defined at

points where the encapsulation would have made contact with the substrate. These "flu-

idic access ports" are later closed at vacuum pressures by reflowing prefabricated micro

lead-tin (Pb-Sn) solder balls over the entire encapsulation This method was shown to re-

sult in a hermetic seal; however the fact that the entire encapsulation is made of metal

would not lend itself well to encapsulating RF MEMS switches. The large extent of metal

that makes up the encapsulation and the minimal gap between the encapsulation and the

signal lines going into and out of the encapsulation would contribute to large parasitic

capacitances between the signal line and the encapsulation, resulting in poor RF perform-

ance. One possible variation on their method in order to improve RF performance would

be to construct part of the encapsulation with a dielectric and part of it with metal. The

reduced extent of metal would decrease the parasitic capacitance and therefore improve

RF performance. The use of a dielectric structural layer for the encapsulation was not

considered by the authors, but was considered in this thesis.
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Figure 2.17. SEM image of a MEMS encapsulation fabricated by electroplating nickel
over a sacrificial layer (over a MEMS device). The sacrificial layer is etched away
through the "fluidic access ports" on the sides of the encapsulation, and the access
ports are sealed through various methods. [21 ].

2.7.2. Permeable Polysilicon Encapsulation

A variation on surface micromachined encapsulation techniques is the use of po-

rous polysilicon as the encapsulation layer. When thin layers of polysilicon are deposited

under certain conditions of temperature, doping, and pressure, they have a porous struc-

ture that is permeable to HF, a common etchant used to release MEMS devices. Porous

polysilicon has a mesh structure of pores with radii of 5-20 rnm. Lebouitz et al. used

"windows" of permeable polysilicon in an otherwise non-permeable polysilicon encapsu-

lation to allow release of a MEMS resonator through the encapsulation [22]. Figure 2.18

shows side cut-away drawings of the key steps in their encapsulation process. In Fig-

ure 2.18(a) the encapsulation frame with etch access windows is fabricated over a sacrifi-

cial layer and the porous polysilicon is fabricated over the entire structure. Next, in

Figure 2.18(b) the sacrificial layer is etched away directly through the porous polysilicon

windows. Finally, in Figure 2.18(c) a sealing layer that does not penetrate the porous

polysilicon layer is fabricated over the encapsulation, which seals the porous windows.
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The porous polysilicon windows were amply large for the HF to perform a complete re-

lease of the PSG sacrificial layer, but were small enough that they were easily sealed by

LPCVD silicon nitride layer without the silicon nitride entering the cavity and corrupting

the MEMS resonator. This encapsulation technique seems to work well for polysilicon

resonators, but is not suitable for RF MEMS switches due to the high temperatures that

are necessary to deposit the polysilicon and porous polysilicon (> 600' C).

etch ac-cess win- porous chemical
dow polysilicon etchant sealingdo layer

encapsulation
S~' frame'

sacrificial :~subhstraýte

(a) (b) (C)

Figure 2.18. Side cut-away drawings of the encapsulation process using porous
polysilicon etch access windows; (a) the encapsulation frame with etch access win-
dows is fabricated over a sacrificial layer and the porous polysilicon is fabricated over
the entire structure; (b) the sacrificial layer is etched away directly through the porous
polysilicon windows; (c) a sealing layer that does not penetrate the porous polysilicon
layer is fabricated over the encapsulation, which seals the porous windows. [22].

2.7.3. AFRL Encapsulation Process

The AFRL RF MEMS switch whose fabrication process is shown earlier in Figure

2.4 is the basis for the AFRL encapsulation process. The encapsulation process requires

only a few more surface micromachining steps, using similar sacrificial and structural

materials as were used to fabricate the switch.

The process starts with unreleased switches as shown in Figure 2.19(a). The first

step, shown in Figure 2.19(b) is to deposit 2-3 ýtm of PMGI (an electron-beam resist) and
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pattern it with photoresist over the entire unreleased switch. These encapsulation "forms"

are next reflowed at 250'C to create rounded sidewalls. In the next step, shown in Fig-

ure 2.19(c), 1-2 ýtm of silicon nitride is deposited by sputtering or low pressure chemical

vapor deposition (LPCVD). This layer is patterned over the sacrificial layer to create an

encapsulation over each switch using optical resist as the etch mask. Next, etch holes are

patterned in each encapsulation and etched with reactive ion etching (RIE) or wet chemi-

cal etching. In Figure 2.19(d) the next step is shown to be the release of the encapsulation

and the switch through a soak in PMGI stripper. Immediately following the release, the

switches are dried using a CO 2 critical point dryer to avoid stiction. In the final step,

shown in Figure 2.19(e) the etch holes are sealed using one of a variety of methods that

are still under investigation An annotated SEM image of the AFRL capacitive switch

with a dielectric encapsulation can be seen in Figure 2.20, showing all dimensions. To

verify that the encapsulated switch was completely released, the encapsulation was torn

away for inspection inside the encapsulation. Figure 2.21 shows an SEM image of the

switch with the dielectric encapsulation partially torn away. The image shows that the

MEMS switch and encapsulation were completely released through the etch holes in the

encapsulation.

2-33
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Figure 2.19. Top and side cut-away drawings of a step-by-step fabrication process for
RF MEMS switch encapsulation based on the AFRL encapsulation process; (a) begin
with unreleased switch; (b) deposit and pattern second sacrificial layer over entire
MEMS switch, and reflow; (c) deposit encapsulation dielectric over sacrificial layer
and pattern it with etch holes in it; (d) release switch and encapsulation with a wet
chemical etch through the etch holes; (e) seal the etch holes in the encapsulation layer
to create a sealed encapsulation. Note: the vertical dimension is exaggerated for clarity.

To create sealed encapsulations, the etch holes must then be sealed. This sealing

cannot introduce material into the encapsulations because the switch performances may

be affected. The exact material and process that will be used to seal the holes is the sub-

ject of ongoing research by AFRL and the author. Some materials that are being consid-

ered are spin-on glass and thermal/UV cured epoxies. Wu et al. have performed a

thorough evaluation of electrical and mechanical performance of nonhermetic commer-

cial conformal coatings for MEMS encapsulation including silicone elastomers, epoxies,

and Parylenes [23]. They characterized moisture ingress resistance, mobile ion permea-

tion, and adhesion of the materials when used for encapsulation. Another idea that is the

subject of this research is to use a metallization layer over each encapsulation to seal the
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etch holes. A metal layer may have the added advantages of providing some electromag-

netic shielding and physical durability to the encapsulation Another advantage of a metal

sealing layer is that it is known to provide a hermetic seal, whereas polymers and epoxies

often do not provide a hermetic seal.

1. dielectric

1.0 CPW 1.0 I

10,0

Figure 2.20. Annotated SEM image of an AFRL RF MEMS switch with a dielectric

encapsulation fabricated over it. Also included are side cut-away views to show the
vertical dimensions [5 ].

It has already been discussed that the requirements for RF MEMS encapsulation

are that it must provide protection for each MEMS device from physical damage and con-

tamination during further packaging, it must not take up too much area on the wafer, and

it must provide a hermetically sealed caLvity for the switch to operate in. One other re-

quirement that has not been discussed yet is for the encapsulation to ideally have no

negaLtive effects on the switch's performance.
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Figure 2.21. Annotated SEM image of an AFRL RF MEMS switch with a dielectric
encapsulation that has been partially torn away to show that the encapsulated switch
was completely released through the etch holes in the encapsulation [5].

2.8. Performance Characterization of RF Switches and Packaging

An important factor in the design of zero-level packaging is the effect on the high

frequency performance of the RF switch. Scattering parameters are commonly used to

characterize microwave networks, and are thoroughly explained by Pozar in his familiar

text [24]. The scattering parameters for RF MEMS switches are used to characterize their

performance, and are also used to characterize the effect of the packaging on the per-

formance of the switch. Next, scattering parameters will be described, as well as how

they are used to characterize the performance of a microwave switch.

2.8.1. Scattering Parameters

For an n-port network, the scattering parameters (S-parameters) are given in a

scattering matrix, or [S] matrix, that has the dimensions of ni by n. The value of each ele-

ment Sý is a complex value describing a voltage wave at port i when port j has a voltage

wave incident on it. All ports other than portj are assumed to have loads on them that are
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impedance matched to the microwave network so they will not have any effect on ports i

andj. Also, the incident waves on all ports other than the /th port are set to zero. Consider

a two-port network because it accurately describes an electrical switch. Figure 2.22(a)

shows a drawing of a two-port network, with the S- matrix that describes the performance

of the network. The four S-parameters for a two-port network are illustrated in Fig-

ure 2.22(b) and described below:

"* S1 is the reflection coefficient at port 1. A voltage is attached to port 1, a
matched load is attached to port 2, and the reflected voltage wave at port 1
is measured.

"* S21 is the forward transmission coefficient (from port 1 to port 2). A volt-
age is attached to port 1 and the voltage is measured at port 2.

" S12 is the reverse transmission coefficient (from port 2 to port 1). A volt-
age is attached to port 2 and the voltage is measured at port 1.

"* S22 is the reflection coefficient at port 2. A voltage is attached to port 2, a
matched load is attached to port 1, and the reflected voltage wave at port 2
is measured.

- microwave S . 21 • _

Port I Port 2 $12 2

(a) (b)

Figure 2.22. (a) Illustration of a generic 2-port microwave retwork that can be de-
scribed by S-parameters in the S-matrix LS]; (b) simplified diagram of the four S-
parameters for a 2-port network.

These concepts can easily be extended to any n-port network. In symmetrical

network, which usually describes RF MEMS switches, the reflection coefficient at port 2

(S22) is identical to the reflection coefficient at port 1 (Si 1) and the reverse transmission

coefficient (S12) is identical to the forward transmission coefficient (S2 1).
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S-parameters can be calculated analytically based on voltage or current waves in-

cident to a network, and they can be easily measured in a laboratory using a vector net-

work amnlyzer.

2.8.2. Insertion Loss

One of the most important metrics for characterizing the performance of a RF

switch (or other electrical components) is insertion loss. Insertion loss is a measure of the

loss introduced into a system, and is formally defined in dB by Pozar [24] with

IL = -20log ITI (2.1)

where T is the transmission coefficient, which can easily be found from the more familiar

reflection coefficient F with

T = 1 + F (2.2)

where

F = Z, -Z (2.3
ZF + (2.3)

where Z1 is the impedance of the network and Zo is the characteristic impedance of the

transmission line feeding the network. Alternatively, h practice the S-parameters are

used to calculate insertion loss:

IL = 20logIS 211 (2.4)

In this formulation, the insertion loss is given in negative dB, where a lossless network

will have an insertion loss of 0 dB and a network that completely attenuates the incoming

signal has an insertion loss of -o dB. The insertion loss of a capacitive RF MEMS switch

is measured with the switch in the up state (closed circuit).
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2.8.3. Return Loss

Another important performance metric for microwave networks is return loss. Re-

turn loss is the ratio in dB of the incident power to the reflected power from a network.

The formal definition is simply the dB value of the reflection coefficient, F:

RL = -20logIF1 (2.5)

Alternatively, in practice the S-parameters are used to calculate the return loss:

RL = 201ogi 11  (2.6)

Here the return loss is again given in negative dB. In general for microwave networks, it

is desirable to minimize the return loss, so ideal networks have a return loss of -00 dB us-

ing Equation (2.6). The return loss of a capacitive RF MEMS switch is measured with the

switch in the up state (closed circuit).

2.8.4. Isolation

Isolation is a measure of the performance of a switch when it is in the down,

(open circuit) state. It is a measure of the signal that "leaks" through a switch, and is cal-

culated from the S-parameters with:

Isolation = 20 logS 211 (2.7)

The isolation as calculated here is again a negative number. An ideal switch will have an

isolation of -c0 dB using Equation (2.7).

2.8.5. Microwave Effects of Packaging on RF MEMS Switches

There are four main issues that determine the high- frequency characteristics of the

zero-level package:

* The parasitic and reflection losses at the encapsulation boundary due to
the RF feed-throughs into and out of the encapsulation
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"* The parasitic losses in the transmission line due to proximity coupling
with the encapsulation

"* The losses from the detuning of fhe transmission line (impedance mis-
match) due to the encapsulation and switch

"* The losses due to the lossy dielectric that makes contact with the transmis-

sion line at the feed-throughs of the encapsulation

The effects of these mechanisms on microwave performance are shown in the in-

sertion loss, return loss, and isolation of the network. An ideal switch adds no losses or

reflections to the network when in the closed-circuit state and perfectly blocks all signals

from propagating through it when in the open-circuit state. Although excellent RF

MEMS switches have been designed, and some suitable zero-level packaging methods

have been developed, rarely is the RF performance of the package a factor when design-

ing the package.

Various researchers have looked into the RF performance of packaging using the

flip-chip (wafer bonding) packaging method. Park et al. used RF vias from the backside

of the capping wafer to minimize detrimental RF effects of the packaging [12]. Mar-

gomenos et al. studied RF performance of wafer bonded packaging through modeling and

measurement [25]-[27]. Margomenos and Katehi have characterized the parasitic losses

due to the RF feed-throughs, metallic bonding ring, and DC bias lines in [25]. In other

research, Margomenos et al. paid special attention to the RF transition into the package

[27]. Holzman et al. developed a multi-layer ceramic feed-through for microwave multi-

chip modules in their research [28]. In [29] Other related research by Jourdain et al. pro-

vided a thorough analysis on optimizing the performance of the entire package as part of

the design process [29]. Extensive testing and modeling is done in the paper, and again it
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is based on wafer bonded packages. Another treatment on optimizing the RF performance

of the package was performed by Hwang et al., however it is focused on conventional

ceramic packages (Level 1 packaging), and its intent is more on evaluation of off-the-

shelf packaging rather than on design and optimization [30]. DeMarco et al. paid special

attention to microstrip and CPW transitions into high frequency hermetic packages that

employed LTCC (low temperature co-fired ceramic) as the capping layer with a metalli-

zation ring as the sealant [31].

2.9. Summary

The motivation for RF MEMS switches was introduced by describing current RF

switches, based on semiconductors, in Section2.1. Next, in Section2.2 the field of

MEMS is introduced, including how they are fabricated. In Section2.3 RF MEMS

switches are described, including how they work and their advantages and disadvantages.

In Section2.4 a particular challenge of RF MEMS, packaging, is described. In Sec-

tions 2.5 and 2.6, conventional packaging and wafer bonding approaches to packaging

MEMS are described, including their advantages and disadvantages. In Section2.7, a

third approach to MEMS packaging is described: surface micromachining. Also de-

scribed in this section is the AFRL encapsulation process that is the basis for this thesis

research. Finally, in Section2.8 figures of merit for RF MEMS switches are described.

Also in this section is a literature survey of research in designing and characterizing

packaging for RF MEMS switches. The next chapter presents the novel encapsulation

designs that were created for performance analysis and optimization in subsequent chap-

ters of this thesis.
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3. Encapsulation Designs

Several different encapsulation designs were created for analysis and testing.

Most designs were not created before analysis and simulation of electrical performance

began; rather the test matrix was expanded with new designs after each previous design

was analyzed. In this manner, new designs could be created and analyzed based on the

knowledge gained from analyzing previous designs, and the overall performance could be

optimized based on knowledge learned in the iterative design-analyze-design cycle.

3.1. Capacitive RF MEMS Switch Geometry

Each encapsulation was designed over a capacitive RF MEMS switch whose W-

ometry and dimensions are shown in Figure 3. In Figure 3.1 (a), a top view drawing of the

switch is shown, with all major designable dimensions denoted. In Figure 3.1(b) a side

cut-away view of the same switch is presented. Also included is a blow-up of the center

section of the switch so the layer thicknesses and air gap width can be denoted. The cor-

responding dimensions for the switch that was encapsulated and analyzed in this work is

shown in Table 3.1.
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Figure 3.1. (a) Top view and (b) side cut-away drawings of the capacitive RF MEMS
switch that is encapsulated in this work. Note: the vertical dimension is exaggerated for
clarity.

Table 3.1. Dimensions of the capacitive RF MEMS switch that was encapsulated in this
work.

Parameter Symbol Value (ýtm)
Beam length L 300
Beam width w 120

Beam thickness 1b 0.7
Air gap g 3.5

RF dielectric thickness tR 0.2
CPW thickness tcpw 0.3

CPW signal width W 80
CPW ground width WGP 120

CPW gap width G 40
Substrate thickness t,,,h 432

3.2. Encapsulation Design Geometries

Encapsulations were designed as the zero- level package for the RF MEMS switch

described above. In Figure 3.2(a) a top view of the encapsulation is shown, and a side

cut-away drawing is shown in Figure 3.2(b).
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Figure 3.2. (a) Top view and (b) side cut-away drawings of the encapsulated capacitive
RF MEMS switch, showing the geometry variables that are varied in the different de-
signs. Note: the vertical dimension is exaggerated for clarity.

The parameters that were varied in the encapsulation designs were the metal layer

width w,,,, the dielectric layer thickness /d, and the air gap between the switch and the en-

capsulation g,. The geometries fbr the entire design space are shown in Table 3.2. A de-

tailed list of each design configuration is given in Table 3.3.

Table 3.2. Summary of the dimensions of the encapsulation designs. Note that the metal
layer width, w,,,, the dielectric layer thickness, /d, and the air gap between the switch and
the encapsulation, ge, are all parameters that were varied in the different designs.

Parameter Symbol Value (ýtm)
Dielectric layer width W/ 200

Metal layer width Wi 160 - 214
Dielectric layer thickness Ld 1.6 - 3.2

Metal layer thickness tl 5.0
Air gap between switch and encapsulation g, 3.5 - 6.5
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Table 3.3. Description of geometry of all encapsulation designs. The designs are further
subdivided into two configurations based on the state of the MEMS switch, up or down.
For every configuration, the dielectric encapsulation width Wd is 200 ptm and the metal
layer thickness is 5.0 ptm.

Metal Dielectric Modified
Design Config. Switch layer layer EncapsulationRF feed-9 9 stae width layer air gap, g, Ffed

state width, thickness, td through

1 1U UP None None 3.5 NoID Down

2 2U Up None 1.6 3.5 No
2D Down
3U Up 160 1.6 3.5 No
3D Down

4 4U Up 200 1.6 3.5 No
4D Down
5U Up 214 1.6 3.5 No
5D Down

6 6U UP 214 3.2 3.5 No6D Down

7 7U Up 200 1.6 5.0 No
7D Down

8 8U Up 180 1.6 3.5 No
8D Down
9U Up

9___ 9D Down 1.6 6.5 No

10 IOU Up 214 3.2 3.5 Yes

In designs 5 and 6, the metal layer is wider than the dielectric layer. Figure 3.3(a)

shows a top view of the encapsulation in this case. The side cut-away view of this encap-

sulation better shows the dimensions of this case. Note that the width of the dielectric

layer (wd) is actually the width of the raised part of the dielectric encapsulation layer, not

of the entire layer. It does not include the part of the layer that rests on the substrate (or

CPW), which is a 20 ptm pad on all sides of the raised encapsulation. The metal layer

does not have a pad around it, so the metal layer width (Wd) includes the full width of the
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metal layer. Therefore, in the designs where the metal layer width is wider than the di-

electric layer width, the metal layer is prevented from making electrical contact with the

RF signal line by the dielectric encapsulation layer pad around the encapsulation.

metal W,0
encapsulation 14

layer .. t,

dielectric
encapsulation

dielectric low loss, substrate beam

Figure 3.3. Top view and side cut-away drawings of an encapsulated capacitive RF
MEMS switch, showing the structure of design configurations 5 and 6, where the
width of the metal encapsulation w,, is greater than the width of the dielectric encapsu-
lation layer wd. Notice that w/ is not the entire extent of the dielectric layer, but only
the part of it that forms the raised encapsulation. Note: the vertical dimension is exag-
gerated for clarity.

In every design with a metal layer, the dielectric layer is designed with a void in

the 20 ptm pad directly above the two CPW ground traces. This electrical contact makes

the metal layer of the encapsulation electrically grounded. This grounding has several

advantages for the packaging that will be discussed later in this document.

3.3. RF Feed-Through Design

In design 10, an RF feed-through for the transmission line into and out of the

package was designed to minimize the detrimental effects of the package on the overall

RF performance. In the design, the encapsulation design was identical to design 6, but the

CPW signal line width was mrdified to a width WH over a length LH. The transition was

centered on the edge of the encapsulation where the dielectric and metal layers conform
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down to the CPW signal line. A top view drawing of this geometry is shown in Fig-

ure 3.4, and the dimensions of the RF feed-through are given in Table 3.4. The theory

behind the RF feed-through design is given in Chapter 4.

G"L

Figure 3.4. Overhead drawing of the RE feed through design dimensions. The CPW
width is modified for a length of LH/2 on each side of the feed-through to impedance
match the feed-through to the transmission line.

Table 3.4. Numerical values for the geometry parameters of the CPW signal line modifi-
cation for the RF feed-through design.

Parameter Symbol Value (ýtm)
CPW signal line width at feed-through WH 44

Length of RE feed-through segment LH 37.5

3.4. Material Properties

For the analytical modeling described in Chapter 4 and the electromagnetic simu-

lation described in Chapter 5, the material properties of the materials in the substrate,

switch materials and encapsulation materials are needed. The materials that were used in

fabricating the switches and encapsulations are known, and the property values for these

materials were obtained from published sources [1]-[4]. However, the exact values for
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these properties were not obtained experimentally. Because the property values for many

materials often vary with each fabrication run, the values below are a potential source of

error on the modeling and simulation results in comparison to the test data.

Table 3.5. Material properties for each material in the RF MEMS switch and encapsula-
tion. These values are used for analytical modeling and electromagnetic simulation.

Property, units Symbol Value Reference
SISubtr~ate: R-planie sapphiire --

Relative permittivity 8r, sub 9.4 P1]
Dielectric loss tangent tan 6sub 0.001 [1]

CPWN, linies and M/EM\S beam: _solcl --

Bulk conductivity, MS/N I1b 45.5 121
RF dlielectri-c: aluimina - -

Relative permittivity Eru 9.2 [3]
Dielectric loss tangent tan 6IU 0.008 [3]

En1Capsu~latoion dlielectric: siliconi nitride -- -

Relative permittivity \rd 7.0 [4]
Dielectric loss tangent tMn ld 0.001 [4]

En.capsula t[} iomtal iidium - -

Bulk conductivity, MS/m Cym 12.5 [2]

3.5. Summary

In this chapter the encapsulation designs that were created for performance analy-

sis were described. The encapsulation designs hclude a dielectric layer that is partially

covered by a metal layer. The variable dimensions are the thickness of the dielectric

layer, the width of the metal layer, and the height of the encapsulation. The theory that is

used to model the RF performance of these encapsulations is presented in the next chap-

ter. Also, the design of a RF feed-through into the encapsulation is presented, and the

modeling of its performance is presented in the next chapter.
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4. Analytical Modeling

It is necessary to use microwave circuit theory rather than standard circuit theory

to analyze a circuit when the dimensions of the circuit are on the order of a wavelength of

the signal involved. Standard circuit theory, based on lumped elements, can be thought of

as an approximation of electromagnetic theory as described by Maxwell's equations.

However, lumped element circuit models can be developed for analysis of microwave

systems if they are based on the unique phenomena that occur at higher frequencies. In

particular, parasitic capacitances, inductances, and resistances must be considered when

developing the high-frequency lumped-element equivalent circuit models. These princi-

ples are applied here in developing lumped element equivalent circuit models for RF

MEMS switches and their encapsulations. The RF performance of these circuits was then

determined through the use of a software microwave circuit simulator [1].

4.1. RF MEMS Switch Equivalent Circuit Model Development

A capacitive RF MEMS switch can be modeled with a lumped-element equivalent

circuit model as shown in Figure 4.1. In this model, the air gap between the bridge and

the CPW signal line creates a variable capacitor (Gb) with two states: a small capacitance

in the up state due to the relatively large air gap, and a larger capacitance in the down

state. For the current that couples to the bridge, the path to either ground plane of the

CPW is half the length of the bridge, resulting in an equivalent inductance (Lb) and resis-

tance (Rh). Further explanation for this model along with the theory used to calculate the

numerical values for each element are described below. In this model it is understood that

the CPW that the switch is built on has a characteristic impedance Zo and the losses due

to the transmission line are very small due to the very short length of transmission line
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that is considered. Because of this, transmission line losses are not considered. The values

for the lumped elements in the analytical model were developed without the aid of the

results from the full-wave simulations or laboratory testing. It may be possible to "tweak"

some of the parameters of the analytical models in order to make them match up closer to

the full-wave simulation data and test data, but the intent of this model was to produce

data based on parameters from published data and not to produce a model based on data

fitting.

(b

Lb

Rb

Figure 4.1. Lumped-element equivalent circuit schematic for a capacitive RF MEMS
switch.

In this model, the bridge forms a series RLC circuit, and the impedance of the

bridge, Zh is

Zb =Rb+J (oLb icih 2  (4.1)

where wo is the angular frequency of the RF signal, and Gb is the bridge capacitance,

which is either the up state capacitance C,, or the down state capacitance Cd1. When the

imaginary component of Zh is zero, the circuit is at a resonant frequency. Setting the

imaginary part of Equation (4.1) equal to zero, and also knowing that w)=22T, where f is

the RF frequency, leads to an expression for the resonant frequency fo,
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1
27c LbC'b (4.2)

According to Muldavin and Rebiez [2], the impedance of the switch can be p-

proximated by

jo)C b for f << f0

Zb Rb, for f = ,f (4.3)

JO)Lb, for f >> fo

Therefore the switch can be approximated as a capacitor below the resonant frequency

and as an inductor above the resonant frequency. A well designed switch will have the

down state resonant frequency aligned with the RF signal design frequency to maximize

the isolation of the switch. The resonant frequency of most capacitive switches in the up

state is typically much greater than the RF signal frequency, so its impedance can be

modeled as a capacitor. This fact makes modeling very intuitive and straightforward, be-

cause the capacitance is relatively simple to model using simple formulas. In the follow-

ing sections, accurate values for the capacitances are developed and described.

4.1.1. Up-State Capacitance

Capacitive RF MEMS switches depend on high-frequency electromagnetic cou-

pling between the suspended bridge and the CPW signal line to create a low impedance

state, or near-short-circuit state, from signal to ground when the bridge is actuated

downward onto the RF dielectric. When the bridge is not actuated, the air gap between

the bridge and the signal results in very small electromagnetic coupling between bridge

and signal line, resulting in a high impedance, or near open circuit state, between the sig-

nal line and the bridge. This variable electromagnetic coupling can be modeled in a
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lumped element equivalent circuit as a variable capacitor with two states: up capacitance

C,, and down capacitance Cd1. An approximation for C,, and Cd1 can be obtained using the

parallel-plate capacitor calculation:

CPP = eA(4.4)

where E is the permittivity of the medium between the conductors, A is the overlapping

area of the parallel plates, and d is the distance between the plates. In the case of the RF

MEMS switch shown in Figure 3.1, A is calculated by the width of the MEMS bridge (w)

multiplied by the width of the CPW signal line (TV). In the down state, d is replaced with

the thickness of the RF dielectric (tRF), and E is replaced by the permittivity of free space

(so) multiplied by the dielectric constant (relative permittivity) of the RF dielectric (sRF).

In the up state, the gap between the conductors is filled with two different diec-

trics, air and the RF dielectric, as shown in the simplified drawing in Figure 4.2(a). The

parallel plate capacitance can be calculated as a series combination of two capacitors, one

for each medium. The capacitance of the air filled area uses the air gap width g as the dis-

tance separating the parallel plates, and the medium has a relative permittivity of 1. The

parallel plate capacitance is then calculated with

(C = (4.5)
g

The capacitance across the RF dielectric uses the thickness of the RF dielectric layer (tRF)

as the distance between the plates, and the relative permittivity of the RF dielectric in the

calculation. The capacitance across the RF dielectric is given by
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'RF ='O'RFW W (4.6)
IRF

The total up state capacitance is calculated from the series combination of Cg and

CRF as shown in Figure 4.2(b), and can be simplified to a single capacitance C, as shown

in Figure 4.2(c) and calculated with

C"- CoWW
g 'RF (4.7)
O•RF

A

SQ

A

(a) (b) (c)

Figure 4.2. (a) Simplified drawing of the geometry of the beam and CPW signal line
overlap area used for parallel plate capacitance calculation; (b) series capacitors that
model the geometry's capacitance; (c) total capacitance of switch in up state from cal-
culation of two capacitors in series

In the up state, the simple parallel plate capacitance calculation is not very accu-

rate because it neglects all fringing field capacitance. To explore the actual fringing field

capacitance, the capacitance was calculated using Coventorware, a commercial finite

element modeling (FEM) software package [3]. In particular, the MemCap module was

used to solve for capacitance between the MEMS bridge and CPW signal line. First a 3-

dimensional solid model of the MEMS switch was built in Coventorware. Next, the solid

model was meshed and the capacitance between the bridge andi signal line was extracted
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using a numerical simulation. All of tie setup and analysis settings that were used in

Coventorware are presented in Appendix A. The difference between the parallel plate

approximation result and the FEM result is the amount of fringing field capacitance, and

it is expressed as a percentage of the parallel plate approximation value. The result was

the fringing field capacitance increased the total capacitance value from the parallel plate

calculation by 45%. This value agrees with published data from Muldavin and Rebeiz for

fringing field capacitance of similar RF MEMS switches [2].

The capacitance values for each switch configuration, with adjustments from the

parallel plate approximation for the fringing field capacitance in the up state and surface

roughness in the down state (described in the next section) were computed by writing a

simple computer program. The code from the program is presented in Appendix B. The

values calculated by this program are given in Table 4.1, and are what were used as the

capacitance values in the equivalent circuit model

4.1.2. Down-State Capacitance

In the down state, the fringing field capacitance is neglected in this model Wong

et al. showed that in the down state fringing fields are very small compared to the overall

capacitance because of the very small distance between the conductors in the down state

[4]. However, in the down state the parallel plate capacitance calculation overestimates

the actual capacitance because of surface roughness that is inherent in the RF dielectric

layer from fabrication. If a contact area of 50% of the bridge and RF dielectric overlap

area are assumed, along with a perfectly flat RF dielectric layer and a surface roughness

of 100 A, values published by Muldavin and Rebeiz show that the actual capacitance is

only 60% of the parallel plate approximation [2]. This calculation of taking 60% of the
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parallel plate capacitance approximation value is what was used for the bridge capaci-

tance for all design configurations in the down state.

Table 4.1. Calculated capacitance values for the bridge and encapsulation for all design
configurations. These values are what were used for the capacitors in the lumped element
equivalent circuit model.

Adjustment Adjustment Adjustment
in Beam

in Bridge in Encap. inBa
Cfi Capacitance, Capacitance Effective

#onfg. Parallel Capacitance Capacitance due to Capacitance,
Plate, due to due to Surface [IMn

Fringing Fringing Roughness
Fields Fields (SR)oughn

1U 24.14 +45% 0% 0% 35.20
1D 3910.00 0% 0% -40% 2346.00
2U 24.14 +45% 0% 0% 35.20
2D 3910.00 0% 0% -40% 2346.00
3U 27.71 +45% +20% 0% 39.50
3D 3916.00 0% 0% -40% 2354.00
4U 31.28 +45% +20% 0% 43.77
4D 3923.00 0% 0% -40% 2361.00
5U 72.91 +45% +20% 0% 85.57
5D 3965.00 0% 0% -40% 2404.00
6U 52.32 +45% +20% 0% 64.93
6D 3944.00 0% 0% -40% 2382.00
7U 30.15 +45% +20% 0% 42.40
7D 3920.00 0% 0% -40% 2358.00
8U 29.50 +45% +20% 0% 41.62
8D 3920.00 0% 0% -40% 2358.00
9U 41.00 +45% +20% 0% 41.41
9D 3918.00 0%1 0%0 -40% 2355.00

4.1.3. Bridge Inductance

The MEMS bridge presents an inductance in series with a resistance due to the

current that is coupled to it from the signal line, and then flows to the CPW ground

planes. Because the capacitance of the bridge in the up state is very small, and therefore

the current in the bridge is very small also, the inductance of the bridge has very little ef-
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fect on the switch performance, and can be neglected. In the down state however, most of

the current in the CPW signal line couples to the bridge and flows through the bridge, so

the inductance is important. Equation (4.2) shows that the bridge inductance is an n-

versely proportional to the resonant frequency fo, so it is a very important contributor to

the switch isolation.

It is very difficult to calculate an inductance value of the bridge, so the value used

in this model is extrapolated from test inductance data from Muldavin and Rebiez for ca-

pacitive RF MEMS switches of nearly the same geometry as the one considered in this

research [2]. The value used for Lb in this model is 5.0 pH.

4.1.4. Bridge Resistance

The resistance of the bridge is also a significant factor in the switch performance

in the down state, and can be neglected in the up state. The resistance can be calculated

from the cross-sectional area of the bridge and the resistivity of the bridge metal with

1 PL / 2)
Rb h (4.8)2 wtb

In this calculation, skin depth effects are neglected. The effect of skin depth is that as the

signal frequency is increased the effective resistance of the bridge also increases. A larger

bridge resistance results in lower isolation and higher return loss, both undesirable.

Using the geometry of the switch and the bulk resistivity of gold, the switch resis-

tance for this model was calculated to be 0.02Q, and is the value used in all design con-

figurations.
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4.2. Encapsulated RF MEMS Switch Equivalent Circuit Model Development

Similar to the switch itself, an encapsulation with a grounded metal layer can be

modeled as a series RLC circuit. This series RLC segment is oriented similarly to the

switch model: shunted from signal to ground. Together these two RLC segments are ori-

ented in parallel to each other, as shown in Figure 4.3.

Lb Le

Rb Re

Figure 4.3. Lumped-element equivalent circuit schematic for a capacitive RF MEMS
switch and encapsulation with a metal layer.

In design 2, the encapsulation consists entirely of a dielectric layer with no metal

layer on top of it. The analytical model developed here does not calculate the losses due

to a dielectric encapsulation. It can safely be assumed that the effects on the switch due to

a dielectric encapsulation are minimal, so when comparing data results later in this work,

the unencapsulated switch model data is also used for the dielectric encapsulated switch

designs.

4.2.1. Encapsulation Inductance and Resistance

The encapsulation is similar to the MEMS bridge in the up state, although the en-

capsulation does not deform downward like the bridge does. The encapsulation in most of

the design configurations is further away from the CPW signal line, so the resulting ca-

pacitance is smaller than the MEMS bridge in the up state, which is already very small.
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This results in a very high resonant frequency, which means we can approximate it with a

capacitor only. For these reasons, the encapsulation resistance and inductance can be re-

glected. In encapsulation designs 5 and 6, the metal layer of the encapsulation is closer to

the CPW signal line than the MEMS bridge, but its width is very small compared to the

width of the MEMS bridge, so the same assumptions will be used for designs 5 and 6 also

(approximate it only with a capacitance).

4.2.2. Encapsulation Capacitance

Since encapsulation inductance and resistance can be neglected, the remaining

encapsulation capacitance is now in parallel with the beam capacitance. To find the over-

all capacitance from the beam and encapsulation, the capacitances are simply added since

capacitors in parallel can be combined with simple addition.

The parallel plate capacitance approximation is again the starting point for calcu-

lating the capacitance of the encapsulation. For designs 3-4 and 7-9, where the width of

the metal encapsulation (w,,,) is less than the width of the dielectric encapsulation (Wd) the

width of the upper plate is calculated as the overlap width of the encapsulation over the

bridge below it. For example, in design 3 the width of the metal encapsulation is 160 ptm

and we know the width of the MEMS bridge is 120 ptm, so the overlap width used for the

parallel plate approximation is 40 ptm. As before, the width of the other "side" of the

plate used to calculate the plate area is the width of the CPW signal line, W.

To increase the accuracy of the parallel plate approximation, fringing field capaci-

tance was added to the calculation. A solid model of design 5 (w,,,=160 ptm) was created

and analyzed in Coventorware. The result was that the total capacitance between the

CPW signal line and the MEMS bridge and encapsulation was 39.5 fF. We already know
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the total capacitance of the bridge alone is 35.2 fF, so the added contribution from the

metal encapsulation is 4.3 fF. The parallel plate capacitance approximation yields a ca-

pacitance of 3.57 fF, so the added contribution from fringing field capacitance is 0.8 fF,

or about 20% of the parallel plate approximation value. This 20% fringing field adjust-

ment was used for all of the metal encapsulation layer capacitance calculations.

For encapsulation designs 5 and 6, the capacitance due to the upper part of the en-

capsulation (on top of the raised encapsulation) is calculated as explained in the previous

paragraph. The width used is the width of the dielectric encapsulation (wd) plus twice the

thickness of the dielectric encapsulation layer (td). This value is then adjusted to account

for 20% additional capacitance due to fringing fields as before. This capacitance is added

to the contribution from the metal sidewalls, explained next.

For the part of the metal layer that conforms down the sidewalls onto the dielec-

tric "pad" around the encapsulation, the capacitance is calculated separately. In the de-

signs, it s assumed that the width of metal that conforms down onto the dielectric pad is

the thickness of the metal encapsulation layer. At points directly above the signal line, the

signal line and the grounded metal encapsulation layer are only separated by the thick-

ness of the dielectric encapsulation layer (td). The parallel plate approximation is used to

calculate capacitance here, with the dimensions of the parallel plate being the thickness of

the dielectric layer (td) and the width of the CPW signal line, W. Zero fringing field ca-

pacitance is also assumed due to the small distance separating the conductors. No adjust-

ment was made for surface roughness, and fringing field capacitance due to the sidewalls

of the metal layer was neglected. This capacitance is then added to the contribution from

the upper part of the metal layer to arrive at the total capacitance for the encapsulation.

4-11



4.3. Electrical Performance Extraction from Analytical Models

Ansoft Designer SV (Student Version) [1] was the microwave circuit simulator

that was used to extract the RF performance from the equivalent circuit models. This

software application was chosen because it is accurate and easy to use. In addition, be-

cause it is a student version, it is downloadable for free to anyone. The student version of

the software has no limitations in it over the full version that affected the analysis re-

quired for this research. This software outputs S-parameter data, which is what is needed

for comparison to test and simulated data.

The circuit simulation process was fast and simple. First the lumped element cir-

cuit schematics were created in the software, and the values for the circuit elements were

entered. Next, a frequency sweep was set up to analyze the circuit from 1 to 40 GHz at

intervals of 0.1 GHz. After analysis, the data was exported to a data file for plotting.

4.4. RF Feed-Through Design and Analytical Model

After completion of analysis on designs 1-9 (as described in Table 3.3), another

design was created that put special attention on the RF feed-through of the CPW signal

line into and out of the encapsulation. In particular, design 6 (Wd= 2 0 0 ýtm, w,,=214 ýtm,

td= 3 .2 ýtm, g,=3.5 ltm) was considered for modification. In this design the metal layer

extended beyond the width of the dielectric encapsulation and conformed down the side-

walls of the encapsulation onto the dielectric pad below it. This design was considered

for improvement because if it were possible to create a high-performance encapsulation

design where the metal extended beyond the dielectric encapsulation on all sides, it

would simplify the fabrication of the encapsulation by allowing the metal layer to act as

an etch mask for the dielectric encapsulation layer below it. By applying impedance
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matching techniques, the RF performance (insertion loss and return loss) can theoretically

be improved. Designs 5 and 6, where the metal encapsulation is physically close to the

CPW signal line but the RF feed-throughs are not engineered (not impedance matched),

can be considered as the worst-case scenarios for RF feed-through performance. By ap-

plying impedance matching techniques, the feed-through performance can be improved

over designs 5 and 6. The encapsulation designs themselves are not altered; only the

CPW signal line is modified to increase performance.

Consider a CPW with characteristic impedance Zo. For this analysis, we will con-

sider only the RF feed-through section of the encapsulation, and will assume we can im-

pedance match to the transition, independent of the rest of the encapsulation and the

MEMS beam. This region is similar to a metal air bridge of width WAB and height /d.

From these dimensions a parallel plate capacitance CAB is calculated. This capacitance

leads to coupling between the air bridge and the CPW signal line, contributing to inser-

tion loss. In terms of impedance, the air bridge has the effect of decreasing the impedance

of the transmission line. This impedance mismatch leads to poor return loss performance.

In other words, the impedance discontinuity causes reflections of the RE signal back into

the circuit which is generally undesirable.

In this design, the dimensions of the transmission line are modified in order to in-

crease the characteristic impedance of the line around the RF feed-through region. This is

done to compensate for the parasitic capacitance from the feed-through into the encapsu-

lation that decreases the characteristic impedance of the line. Figure 4.4 shows a top view

drawing of the geometry of the CPW around an air bridge as presented by Weller et al.

[5].
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Figure 4.4. Overhead view drawing of an impedance matched RF feed-through under
an air bridge. The design uses a high- impedance CPW segment of impedance ZH and
of length LH/2 on each side of the air bridge to compensate for the low impedance
condition caused by the air bridge. The air bridge is suspended above the CPW signal
line by a distance /d, and is electrically connected to the CPW ground planes.

Using CPW analysis equations from the text by Simons [6], the center conductor

was narrowed in order to create a high impedance line with impedance ZH=70 Q. The ef-

fective dielectric constant for the high impedance segment, _,, is calculated with the de-

sign equations in [6], and was found to be 5.17. These design equations from [6] and the

computer code that was written to make these calculations is presented in Appendix C.

The resulting center conductor width, WH, in the high impedance region was 44 ýtm. The

ground plane traces were not modified. Weller et al. preset a design equation for the re-

quired length of the high impedance section, LH.[5]. This equation is based on ideal

transmission line theory. The required length for an inpedance match with the air bridge

is given by
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LH - C ZH Z°CAB - 0. 7 7AB (4.9), , z,e

where c is the speed of light and CAB is the parallel plate capacitance between the air

bridge and the signal line, and E,.,, WAB, ZH, and Zo were defined earlier. Equation (4.9) is

valid, assuming

tan -- 20) (4.10)

ZHO)CAB << 1

where 0 is the electrical length of the high impedance section in radians and 0) is the an-

gular frequency corresponding to the RF signal frequency. The feed-through capacitance

(CAB) was calculated from the parallel plate capacitor formula to be 4.3 fF. The other re-

quired values for the given scenario (ZH=70 Q, Zo=50 Q, e,,=5.17) along with CAB were

used in Equation (4.9) to arrive at the length of the high impedance section, LH=37.5 ýtm.

The conditions in (4.10) were met, so the theory could be applied in this situation.

In [5] the length of high impedance transmission line (LH) is centered on the air

bridge. In order to apply this theory to the encapsulation geometry, half of the length is

used at each feed-through into or out of the encapsulation. A screen image of the design

from HFSS is shown in Figure 4.5. This design was simulated in HFSS, and the results

are shown in Chapter 7.
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Figure 4.5. Overhead drawing of the RF feed-through design. The high impedance
CPW segment is impedance matched to the air bridge of the transition area into the
encapsulation. RF feed-through under an air bridge. Note: the metal encapsulation
layer and MEMS bridge are semi- transparent in this drawing.

The lumped-element equivalent circuit model was also modified to account for

the high- impedance segment in the transmission line. A CPW center conductor width

step change can be modeled by a series inductor with a value of L,, with theory pre-

sented by Rebeiz [7]

where L~e is the inductance of the step change (not a physical or electrical length), and

ZH, LH and --, are the same as defined earlier. The equivalent inductance found from

Equation (4.11) and used in the analytical model was 9.9 pH. The modeled performance

of the feed-through is presented in Chapter 7. Also, the computer code that was written

and used to make these calculations is presented in Appendix C.

4.5. Modeling of Metal Reflow Over Etch Holes

A key step in fabricating the encapsulations is to reflow the metal layer across the

etch holes to seal them shut. It is necessary for the width of the etch hole and the thick-
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ness of the metal layer to meet certain criteria in order to guarantee that the metal will

reflow across the etch Ioles when brought to its liquid state. Consider a metal layer of

thickness ti with a square etch hole in it with a width of w,. If the thickness is many

times greater than the hole width, intuitively the hole will close when the metal brought

to its liquid state. On the other hand, if the metal thickness is very small compared to the

hole width, the hole has no chance of closing. Somewhere in the middle exists a critical

metal thickness at which the metal must be as thick as or thicker than to guarantee t1e

hole will close when reflowed.

The physical phenomenon that governs metal reflow is surface tension of fluids.

The necessary etch hole width in relation to the metal thickness in order to guarantee hole

closure was determined using an open source surface tension modeling code known as

The Surface Evolver, written by Brakke [8]. The Surface Evolver is a program for the

study of surfaces governed by surface tension and other energies. On the scale of MEMS,

gravitational forces are negligible, so the only forces that were considered in this research

were surface energies. Given an initial surface or volume geometry in a data file, Surface

Evolver meshes the surface into triangular elements, and interactively evolves the surface

until a minimum energy state is achieved. The minimum energy state for a volume of liq-

uid is the state that a volume of solder will take on after being reflown, so the software

can be used effectively to model this situation The Surface Evolver output used for this

research was a 3-D graphical representation of the evolved surface.

To analyze the reflow of a layer of solder with an etch hole it using Surface Ev-

olver, several simplifying assumptions were made. The first assumption is that solving

the problem with a square hole with dimension wjh will give the same results as if the
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problem were solved with a round hole of diameter wi,. The second assumption is that

the solder will not wet the inside of the hole in the dielectric layer below it. In other

words, the solder will only change shape around the etch hole in the process of achieving

its minimum energy state, it will not be drawn into the hole because the solder is drawn

into the hole due to the solder wetting the inside of the hole. The final assumption is that

the solder surface has been prepared by flux if necessary, and so it reflows freely. A

cleaned solder surface will not have oxides that have formed on it that would prevent it

from reflowing freely or wetting to itself.

A Surface Evolve data file was set up to analyze a section of the metal encapsula-

tion layer with a single hole in the center of it, as shown in Figure 4.6. This data file

(which is the "code" that Surface Evolver analyzes) is presented in Appendix D. It is as-

sumed that this section of solder is one in an array of many similar sections. Because of

this, the outer faces of the volume are fixed in the data file; that is, Surface Evolver will

not evolve their surfaces due to surface forces. In addition, the bottom face of the volume

is fixed, for obvious reasons. The faces that will evolve are the top face and the four faces

that make up the sides of the etch hole. With slight modifications to the data file, different

ratios of width to thickness can quickly and easily be modeled and evolved to determine

if the hole will close or not for those dimensions. For this analysis, the hole width was

fixed and the metal thickness was varied until a critical thickness was determined. The

metal layer must meet or exceed this critical thickness for the given etch hole width to

guarantee hole closure. This critical thickness was determined for etch hole widths of

3 ptm and 5 ptm, and the results are presented in Chapter 7.

4-18



Weh

V N

Figure 4.6. Surface Evolver gaphical output showing the geometry of the volume of
solder that was the starting point for iterating on to see of the etch hole in the center
will close when the volume is brought to a liquid state. Here, the etch hole width, Weh,
is fixed at 5 ýtm, the length of one edge of the volume, w/,,., is 40 ýtm, and the hole is
centered in the volume. The metal layer thickness, til, is varied in the analysis.

4.6. Summary

In this chapter the theory behind the analytical model for the RF MEMS switch

and its encapsulation was developed, as well as the theory behind the RF feed-through

design. It was shown that the electrical performance of the structures can be modeled us-

ing a lumped element equivalent circuit. Also, the methodology for modeling solder re-

flow over the etch holes was presented. The other methods for analyzing the electrical

performance of the RF MEMS switch and encapsulation are presented in Chapter 5

(simulation) and Chapter 6 (testing). All data is compared and discussed in Chapter 7.
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5. Full-Wave Finite Element Electromagnetic Simulation

The analytical models developed in Chapter 4 are useful tools for quickly assess-

ing the performance of encapsulations, but in order to make them simple enough to be

usable they are based on several simplifications and assumptions. These simplifications

and assumptions have the effect of reducing the accuracy of the models. Typically, the

accuracy of analytical models is assessed by comparing the model data to test data. An-

other source of accurate data for electromagnetics is known as full-wave simulation,

which is a form of computational electromagnetics. In full-wave simulation, the structure

to be assessed is geometrically discretized into elements, and the overall fields, waves or

currents are determined by solving the fields, waves, or currents on (or due to) each ele-

ment. The algorithms used to calculate the fields and waves are using fundamental elec-

tromagnetic theory based on Maxwell's equations. Therefore, the theory and mathematics

required for full-wave simulation can be quite complex, but also can be very accurate.

The largest source of error in these finite element analyses is due to the refinement (or

lack of refinement) of the mesh of the structure. Although an extremely fine mesh leads

to very accurate results, it also requires a large amount of computing time. It is not un-

heard of to have computing times on the order of days or weeks, even on very fast com-

puters. Often supercomputers are used to perform these analyses. For this reason, effort is

made to mesh the structure fine enough to get accurate results, but not to mesh it to the

point where the computing time is unreasonable, or not to the point where mesh refine-

ments will incur much additional computing time with only limited improvement in accu-

racy.
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5.1. Description of Software Tool Used

Ansoft HFSS (High Frequency Structure Simulator) [1 ] was used as the software

package to perform the full-wave electromagnetic simulations. This product was chosen

for several reasons. First, HFSS is widely used and accepted for high- frequency analysis

of MEMS. Examples of recent MEMS papers for MEMS analysis are from Muldavin and

Rebeiz [2] and Wong et al. [3]. Second, HFSS has a very intuitive user interface and, so a

new user doesn't have to spend a lot of time learning how to use the program. Finally, the

product is offered at a steep educational discount, making it feasible to purchase for this

project.

HFSS uses the finite element method to generate an electromagnetic field solu-

tion. In the finite element method, the problem space is divided into many smaller le-

gions, known as elements, and the field in each one of these regions is calculated. In

HFSS, the element type used is a tetrahedron, a four-sided pyramid. The collection of all

elements is called the finite element mesh.

To generate the field solution, the field quantities at the vertices (also called

nodes) and at the midpoints of the edges of each tetrahedron are calculated. The values of

the field quantities at locations inside the tetrahedron are interpolated from the vertices. A

first-order basis function is used, resulting in 20 unknowns per tetrahedron. In this man-

ner, the problem space is discretized, and Maxwell's equations can be transformed into

matrix equations that can be solved with numerical methods.
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5.2. How to Get Started in HFSS

To get started in using the software tool, the following general steps must be fo 1-

lowed:

1. Start the program and open a new project. Within the project create a new de-
sign. Select the Solution Type "Driven Modal" for RF MEMS analysis.

2. Create the solid model of the structure using the built in computer-aided de-
sign (CAD) tool. Complex structures are created by uniting, subtracting, and
intersecting basic structures. For each structure, name it, assign a material to
it, and input the necessary material properties for it.

3. Select the faces of your structure that will be ports and define them as "Wave
Ports."

4. Add a Solution Setup (under Analysis) and define the solution parameters.
Default values can be used for a first cut at the solution, but the parameters
will later need to be modified to achieve higher accuracy.

5. Add a frequency sweep to the Solution Setup. Define the frequencies to be
analyzed, and the step size.

6. Validate the design by clicking on the Validation Check button. Make any
changes to the model and setup that are necessary to pass validation.

7. Analyze the design by clicking on the Analyze button.

8. When the analysis is done, right-click on Results and select Solution Data.
Under the Convergence tab the number of tetrahedra used and the conver-
gence data is presented. Under the Matrix Data tab the S-Parameters, imped-
ance, and reflection coefficients for each frequency can be viewed and
exported to a data file.

9. Any of the solution data can te viewed and compared in plots by right-
clicking on Results and selecting Create Report.

10. Any of the fields and currents can be viewed and animated by selecting the
structure, right-clicking on it, and selecting Plot Fields.

Detailed explanations for every aspect of setting up, running, and examining te-

suits for an HFSS simulation can be found in the HFSS online help that comes with the

software.
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5.3. Input of Structure Geometries and Material Parameters

The solid models of the structures to be analyzed are created in HFSS's built-in 3-

dimensional CAD tool In addition to the geometry of the RF MEMS switch and sub-

strate, an air box must be created above the structure and below the substrate to define the

problem area where the fields are calculated. An image of the solid model of the unen-

capsulated switch and the problem area is shown in Figure 5.1. In the figure we see the

MEMS device on the substrate, and the air boxes above and below the substrate. The

wave ports are also labeled in the figure, and their functionality will be described in the

next section.

port 2
MEMS switch

air boxes

pt 1 substrate

Figure 5.1. Image from HFSS of the solid model for the unencapsulated switch ni-
cluding the entire problem area that was defined for analysis. The excitation ports are
also shown; each port encompasses the entire face of the solid model that the end of
the CPW touches.

5.4. Definition of Excitations and Boundaries

At the boundaries of the defined problem area, a grounded perfect electric con-

ductor (PEC) boundary is set up, so no energy can enter or exit through it. It is for this

reason that the problem area must be defined to be much wider than the CPW width, and
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why the air boxes must be included above and below the structure. If the problem area is

defined to be too small, the electric fields on the CPW would go from the signal line to

the sidewalls of the problem area instead of to the CPW ground planes as they should.

Also shown in Figure 5.1 are the locations of the excitation ports. On each end of

the CPW, a wave port is defined as the excitation port. Wave ports define the plane

through which signals enter and exit the structure being analyzed. HFSS assumes the

structure is attached to an infinitely long waveguide of the same dimensions of the port.

Wave ports override the PEC boundary condition defined for the other boundaries. The

wave ports extend to the edges of the design and problem area, encompassing the edge

faces of the upper and lower air boxes, substrate, and CPW. HFSS generates solutions by

exciting one wave port at a time with 1 W of time-averaged power while leaving the

other port at 0 W.

5.5. Simulation Set-Up Parameters

Several other parameters must be defined before a simulation can take place. First

a frequency sweep must be defined. HFSS provides a frequency sweep called an 'interpo-

lating sweep' that offers several benefits over a normal (discrete) sweep when the fre-

quency band is wide and the model behavior is relatively smooth, which are presumed to

both be true in this case. In an interpolating sweep, the solution for an entire frequency

range is estimated from only a few frequency points. HFSS chooses where these fre-

quency points will be so that the entire solution falls within a specified error tolerance.

The full- field solution is only saved at the last frequency point, but the S-parameters are

saved at every frequency point. The interpolating sweep allows for greatly reduced proc-
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essing times but introduces only minimal error in the solutions. The interpolating sweep

used for all analysis was a sweep from 1 to 40 GHz, with a step size of 5 GHz.

HFSS performs an iterative mesh refinement on the structure (to be discussed

later), but this process may be manually aided by the user by "seeding" the mesh. For this

analysis, the CPW lines, the MEMS bridge, and the metal encapsulation layer were

seeded to have the longest dimension of the elements no longer than 30 ptrnL With this

setting, the longest element was 1/ 2 50 th the size of the shortest wavelength analyzed

(7.5 mm at 40 GHz). Defining a mesh smaller than 25 ptm usually caused the simulation

to fail because the computer would run out of memory while solving the solution matrix.

5.6. Adaptive Solution Parameters and Process

The HFSS solution process adaptively refines the mesh of the structure and calcu-

lates the S-matrix of a structure in the following steps:

1. The structure is discretized into a finite element mesh.

2. If the user chooses, the mesh is refined so that the element lengths are at most
a fraction (the Lambda Refinement parameter) of the wavelength.

3. Any seeding of the mesh as defined by the user is performed.

4. The 2-D mesh (triangles) of the ports is iteratively refined until it meets user
defined error criteria (Port Field Accuracy)

5. The modes (field patterns) at each port are calculated at the designated solu-
tion frequency The modes that are supported are those that would be sup-
ported by a long transmission line having the same cross-section as the port.
In this analysis, the width of the wave ports was defined to be narrow enough
so that only one mode was supported.

6. The full electromagnetic field pattern inside the structure (inside the problem
area) is computed for the supported mode.

7. The S-matrix is computed based on the reflection and transmission that oc-
curs.
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8. The mesh i refined based on user settings, and steps 4-7 are repeated once
more.

9. The two S-parameter solutions are used to estimate the regions of the
problem domain where the solution has strong error by calculating the change
in the magnitude of the S-parameters from the two passes. The magnitude
and phase of all S-parameters are compared to the user's setting of Maximum
Delta S Per Pass to determine if further mesh refinement is necessary.

10. If the S-Parameters change by an amount less than the Maximum Delta S Per
Pass value from one iteration to the next, the adaptive analysis stops.
Otherwise, the mesh is refined in the areas of strong error and the process is
continued (find solution, calculate error, refine mesh) until the delta S criteria
is met or the requested number of passes is completed.

11. The final mesh from the adaptive process is used to solve the problem at
other frequencies based on the frequency sweep defined.

The values for the settings used in the analysis for this research are shown in

Table 5.1 and are briefly described below:

"* Solution Frequency: The frequency at which the adaptive process occurs

" Lambda Refinement: The initial mesh is refined so that each element has
no edge longer than a fraction of a wavelength at the Solution Frequency.
The Lambda Refinement parameter is this fraction.

" Port Field Accuracy: When solving for the fields (modes) on each port,
this parameter defines the accuracy required before the next step in the
adaptive process can occur.

" Maximum Number of Passes: Determines how rmny times the adaptive
mesh refinement and solution generation process occurs if the solution
convergence condition has not been met.

" Maximum Delta S Per Pass: The stopping criterion for the adaptive passes.
It is the change in the magnitude of the S-parameters between two
consecutive passes, and hence defines the convergence of the 5-
Parameters as the mesh is refined.

" Percent of Tetrahedra Refined Per Pass: If the mesh needs to be refined,
this parameter defines how much refinement will occur in terms of the
number of elements that will be added (expressed as a percentage).
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Table 5.1. HFSS solution parameters used for all simulations.

Parameter Value
Solution Frequency 40 GHz
Lambda Refinement 0.0333
Port Field Accuracy 0.01

Maximum Delta S Per Pass 0.01
Percent Refinement Per Pass 20 %
Maximum Number of Passes 5

5.7. Description of Output Data

HFSS provides many means of viewing the solution data. The electric fields and

currents can be viewed and animated. All of the data from the adaptive process is saved

for review, including the number of tetrahedra, the solution time, and the convergence

data for each adaptive pass. For this work, only the S-parameters were needed, so they

were exported to a data file for plotting. By exporting the data to a file, it could then be

compared to data from the analytical modeling and testing in plots. All results are shown

in Chapter 7.

5.8. Summary

Ansoft HFSS, the software tool that was used to simulate the RF performance of

the encapsulation designs, was introduced in this chapter. The chapter included a

description of how to use HFSS, how the software performs finite element analysis, and

the specific settings that were used in this work. The next chapter presents the test

equipment and procedures that were used to obtain experimental data from the

unencapsulated RF MEMS switch, and the RF MEMS switch with a dielectric

encapsulation. All data is presented and compared in Chapter 7.
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6. Laboratory Testing of RF MEMS Switches

The AFRL capacitive switches with and without dielectric encapsulations were

fabricated and tested by engineers at the Air Force Research Laboratory, Sensors Direc-

torate, (AFRL/SN) at Wright-Patterson Air Force Base. This test data was used for com-

parison to the analytical model data and the full-wave electromagnetic simulation data.

The test equipment and procedures are described below.

6.1. Instrumentation Configuration

The RF MEMS switches (unencapsulated and encapsulated) that were fabricated

were made on 3 inch diameter sapphire wafers, and did not undergo any subdivision or

further packaging. Therefore, all measurements had to be taken on-wafer. One advantage

of RF components based on CPW transmission lines is the simplicity of on-wafer meas-

urements using RF micro-probes known as GSG (Ground-Signal-Ground) probes. The

GSG probe allows for the testing of CPW-based devices with only two probes (each con-

sisting of three points), one at each end of the CPW. Figure 6.1 shows a drawing of two

GSG microprobes positioned on a RF MEMS switch. The GSG probes are attached to

high precision micropositioners for precise placement, and placement is accomplished

with the aid of a microscope.
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GSG microprobes
~MEMS
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coax to neto
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ohmic contacts

Figure 6.1. Drawing of a CPW-based MEMS switch with GSG (Ground-Signal-
Ground) microprobes for on-wafer RF testing.

A block diagram of the instrumentation setup is shown in Figure 6.2. An HP

85 1OC vector network analyzer with an HP 8517 S-parameter test set was used to extract

the S-Parameters from the device. The frequency sweep used went from 1-26 GHz at

0.5 GHz increments. Data was not taken at higher frequencies due to the limitations of

the bias tees. The network analyzer was configured to perform 64 point data averaging in

step mode. In step mode, the network analyzer collects all of the data samples at one fre-

quency, then steps to the next frequency and collects 64 data points at that frequency, and

so forth. For the switch to be tested in the down position, a DC bias between the ground

and signal lines of the CPW was required. Bias tees were inserted between the ends of the

network analyzer leads and the three-point probes to introduce the DC bias signal onto

the RF signal line of the device under test (DUT). The bias tee provides the DC bias to

the DUT while preventing the DC bias signal from propagating into the network analyzer

and preventing the RF signal from propagating into the bias network. The bias network

consisted of an Agilent 33250A frequency/waveform generator connected to an Av-
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tech AV-1 12A high-voltage anplifier. The bias voltage signal was a 1 kHz bipolar square

wave with a duty cycle of 100%. The DC bias is signaled this way to prevent the RF di-

electric from becoming electrically charged, which would cause performance instability

of the RF MEMS switch. The magnitude of the voltage required to hold the switches in

the down position was roughly 30 V.

(no connection)

bias teesr---- S

ectolfunction

RF M E MS amplifier 4 genert or
,_ signal w t i

DC bias

Figure 6.2. Block diagram of the instrumentation setup for S-parameter measurement
of the RF MEMS devices in the AFRL cleanroom. The thick lines represent coaxial
cable, where the thin lines represent regular leads or connections.

A photograph of the instrumentation setup in the laboratory is shown in

Figure 6.3. Here the probe station is shown as the center of the test setup. The probe

station holds the micro-probes under the microscope on a vibration-controlled stand.

Connected to the micro-probes are the bias tees which pass through the RF signal from

the network analyzer behind the probe station and add the DC bias signal from DC bias

network to the left of the probe station.
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Figure 6.3. Picture of the RF MEMS test setup in the AFRL cleanroom used to extract
the S-paramters from RF MEMS switches. A blow-up view of the device wafer with the
micro-probes positioned on it is also shown.

6.2. Calibration and Testing Procedure

The network analyzer was calibrated to the ends of the probe tips using the

standard SOLT (short, open, load, through) calibration procedure. This calibration

involves one-port short, open, and load measurements on a standard, for each port. Then

a two-port measurement of a through (a length of transmission line) is taken. An

impedance standard substrate (ISS) from Cascade Microtech was used as the calibration

standard. After calibration, the probes were put on the DUT and data was taken. The

probes were aligned on the CPW of the DUT so that the reference planes were

approximately 100 ptm from the ends of the CPW lines. The data from the measurements

was saved to a data file for later plotting and comparison All results from testing are

presented and discussed in Chapter 7.
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6.3. Discussion of Data Accuracy

Because RF MEMS are inherently low loss, high isolation devices, even small er-

rors or inaccuracies introduced into the measurement will have a significant effect on the

measured performance of the devices. Multiple potential sources of error exist for the S-

parameter data used in this research. First, the calibration is performed using an ISS, a

very high performance RF standard. One source of measurement error that is calibrated

out in the calibration process is contact resistance between the probes and the CPW. The

difference in the contact resistance between the calibration standard and the device wafer

is a source of error. This is sometimes handled by fabricating the calibration standards

directly on the device wafer, which negates any potential error in calibration due to con-

tact resistance.

Another source of error is sensor drift of the network analyzer. Each device was

tested at different times by the network analyzer, with up to several minutes elapsing be-

tween measurements. This time can lead to the analyzer "drifting" out of calibration due

to a temperature change within the instrument. Because of this drift, less confidence can

be given to the data when comparing different measurements to each other.

6.4. Summary

The equipment and procedures that were used by AFRL to obtain experimental

data from an uncapsulated RF MEMS switch and one with a dielectric encapsulation

were described in this chapter. The key instrument in extracting the S-parameters from

the devices was a network analyzer, and possible sources of error from that instrument

were discussed. The next chapter presents the test data and compares it to the modeling

and simulation data also obtained on the devices.
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7. Results, Proposed Designs, and Proposed Fabrication Process

In this chapter, all results from analytical modeling, fill-wave electromagnetic

simulation, and laboratory experimentation will be presented, compared, and discussed.

The computer code that was used to produce these data plots is presented in Appendix E.

The results are used to design an optimized encapsulation, which is described in Chap-

ter 8. The results from analysis of metal reflow over an etch hole are also presented in

this chapter.

7.1. Analytical Model Results

Using the lumped-element equivalent circuit analytical models developed in

Chapter 4 for the switch and encapsulation designs described in Chapter 3, the 5-

parameters were extracted using Ansoft Designer SV [1], a high frequency circuit am-

lyzer software program. For comparison, the insertion loss data is shown in Figure 7.1,

the return loss data is presented in Figure 7.2, and the isolation data is shown in Figure

7.3. The model data is compared to test and simulation data and discussed in detail in

Sections 7.3-7.6.

Figure 7.1 shows that the switch with no encapsulation has the lowest insertion

loss, as expected. All designs that have the metal layer confined to the top of the encapsu-

lation (3,4,7-9) have roughly the same insertion losses. The unencapsulated switch has an

insertion loss of about -0.2 dB at 40 GHz, while the worst performing encapsulation de-

sign (4) has an insertion loss of about -0.32 dB at 40 GHz. Designs 5 and 6 have consid-

erably greater losses than any of the other design, with design 5 having an insertion loss

of- 1.15 dB at 40 GHz. This data shows that in terms of insertion losses, all of the designs
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except 5 and 6 have reasonable insertion loss performance as compared to the unencapsu-

lated switch.

-0.2-

-0.4-

"-0.6 "_"_1U: no encapsulation
Uý rq 3U: td=l.6, ge=3.5, wm=160

-0.8 t 4U:tdl.6, g,=3.5, win200
5U: td=1.6, g e=3.5, win=214
6U: td=3.2, g,=3.5, Wm=214

-1 7U: td-l.6, g,=5.0, wn200 .
8U: td=l.6, ge=3.5, w 5 18O

-1 . 9U: td 1.6, g=6.5, =200

5 10 15 20 25 30 35 40
Frequency (Gtlz)

Figure 7.1. Plot showing all insertion loss results from analytical modeling of the RF
MEMS switch, with and without an encapsulation. For the convenience of the reader,
each data trace in the legend is labeled with both the design configuration number it
represents along with the key geometry values for that design. All dimensions are
given in pm.

Figure 7.2 shows a plot of the analytically modeled return loss data from all de-

signs. Again we see that all designs except designs 5 and 6 have about the same return

loss performance as the unencapsulated switch. This is because designs 5 and 6 present a

much different impedence mismatch than the other designs due to designs 5 and 6 having

part of the metal layer so much closer to the signal line than the other designs. This im-

pedence mismatch causes the higher values of return loss for designs 5 and 6.
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-15-

"ý-25 /
1U: no encapsulation
3U: td 1.6, ge=3.5, Wm 160

-- 30-• ÷ 4U: td-1.6, ge,3.5, w i200

5U: td 1.6, g -3.5, w214
-35 ....... 6U: td 3.2, 2g=3.5, wm 214

7 U: td 1.6, g,-5.0,w in200
)40 8U: t

d 1.6, g,=3.5, w 180
9 U: td= 1.6, g,=6.5, wm=200-45,

5 10 15 20 25 30 35 40
Frequency (GItz)

Figure 7.2. Plot showing all return loss results from analytical modeling of the RF
MEMS switch, with and without an encapsulation. For the convenience of the reader,
each data trace in the legend is labeled with both the design configuration number it
represents along with the key geometry values for that design. All dimensions are
given in jtm.

Figure 7.3 shows a plot of the analytically modeled isolation data for all encapsu-

lation designs. In this plot we see that all designs have about the same isolation perform-

ance. The designs with metal layers actually have better isolation than the unencapsulated

switch and the dielectric encapsulated switch due to the added coupling to the encapsula-

tion This is expected because for maximum isolation, it is desired to have the strongest

coupling possible from signal to ground.
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Figure 7.3. Plot showing all isolation results from analytical modeling of the RF
MEMS switch, with and without an encapsulation. For the convenience of the reader,
each data trace in the legend is labeled with both the design configuration number it
represents along with the key geometry values for that design. All dimensions are
given in ýtm.

7.2. Full-Wave Electromagnetic Simulation Results

Using the solid models of the designs and simulation parameters as described in

Chapter 5, HFSS [2] simulations were run on each design. The insertion loss, return loss,

and isolation data are presented in Figures 7.4-7.6. The data is also presented and dis-

cussed in detail in Sections 7.3-7.6 where it is compared with analytical model and test

data.

Figure 7.4 shows a plot of the HFSS simulated insertion loss data for all designs.

The performance is similar to the analytically modeled data, and the data sets will be

compared and discussed in Sections 7.3-7.6.
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Figure 7.5 shows a plot of the HFSS simulated return loss data for all designs.

Again, the relative performance of the designs is similar to t1e analytically modeled data,

and the data sets will be compared and discussed in Sections 7.3-7.6.

Figure 7.6 presents HFSS simulated data for the isolation performance of all de-

signs. Again we see that there is not much difference between the designs in terms of iso-

lation performance, and the encapsulations with a metal layer have slightly better

isolation than those that do not.

-0.4-

-0.6-

0. ... - 1U: no encapsulation

-2U: dielectric-only encap
S-1 . 3U: tdV1.6, g,=3.5, Wm=160

-1. 4U: td-l.6, ge=3.5, w M=200
5U: td-1. 6 , g e3.5, wi 214

-1.4 6U: td=3.2, ge=3.5, Wi=214

7U: td 1.6, ge=5.0, win200

-1.6 +8U: td 1 .6, ge=3.5, Wm=180
9U: td-1.6, g,=6.5, Wn=200

5 10 15 20 25 30 35 40
Frequency (GHz)

Figure 7.4. Plot showing all insertion loss results from HFSS simulation of the RF
MEMS switch, with and without an encapsulation. For the convenience of the reader,
each data trace in the legend is labeled with both the design configuration number it
represents along with the key geometry values for that design. All dimensions a-e
given in ptm.
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Figure 7.5. Plot showing all return loss results from HFSS simulation of the RF
MEMS switch, with and without an encapsulation. For the convenience of the reader,
each data trace in the legend is labeled with both the design configuration number it
represents along with the key geometry values for that design. All dimensions are
given in pm.

I D: no encapsulation
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Figure 7.6. Plot showing all isolation results from HFSS simulation of the RF MEMS
switch, with and without an encapsulation. For the convenience of the reader, each
data trace in the legend is labeled with both the design configuration number it repre-
sents along with the key geometry values for that design. All dimensions are given in
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7.3. Experimental Results and Comparison to Model and Simulation Results

The insertion loss test data for the switch in the up position with and without a di-

electric encapsulation is shown in Figure 7.7. Also shown in the figure are the results

from analytical modeling and full-wave simulations for comparison and assessment of

their accuracy.

-0.05-

test: 1U (no encap)

-0.15 -.- model: 1U (no encap)
HFSS: IU (no encap)

. - test: 2U (dielectric encap)
-model: 2U (dielectric encap)

-0 HFSS: 2U (dielectric encap)-0.2 -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0 5 10 15 20 25
Frequency (Gkz)

Figure 7.7. Plot comparing insertion loss results from device testing, analytical mod-
eling, and HFSS simulation of the unencapsulated and dielectric encapsulated
switches. For the convenience of the reader, each data trace in the legend is labeled
with both the design configuration number it represents along with the encapsulation
details for that design.

Although the test data is somewhat noisy, a general trend can easily be seen from

the data. Clearly, as frequency increases the insertion loss also increases (becomes more

negative in dB) for both the encapsulated switch and the unencapsulated switch. This is

expected because at higher frequencies the capacitive coupling between the CPW signal

line and the MEMS bridge becomes stronger. In addition, a slight but consistent increase
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in insertion loss can be seen when the dielectric encapsulation is added. The added loss

on average is about 0.02 dB. This loss is very small, and could very well be attributed to

measurement or calibration error. However, it is expected that the dielectric encapsula-

tion will cause a small loss in the switch. This is because the dielectric is not ideal, and it

allows a very small amount of conduction current to flow through it, from signal to

ground, resulting in signal loss.

The analytical model does not account for lossy dielectrics, so the data sets for the

encapsulated switch and dielectric encapsulated switches are identical. Because the dif-

ference between the two cases is very slight in reality (as shown by the test data), it is not

a poor approximation to use the unencapsulated model data for the dielectric encapsu-

lated switch also. The model follows the same trend of insertion loss as the test data, but

underestimates the insertion loss by about 0.03 dB at 10 GHz and 0.06 dB at 26 GHz.

The underestimation of insertion loss by the analytical model is also seen when compar-

ing it to the simulation data for every design in this research. Listed below are some pos-

sible reasons why the model might underestimate the insertion loss of the switch:

"* The fringing field capacitance may have been underestimated, or oversim-
plified in the model.

"* The actual geometry and material parameters of the tested devices may be
slightly different than the values used in the models.

"* The model assumes every layer is planar and perfectly flat, and does not
account for the conformality of each layer due to the fabrication process.
Also, any bending of the beam due to compressive residual stress that may
exist in the actual device is not known or accounted for. These factors may
contribute to an underestimation of the capacitance.

The data from HFSS simulation is also shown in Figure 7.7. The simulation data

follows the trend of the test data relatively well, and shows a very slight increase in inser-
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tion loss with the addition of the dielectric encapsulation. The increase in insertion loss

due to the dielectric encapsulation is smaller than the test data shows, especially at lower

frequencies, which could be due to using a value for the dielectric loss (loss tangent, tan

dd) in HFSS that was too small.

The return loss test data for the switch in the up position with and without a di-

electric encapsulation is shown in Figure 7.8. Again, the results from analytical modeling

and full-wave simulations are also shown for comparison and assessment of their accu-

racy. A slight increase in insertion loss is seen with the addition of the dielectric encapsu-

lation. This is also seen in the simulation data. The overall data trends of the model,

simulation, and test data are similar, although the model and simulation underestimate the

return losses. This could also be caused by inaccuracies in calculating the capacitance

value in the model or in inaccuracies of the material parameters or geometry in the simu-

lation. The crossover of the HFSS data with the modeled data at 5 GHz is only due to the

resolution of the HFSS data. If the same designs were simulated at more frequencies be-

low 6 GHz, the HFSS data trace would probably not cross over the modeled data trace.
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Figure 7.8. Plot comparing return loss results from device testing, analytical model-
ing, and HFSS simulation of the unencapsulated and dielectric encapsulated switches.
For the convenience of the reader, each data trace in the legend is labeled with both
the design configuration number it represents along with the encapsulation details for
that design.

The isolation test data for the switch in the down position with and without a di-

electric encapsulation is shown in Figure 7.9. Again, the results from analytical modeling

and simulations are also shown for comparison and assessment of their accuracy. The test

data shows a very small but measurable increase in isolation (more negative in dB) with

the addition of the dielectric encapsulation. The analytical model and HFSS simulation

both follow the trend of the test data, with the model being more accurate than the simu-

lation with respect to the test data. The reason for the overestimation of the insertion loss

in the simulation is that the surface roughness of the RF dielectric is not accounted for in

the simulation, which leads to stronger electromagnetic coupling between the MEMS

bridge in the down state and the signal line, resulting in higher isolation. Because of this,
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the analytical model more accurately calculates isolation than the simulation with respect

to the test data.

-h- test: 1 D (no encap)
E3-- model: ID (no encap)

5 - --7 HFSS: ID (no encap)
e--- test: 2D (dielectric encap)

model: 2D (dielectric encap)

-10 -"-- tIFSS: 2D (dielectric encap)

-15 ~

-20-

-25-

0 5 10 15 20 25
Frequency (Gtlz)

Figure 7.9. Plot comparing isolation results from device testing, analytical modeling,
and HFSS simulation of the unencapsulated and dielectric encapsulated switches. For
the convenience of the reader, each data trace in the legend is labeled with both the
design configuration number it represents along with the encapsulation details for that
design.

In this research, insertion loss is generally a more important metric to optimize

than isolation. In general, the isolation of the switch will only be improved by the addi-

tion of an encapsulation with a metal layer due to the additional coupling of the signal

from signal to ground. In RF packaging, minimization of insertion loss is generally more

important than maximizing isolation. Therefore, because the HFSS results more closely

follow the test data for insertion loss, it was relied on more heavily in comparison of the

performances of the designs and in designing the optimized encapsulation. In addition,

because the simulation is based on rigorous electromagnetic theory with very few simpli-
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fying assumptions, it is assumed to be more accurate than the analytical model. The am-

lytical model was accurate enough to use as a "sanity check" for the test data and the

HFSS simulation data.

7.4. Effect of Varying the Metal Layer Width, w,,

One of the design variables for the metal layer of the encapsulation was its width,

w,1 1 . In Figure 7.10 the analytical model and HFSS simulated insertion losses of three dif-

ferent widths are shown. In all three designs, the metal layer rests completely on the top

of the encapsulation; it does not extend down the sides of the dielectric encapsulation.

For all three widths, the dielectric encapsulation width (Wd) is 200 ýtm and the encapsula-

tion height (g,) is 3.5 ýtm. Both the model and simulation show an increase in insertion

loss as the metal width is increased. The simulation data is assessed to be more accurate,

as described Section 7.3. The results show that to minimize the insertion loss due to the

encapsulation, the metal layer width should be as small as possible. A necessary con-

straint for the width of the metal layer is that it must be wide enough to encompass all of

the etch holes in the dielectric encapsulation. Also, some engineering tradeoffs exist in

minimizing the metal layer. For example, the metal layer must be wide enough to cover

all of the etch holes, and a narrower metal layer will not give the encapsulation as much

mechanical strength or electromagnetic shielding as a wider metal layer. Electrical shield-

ing and mrechanical strength of the encapsulation are not assessed in this research. Etch

holes in the dielectric layer are spaced no more than 40 ýtm apart, so the metal layer must

be at least 160 ýtm wide in order for the etch holes nearest the sides of the encapsulation

to be covered by the metal layer. Therefore, in order to minimize the insertion loss due to
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the encapsulation, but still have it large enough to cover all of the etch holes during re-

flow, a metal layer width of 160 ptm is chosen.

-0.2-

--. 3-

-- 0.4 --- model: 3U (wm=160)
HFSS: 3U (wM-16O)

-0.5 - model: 8U (wm=180)

-e HFSS: 8U (W -180)
+ model: 4U (win200)

-0.6- HFSS: 4U (win200)

5 10 15 20 25 30 35 40
Frequency (GHz)

Figure 7.10. Plot comparing the insertion loss results from analytical modeling and
HFSS simulation of encapsulation designs where only the metal layer width, w,,,, was
varied. For the convenience of the reader, all data traces in the legend are described
with both the design configuration they represent along with the key dimension of the
metal encapsulation layer that was varied. In all designs, Wd=2 0 0 ptm, td=1.6 ptm, and
g,=3.5 ptm. All dimensions are given in ptrnr

7.5. Effect of Varying the Encapsulation Sacrificial Layer Thickness, g,

Another design variable that was varied was the thickness of the encapsulation

sacrificial layer. This thickness could also be referred to as the air gap between the

MEMS beam and the encapsulation, g,. In Figure 7.11 the analytical model and simula-

tion results for insertion loss with three different encapsulation heights are shown. Both

the analytical model and simulation show that as the encapsulation height is increased,

the insertion loss decreases. The maximum encapsulation height will be dictated by the

limits of the fabrication process used to create the encapsulation. According to AFRL, the

7-13



desired maximum encapsulation height is 3.5 ýtm, with a hard limit of 6.5 ýtm. Based on

the data, it is desired to increase the encapsulation height to 5.0 lam.

-0.12

-- 0.2-

-- 0.4 -s- model: 4U (g,-3.5)
SHFSS: 4U (ge=3.5)

-0.5 model: 7U (ge75.0)
. HFSS: 7U (ge=5.0)
. model: 9U (g -6.5)

-0.6 -,- HFSS: 9U (ge;6.5)

5 10 15 20 25 30 35 40
Frequency (Gttz)

Figure 7.11. Plot comparing the insertion loss results from analytical modeling and
HFSS simulation of encapsulation designs where only the encapsulation sacrificial
layer height, ge, was varied. For the convenience of the reader, all data traces in the
legend are described with both the design configuration they represent along with the
key dimension of the encapsulation that was varied. In all designs, W/=200 ýtm,
w,,=200 ýtm, and /d=1. 6 ýtm. All dimensions are given in ptnrL

7.6. Effect of Varying the Dielectric Layer Thickness, td

The third design variable that was varied was the thickness of the encapsulation

dielectric layer. This was performed as an attempt to improve the insertion loss of the de-

sign where the encapsulation metal layer was 214 ýim wide, which was poor. In this de-

sign, the encapsulation metal layer was wider than the dielectric layer (w,/i>wd), so the

metal layer conformed down the sides of the encapsulation and was separated from the

signal line only by the width of the dielectric layer. In Figure 7.12 the analytical model
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and simulation results for insertion loss with the two different dielectric layer thicknesses

is shown. Both the analytical model and simulation show that as the thickness is n-

creased, the insertion loss decreases. However, the performance is still poor, and would

continue to be poor even if the dielectric thickness was increased to the maximum feasi-

ble thickness for fabrication. Based on the data, these designs were eliminated from con-

sideration. For the designs where the metal layer width is less than the dielectric layer

width, the dielectric thickness increase will contribute to slightly better insertion loss. It is

simple to fabricate the dielectric layer to be 3.2 ýtm thick to gain this performance, so this

thickness will be used in the final design.

-0.2

-0.4-

-0.6

P-d -0.8

Uýr -1

-1.2 -

-1.4 --e- model: 5U (td=l.6)
HFSS: 5U (td-1.6)

-1.6 model: 6U (t d3.2)
_ HFSS: 6U (t d3.2)

5 10 15 20 25 30 35 40
Frequency (GHz)

Figure 7.12. Plot comparing the insertion loss results from analytical modeling and
HFSS simulation of encapsulation designs where only encapsulation dielectric layer

thickness, /d, was varied. In all designs, wd=2 0 0 ýtm, w,,=214 ýtm, and g,=3.5 ptm. For
the convenience of the reader, all data traces in the legend are described with both the
design configuration they represent along with the key dimension of the encapsulation
that was varied. All dimensions are given in ptm.
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7.7. RF Feed-Through Results

In the previous section, it was shown that the designs where the metal layer con-

forms down the sides of the dielectric encapsulation and onto the dielectric pad around

the encapsulation had very poor insertion loss performance. In addition, the closeness of

the metal encapsulation to the signal line also contributes to poor return loss. Using the

theory shown in Chapter 4, the CPW was modified at the RF feed-through to provide for

better performance. The return loss performance of the straight feed-through (the worst-

case scenario) and the engineered RF feed-through are shown in Figure 7.13 for both the

analytical model and HFSS simulation. The analytical model shows an improvement in

return loss of about 2-3 dB, showing that the case of the straight RF feed-through can be

improved with impedance matching techniques. More improvement was expected than

what was given, and this performance could probably be improved with trial-and-error, or

by applying the impedance matching theory differently. However, the improvement

shown in the analytical model could not be replicated in the HFSS simulation, which

showed almost no return loss improvement for the impedance matched design.
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Figure 7.13. Plot comparing the return loss results from analytical modeling and
HFSS simulation of the modified RF feed-through vs. the standard (straight; not im-
pedance matched) feed through. For the convenience of the reader, all data traces in
the legend are described with both the design configuration number they represent
along with type of RF feed-through. In both designs, Wd=2 0 0 ptm, w,,,=214 ptm,
td= 3 .2 ptm, and g,=3.5 ýtm. All dimensions are given in ýtm.

It is expected that the RF feed-through modification will also have an effect on

the insertion loss, and those results are shown in Figure 7.14. The analytical model shows

a significant improvement in insertion loss (-0.26 dB at 40 GHz) with the impedance

matched feed-through. This is due to the capacitance at the feed-through being smaller

due to the narrower CPW signal line at that point. Again, the HFSS simulation results

show little to no improvement in insertion loss for the impedance matched feed-through.
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Figure 7.14. Plot comparing the insertion loss results from analytical modeling and
HFSS simulation of the modified RF feed-through vs. the standard (straight; not im-
pedance matched) feed through. For the convenience of the reader, all data traces in
the legend are described with both the design configuration number they represent
along with type of RF feed-through. In both designs, Wd=2 0 0 ptm, w 1 =214 ptm,
td= 3 .2 ptm, and g,=3.5 ýtm. All dimensions are given in ýtm.

Some possible reasons for the analytical model and HFSS simulation data not

concurring are described below:

"The problem may have been oversimplified. The design was based on the-
ory in the literature of impedance matching to a simple air bridge over a
CPW. The actual geometry involves two connected air bridges, connected
by a large air bridge at a different height between them, with another air
bridge in the middle at a separate height. Possibly this theory cannot be
used because it did not account for the many complex electromagnetic in-
teractions that take place between all of the parts. Also, perhaps the trans i-
tion should be impedance matched to the entire switch and encapsulation,
not just the feed-through.

" The HFSS simulation may have been set up incorrectly. In all other de-
signs, the encapsulation was the part of the geometry that was varied. In
this design the CPW was modified, so it may have needed a smaller mesh
size in order for the performance difference to be reflected in the results.
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7.8. Results of Metal Reflow Modeling

The critical thickness of the metal layer is the thickness the metal layer must meet

or exceed to guarantee hole closure on reflow for a given etch hole width To solve for

the critical thickness, multiple Surface Evolver runs were completed with the hole width

fixed and the solder thickness varied. Figure 7.15 shows the graphical results from Sur-

face Evolver of an etch hole width of 5 ýtm and a solder thickness of 5 ltm. Clearly this is

less than the thickness required to guarantee etch hole clo sing on reflow. In Figure 7.16,

the result for a solder thickness of 6 ýtm is shown. In this case, the solder is thick enough

for the hole to close on reflow.

Figure 7.15. Surface Evolver graphical output showing the results after evolving the
surface with a solder thickness, til, of 5.0 ptm and a etch hole width, w,, of 5.0 ýt.fL
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Figure 7.16. Surface Evolver graphical output showing the results after evolving the
surface with a solder thickness, til, of 6.0 ptm and an etch hole width, w,, of 5.0 ptn.L

For given hole widths, the thickness of the metal layer was interactively modified

and analyzed in an iterative process to more precisely determine critical thickness of the

metal layer. This analysis was done for etch hole widths of 3 ýtm and 5 ýtm, and the re-

sults are shown in Table 7.1. Analysis showed that for a hole width of 5 ýtm the critical

metal thickness was 5.17 ýtm, resulting in a critical metal thickness to hole width ratio

(ti1/win,) of 1.034. Stated differently, given a solder thickness of 5 ltm, the etch hole width

can be no wider than 4.83 ýtm to guarantee hole closure on leflow. Similarly, the critical

thickness for a 3 ýtm hole was determined to be 3.11 ltm, resulting in a critical t/ /wnh ratio

of 1.037. Because the critical ratio is nearly the same for the 3 ptm and 5 ptm holes, this

ratio can be used for other hole sizes or thicknesses that are desired by the designer.

Table 7.1. Surface Evolver results showing the necessary metal layer thickness (critical
thickness) for a given etch hole width to guarantee etch hole closure when the metal is
reflowed. The hole width and metal thickness are then computed as a ratio for compari-
son between the two cases.

Etch Hole Critical Metal Critical Ratio,
Width, wi1, Thickness, t/ tl/w,,

3 ptm 3.11 ptm 1.037
5 ptm 5.17 ptm 1.034
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7.9. Summary

In this chapter the RF performance data from testing, analytical modeling, and

electromagnetic simulation were presented and discussed. It was found that for the best

RF performance with an encapsulation with a metal layer, the layer must be as narrow as

possible, the dielectric layer must be as thick as possible, and the air gap between the

MEMS device and the encapsulation must be as large as possible. These results were

used to design an optimized encapsulation, which is presented in the next chapter. Ana-

lytical modeling also showed that impedence matching techniques can be used to in-

prove the RF performance of the feed-through of the CPW signal line into the

encapsulation. Finally, the optimum ratio of metal thickness to etch hole width was de-

termined through modeling. This optimum ratio is what is necessary to guarantee the etch

holes will close when the metal is reflowed. The next chapter presents the design of the

optimized encapsulation as well as fabrication process that can be used to fabricate it us-

ing standard thin film techniques.
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8. Optimized Encapsulation Design and Fabrication Process

All of the modeling, simulation, and testing data was used to create an optimized

encapsulation design and a fabrication process to fabricate the encapsulations. The encap-

sulation design and fabrication process are presented in this chapter.

8.1. Optimized Encapsulation Design

Based on the data from analytical modeling, electromagnetic simulation, and

laboratory testing, in addition to the limits of the fabrication process, an optimized encap-

sulation has been designed. The geometry values for the encapsulation are shown in Ta-

ble 8.1.

Table 8.1. Dimensions of the optimized encapsulation.

Variable Symbol Value ([tm)
Sacrificial Layer Thickness ge 5.0

Dielectric Layer Width Wd 200
Dielectric Layer Thickness td 3.2

Metal Layer Width wi 160
Metal Layer Thickness tl 5.0

Etch Hole Diameter W_ h 3.0

8.2. Proposed Thin Film Fabrication Process

A novel fabrication process, based on the AFRL process that was used to fabricate

the switch and the dielectric encapsulation, is proposed below. In creating this process,

the manufacturing capabilities of the AFRL clean room were taken into consideration [1 ].

The proposed fabrication process is different from the fabrication processes de-

scribed in Chapter 2 in several ways. First, the proposed fabrication process uses standard

thin film techniques and materials. The only post-process step is the very last step, which

is the sealing of the etch holes. Most other techniques involve extensive post-processing.
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Second, most existing packaging techniques use high-temperature (> 200'C) processes to

fabricate the encapsulations that would be harmful to the MEMS device. The proposed

fabrication process does not involve any high temperature processes. Finally, the pro-

posed fabrication process employs a solder reflow step to seal the etch holes. No other

known process uses a solder reflow step to seal etch holes.

The process starts with the unreleased AFRL switch fabricated as described in

Section 2.2.2. The first step in the proposed encapsulation process is to deposit 5.0 ýtm of

PMGI (e-beam resist) and pattern it with optical resist over the entire unreleased switch,

as shown in Figure 8.1. The PMGI sacrificial layer "forms" are next reflowed at 250'C to

create rounded sidewalls.

encapsulation
sacrificial layer MEMS bridge

(a) (b)

Figure 8.1. (a) Top view and (b) side cut-away drawings of the switch and encapsula-
tion after the first step of the encapsulation fabrication process, where the sacrificial
layer that defines the encapsulation has been deposited and patterned.

Next, 3.2 ýtm of silicon nitride is deposited by sputtering, as shown in Figure 8.2.

This layer is patterned over the sacrificial layer to create an encapsulation over each

switch using optical resist as the etch mask. Next, etch holes that are 3 ptm in diameter are

patterned in each encapsulation and etched with reactive ion etching (RIE) or wet chemi-

cal etching. These etch holes must not be spaced more than 40 ptm apart from each other
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to ensure sacrificial layer is completely etched away during the release step. In addition

to the etch holes, voids are created in the silicon nitride layer over the CPW ground

traces. These voids allow the metal layer to make electrical contact with the ground

traces.

encapsulation etch holesdelectric layer

~void for electrical grounding

(a) (b)

Figure 8.2. (a) Top view and (b) side cut-away drawings of the switch and encapsula-
tion after the second step in the encapsulation fabrication process. Here the encapsula-
tion dielectric layer has been deposited and patterned. Note the voids in the layer over
the CPW ground planes so the metal layer, when deposited, will be electrically
grounded. Also, etch holes are patterned so the device can be released. The etch hole
size and quantity in the drawing is inaccurate but is shown this way for clarity to the
reader.

Next, the metal layer of the encapsulation is defined by depositing a 7-10 ptm

thick layer of photoresist over the dielectric encapsulation and patterning it to create a

"mold" for the metal layer, as shown in Figure 8.3. This encapsulation "mold" also de-

fines 3 ptm diameter etch holes over the existing etch holes in the dielectric layer. This

will allow for release of the sacrificial layers because the etch holes in the dielectric layer

and the metal layer will be aligned.
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encapsulation metal layer "mold"

o

o 0 0

(a) (b)

Figure 8.3. (a) Top view and (b) side cut-away drawings of the encapsulation after the

third step in the encapsulation fabrication process. Here a 7-10 ptm thick photoresist
"mold" that defines the metal layer has been deposited and patterned. The places

where the photoresist mold doesn't exist are the areas where the metal layer will exist
when fabrication is complete.

Next, the metal layer, consisting of 5 ýtm of indium solder is sputtered over the

wafer, as shown in Figure 8.4.

encapsulation metal layer

(a) (b)

Figure 8.4. (a) Top view and (b) side cut-away drawings of the encapsulation after the
fourth step in the encapsulation fabrication process. Here the metal layer of indium
solder has been sputter deposited over the entire wafer. The mold created in the previ-
ous step will allow the undesired metal parts to be removed with the lift-off method.

In the next fabrication step, the undesirable parts of the metal layer are removed

using the lift-off method and the remaining photoresist mold is removed using photoresist
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stripper, as shown in Figure 8.5. Now a clear path to the sacrificial layers via the etch

holes has been uncovered, allowing for the sacrificial layers to be removed in the next

step.

__ F7 F encapsulation metal layer

(a) (b)

Figure 8.5. (a) Top view and (b) side cut-away drawings of the switch and encapsula-
tion after the fifth step in the encapsulation fabrication process. Here the lift-off
method has been used to remove the unwanted areas of the metal layer, and the photo-
resist mold has been stripped away.

Next, the sacrificial layers of PMGI that defined the suspended MEMS bridge and

the encapsulation are released by soaking in PMGI stripper, as shown in Figure 8.6. Im-

mediately following the release, the switches are dried using a CO 2 critical point drying

process to prevent stiction.

Fsacrificial layers etched away

(a) (b)

Figure 8.6. (a) Top view and (b) side cut-away drawings of the switch and encapsula-
tion after the sixth step in the encapsulation fabrication process, showing that the RF
MEMS switch and encapsulation have been released by etching away the sacrificial
layers.
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Finally, the etch holes are sealed by placing the wafer in a oven and raising the

temperature above the melting point of indium solder, which is 156°C [2], as shown in

Figure 8.7. The oven should be at ambient pressure of a dry, inert gas for optimum switch

reliability.

S......................etch holes sealed by reflowed metal layer

(a) (b)

Figure 8.7. (a) Top view and (b) side cut-away drawings of the switch and encapsula-
tion after the final step of the encapsulation fabrication process where the metal layer
is reflowed to seal the etch holes. The encapsulation is now hermetically (or near-
hermetically) sealed.

8.3. Discussion of Fabrication Process

The proposed process has several advantages. One is that it only requires three

masks: the encapsulation sacrificial layer etch mask, the dielectric layer etch mask, and

the metal layer lift-off mask. Another advantage is that it uses standard materials and fab-

rication processes. Another big advantage that is a problem with many packaging tech-

nologies is that this is a low-temperature technology. Sputtering is the deposition method

used, which is low temperature. By choosing indium as the reflow metal, the maximum

temperature the MEMS switch will be subjected to during reflow (-I60°C) is well below

the given temperature threshold of the MEMS switch of 300-350' C [1].
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Although the process has several advantages, some challenges or disadvantages of

this process exist. One is that a very high-precision mask alignment is necessary for the

etch holes in the metal layer to align with the etch holes in the dielectric layer. This may

be alleviated somewhat by using larger holes for the metal layer than for the dielectric

layer. For example, some room for error would be given if the etch holes in the dielectric

layer are 2 ptm and the etch holes in the metal layer are 4 ptm. As described in Chapter 7,

the size of the etch holes in the metal layer could easily be made larger as long as the

thickness of the layer is large enough for the holes to close when the metal is reflowed.

Another challenge that may make fabrication difficult is the high aspect ratio required for

fabricating the metal layer with etch holes. In particular, a 7-10 ptm thick layer of photo-

resist must be patterned with feature sizes of 3 ptm for the etch holes in the metal layer. It

is not clear if this process can be used with high reliability without testing it.

Some issues in the solder reflow step will need to be resolved through further re-

search For example, it may be possible that a surface cleaning or a flux is necessary in

order for the indium solder to reflow freely. Stark and Najafi have demonstrated low

temperature fluxless solder reflow for MEMS packaging, but their process employs a

solder paste that is defluxed and outgassed prior to applying it to the MEMS device wafer

and reflowing it [3]. If a flux gas is used during the reflow step, it will effectively be

sealed in the encapsulation. The effects on a MEMS switch's performance and lifetime in

the presence of a flux gas is unknown. It may be necessary to use a different low-melting-

temperature solder alloy if indium is found to oxidize too rapidly for this method.

Another potential issue in the solder reflow step is the possibility that the solder

will not adhere to the silicon nitride layer when reflowed.It may be possible that a metal
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adhesion layer is necessary between the indium layer and the silicon nitride layer to en-

sure proper adhesion of the metal layer to the dielectric layer. According to Kovacs, ad-

hesion layers of reactive metals such as Ti or Cr are often necessary to bond non-reactive

metals to other non- metallic materials [4].

8.4. Summary

In this chapter the optimum design for a thin film encapsulation with a metal layer

was presented, along with a fabrication process that can be used to manufacture the en-

capsulation. The optimum design is relatively simple to fabricate using standard thin film

techniques, and only includes one post-processing step. The next chapter summarizes the

work that was done as part of this thesis and gives recommendations for future areas of

work in this area.
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9. Conclusions

This chapter summarizes the work that was completed in this thesis, discusses

challenges and lessons learned from the process, summarizes the contributions this work

made to the MEMS field, and recommends areas for follow on research.

9.1. Summary of Work Completed

This thesis involved several different areas of research all related to the design of

high-performance thin film encapsulations for RF MEMS switches. First, the state of the

art in RF MEMS packaging was surveyed. Next, encapsulation designs were created

based on AFRL RF MEMS switches and dielectric encapsulations. These designs were

assessed using equivalent circuit analytical models and full-wave electromagnetic simula-

tion, and were compared to existing test data for the dielectric encapsulated switches.

Based on these results, an optimized encapsulation design was proposed, and a novel fab-

rication process was created to fabricate the encapsulations. In addition, RF feed-

throughs were designed and analyzed, and modeling of the metal layer reflow over the

etch holes was performed to determine necessary dimensions to guarantee hole closure.

9.2. Challenges Encountered in this Research

The main challenge encountered in this work was the breadth of topics that had to

be covered. This work required knowledge in electromagnetics, RF circuits, MEMS fab-

rication and packaging, and solder reflow. Due to minimal knowledge in many of these

areas, much time was spent learning or re-learning the basics. In addition, much of the

research involved the use of Ansoft High Frequency Structure Simulator (HFSS), which

is a very powerful and capable software tool. It is easy to use right away, but it takes

quite a while to learn how to use well, where one can have good confidence in the output.
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Another challenge was that many of the issues tackled for this thesis have not

been considered before, to the best of the author's knowledge. The work could not con-

tinue where someone else left off; it had to be started from scratch in many cases. This

resulted in a lot of time being spent defining the problem and scoping it down to a man-

ageable research project.

9.3. Lessons Learned

For a project such as this, it would really pay off to set high goals, and start the

actual work as early as possible. Yes, adequate time must be given to the literature sur-

vey, but the real knowledge comes from the new work that is done. It is important to get

some results early, even if they are preliminary or "back-of-the-envelope." Once some

results are in hand, they open doors to other more interesting scenarios that can be ex-

plored. It is actually a process of refining what the problem is, or what you want it to be,

based on what looks most interesting to explore. After the problem has been clearly de-

fined, it can be explored thoroughly. The result is not necessarily more work that is com-

pleted, but work that is more significant.

9.4. Contributions Made to the MEMS Field

Several novel ideas were proposed and analyzed in this thesis. This is the first re-

search to propose and analyze RF MEMS encapsulations consisting of metal and dielec-

tric that are fabricated with thin film techniques. This research showed that it is feasible

to fabricate thin-film encapsulations over RF MEMS switches that have minimal per-

formance degradation on the device, and an optimized encapsulation was designed based

on analysis results. Second, this is the first research to consider sealing etch holes by re-

flowing solder over them as the last step in the encapsulation process. Finally, this is the
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first research to model solder reflow over an etch hole in order to determine the necessary

dimensions of the etch hole width and metal layer thickness to guarantee the hole will

close when the metal is reflowed. These metal reflow contributions will be useful in areas

other than RF MEMS packaging.

9.5. Recommendations for Future Work

This research has several logical areas where future work can be done to further

the concept of thin film encapsulation with a reflowed metal layer.

9.5.1. Solder Reflow Testing

Several questions have to be amwered concerning the reflow of the solder over

the etch holes. Some simple laboratory testing on test structures could answer several

questions, such as:

"* What flux or surface preparation is necessary for reflow?

"* Will the indium solder seal the etch holes when reflown?

"* Will the indium solder flow onto other areas of the design, where it is not
wanted?

"* Will the indium solder adhere to the silicon nitride, or are adhesion layers
of Ti or Cr necessary below the indium layer?

"* What is the rate of flow of the solder when heated?

9.5.2. RF Feed-Through Design

Much work could be done on designing optimized RF feed-throughs into the en-

capsulation. Ideally, the feed-throughs would make the designs with the "conformal"

metal layer feasible. If they were feasible, the fabrication of the switches could be simpli-

fied by using the metal layer as the etch mask for the dielectric layer. This would negate

the need for a very accurate mask alignment that is required in the proposed process (to
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make sure the etch holes in the metal layer align with the etch holes in the dielectric

layer).

9.5.3. Fabricate and Test the Encapsulations

The most logical extension of the current work is to fabricate the proposed design.

Better yet, fabricate several of the designs to have more data to compare the accuracy of

the analytical models and HFSS simulations. Also, the feasibility of the fabrication proc-

ess would be determined. By fabricating and testing the proposed encapsulations with the

proposed fabrication process, the work would likely translate into at least one ptblishable

journal or conference paper, and contribute significantly to the MEMS field.

9.5.4. Improve the Analytical Models

The models in this work were developed independently from the testing and simu-

lation data. If the encapsulations were fabricated and tested, the data could be used in

concert with the simulated data to adjust the analytical models to be very accurate. This

would involve tweaking the model parameters to match the test and simulation data. With

more accurate models, engineers could design encapsulations based on their needs for

performance, size, etc.

9.5.5. Analyze Mechanical Strength and Electromagnetic Shielding

An investigation could be carried out on the mechanical strength and electromag-

netic shielding contributed to the encapsulation by a metal layer on top. An engineering

trade-off probably exists between the metal layer width and the strength and shielding.

These trade-offs could be optimized, or put into models for engineers to use to design en-

capsulations based on their needs.
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9.5.6. Analyze Hermeticity of Encapsulations

Metal bonding rings are frequently used to create hermetic seals in flip-chip pack-

aging methods. Hermeticity is a requirement for MEMS switch packaging, so an investi-

gation could be taken on to determine what the Wermeticity is of the encapsulations with

metal layers.

9.5.7. Analyze Reliability of Encapsulated Switches

One of the major goals of packaging is to improve and stabilize device reliability.

Does the process or do the materials contribute to poor reliability of the encapsulated

switches? How do switch lifetimes of encapsulated switches compare with the unencap-

sulated switches? Does the solder outgas contaminants into the encapsulation that reduce

the lifetime of the switch?

9.6. Conclusion

The research done as part of this thesis successfully designed thin film encapsula-

tions and a fabrication process to manufacture these encapsulations. The performance ef-

fects on switch performance due to the encapsulations were assessed, and optimized

designs were produced based on the results. The work also included the proposal of a

novel solder reflow step to seal the etch holes as the final step of fabrication. This work

leads to several areas of follow-on research, namely fabrication and testing of the pro-

posed designs and process. If successful, these proposals could lead to a simple, cost-

effective zero- level packaging process, which is one of the current technologies lacking

for RF MEMS switches.
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Appendix A. Coventorware Settings

,F ilI

t

lb L.J (L. I
I j 1,

Figure A. 1. Screen capture image from Coventorware showing the details of the fabri-
cation process used to create a solid model from the 2D layout files.
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Table A. 1. Set-up and analysis settings used in Coventorware for finding the capacitance
between the CPW signal line and the MEMS bridge.

Setting Value
M\ESH SETTINGS -

Mesh type Surface
Element type 3-node triangle

Global element size 10 ptm
Boundary refinement level 0
ANA\LYSIS SETTINGS -

Analysis Tool MemCap
Execution Mode Interactive

Grid Density 0
GridDepth 0

MaxIterations 150
MemcapMemory InCore

Preconditioner On
Integration order 2

Number of direct layers 2
Iteration Tolerance 1.0e-4

Stop ratio 0.9
FFT domain scale 1.5

ToolName MemcapfftTool
SolveOption CapacitanceOnly
CoordType Original

UseMechLinks No
RelativePerm 1.000
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Appendix B. Capacitance Calculation Computer Code

95 This the paaw e plt pa aatn

r ri i i 1-L caa itac an byfI 'I

w T -6; Wit -fsga ln,4fC m

ý,IL12 9Pemti ty offre spae

r Uhi c -; 5.eK6 95 IT I I L r f i oL ,

pr hi k - .7e-6; 95T ki fI swt np

IL j - 0.2e-6; 95T k L RF ý I t c, ]

briL,{I ijgh [ 1 1 1 1 1 1 1 1 1 .ý . 5 -6; 9 m

ecpThik - ie (1,1 )*1.6e -6; 95Thikns ILf did crce p lyer [m]
ipT Iick 1:12) - .2e-6;

Hegh -T ue (,1 Vý.5e-6; 95Thikns If sarfiil layrta

He*igt (131) - .0e-6; 95d fie hecpsuai m
- *igt (1 :1 ) -6.5e-6;

iL I-)dt p0+2mý-ticrT t(:k/ 1-6);ý' DTa widhýfcii IL dei gns [m

160 200 200

IL MWid ; c IL orWidt; cý IL ý Widt; c iLfr~d

95 ~ ; C;1aaaldpatcpctne iitr',prs

PP wCPW~w ea .*epi ./(bridcf{ IT t (IL *lT i k./ * ic1Ri))

p IL pW~idt (m -i z -i t- -6);
p I pW~id (ii-I ,p u- -~ -6) ) -20e-6;

IL pW h (f*i (~ p I ~ ))-0
p IL V~idti.W il i . (bridg,- *ý-IglT bi dgLýT }(:k+ý-i P *H,-,gIT ) ...

+ T Udk./e *i

cP - 1,1 )*( I * 6w ~ ** R. p

pDtP~ - wD b i.IL f T1i

c2FF~~~ - 2 *1.0

ILf e IL If ( ) IL r died ct IL ayer

c tf - T 951-

B- I



Appendix C. Coplanar Waveguide (CPW) Design Calculations and Computer Code

In designing or analyzing a CPW, it is necessary to calculate its characteristic im-

pedance (Zo) and its relative dielectric constant (Eff). The theory described here is from

the CPW text by Simons [1]. Consider the CPW shown in Figure C.1. In the figure, a

CPW is shown on top of a substrate of finite thickness (h1). The CPW signal line has a

width S and the gap between the signal line and the ground lines is denoted with W. The

ground plane traces and the substrate are assumed to be infinite in width. The structure is

assumed to be immersed in free space, so the relative dielectric constant outside of the

structure is 1.0. The thickness of the CPW conductors is not considered. The first step in

finding eff and Zo is to find the capacitance Cji, between the signal and ground lines in the

air space between them:

W S W 8

El 
hi

80

Figure C. 1. Drawing of a CPW on a substrate of finite thickness. The ground planes
of the CPW and the substrate are assumed to be infinite in width.

K(ko)

where 1O is the permittivity of free space and the arguments of the complete elliptic inte-

grals K(ko) and K(ko) are
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S
ko-0 --W (C.2)

S+2W

k, l _2Fk2 (C.3)

The next step is to calculate the capacitance C> in the dielectric substrate:

K(k1)
C,1 = 2EO (E,j1 - 1) --' (C.4)

K (ki')

where e,., is the relative dielectric constant in the substrate, and the arguments of the com-

plete elliptic integrals K(k1 ) and K(k') are given with

sinh( ZS / 4hj) (C.5)
sinhf{[ff(S+2W)]/4hI}

k, 1- 2  (C.6)

The total capacitance for the CPW Ccpw is the sum of the other two capacitances,

CW=C(li, + C,=4OK(k0 ) + e ej-1) K (k1 ) (C.7)K(ko) K (k,')

Finally the effective dielectric constant ecy and the characteristic impedance can be calcu-

lated:

Ccw -1+ (Qi - 1) K(kl) K(k')
ef- = C'r+. 2 K(k[) K(ko) (C.8)

1 30ff K(ko)zo0 -- (C.9)
Cai. - 2eff eff 0)
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where c is the speed of light in a vacuum. The Matlab code used to perform these calcula-

tions, as well as the RF feed-through design calculations, is given below.

% cpwFeedThroughCalcs.m

% Eric Marsh

% CPW design calculations and calculations for a RF-feed through
% into a MEMS encapsulation with a metal layer

% CPW design/analysis equations from [Simons, p. 20]

% Conventional CPW on a dielectric substrate of finite thickness

% and infinite ground plane widths

eR1 = 9.4; % dielectric constant of substrate

eQ = 8.85419e-12; % dielectric constant of free space, [F/m]

c = 2.997925e8; % speed of light in vacuum, [m/s]

h = 432e-6; % thickness of substrate, [m]

s = [10:1:100] .*le-6; % width of signal trace, [m]
w = (80e-6)-(s./2); % gap between ground and signal traces, [m]

kl =sinh(pi.*s./ (4*h)) ./(sinh((pi.* (s+2.*w)) ./ (4*h))) ;

klPrime = sqrt(1-kl.2);

kO = s./(s+2.*w);

kOPrime = sqrt(1-k0.2);

% Note: Matlab computes elliptic integrals K(m) using ellipke(m),

% where m=k^2, so K(k) is calculated with ellipke(k^2)
cl = 2*eO*(eRl-1)*(ellipke(kl. 2) ./ellipke(klPrime. 2)) ; %[F]

cAir = 4*eO*(ellipke(kO.'2) ./ellipke(kOPrime.^2)); %[F]
cCpw = cl + cAir; %[F]

% Calculate effective dielectric constant of CPW
eEff = cCpw./cAir;

% Calculate characteristic impedance of CPW

zO = 1./(c.*cAir.*sqrt(eEff)); % [ohms]

% Plot effective dielectric constant vs. signal line width

figure;
plot(s,zO);

ylabel('Characteristic Impedance, Z o, \Omega');

xlabel('Width of Signal Line [m] ');

grid on;

% Plot CPW characteristic impedance vs. signal line width

figure;

plot(s,eEff);

ylabel('Effective Dielectric Constant, \epsilon e f f');

xlabel('Width of Signal Line [m] ');

grid on;

Use results from above to design a RF feed-through based on
o impedance matching principles

o Input geometry of air bridge and material parameters
eQ = 8.85419e-12; % Permittivity of free space, [F/m]

c=3e8; % Speed of light in vacuum, [m/s]

tDiel=3.2e-6; % thickness of dielectric layer, [m]

eR2 = 7.0; % relative permittivity of dielectric

zO = 50; % characteristic impedance of CPW line, [ohms]

wAB = 5e-6; % width of air bridge, [m]
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% input impedance and width of high impedance section of t-line,
% calculated from plots above
zH = 70; % characteristic impedance of narrow section, [ohms]
wZH = 44e-6; % width of signal line of modified CPW, Em]

eEff = 5.17; % effective dielectric constant of modified CPW

% Use theory in [Weller et al, p1637] to calculate the required
% length of high impedance line needed to impedance match the
% air bridge
cAB = wZH*wAB*eO*eR2/tDiel; % capacitance at air bridge, [F]
L2 = c*zH*z0^2*cAB/(sqrt(eEff)*(zH^2-z0^2)); % intermediate variable
LH = L2-0.7*wAB % length of modified CPW section, Em]

% For use in analytical model, find equivalent inductance of the
% step change in the CPW center conductor
% theory is from [RF MEMS, Rebeiz]
LStep = zH*(L2B/2)*sqrt(eEff)/c % inductance of step, [H]

C.1 References

[1] Simons, R. N., Coplanar Waveguide Circuits, Components, and 5ystems, New
York: Wiley-Interscience, 2001.
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Appendix D. Surface Evolver Code

/7 holeUm.fe
/7 Evolver data for hole in volume of fluid.

/7 This simulates an etch hole that is patterned in

/7 solid solder, then reflowed.
/7 All units are in meters

/7 Eric Marsh

PARAMETER height = 5.17e-6

// critical ratio (h/w) => 5.170(5.175)/5.0 = 1.034-1.035

vertices

1 0.0 0.0 0.0 fixed
2 45e-6 0.0 0.0 fixed
3 45e-6 45e-6 0.0 fixed

4 0.0 45e-6 0.0 fixed

5 0.0 0.0 height fixed

6 45e-6 0.0 height fixed

7 45e-6 45e-6 height fixed

8 0.0 45e-6 height fixed

9 20e-6 20e-6 0 fixed
10 25e-6 20e-6 0 fixed

11 25e-6 25e-6 0 fixed
12 20e-6 25e-6 0 fixed

13 20e-6 20e-6 height

14 25e-6 20e-6 height

15 25e-6 25e-6 height

16 20e-6 25e-6 height

edges /* given by endpoints and attribute *7
1 1 2 fixed

2 2 3 fixed

3 3 4 fixed
4 4 1 fixed

5 5 6 fixed
6 6 7 fixed

7 7 8 fixed

8 8 5 fixed

9 1 5 fixed

10 2 6 fixed

11 3 7 fixed

12 4 8 fixed
13 9 10 fixed
14 10 lifixed

15 11 12 fixed

16 12 9 fixed

17 1 9

18 2 10

19 3 11

20 4 12
21 13 14
22 14 15

23 15 16

24 16 13
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25 9 13

26 10 14

27 11 15
28 12 16

29 5 13

30 6 14

31 7 15

32 8 16

faces /* given by oriented edge loop */
1 1 10 -5 -9 fixed
2 2 11 -6 -10 fixed

3 3 12 -7 -11 fixed

4 4 9 -8 -12 fixed

5 21 -26 -13 25

6 26 22 -27 -14

7 27 23 -28 -15
8 28 24 -25 -16

9 -1 17 13 -18 fixed
10 18 14 -19 -2 fixed

11 19 15 -20 -3 fixed

12 20 16 -17 -4 fixed

13 5 30 -21 -29

14 6 31 -22 -30

15 32 -23 -31 7

16 8 29 -24 -32

bodies /* one body, defined by its oriented faces *7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 volume 2000e-12*height
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Appendix E. Data Comparison and Presentation Computer Code
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