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Scanless fast handoff technique based on global
Path-Cache for WLANs

Weetit Wanalertlak ·Ben Lee ·Chansu Yu ·
Myungchul Kim · Seung-Min Park ·Won-Tae Kim

Abstract Wireless LANs (WLANs) have been widely adopted and are more conve-
nient as they are interconnected as wireless campus networks and wireless mesh net-
works. However, time-sensitive multimedia applications, which have become more
popular, could suffer from long end-to-end latency in WLANs. This is due mainly
to handoff delay, which in turn is caused by channel scanning. This paper proposes
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a technique called Global Path-Cache (GPC) that provides fast handoffs in WLANs.
GPC properly captures the dynamic behavior of the network and mobile stations
(MSs), and provides accurate next-AP (access point) predictions to minimize the
handoff latency. Moreover, the handoff frequencies are treated as time-series data,
thus GPC calibrates the prediction models based on short-term and periodic behav-
iors of mobile users. Our simulation study shows that GPC virtually eliminates the
need to scan for APs during handoffs and results in much better overall handoff delay
compared to existing methods.

Keywords Wireless LANs · Handoff · Channel scanning · Mobility prediction ·
Time-series analysis

1 Introduction

Wireless communication technology together with the advancements in applications
and network software allow users to be connected and be productive while on the
road.Wireless LANs (WLANs) based on the IEEE 802.11 standard [12], better known
as Wi-Fi hot spots, are already prevalent in residential as well as public areas, such as
airports, university campuses, shopping malls, coffee shops, etc. Moreover, numer-
ous efforts have already been underway to connect Wi-Fi hot spots to offer a better
connectivity over a larger geographical area such as community networks that cover
metropolitan areas of major US cities [19, 23, 30, 31].

One of the greatest benefit of Wi-Fi hot spots or community networks is mobil-
ity support, which allows a user, for example, to continually talk on a Voice over IP
(VoIP) application or watch a video stream while walking or riding a bus between
city blocks. However, mobility incurs a large handoff delay when a mobile station
(MS) switches connection from one access point (AP) to another. The key to reduc-
ing the handoff delay is to minimize the scanning process, which involves probing
all the communication channels to fin the best available AP. Recent studies found
that passively scanning for APs during a handoff can take as much as 1 second [28]
and actively scanning for APs requires 350–500 ms [28]. This becomes a major con-
cern for mobile multimedia applications such as VoIP where the end-to-end delay is
recommended to be not greater than 50 ms [9].

Since the scanning process represents more than 90 % of the overall handoff delay,
a number of techniques have been proposed to specificall optimize the scanning
process [6, 32, 33, 41]. These methods employ extra hardware, either in the form of
additional radios [6] or an overlay sensor network [41] to detect APs, selectively scan
channels based on topological placements of APs [32], and predict the next point-
of-attachment based on signal strength [33]. Unfortunately, these techniques neither
provide next-AP predictions that can eliminate the need to scan for APs nor consider
the mobility patterns of MSs, which are dictated by the structure of a building or a city
block and the past behaviors of MSs. There are also methods that consider mobility
history of MSs to provide next-AP predictions [36]. However, these methods tend to
be general and thus they do not consider the special characteristics of WLANs, such
as highly overlapped cell coverage, MAC contention, and variations in link quality.



In [42], we presented a solution, called the Global Path-Cache (GPC) technique,
which eliminates the need to perform scanning for available APs and thus results
in faster handoffs. The key idea of GPC is to predict the next point-of-attachments
based on the history of mobility patterns of MSs. This is achieved by maintaining
the handoff history of all the MSs in the network, and then monitoring an MS’s di-
rection of movement relative to the topological placement of APs to predict its next
point-of-attachment. In addition, next-AP predictions are based on the frequencies
of occurrences rather than signal strength. Therefore, it takes into consideration that
mobility patterns are dictated by the structure of a building or a city block and the past
behaviors of MSs. The GPC technique is an adaptive algorithm, which is independent
of topological placements of APs and the number of channels used.

This paper extends our earlier work on GPC by also considering short-term hand-
off behaviors and significantl expanding its evaluation. Therefore, in addition to
providing a discussion of the basic GPC scheme, the specifi contributions of this
paper are as follows:

– First, the basic GPC scheme presented in [42] provides next-AP predictions based
on long-term frequency of handoffs and is unable to capture short-term and peri-
odic handoff behaviors that are crucial for improving the prediction accuracy for
all scenarios. This paper enhances the basic GPC scheme by treating the handoff
frequencies as time-series data, thus GPC calibrates the prediction models based on
specifi characteristics of WLAN by applying AutoRegressive Integrated Moving
Average (ARIMA) and Exponential Weighted Moving Average (EWMA).

– Second, performance evaluation is significantl expanded to include a much larger
network (i.e., MetroFi Portland [19]), and analyze the performance effects of dif-
ferent types of users and the improvements provided by the time-series analysis.

Our simulation study shows that the basic GPC scheme results in superior handoff
delay compared to Selective Scan with Caching (SSwC) [33] and Neighbor Graph
(NG) [32]. The time-series based GPC scheme further improves the average 1st next-
AP prediction accuracy by as much as 17.1 % and reduces the handoff latency as
much as 8.5 % compared to the basic GPC scheme. Moreover, the handoff latency
improvements for some groups of MSs are as high as 15.1–27.1 %.

The paper is organized as follows. Section 2 presents the background of the IEEE
802.11 handoff procedure. Section 3 discusses the related work. Section 4 discusses
the basic GPC technique. Section 5 presents the time-series based prediction model
for GPC. Section 6 evaluates the performance of the proposed method. Finally, Sect. 7
concludes the paper and discusses future work.

2 Background—scanning process in IEEE 802.11

In the IEEE 802.11 standard, when an MS moves from one cell to another, the net-
work interface senses the degradation of signal quality in the current channel. The
signal quality continues to degrade as the MS moves further away from the current
AP, and the MS initiates a handoff to a new cell when the signal quality reaches a
preset threshold [32]. This process starts scanning for new cells using either passive



Fig. 1 Active Scanning in IEEE
802.11

or active scanning. In passive scanning, MS switches its transceiver to a new channel
and waits for a beacon to be sent a new AP, typically every 100 ms, or until the wait-
ing time reaches a predefine maximum duration, which is longer than the beacon
interval. Moreover, the time MS has to wait varies since beacons sent by APs are not
synchronized. For these reasons, a recent study has shown that MSs can spend up to
1 second to scan all possible channels [28], which results in unacceptable handoff
delay.

In active scanning shown in Fig. 1, an MS broadcasts a probe request and waits
for a response. If the MS receives a response from an AP, it assumes there may be
other APs in the channel and waits for MaxChannelTime. Otherwise, the MS only
waits for MinChannelTime. MinChannelTime is shorter than MaxChannelTime to
keep the overall handoff delay low, but it should be long enough for MS to receive a
possible response. A typical duration for scanning each channel is around 25 ms and
350–500 ms for all 11 channels [28].

After scanning, MS typically joins the network with the strongest signal strength,
which is done by performing authentication and association/reassociation. Authen-
tication is the process that an MS uses to announce its identity to the new AP. In
the IEEE 802.11 standard, authentication is performed using open system or shared
key. Open system authentication is the default method for IEEE 802.11, and involves
the MS sending authentication request frame, which contains source address in the
frame header and information in the frame body to indicate the type of authentica-
tion, to the AP. Then, the AP sends the authentication response frame back to the MS.
This frame has the authentication result and the information to indicate the type of
authentication.

The next step is association/reassociation, which allows the distribution system
to keep track of the location of each MS so frames destined for the MS can be for-
warded to the correct AP. How association/reassociation requests are processed is
implementation-specific but typically involves allocation of frame buffers and, in the
case of reassociation, communicating with the old AP so that any frames buffered at
the old AP are transferred to the new AP and the old AP terminates its association
with the MS. Finally, the last step involves the new AP updating the Ethernet Address



Table in the switch that connects both the old and the new APs so that the network
traffi can be rerouted.

3 Related work

3.1 Mobility prediction

Mobility prediction is crucial for mitigating the effects of handoffs and therefore
improving QoS. There has been a plethora of work onmobility prediction for a variety
of wireless networks, such as cellular [1, 14, 16, 35, 44, 45], WLANs [8, 10, 15, 24,
26, 33, 36], sensor networks [47] ad hoc networks [38], and wireless mesh networks
[3, 13], and applied to reduce handoff latency [24, 33], minimize handoff frequency
[15], provide efficien resource reservation [1, 14, 16, 35, 36, 44, 45], improve routing
protocols [38], and conserve power [47].

Although many different mobility prediction techniques have been proposed, these
techniques can be broadly classifie into the following three categories. First, data-
mining techniques use a database to track and characterize the long-term mobility
patterns of MSs, which are then used to predict their locations to reduce the sig-
naling overhead during handoff [14, 44, 45]. Second, topology-based techniques
use the knowledge of geographical locations of APs and directional movement of
MSs [10, 35]. Third, stochastic techniques provide mobility predictions using prob-
abilistic models. These techniques apply the knowledge of geographic coordinates
of MSs from either GPS or triangulation of signal strengths to predicted future loca-
tions [1, 16].

Although all these techniques provide mobility prediction in cellular networks,
they are not efficien solutions for WLANs. For example, data-mining techniques re-
quire large storage and fast processors to analyze long-term mobility behavior. In ad-
dition, the latter two techniques typically require a GPS device to obtain information
about locations and directions of MSs. For systems that rely on signal triangulation,
including methods for WLANs [26], their effectiveness may be limited due to the fact
that WLANs are mainly used for indoors and crowded outdoor areas where the sig-
nal strength is highly affected by interference rather than distance [29]. The technique
closest to ours is Markov-based mobility predictions, which rely on the fact that the
probability of the future outcome is based on the current and past outcomes [8, 37].
Typically, a Markov mobility predictor maintains a collection of past locations of
MSs and predicts future locations of MSs based on the value of conditional probabil-
ity that matches with the past locations of MSs. The Markov-based technique can be
found in manymobility-prediction algorithms, including ours. However, the proposed
GPC scheme is designed to work seamlessly with the 802.11 MAC layer protocol and
can be used to enhanced these methods by considering short-term mobility patterns
using time-series analysis.

3.2 Reducing handoff delay in WLANs

There has been a lot of work done to reduce the handoff delay in WLANs. The re-
lated work discussed here focuses on optimizing the probing or scanning process,



which is the most time-consuming part of a handoff [20, 40]. MultiScan uses an extra
WLAN network interface to opportunistically scan and pre-associate with alternative
APs to avoid disconnections [6]. The basic idea is to have the firs WLAN interface
communicate with the current AP while the second WLAN interface scans for new
APs. This scan information is then used to connect to the new AP before the con-
nection is lost from the current AP. A similar technique called Make-Before-Break
also uses two WLAN cards, but allows the card that scanned the channels to also
perform authentication and association to eliminate MAC layer handoff delay [27].
In contrast, LeapFrog uses an extra WLAN interface on the AP side to broadcast
beacon messages across all the channels. Selective Active Scanning uses an overlay
sensor network to obtain information on the presence of APs and the quality of their
transmission channels [41]. This way, an MS can broadcast an AP-list request to sur-
rounding sensor nodes to obtain a precise information about neighboring APs, and
initiate a scanning process solely based on this list. Although these techniques can
provide fast handoffs, they require extra hardware, implemented either on the client
side, AP side, or as a separate control plane, which may be impractical and/or power-
inefficient The proposed GPC method requires only one WLAN card.

Another technique to reduce the handoff delay is to either passively or actively
scan for available APs in the background. SyncScan is a passive method that requires
APs to send staggered periodic beacons to allow an MS to scan for additional APs
while it is still connected to the current AP [28]. In Smooth Handoff, an MS actively
scans for APs in multiple sub-phases with data transmission in-between sub-phases
[17]. Although the handoff delay or packet loss can be reduced, there is a hidden
cost since an MS has to occasionally suspend its communication to either listen or
partially scan for other APs. Nonetheless, the GPC method proposed in this paper is
an orthogonal approach to the background scanning and thus they can be deployed
together to reduce the cost of performing a full scan.

Other methods that are closest to ours in terms of reducing the scanning delay
are Neighbor Graph [32], Pre-Authentication Path [24], Selective Scan with Caching
[33], Enhanced FastScan [26], and Direction Handoff [10]. The Neighbor Graph and
Pre-Authentication Path techniques reduce the number of channels to scan by defin
ing a directed graph that represents the topological placement of APs and the mobility
patterns of MSs. Moreover, edges between APs represent handoffs that are added or
deleted to reflec the changing conditions. In addition, the Pre-Authentication Path
technique reduces the signaling overhead between MS and AP by allowing MSs to
pre-authenticate and pre-reassociate with APs within a directed graph before the ac-
tual handoff occurs. Although both of these techniques significantl reduce the aver-
age number of channels probed, they do not provide next point-of-attachment predic-
tions and thus all active edges (i.e., adjacent channels) emanating from a node need
to be scanned.

Selective Scan with Caching minimizes the need to scan during a handoff by pre-
dicting next point-of-attachment based on signal strength. AnMS joining the network
for the firs time performs a full scan. Then, the corresponding bits in the channel
mask are set for all the probe responses received from APs, as well as bits for chan-
nels 1, 6, and 11 with the premise that these channels are more likely to be used by
APs. As MS connects to the AP with the strongest signal, the corresponding bit in



the channel mask is reset based on the assumption that the likelihood of adjacent APs
having the same channel is very small. In addition, two other APs’ addresses repre-
senting the second and third strongest signals are stored in the AP-cache using the
current AP’s address as the key. These two APs represent the best and second-best
candidates for subsequent handoffs. During the next handoff, the MS will attempt to
reassociate with these two APs in order. If it fails to reassociate with both APs or an
entry is not found in the AP-cache, a selective scan is performed based on the channel
mask to choose two additional APs with the strongest signals and stores them in the
AP-cache. If no APs are discovered with the current channel mask, bits in the channel
mask are inverted and another scan is performed. If the partial scan fails to discover
APs, a full scan is performed. However, in order to use the information from the last
scanning period for the current handoff, the direction of MS movement relative to the
cell layout must be identical to the one in the last handoff. This is often not the case
and thus the AP-cache will frequently fail to provide correct next-AP predictions.

Enhanced FastScan (EFS) reduces scanning delay by restricting the number of
candidate APs to scan based on the predicted location of an MS. EFS divides the
coverage area of the current AP into four areas: NE, NW, SE, and SW. To determine
the area where MS is located, Wi-Fi Positioning System (WPS) is used, and the co-
ordinates of APs are added to beacon frames. However, WPS requires a large amount
of scanned data to be processed, which is time-consuming, and as stated before WPS
may not provide accurate location information due to interference. The Directional
Handoff scheme predicts the direction of an MS using a geomagnetic sensor and thus
limits the number of APs to scan. However, automatic construction of an AP table is
still an issue, and the number of APs to scan will increase when a predicted direction
has many APs.

Recently, there has been a growing interest in expanding the coverage area of
WLANs using wireless mesh networking. In SMesh [2], multiple APs are used to
monitor the connectivity quality of MSs in their vicinity to coordinate which one
of them should serve the client. This is achieved by having each MS associate with
a unique multicast group of mesh nodes that are in the vicinity of the MS and the
mesh node with the best connectivity to the MS sends a gratuitous ARP message to
force a handoff. In contrast, the proposed GPC technique is an MS-initiated handoff
method, which does not require the overhead of maintaining multicast groups. More-
over, monitoring the signal quality of MSs requires all APs to be operating in the
same channel and thus limiting the range of coverage area.

4 The basic GPC technique

GPC tracks past associated APs and then use this information to perform mobility
predictions to reduce the handoff delay. This virtually eliminates the need to scan
channels when MSs move through the coverage area with the same set of APs. This
section starts off with the discussion of the basic GPCmethod that prioritizes multiple
next-AP predictions based simply on frequency of handoff sequences. Then, Sect. 5
discusses the application of time-series analysis on handoff occurrences to formulate
a better model to improve the next-AP prediction accuracy.



Fig. 2 Local history using
HSW for k = 3

Table 1 Global History in the
Path-Cache for Fig. 2 Cache-Key Next-AP Counter

Past-AP Current-AP

APx APw APx 6
APx APw APy 2
APx APw APz 10
· · · · · · · · · · · ·
APy APx APw 6 → 7

In order to illustrate the motivation behind GPC, Fig. 2 shows an example of a
coverage area that contains four APs. As the MS moves away from APw , it is unclear
which AP it will associate with next since there are three possible candidates (i.e.,
APx , APy , or APz). Therefore, the history of handoff sequences is maintained and
used to predict the behavior of future handoffs.

In order to keep track of an MS’s handoff sequence, a local history is maintained
using a k-entry Handoff-Sequence Window (HSW) containing information of the cur-
rent AP as well as k − 1 past-APs (i.e., the MAC address and the channel number).
Figure 2 illustrates HSW for k = 3. An MS joining the network for the firs time has
no local history and thus its HSW contains null entries. When the MS associates with
an AP, its information is queued in HSW. During each subsequent handoff, the MS
sends to the server a Path-Cache request containing HSW as part of an authentication
request.

When the server receives Path-Cache requests fromMSs, a global history of all the
handoffs in the network is maintained in the Path-Cache, where each entry contains
a Cache Key represented by Current-AP and k − 2 past-APs, next-AP, and a counter
indicating the number of hits on this entry. Table 1 shows the partial content of the
Path-Cache for Fig. 2.

The following operations are performed when the server receives a Path-Cache
request:

• Path-Cache update—The server uses the past cache-key represented by the hand-
off sequence 〈AP0,AP1, . . . ,APk−2〉 in HSW to search in the Path-Cache for a
matching Cache-Key. If a match is found, a check is made to see if APk−1 also
matches the next-AP entry. If it matches, the server increments the counter for that
entry by one (see Table 1). If the server does not fin a match, it means the HSW is



Fig. 3 The steps in the GPC technique

new. Therefore, the server stores the new handoff sequence in the Path-Cache and
initializes its counter to one.

• Next-AP Prediction—The server uses the current cache-key represented by the
handoff sequence 〈AP1,AP2, . . . ,APk−1〉 in HSW to search in the Path-Cache for
a matching Cache-Key. If a match or multiple matches are found, the server sends
to MS a Path-Cache response with a prediction list containing a set of next-AP
predictions sorted in descending order of their counter values as part of an authen-
tication response. Otherwise, a null next-AP prediction is sent back to notify of a
Path-Cache miss. If the HSW in the Path-Cache request is null, it indicates the MS
is joining the network for the firs time. Therefore, the server uses a special handoff
sequence 〈null1,null2, . . . ,APtuned-in〉, where APtuned-in represents the current AP
the MS is tuned into, to search in the Path-Cache.

Note that the size of k depends on the complexity of the network topology and the
building structure. If the coverage area is small and yet there are many APs, a longer
handoff history will be preferred. However, our study shows that in general k = 3 is
sufficien to provide a good next-AP prediction (see Sect. 6.3). In addition, all the
Path-Cache entry counters are periodically decremented to prevent saturation.

The algorithm for the GPC technique is illustrated in Fig. 3, where both the Path-
Cache and the Authentication server are assumed to be collocated. Each MS main-
tains current and future prediction lists. An MS performs a handoff based on the cur-
rent prediction list received from the server during the previous handoff and receives
the future prediction list for the future handoff. For example, the MS in Fig. 3 per-
forms a handoff from APx to APw based on the prediction list received during handoff
from APy to APx . Also, note that Path-Cache requests/responses are piggy-backed on
authentication requests/responses. Therefore, no extra messages are needed.



Step 0: MS selects the firs element from the current prediction list as the next-AP
prediction.

Step 1: MS directly tunes into the AP provided by the next-AP prediction. If next-
AP prediction is null, MS performs a full-scan and tunes into the AP with the
strongest signal. If the end of the current prediction list is reached, MS performs
a partial scan of channels not in the current prediction list and tunes into the AP
with the strongest signal.

Step 2: MS sends authentication request, Auth_Req, containing Path-Cache request,
PC_Req(HSW), to the server to obtain the future prediction list for the future
handoff.

Step 3: If authentication is successful, the server performs Path-Cache Update based
on the received HSW. Otherwise, authentication will time out and MS chooses
the next element in the current prediction list as the next AP-prediction and
proceeds to Step 1.

Step 4: The server performs Next-AP Prediction based on the received HSW and
generates the future prediction list for the future handoff (i.e., from APw to AP?).

Step 5: The server sends authentication response, Auth_ Resp, containing Path-
Cache response with the future prediction list, PC_Resp(Predicted_Next-APs),
to the MS.

Step 6: MS sends reassociation request to the AP and receives reassociation re-
sponse. If no reassociation response is received, MS selects the next element
in the current prediction list as the Next-AP Prediction and proceeds to Step 1.

Step 7: Information of the new AP is queued in HSW, and the future prediction list
becomes the current prediction list.

If a Path-Cache request hits on the Path-Cache and its 1st next-AP prediction is
successful, GPC will reduce the overall handoff delay down to only the time required
for MS to perform a channel switch plus authentication and reassociation. With each
additional next-AP misprediction, the overall handoff delay increases incrementally
by the channel switching time plus authentication timeout period. For example, MS
firs tunes into and sends an authentication request to the firs predicted next-AP and
waits for an authentication response. If the authentication times out, i.e., the 1st next-
AP prediction fails, then it tunes into the second predicted next-AP and sends an
authentication request. This process repeats until one of the predictions in the next-
AP prediction list provides the correct prediction.

If either a Path-Cache miss occurs or all of the next-AP predictions fail, MS will
revert back to the conventional handoff requiring a full scan. This happens when
a handoff sequence is encountered for the firs time. Afterwards, the new handoff
sequence will be recorded in the Path-Cache and all MSs can benefi from this infor-
mation to provide fast handoffs. Therefore, as long as the Path-Cache is up to date,
no scanning is necessary since one of the predictions in the next-AP prediction list
will provide the correct prediction.

Note that the discussion of GPC thus far has been based on a centralized scheme.
However, GPC can also be implemented using a distributed scheme where each AP
maintains its own portion of the global Path-Cache. This can be achieved by relaying
Path-Cache requests using reassociation requests. For example, consider again the



handoff between APx and APw shown in Fig. 3. After authentication, MS sends re-
association request containing the Path-Cache request to APw . Then, APw performs
Next-AP Prediction and returns the Path-Cache response as a part of the reassocia-
tion response. Finally, APw sends HSW as a part of either Inter-Access Point Pro-
tocol (IAPP) [11] or a vendor-specifi protocol to APx . After APx receives HSW,
Path-Cache Update is performed. This allows MSs handing off from APx to obtain
the proper next-AP prediction list.

5 Time-series based prediction model for GPC

The previous section discussed how the basic GPC scheme uses the handoff history
to effectively predict next-APs. However, the returned next-AP predictions are priori-
tized based on long-term frequency of handoff sequences using counters. These coun-
ters are unable to capture short-term handoff behaviors that are crucial for improving
next-AP predictions for all scenarios. This is addressed by treating the frequency of
handoff sequences as time-series data using AutoRegressive Integrated Moving Aver-
age (ARIMA) and its simpler form Exponential Weight Moving Average (EWMA).

5.1 ARIMA based prediction model for GPC

ARIMA is known to work well for non-stationary processes [5, 34], and has been
used to model automotive traffi fl w [43, 48] and mobility prediction [1, 16]. The
frequency of a handoff sequence z is treated as time-series data where the discrete
time interval t is one minute. This archival data series can be aggregated to generate
longer time intervals as needed. The observation time period for handoff sequences
T depends on the system under study. For a typical WLAN environment, such as the
one shown in Fig. 10, the recommended period will be at least one day to capture all
possible trends within a day.

The order of an ARIMAmodel is denoted by the notation ARIMA(p, d , q), where
p, d , and q refer to the order of the autoregressive, the differencing, and the moving
average parts of the model, respectively. In general, ARIMA(p, d , q) can be define
as

(
1− φ1B − φ2B

2 − · · · − φpBp
)∇dzt = (

1− θ1B − θ2B
2 − · · · − θqBq

)
εt , (1)

where zt is the observed data (i.e., frequency of handoff sequence) during the current
time period t , φ is the autoregressive parameter, θ is the moving average parameter,
B is the backshift operator define by Bmzt = zt−m, ∇ is the backward difference
operator of the form of ∇d = (1− B)d , and εt is the error terms.

There are two steps involved in formulating the ARIMA model. The firs step is
the model identification that determines the parameters p, d , and q . The second step
is the model estimation that determines the parameters φ and θ using an estimator
algorithm. These two steps will be illustrated using the time-series plot of frequency
of handoff sequence shown in Fig. 4, which was collected from simulation of user
mobility in Fig. 10(a) for the handoff sequence AP4 → AP5 → AP6 during a 24-hour
period (see Sect. 6.1). As can be seen, the figur shows an academic environment



Fig. 4 Sampled frequency of
handoff sequence z for
AP4 → AP5 → AP6 in KEC

where there are more handoff activities between 11 AM and 9 PM than 10 PM and
10 AM. Moreover, these plots are characterized by extremely high fluctuation and
sharp peaks during each hour exemplifying bursts of handoff activities based on class
schedule.

The model identificatio begins with determining whether or not the time-series
data is stationary. A stationary time-series data has no trend or seasonality. If not, the
differencing transforms the time-series data to become stationary. Some time-series
data may require additional differencing, but a typical value for d ranges from 0
to 2. As will be explained shortly, our analysis of the time-series data in Fig. 4 be-
comes stationary after the second differencing, therefore the parameter d is define
as 2. Once d is set, ∇dzt in Eq. (1) is replaced by a stationary time-series data xt ,
and ARIMA(p, d, q) can be rewritten as a general AutoRegressive Moving Average
(ARMA) model shown below:

(
1− φ1B − φ2B

2 − · · · − φpBp
)
xt = (

1− θ1B − θ2B
2 − · · · − θqBq

)
εt . (2)

The next step in the model identificatio is to calculate autocorrelation function
(ACF) and partial autocorrelation function (PACF) of xt to determine the autoregres-
sive (p) and moving average (q) parts of ARMA(p, q). In general, ACF at lag h is
given as

ACF(h) = corr(xt , xt+h), (3)

where corr() is the correlation function define as the ratio of covariance, cov(), and
variance, σ 2:

corr(xt , xt+h) = cov(xt , xt+h)

σ 2
xt

= E[(xt − μ)(xt+h − μ)]
E[(xt − μ)2] , (4)

where μ is the mean. On the other hand, PACF at lag h is define as

PACF(h) =
{

corr(x0, x1), h = 1
corr(x0 − xh−1

0 , xh − xh−1
h ), h ≥ 2

, (5)



Fig. 5 ACF and PACF of the
transformed time-series data xt

in Fig. 4

Table 2 Behavior of ACF and
PACF for the ARMA model ARMA(p,0) ARMA(0, q) ARMA(p, q)

ACF Exp./Sinus. decay Cut off after lag q Exp./Sinus. decay
PACF Cutoff after lag p Exp./Sinus. decay Exp./Sinus. decay

where xh−1
0 and xh−1

h are estimated from the (h − 1)th-term linear regression model
[34].

Figure 5 shows the ACF and PACF plots for the transformed time-series data xt of
Fig. 4. First, the ACF pattern indicates xt is stationary since it cuts off fairly quickly.
In contrast, ACF values for non-stationary data have very slow decay patterns. The
parameters p and q of ARMA(p, q) can be determined by examining the plots for
ACF and PACF and applying the criteria define in Table 2. For example, ARMA(0,
q) is chosen when the ACF values cut off after lag q and the PACF values have
exponential or sinusoidal decay. On the other hand, ARMA(p, 0) is chosen when
the ACF values have exponential or sinusoidal decay and the PACF values cut off
after lag p. Finally, ARMA(p, q) is chosen when both ACF and PACF values have
exponential or sinusoidal decay. Based on Fig. 5 and the criteria define in Table 2,
the parameters p and q are identifie as 0 and 2, respectively. Therefore, the time-
series data in Fig. 4 can be modeled as ARIMA(0, 2 ,2), which can be rewritten as

∇2zt = (1− θ1B − θ2B
2)εt . (6)

We then substitute the one-step-ahead forecast errors εt = zt − ẑt [5], where ẑt

represents the predicted frequency of handoff sequence during the time period t , and
∇ = (1− B), to obtain

ẑt = (2− θ1)zt−1 − (1+ θ2)zt−2 + θ1ẑt−1 + θ2ẑt−2. (7)

Therefore, the predicted frequency of handoff sequence during the time period t + 1,
ẑt+1, can be written as

ẑt+1 = (2− θ1)zt − (1+ θ2)zt−1 + θ1ẑt + θ2ẑt−1 (8)



where zt and zt−1 are the current and previous sampled frequencies of handoff se-
quences, ẑt and ẑt−1 are the current and previous predicted frequencies of handoff
sequences, and θ1 and θ2 are parameters.

After the prediction model is defined the model estimation determines the param-
eters θ1 and θ2. This step typically involves curve fitting which can be done in many
different ways. The method used in our simulation is Maximum Likelihood Estimator
(MLE). In general, MLE is given by

L(β) =
n∏

t=2
f (xt |xt−1 . . . x1) (9)

where x is Gaussian, β is a vector of parameters φ and θ , and f (xt |xt−1 . . . x1) is a
conditional density function. The MLE method estimates β by findin the value of
β that maximizes L(β). Using a graphical method that searches for the maximum
L(β), the parameters θ1 and θ2 are estimated as 1.9783 and −0.9784, respectively.
Thus, the prediction model of the handoff sequence AP4 → AP5 → AP6 is given by

ẑt+1 = 0.0217zt − 0.0216zt−1 + 1.9783ẑt − 0.9784ẑt−1 (10)

Figure 6 shows the plot of predicted frequencies for the three handoff se-
quences, AP4 → AP5 → AP6, AP4 → AP5 → AP3, and AP4 → AP5 → AP4, us-
ing the ARIMA model. This figur shows that in general the handoff sequence
AP4 → AP5 → AP6 occurs the most often. The major advantage of GPC based
on ARIMA is that it can better track the short-term changes in the mobility pat-
tern. They occur when the frequencies of handoff sequences are relatively close to-
gether as in Fig. 6(a) between 0 AM and 11 AM. For example, Fig. 6(b) shows
a magnifie view of the frequency of handoff sequences between 7 AM and 9
AM of Fig. 6(a). The ARIMA model is able to determine that the frequency of
handoff sequence AP4 → AP5 → AP3 overtakes the frequency of handoff sequence
AP4 → AP5 → AP6 and becomes the highest around 8:20 AM. Even a small increase
in handoff activities can cause the mobility prediction to change. Therefore, ARIMA-
based GPC correctly provides AP3 as the 1st next-AP prediction. However, the basic
GPC scheme based only on long-term history cannot capture these short-term varia-
tions causing mispredictions.

5.2 EWMA based prediction model for GPC

EWMA is equivalent to ARIMA(0,1,1) [34, 43] and is much simpler to formulate
than the general ARIMA model. EWMA can be define as

ẑt+1 = (1− λ)ẑt + λzt (11)

where λ is the smoothing factor (0 < λ < 1). The parameter λ determines the char-
acteristic of the EWMA model and is typically chosen experimentally. Based on our
analysis, λ for the time-series data representing frequency of handoff sequences in
Fig. 10(a) is chosen to be 0.1. Figure 7(a) shows the plot of Fig. 6(a) based on the
EWMA model. Figure 7(b) shows that EWMA, despite some noise, is also able to



Fig. 6 Predicted frequency of
handoff sequences ẑ for
AP4 → AP5 → AP6,
AP4 → AP5 → AP3, and
AP4 → AP5 → AP4 based on
ARIMA(0, 2, 2) for KEC

capture the fact that frequency of handoff sequence AP4 → AP5 → AP3 becomes the
highest around 8:15 AM. Although EWMA does not rely on the full statistical anal-
ysis to estimate the order and the coefficients our simulation results show that this
simple model gives results that are relatively close to the ones from ARIMA.

6 Performance evaluation

This section presents the performance evaluation of the proposed GPC technique.
Section 6.1 describes the simulation environment as well as the various components
of the simulator. Section 6.2 discusses the delay parameters used in the study. Sec-
tion 6.3 compares the results of the basic GPC scheme against the Selective Scan
with Caching (SSwC) [33] and Neighbor Graph (NG) [21, 32] techniques, as well as
presents the performance improvement using the ARIMA and EWMA models.

6.1 Simulation environment

In order to accurately simulate mobility patterns and handoffs, we developed a sim-
ulator that implements a WLAN radio model, generates realistic mobility patterns
based on building and city layouts, and supports management frames needed to im-
plement scanning, authentication, and reassociation. The structure of the simulator is



Fig. 7 Predicted Frequency of
Handoff Sequences based on
EWMA for KEC

Fig. 8 Simulation model

shown in Fig. 8, which consists of Path Generator, Path Finder, Mobility & Network
Simulator, and Data Analysis modules.

The Path Generator generates a new destination waypoint based on the Path Graph
definition User Mobility definition and the current Simulation State for each MS
that has completed its trip between the original and destination waypoints. The Path
Graph definitio is a graphical representation of all the possible paths MSs can tra-



Fig. 9 Paths graphs for Fig. 10

verse within a simulated area, which is similar to the ones proposed in [39, 46]. Fig-
ure 9 shows the path graphs for the two network topologies used in the simulation
study—KEC and Portland in Fig. 10. They consist of vertices representing waypoints
and segments representing paths between adjacent waypoints. The User Mobility de-
fine the number of MSs and APs, as well as how MSs move, including when and
where an MS moves to and how long it stays at a waypoint. The Simulation State
define the current time and the locations of all the MSs in the simulated network
area. The Path Generator uses these two definition together with the current state of
the simulator to randomly select destination waypoints based on a modified Random
Waypoint model [7, 22]. Our modifie Random Waypoint model allows a probabil-
ity distribution to be assigned to sub-areas or regions within a path graph based on
different groups of MSs at different times. The Path Finder module then uses the
path-finde algorithm [25] to generate the shortest path between the source and des-
tination waypoints. The resulting path consists of multiple segments, which are then
fed to the Mobility & Network Simulator.



Fig. 10 Example of WLAN
coverage areas

The Mobility & Network Simulator consists of Mobility module, Radio Model,
Handoff Detector, and MAC subLayer Management Entity (MLME). The Mobility
module simulates the movements of MSs on the segments at one-meter resolution.
The Handoff Detector monitors each MS’s movement, and based on the Cell Cover-
age definitio and the Radio Model, which is based on log-distance path loss model
[29], performs a handoff when the distance between the MS and the associated AP
reaches the maximum radius of the coverage area. The handoff is performed using
MLME module, which supports beacons, probing, authentication, and reassociation.
Finally, the Data Analysis module records the number of channel switches, the num-
ber of times MS has to wait for tmax, tmin, tauth, and tassoc (see Sect. 6.2).

The two network topologies simulated are shown in Fig. 10, which consists of the
firs floo of the four-story, 153,000-ft2 Kelley Engineering Center (KEC) at Oregon



Table 3 Delay parameters used
in the simulation Parameters Set 1 (measured) Set 2 (optimized)

tswitch 11.4 ms 11.4 ms
tmin 20 ms 1 ms
tmax 200 ms 10 ms
tauth 6 ms 6 ms
treassoc 4 ms 4 ms

State University, and MetroFi, which is a public WLAN service that covers 2.5-mile2
area of Portland, Oregon [19]. The APs in KEC are connected by Ethernet switches,
while APs in the MetroFi network are interconnected by a wireless mesh network
[13].

The simulated coverage area for KEC contains 6 APs and 450 MSs, while the
coverage area for Portland contains 40 APs and 4500 MSs. There are three groups
of users in KEC: 200 students, 200 graduate students, and 50 staff members, with
each having different types of mobility behaviors. For example, students in Fig. 10(a)
mostly move between the atrium, the cafe, and the computer lab. In addition, students
move in and out of the classrooms during the last ten minutes of each class hour
between 8 AM and 6 PM. In contrast, graduate students mainly move between their
offices the atrium and the computer lab. Finally, staff moves mainly between their
office and the atrium.

The results for Portland were generated based on nine different groups with each
group consisting of 500 users. Nomadic represents a group of MSs that can move
anywhere within the simulated area. The next four groups represent commuters (C)
who work in each of the four quadrants or regions, i.e., C-I C-II, C-III, and C-IV
in Fig. 10(b), which are likely to travel long distances (i.e., 15–20 blocks) to work.
Moreover, these groups of MSs only move between 6 AM and 10 AM and between
6 PM and 10 PM. The last four groups represent residents (R) who live in each of the
four regions, i.e., R-I, R-II, R-III, and R-IV in Fig. 10(b). These groups of MSs can
move anytime but are likely to only move within few blocks (5–10 blocks) from their
homes.

6.2 Simulation delay parameters

The delay parameters used in the simulation are shown in Table 3: Channel Switch-
ing Time (tswitch) is the time required to switch from one channel to another; Min-
ChannelTime (tmin) is the minimum amount of time an MS has to wait on an empty
channel; MaxChannelTime (tmax) is the maximum amount of time an MS has to wait
to collect all the probe responses, which is used when a response is received within
MinChannelTime; Authentication delay/timeout (tauth) is the time required to perform
authentication based on MAC addresses; and Reassociation delay (tassoc) is the time
required to perform reassociation.

The Parameter Set 1 represents the current off-the-shelf NICs, and was obtained
using an experimental setup that consisted of two laptops with PCMCIA 802.11a/b/g
NICs based on Atheros AR 5002X chipsets [4] (running Linux 2.6 on Laptop #1



as a traffi generator and FreeBSD 6.1 on Laptop #2 as a traffi observer), a Sun
SPARC Server with Ethernet LAN NIC (running SunOS 5.1), and an HP ProCurve
Wireless Access Point 420. The NICs on the AP and on both laptops are operating
on Ch. 1. Measurements were obtained by having the firs laptop transmit a stream of
16-byte UDP packets to the server, while tcpdump running on the second laptop sniffs
the traffic The time tswitch was determined by forcing the NIC on the firs laptop to
switch to Ch. 2, which has no APs, and then immediately switch back to Ch. 1. The
observed time between the last UDP packet and the probe request from the firs lap-
top was 22.8 ms, which represents 2 · tswitch, and thus tswitch is assumed to be 11.4 ms.
The time tauth was determined by measuring the longest possible time between au-
thentication request and response. Our experiment shows that the MS receives an
authentication response within approximately 1–5 ms. Therefore, tauth = 6 ms en-
sures that it is longer than the time between the authentication request and response.
Similarly, tassoc is estimated from the average round-trip time of reassociation request
and response, which is tassoc = 4 ms. The time tmax was estimated by observing the
time between a probe request and an authentication request, which is 199.4 ms. This
is consistent with the tmax value provided in the source code of the open-source wire-
less network device driver [18]; therefore, tmax is assumed to be 200 ms. There are a
number of ways to measure tmin. One way is to modify the network interface driver
of the MS to send a probe request on an empty channel, wait tmin, and then send out
another probe request on the same channel. This resulted in the time between probe
requests to be 20.04 ms. Therefore, tmin is assumed to be 20 ms, which is again con-
sistent with the default value in the open-source wireless network device driver [18].
The delay values were obtained from average of 2400 measurements over a period of
a day to reduce variations due to network traffic

The Parameter Set 2 represents possible future NICs with reduced handoff de-
lays based on optimized tmin and tmax values from [40]. This study determined
that the value of tmin that leads to minimized handoff delay is given by tmin ≥
DIFS + (aCWmin × aSlotT ime) [40], where DIFS is Distributed Inter-Frame
Space, aCWmin is the number of slots in the minimum contention window, and
aSlotT ime is the length of a slot. In the IEEE 802.11g standard [12], the values
for DIFS, aCWmin, and aSlotTime are 28, 15, and 9 µs, respectively, which re-
sults in tmin ≥ 163 μs. However, tmin is define in terms of Time Units (TU), where
1 TU= 1024 µs. Therefore, the smallest possible value of tmin is 1024 μs. Moreover,
tmax is estimated as the transmission delay required when 10 MSs try to access the
same AP. In the simulation study of Ref. [40], the bit rate of the channel is set to
2 Mbps, which is the maximum possible rate for management frames. The same bit
rate for control frame also applies to IEEE 802.11g [12, 18]. Therefore, the estimated
tmax is 10 ms.

6.3 Simulation results

This subsection compares the performance of GPC against Selective Scan with
Caching (SSwC) [33] and Neighbor Graphs (NG) [32] described in Sect. 3.2. We
firs investigate the amount of handoff history needed to provide accurate next-AP
predictions. Then, the basic GPC scheme is compared against SSwC and NG in terms



Fig. 11 Overall next-AP
accuracy as function of history
or number of handoffs

of next-AP prediction accuracy and handoff delay. Finally, we show the performance
gains by adopting time-series based prediction models for GPC.

In order to provide a fair comparison, SSwC was extended to have an unlimited
number of AP-cache entries and next-AP predictions per entry. Note that the original
SSwC algorithm assumes only 10 AP-cache entries and two next-AP predictions per
entry (i.e., best AP and 2nd-best AP) [33].

6.3.1 Number of handoffs for system initialization

Figure 11 compares the overall accuracy of GPC and SSwC as function of history,
which is represented as the number of handoffs (shown in legend from left to right).
The overall accuracy is define as the percentage of correct prediction per handoff.
In other words, if a Path cache request returns a next-AP prediction list and one of
the next-AP prediction is correct then the prediction for the handoff is considered
successful. On the other hand, if all the predictions in the next-AP prediction list
fail or a null next-AP prediction is received, then the prediction for the handoff is
considered unsuccessful. The NG technique is not included in this comparison since it



does not provide a next-AP prediction mechanism. As can be seen, when the number
of handoffs is low (below 104 in KEC and 106 in Portland), GPC lacks sufficien
history and thus the overall accuracy is below 100 % and decreases as k increases.
This is because a larger k leads to a larger number of possible handoff sequences, and
thus a longer history is required to record all possible handoff sequences.

For KEC, the overall accuracy for GPC becomes 100 % beyond 104 handoffs be-
cause all the possible handoff sequences have been recorded in the Path-Cache. Thus,
each path-cache request will be provided with a next-AP prediction list and one of
these predictions will be correct. In contrast, the larger Portland area requires at least
106 handoffs before the overall accuracy becomes 100 %. Although the number of
handoffs required is much greater than KEC, Portland has many more MSs. There-
fore, 4500 users in Portland for example can produce 106 handoffs within only ∼3.5
hours.

The overall accuracy of SSwC also increases as function of number of hand-
offs, but saturates at ∼54 and 31 % for KEC and Portland, respectively, as shown
in Figs. 11(a) and 11(b).

Based on the aforementioned discussion, all the subsequent results in this section
were obtained based on the assumption that (1) GPC contains a complete history
of handoff patterns, (2) AP-cache of SSwC contains entries for all the APs in the
network, and (3) NG is preconfigured This is done by firs running the simulations
for 104 handoffs for KEC and 106 handoffs for Portland to fil up the respective
caches and performing NG construction, and then gathering statistics for up to 107
handoffs.

6.3.2 Basic GPC vs. SSwC and NG—prediction accuracy

Figure 12 compares the accuracies of individual next-AP predictions based on the
prediction order (shown in legend from bottom to top starting with the 1st prediction
result on the bottom). Again, NG is not included in this discussion. The set of re-
turned predictions is prioritized based on their hit counter values for GPC and signal
strengths for SSwC. As mentioned before, the significanc of these priorities is that
each misprediction adds to the overall handoff delay. For GPC, the accuracy for the
1st next-AP prediction for KEC is 68 % and increases slightly as a function of k as
shown in Fig. 12(a). The 1st next-AP predictions that fail are satisfie by the 2nd
next-AP predictions with accuracy of 89 %, which make up 28.5 % of all predictions.
Similarly, the 3rd next-AP predictions that succeed make up 3.5 % of all predictions
as in Fig. 12(a).

In contrast, SSwC provides significantl lower 1st and 2nd prediction accuracies
of 51 and 2.6 %, respectively. For Portland, the 1st next-AP prediction accuracy starts
at 43 % with GPC and increases slightly as a function of k as shown in Fig. 12(b),
which is similar to the case for KEC. In comparison, SSwC provides lower 1st, 2nd,
and 3rd next-AP prediction accuracies of 25, 6, and 0.02 %, respectively.

The GPC’s superior prediction accuracy is attributed to a larger next-AP prediction
pool (a larger number of cache entries) and its counter-based prediction prioritization.
This can be seen by the average number of next-AP predictions returned per handoff
shown in Fig. 13 (shown in the legend with KEC on the left and Portland on the right),



Fig. 12 Accuracy of individual
next-AP predictions

Fig. 13 Average number of
next-AP predictions.
(Represents the average number
adjacent cells in GPC and
overlapped cells in SSwC)

which shows that GPC provides a higher average number of next-AP predictions per
handoff than SSwC. In short, SSwC provides at most only two and three predictions
for KEC and Portland, respectively, while GPC offers up to four and six predictions
for KEC and Portland, respectively. The reason for this can be explained from the
cell coverage characteristics.



Fig. 14 Number of cache
entries. (AP-cache in SSwC and
Path-Cache in GPC)

Our simulations show that 40 % of the overlapped regions in KEC are covered
by two cells, and only 5 % have three cells. Thus, SSwC will have at most two next-
AP predictions because an MS can detect at most two other APs (besides the current
AP). In contrast, the maximum number of adjacent cells that an MS can hand off to is
four, thus maximum number next-AP predictions with GPC is four. Similarly, 36.1 %
of the overlapped regions in Portland are covered by two cells, and 24.9, 3.34, and
0.04 % have three, four, and f ve cells, respectively. Since the area covered by f ve
cells is very small, SSwC will have at most three next-AP predictions. In contrast,
the maximum number of adjacent cells, and thus the maximum number of next-AP
predictions with GPC, is six.

This can also be explained by the maximum number cache entries needed as shown
in Fig. 14. In order to provide a fair comparison, each entry for GPC contain mul-
tiple next-AP predictions, rather than one prediction per entry as shown in Table 1.
The AP-cache used in SSwC requires only 6 and 40 entries, which are the number
of available APs in the 1st floo of the KEC building and Portland, respectively. In
contrast, GPC keeps track of MSs’ more complex moving paths as k increases and
thus requires more entries.

In addition, the set of returned predictions in GPC is prioritized based on how
often these paths are encountered. In contrast, SSwC relies only on signal strength,
which is often different from actual paths taken by MSs. Moreover, the AP-cache
used in SSwC only caches all the unique APs in the network. Therefore, when an
AP with different set of next-AP predictions is discovered, it overwrites the existing
entry, which leads to higher mispredictions as well as larger overall handoff delay.

6.3.3 Basic GPC vs. SSwC and NG—handoff delay

The mispredictions mentioned above are reflecte in the average number of chan-
nels probed per handoff. The SSwC scheme probes on average 1.6 and 2.1 channels
for KEC and Portland, respectively. This is because next-AP prediction provided by
SSwC has very low accuracy (see Fig. 12) that causes 47.7 and 70 % of the handoffs
in KEC and Portland, respectively, to mispredicts and has to rely on selective scan-
ning, which involves selecting the best AP from channels 1, 6, 11, and channels heard
from either a previous full scan or selective scan. The average number of channels



Fig. 15 Average handoff delay

probed for NG is higher at 2.9 for both network topologies, and depends on the num-
ber of active edges encountered at each point-of-attachment. For GPC, the number of
channels probed per handoff is zero because once the GPC has a complete history it
is guaranteed to provide accurate overall next-AP predictions.

Figure 15 shows the average handoff delays for all three techniques based on the
two parameter sets define in Table 3, and includes the result for full scan as a ref-
erence. These results show that GPC results in the lowest average handoff delay due
to superior next-AP prediction accuracy. Overall, GPC incurs average handoff delay
of 27–28 ms for both parameter sets and is significantl lower than SSwC and NG.
Finally, the suggested size for k is 3 because the average handoff delay is relatively
constant as k increases beyond 3 and yet it requires only a minimal number of entries
in GPC (see Fig. 14).

6.3.4 Time-series based GPC vs. SSwC and NG

Although the basic GPC scheme based on long-term history can significantl re-
duce the handoff delay, Fig. 12 shows that ∼30 and ∼40 % of handoffs in KEC and



Portland, respectively, require more than one next-AP prediction. This adds to the
handoff delay and illustrates the importance of having highly accurate 1st next-AP
prediction. Therefore, Fig. 16 compares the 1st next-AP prediction accuracy with
k = 3 using ARIMA and EWMA against the basic GPC scheme (shown in the legend
from left to right). The average improvements using ARIMA for KEC and Portland
are 9.6 and 17.1 %, respectively. This is because the time-series based GPC more
accurately captures the handoffs caused by short-term behavior of mobile users as
seen in Figs. 6(b) and 7(b). As can be seen from Fig. 16, the improvements vary
for different users groups. For example, ARIMA improves the 1st next-AP predic-
tion for all three groups in KEC. However, the largest improvement of 42 % comes
from students because their behaviors are dictated by the class schedules, which re-
sults in their predictions to become more accurate during those periods. Similarly, all
of the user groups in Portland resulted in ∼10 % improvement. However, nomadic
and commuter groups (C-I, C-II, C-III, and C-IV) exhibit larger improvements due
to short-term surges in handoffs caused by groups of users commuting during rush
hour. EWMA resulted in average improvements of 6 and 15.8 % for KEC and Port-
land, respectively, but provided less improvements than the more complex ARIMA
since EWMA does not rely on the full statistical analysis to generate the time-series
model.

Finally, Fig. 17 compares the handoff delays based on the parameter sets define
in Table 3. Note that both sets of delay parameters yield the same results since GPC
does not require channel scanning once a sufficien amount of handoff history has
been collected. These results show that GPC with ARIMA provides 4.4 and 8.4 %
improvement, while EWMA provides 2.2 and 8.5 % improvement for KEC and Port-
land, respectively. This may appear to be only a small improvement compared to the
basic GPC scheme, but when individual handoff delays are considered, they resulted
in significan improvements for some user groups. For example, the Student group in
KEC resulted in 15.2 and 9.1 % improvement for ARIMA and EWMA, respectively.
This was also the case for Portland, where group C-IV, which refers to commuters
who work in region IV, resulted in 27.1 and 16.9 % improvement for ARIMA and
EWMA, respectively.

7 Conclusion and future work

This paper described the GPC technique to minimize the time required to scan for
APs in WLANs. GPC is different from the other existing methods because it uses
global history of handoffs to determine directions of moving MSs. Therefore, it cap-
tures the mobility patterns of MSs similarly to NG and at the same time provides a
much more accurate next-AP predictions than SSwC. Our simulation study shows
that the basic GPC scheme eliminates the need to perform scanning and thus results
in much lower overall handoff delay compared to the existing techniques. In addition,
the time-series based models further reduce the overall handoff delay by increasing
the accuracy of 1st next-AP predictions.

For future work, we plan to investigate a couple of issues. First, we plan to inves-
tigate the effectiveness of GPC in high traffi areas where a large number of packets



Fig. 16 First next-AP
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time-series analysis

are lost due to MAC contention. This can cause MSs to be disconnected and require
scanning for an alternative AP, which makes it difficul to predict the next point-of-
attachment. Moreover, authentication/reassociation requests may be lost during con-
tention causing multiple requests to be sent and further aggravating the contention
problem [18]. Therefore, understanding how GPC will perform under this type of
network condition is crucial for properly adjusting some of the parameters, e.g., the
timeout period for authentication and reassociation, to reduce the effects of MAC
layer contention. Second, we would like to investigate how GPC can be utilized to
speed up vertical handoffs.
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