125 research outputs found

    Scanless Fast Handoff Technique Based on Global Path Cache for WLANs

    Get PDF
    Wireless LANs (WLANs) have been widely adopted and are more convenient as they are inter-connected as wireless campus networks and wireless mesh networks. However, timesensitive multimedia applications, which have become more popular, could suffer from long end-to-end latency in WLANs.This is due mainly to handoff delay, which in turn is caused by channel scanning. This paper proposes a technique called Global Path-Cache (GPC) that provides fast handoffs in WLANs.GPC properly captures the dynamic behavior of the network andMSs, and provides accurate next AP predictions to minimize the handoff latency. Moreover, the handoff frequencies are treated as time-series data, thus GPC calibrates the prediction models based on short term and periodic behaviors of mobile users. Our simulation study shows that GPC virtually eliminates the need to scan for APs during handoffs and results in much better overall handoff delay compared to existing methods

    Scanless Fast Handoff Technique Based on Global Path Cache for WLANs

    Get PDF
    Wireless LANs (WLANs) have been widely adopted and are more convenient as they are inter-connected as wireless campus networks and wireless mesh networks. However, timesensitive multimedia applications, which have become more popular, could suffer from long end-to-end latency in WLANs.This is due mainly to handoff delay, which in turn is caused by channel scanning. This paper proposes a technique called Global Path-Cache (GPC) that provides fast handoffs in WLANs.GPC properly captures the dynamic behavior of the network andMSs, and provides accurate next AP predictions to minimize the handoff latency. Moreover, the handoff frequencies are treated as time-series data, thus GPC calibrates the prediction models based on short term and periodic behaviors of mobile users. Our simulation study shows that GPC virtually eliminates the need to scan for APs during handoffs and results in much better overall handoff delay compared to existing methods

    An Adaptive Multimedia-Oriented Handoff Scheme for IEEE 802.11 WLANs

    Full text link
    Previous studies have shown that the actual handoff schemes employed in the IEEE 802.11 Wireless LANs (WLANs) do not meet the strict delay constraints placed by many multimedia applications like Voice over IP. Both the active and the passive supported scan modes in the standard handoff procedure have important delay that affects the Quality of Service (QoS) required by the real-time communications over 802.11 networks. In addition, the problem is further compounded by the fact that limited coverage areas of Access Points (APs) occupied in 802.11 infrastructure WLANs create frequent handoffs. We propose a new optimized and fast handoff scheme that decrease both handoff latency and occurrence by performing a seamless prevent scan process and an effective next-AP selection. Through simulations and performance evaluation, we show the effectiveness of the new adaptive handoff that reduces the process latency and adds new context-based parameters. The Results illustrate a QoS delay-respect required by applications and an optimized AP-choice that eliminates handoff events that are not beneficial.Comment: 20 pages, 14 figures, 4 table

    Behavior-Based Mobility Prediction for Seamless Handoffs in Mobile Wireless Networks

    Get PDF
    The field of wireless networking has received unprecedented attention from the research community during the last decade due to its great potential to create new horizons for communicating beyond the Internet. Wireless LANs (WLANs) based on the IEEE 802.11 standard have become prevalent in public as well as residential areas, and their importance as an enabling technology will continue to grow for future pervasive computing applications. However, as their scale and complexity continue to grow, reducing handoff latency is particularly important. This paper presents the Behavior-based Mobility Prediction scheme to eliminate the scanning overhead incurred in IEEE 802.11 networks. This is achieved by considering not only location information but also group, time-of-day, and duration characteristics of mobile users. This captures short-term and periodic behavior of mobile users to provide accurate next-cell predictions. Our simulation study of a campus network and a municipal wireless network shows that the proposed method improves the next-cell prediction accuracy by 23~43% compared to location-only based schemes and reduces the average handoff delay down to 24~25 ms

    Behavior-Based Mobility Prediction for Seamless Handoffs in Mobile Wireless Networks

    Get PDF
    The field of wireless networking has received unprecedented attention from the research community during the last decade due to its great potential to create new horizons for communicating beyond the Internet. Wireless LANs (WLANs) based on the IEEE 802.11 standard have become prevalent in public as well as residential areas, and their importance as an enabling technology will continue to grow for future pervasive computing applications. However, as their scale and complexity continue to grow, reducing handoff latency is particularly important. This paper presents the Behavior-based Mobility Prediction scheme to eliminate the scanning overhead incurred in IEEE 802.11 networks. This is achieved by considering not only location information but also group, time-of-day, and duration characteristics of mobile users. This captures short-term and periodic behavior of mobile users to provide accurate next-cell predictions. Our simulation study of a campus network and a municipal wireless network shows that the proposed method improves the next-cell prediction accuracy by 23~43% compared to location-only based schemes and reduces the average handoff delay down to 24~25 ms

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process
    • …
    corecore