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Behavior-based mobility prediction for seamless handoffs
 
in mobile wireless networks 

Weetit Wanalertlak • Ben Lee • Chansu Yu • 

Myungchul Kim • Seung-Min Park • 

Won-Tae Kim 

Abstract The field of wireless networking has received 

unprecedented attention from the research community 

during the last decade due to its great potential to create 

new horizons for communicating beyond the Internet. 

Wireless LANs (WLANs) based on the IEEE 802.11 stan­

dard have become prevalent in public as well as residential 

areas, and their importance as an enabling technology will 

continue to grow for future pervasive computing applica­

tions. However, as their scale and complexity continue to 

grow, reducing handoff latency is particularly important. 

This paper presents the Behavior-based Mobility Prediction 

scheme to eliminate the scanning overhead incurred in 

IEEE 802.11 networks. This is achieved by considering not 
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only location information but also group, time-of-day, and 

duration characteristics of mobile users. This captures 

short-term and periodic behavior of mobile users to provide 

accurate next-cell predictions. Our simulation study of a 

campus network and a municipal wireless network shows 

that the proposed method improves the next-cell prediction 

accuracy by 23*43% compared to location-only based 

schemes and reduces the average handoff delay down to 

24*25 ms. 

Keywords Mobility prediction . Fast handoffs . 
WLANs . WMNs 

1 Introduction 

Wireless LANs (WLANs) based on the IEEE 802.11 stan­

dard have become pervasive in our society. WLANs offer 

high data transfer rate and are low-cost and easily 

deployable. These characteristics allow mobile users with 

portable devices to not only connect to the Internet but also 

use various services such as Voice over IP (VoIP) and real-

time multimedia data transmission, e.g., streaming audio 

and video. Until recently, deployment and coverage area of 

WLANs have been limited to variety of isolated hotspots, 

such as coffee shops, buildings, airport terminals, etc. But 

now Municipal Wireless Networks [1–4] based on Wireless 

Mesh Networks (WMNs) [5] allow the coverage area to be 

extended across a larger geographical area, e.g., a city. 

Moreover, WLANs will play a crucial role as backbone 

networks for emerging pervasive computing technologies, 

such as wearable computers, Wireless Body Area Net­

works (WBANs) [6], Wireless Personal Area Networks 

(WPANs), and Vehicular Ad hoc Networks (VANETs) [7]. 

Nevertheless, achieving seamless, mobile access is a major 
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challenge because of large handoff delay incurred scanning 

for available access points (APs) when a mobile station 

(MS) switches connection from one AP, or cell, to another. 

Recent studies found that passively scanning for APs 

during a handoff can be as much as a second [8] and 

actively scanning for APs requires 350*500 ms [8]. This 

becomes a major concern for mobile multimedia applica­

tions such as VoIP where the end-to-end delay is recom­

mended to be not greater than 50 ms [9]. 

The key to reducing the scanning overhead and thus the 

handoff delay is to predict the next point-of-attachment of a 

MS, i.e., mobility prediction. This way a MS can directly 

authenticate/re-associate with the target AP thereby elim­

inating the scanning overhead. Numerous efforts have 

already been made to reduce the scanning overhead in 

WLANs. These include methods to employ extra hardware, 

either in the form of additional radios [10] or an overlay 

sensor network [11], to detect APs, selectively scan chan­

nels based on the topological placement of APs [12], and 

predict the next point-of-attachment based on signal 

strength [13]. 

Unfortunately, these techniques neither provide next cell 

predictions that can eliminate the need to scan for APs nor 

consider mobility patterns of MSs, which are dictated by 

the structure of a building or a city block and the past 

behaviors of MSs. In our previous work [14], we proposed 

a location-based technique that considers the long-term 

history of handoff patterns. Although this technique is 

effective in performing next cell predictions for majority of 

MSs, it does not consider short-term and periodic behavior 

of mobile users that cause some MSs to behave differently 

from the norm and thus suffer mispredictions. 

This paper presents a solution called the Behavior-based 

Mobility Prediction (BMP) technique that provides accu­

rate mobility prediction by considering multifaceted user 

behavior based the following four factors: location, group, 

proposed BMP method and Sect. 4 evaluates its perfor­

mance. Section 5 discussed the related work. Finally, Sect. 

6 concludes the paper and discusses future work. 

2 Background: 802.11 scanning process 

In a WLAN, when a MS moves from one cell to another, its 

network interface senses the degradation of signal quality 

in the current channel. The signal quality continues to 

degrade as MS moves further away from the current AP, 

and a handoff to a new cell is initiated when the signal 

quality reaches a preset threshold [15]. This process starts 

with probing for new cells using either passive or active 

scanning. In passive scanning, a MS switches its trans­

ceiver to a new channel and waits for a beacon to be sent 

by the new AP, typically every 100 ms, or until the waiting 

time reaches a predefined maximum duration, which is 

longer than the beacon interval. The time a MS has to wait 

varies since beacons sent by APs are not synchronized. For 

these reasons, a recent study has shown that an MS can 

spend up to 1 s to search all possible channels [8], which 

results in unacceptable handoff delay. 

In active scanning shown in Fig. 1, a MS broadcasts a 

probe request and waits for a response. If the MS receives a 

response from an AP, it assumes there may be other APs in 

the channel and waits for MaxChannelTime. Otherwise, the 

MS only waits for MinChannelTime. MinChannelTime is 

shorter than MaxChannelTime to keep the overall handoff 

delay low, but it should be long enough for MS to receive a 

possible response. A typical duration for scanning each 

channel is around 25 ms and 350*500 ms for all 11 

channels [8]. 

MS APs 
time-of-day, and duration. The location-based mobility 

Initiate Handoff Probe Req. 
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prediction is achieved by maintaining the handoff history 
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frequencies are treated as time-series data, thus when next Active scan complete 

and the past behaviors of MSs. Moreover, the handoff MinChannelTime No AP in Ch. 11 

cell predictions fail future predictions are recalibrated 

based on different groups, where each group of MSs has 

similar mobility patterns, time-of-day, and duration 

characteristics. Handoff Complete 

The paper is organized as follows: Section 2 overviews 
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the 802.11 scanning process. Section 3 presents the Fig. 1 The 802.11 active scanning process 



After scanning, MS joins the cell with the strongest 

signal strength, which is done by performing authentication 

and (re)association. Authentication is the process that a MS 

uses to announce its identity to a new AP. In the IEEE 

802.11 standard, authentication is performed using either 

open system or shared key. Open system authentication is 

the default method, and involves the MS sending authen­

tication request frame to the AP containing its source 

address in the frame header and the type of authentication 

in the frame body. Then, the AP sends the authentication 

response frame back to the MS. This frame has the 

authentication result and the information that indicates the 

type of authentication. 

The next step is (re)association, which allows the dis­

tribution system to keep track of the location of each MS so 

that frames destined for a MS can be forwarded to the 

correct AP. How (re)association requests are processed is 

implementation specific, but typically involves allocation 

of frame buffers and, in the case of re-association, com­

municating with the old AP so that any frames buffered at 

the old AP are transferred to the new AP. Finally, the last 

step involves rerouting the network traffic by updating the 

Forwarding Table in the switch that connects both the old 

and new APs. 

3 The behavior-based mobility prediction scheme 

The basic idea behind BMP is to improve the prediction 

accuracy by exploiting the behavior of mobile users. This 

is achieved by identifying temporal segments of handoff 

history that characterize certain user behaviors, and per­

forming handoff predictions that pertain to those periods. 

3.1 User behavior 

Behavior of mobile users can be characterized in many 

different ways. In the proposed method, the four charac­

teristics that define user behavior are location, group, time-

of-day, and duration. The following discusses the motiva­

tion for using these characteristics. 

The location factor, as discussed in Sect. 1, represents 

the history of mobility patterns that can be either static or 

dynamic. Static mobility patterns are dictated by fixed 

structures, such as roads, building structures, and city 

blocks. On the other hand, dynamic mobility patterns are 

caused by user behavior as well as frequent and drastic 

changes in the operating environment of wireless networks 

due to multipath effects and electromagnetic interference. 

The group factor reflects the fact that MSs often behave 

as groups. For example, MSs in an academic setting can be 

categorized as students, graduate students, and faculty/ 

staff, and the mobility behaviors of these groups are very 

different. Moreover, MSs can be associated with specific 

events that are derived from user habits, e.g., departmental 

staff spends most of the day near the administrative offices 

while students congregate in the atrium, classrooms, and 

computer labs. The group factor can be statically applied 

during the network registration phase. For example, users 

in a typical campus network are registered with Unix 

accounts that are grouped based on their status. Users in 

large community networks are also registered based on 

different types of memberships, such as residential, busi­

ness, free subscriber, etc. In addition to these pre-assigned 

groups, other groups can be dynamically formed from a set 

of MSs that suffer from high misprediction rate. 

The time-of-day factor indicates that user behaviors 

change as function of time. For example, mobility patterns 

observed in an academic setting will change during the 

course of a day depending on the schedule of classes. There 

will be bursts of repetitive mobility patterns when students 

move between classes, and mobility behaviors during the 

evening will be different from the daytime. Most of MSs in 

an academic network in the evening are graduate students 

and, for most part, they tend to move only within limited 

areas, i.e., graduate student offices, laboratories, and hall­

ways. Similarly, most users in a community network in the 

evening tend to stay within residential areas. In addition, 

both environments typically exhibit periodic behaviors 

such as students attending classes and workers commuting. 

The duration factor, which can be categorized as short, 

medium, and long, directly represents how long a MS is 

connected to a cell and indirectly represents the speed at 

which it moves through a cell. Figure 2(a) shows an 

example of a medium duration, which represents the default 

case when a MS transits through a cell. For example, the 

cells cx and cz in Fig. 2(a) do not overlap, thus the MS has 

to transit through cy before it can reach the destination cz. 

This is also the case when cx and cz overlap but a direct 

pathway does not exist between the two cells. In WLANs, 

most handoffs occur with medium duration because the 

traveling distance of a MS is typically a lot further than 

coverage area of a cell. Figure 2(a) also illustrates a long 

duration that represents a MS performing some activity at 

the destination cell cy. For example, in an academic setting, 

MS performs a handoff to a cell that covers a classroom 

and then spends a long period of time listening to a lecture. 

Similarly, in a community network, a MS performs a 

handoff in the morning to a cell that covers an office 

building and stays connected to this cell for many hours. 

A short duration often represents an unnecessary or false 

handoff. For instance, consider a MS moving across three 

adjacent cells cx, cy, and cz in Fig. 2(b). As the MS moves 

from cx to cy, and then to cz, if the connection duration for 

cy is very short then it indicates the three adjacent cells are 

highly overlapped. This is important because if the degree 
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(b) 

Fig. 2 Long, medium, and short durations. a Medium and long 

durations. b Short duration 

of overlapping is sufficiently high then the prediction for 

the handoff sequence cx ! cy ! cz can be replaced by 

cx ! cz, which allows MS to move from cx directly to cz, 

eliminating an extra handoff. Therefore, short duration 

together with other behavior factors can be used to identify 

and eliminate these unnecessary handoffs. 

Based on our analysis of the simulated networks (see 

Sect. 4), a typical short duration is few seconds while a 

long duration lasts more than few minutes. All others are 

considered as medium duration. 

3.2 The proposed method 

Figure 3 illustrates a possible configuration for the pro­

posed method, where the BMP scheme is assumed to be 

implemented by a server and is collocated with the 

authentication server. Moreover, the next-cell prediction cw 

for the current handoff from cx to cw is assumed to be 

available from the last handoff from cy to cx. Therefore, a 

MS directly authenticates/re-associates with cw eliminating 

the need to perform scanning. A full scan is performed 

when an MS joins the network for the first time. 

When the MS requires a handoff from cx to cw, it sends 

pred_req

the handoff sequence for the MS, and 

iD,HS,IDh , where ID is the ID of the MS, HS is 

D is the duration of 

Fig. 3 A possible BMP configuration in a WLAN environment 
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Fig. 4 The BMP scheme 

time spent by the MS in the last cell cx, to the server as a 

part of the authentication request via cw to obtain predic­

tions for the next handoff (Step 1). 

The server then performs Next-cell Prediction (Step 2), 

which involves the following operations illustrated in 

Fig. 4. First, the last k handoffs in the handoff sequence, 

i.e., cx ! cw, are used to search the HS Table for a set of 

matching entries representing an unordered next-cell Pre­

diction List (uPL). At the same time, ID is used to 

index the Group Table to obtain the group ID Gi in 

fG0; G1; . . .; Gp�1g, where p represents the number of 

groups. Second, Gi is used to select a particular group’s 

Time-of-Day characteristic ToDi. As the name suggests, 

ToDs model time-of-day characteristics of different groups 



 

of mobile users. The default period for a ToDi is T, e.g., 

T ¼ 1 day, which means MSs that belong to this group 

exhibit similar handoff behavior during the entire period 

T. Moreover, a group of MSs that exhibit short-term and 

periodic handoff behaviors can be separately modeled as 

ToDi ¼ fs0; s1; . . .; sq�1g, where sj represents a time seg­

ment, q represents the total number of time segments, and P
j sj ¼ T . Thus, the current time (i.e., clock) determines sj 

for a particular group Gi, i.e., (ToDi; sj). The importance of 

(ToDi; sj) is that it uniquely defines a set Integrated Moving 

Averages (IMAs) to represent the frequencies of handoff 

sequences for a particular group of MSs with specific time-

of-day and duration characteristics. Therefore, (ToDi; sj) 

together with HSmatch determine the proper subset of IMAs 

to be used in applying the priority order for the next-cell 

predictions, i.e., ordered Prediction Lists, for both medium 

(oPLmed) and long (oPLlong) durations. 

Once the priority is determined, the BMP server returns 

pred resphoPLmed; oPLlongi as a part of the authentication 

response (Step 3). After receiving the authentication 

response, the MS reassociates with the AP in cell cw (Step 

4). This is followed by Ethernet Switch Update (Step 5) 

and Prediction Update operations (step 6), which complete 

the handoff. 

During the next handoff, the 1st prediction in either 

oPLmed or oPLlong is used as the next cell prediction based 

on whether the duration of the MS in the current cell cw is 

medium or long, respectively. The next-cell prediction 

defaults to oPLmed if the MS experiences a short duration in 

the current cell. If the 1st prediction fails, i.e., authentica­

tion/re-association fails, the 2nd prediction is used, and so 

on. A full scan is performed when all the predictions in 

oPLmed =oPLlong fails, 

The following discusses the detailed operations of BMP. 

3.2.1 HS Table 

The mobility history of a MS is represented by a handoff 

sequence of length l denoted as ðcn�l�1; . . .; cnÞ, where ci 

HS Table 

Unorder Prediction List (uPL) 

Fig. 5 Handoff Sequence Table. This table shows a possible entries 

for the example shown in Fig. 3, where the last k = l - 1 visited 

cells (i.e., cx ! cw) are used to search for the next cell predictions 

indicates the cell ID of ith visited cell. Figure 5 shows the 

HS Table, which is a collection of unique handoff sequences 

that represents the global history of mobility patterns in the 

network. The mobility prediction based on the HS Table can 

be represented by an order-k Markov process 

P̂ðXnþ1 ¼ cnþ1jXðn � k þ 1; nÞ ¼ ðcn�kþ1; . . .; cnÞÞ 
Nððcn�kþ1; . . .; cn; cnþ1Þ; LÞ ð1Þ 

¼ 
Nððcn�kþ1; . . .; cnÞ; LÞ 

; 

where k = l - 1, L is the overall observed history of 

mobility patterns, and N is the average frequency of 

mobility patterns. Our simulation study in Sect. 4 shows 

that l = 3 provides accurate next-cell predictions and yet 

the amount of mobility history needed is minimal. 

3.2.2 IMA 

IMAs are typically used in forecasting time-series data and 

can be derived from the more general AutoRegressive 

Integrated Moving Average (ARIMA) model. ARIMA is 

defined as ARIMA (p, d, q), where p, d, and q refer to the 

order of the autoregressive, the differencing, and the 

moving average parts of the model, respectively. Expo­

nential Weighted Moving Average (EWMA) is equivalent 

to ARIMA (0, 1, 1) [16, 17] and is much simpler to for­

mulate than the general ARIMA model. The predicted 

frequency of each HS for the next period t þ 1; ztþ1, can be 

defined by the following EWMA: 

ztþ1 ¼ ð1 � kÞzt þ kzt; ð2Þ 

where zt is the frequency of the handoff sequence during 

the current period t; zt is the predicted frequency of the 

handoff sequence in the current period t, and k is the 

smoothing factor 0 \ k \ 1. t represents the minimum 

time interval for the time series data (i.e., t = 1 min). The 

parameter k determines the characteristic of the EWMA 

model and is typically chosen experimentally. Based on our 

analysis of the simulated networks (see Sect. 4), k for the 

time-series data representing the frequency of handoff 

sequences is chosen to be 0.1. Although EWMA does not 

rely on a full statistical analysis, this simple model gives 

results that are relatively close to ones from ARIMA. 

The IMA structure is shown in Fig. 6, which is essen-

tially a three-dimensional structure. HSmatch and ToDi are 

used to index the first two dimensions of the IMA structure. 

This results in a set of EWMAs, i.e., ztþ1, which corre-

sponds to a particular group’s (Gi) time-of-day character-

istics (ToDi). Each element in the last dimension is indexed 

Past Current Next 

cx cw cx 

cx cw cy 

cx cw cz 

… … … 

cy cx cW 

HSmatch 

by sj corresponding to a particular time segment containing 
med long med long

a set EWMAs hz ; z i , where z and z representtþ1 tþ1 c tþ1 tþ1 

EWMAs for medium and long durations, respectively, 

and c represents the predicted cell. Then, uPL from the HS 
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Fig. 6 The IMA structure 

Table is prioritized based on these EWMAs to generate 

oPLmed and oPLlong. 

3.2.3 Dynamic group formation 

Separate IMAs are maintained for different user groups. 

Groups that are formed statically are referred to as parent 

groups. Child groups can be dynamically formed from a 

parent group by applying heuristics to a set of MSs that 

suffer from a high misprediction rate, which can be cause 

by differences or changes in mobility behaviors within the 

group. In order to gather the necessary information, each 

MS keeps track of and submits its average 1st prediction 

accuracy, l, to the BMP server at the end of each period 

T. If the server detects a set of MSs in a group Gi with their 

average 1st prediction accuracies lower than the threshold 

qi ¼ li � 0:5ri, where li and ri represent the average and 

standard deviation of the 1st prediction accuracy for the 
0 

group Gi during the last period T, a new child group Gi is 
0 

formed with its own ToDi. This will improve the prediction 

accuracy for those set of MSs. However, if a set of MSs 

within this newly formed child group still suffer from high 

misprediction rate, i.e., their average 1st prediction accu­

racies are lower than qi of the parent group, then these MSs 

rejoin their parent group. After rejoining their parent group, 

if these MSs as well as other MSs continue to suffer from 

high misprediction rate, they will form their own child 

group. This process repeats every period T. In order to 

reduce the processing load, the number of MSs in a group 

must be more than some threshold M based on the traffic 

characteristics of the network and capability of the server. 

3.2.4 Time-of-day characteristic 

The time-of-day factor is applied when the prediction 

accuracy of a group is lower than some threshold for a 

period of time. This is done by associating a separate time 

itswithjssegment own IMA. The motivation for 

generating time-segments is to isolate periods when 

mobility patterns can be better identified. The BMP server 

does this by keeping track of the prediction accuracy of 

each group during a period of smin (e.g., 1 h), which is the 

minimum time-segment length. If the prediction accuracy 

of a group Gi is lower than qi during the last smin, the server 

assigns a new IMA to the time-segment. Again, the value 

of smin is based on the network traffic and server capability. 

3.2.5 Update operations 

Different update operations are performed depending on 

different time periods. 

The following operation is performed after each 

handoff: 

–	 HS Table Update—A new HS Table entry is allocated 

and updated when a new handoff sequence is 

encountered. 

–	 The following operation is performed after each 

period t: 

–	 IMA Structure Update—zt is determined based on the 

number of times handoff sequences of MSs match with 

an entry in the HS Table during the current period t. If  

there are no matches, then zt is 0. Then, ztþ1 is 

calculated for the next period t ? 1 using Eq. 2. Note 

that zt is not maintained for a handoff sequence with 

short durations. This way, any false or unnecessary 

handoffs are eventually removed from the behavior 

model. 

–	 The following operation is performed after each 

period T: 

–	 Group Table Update—A MS is always registered to a 

parent (i.e., static) group. A MS can also be registered 

to a child group, and unregistered from the child group 

when they rejoin the parent group. Thus, a MS 

registered to a child group will also be registered to a 

parent group. Once a child group is formed, the priority 

is given to the child group for determining their time-

of-day characteristics. 

–	 The following operation is performed after each period 

smin: 

–	 ToD Update—When IMA values of two consecutive 

time segments are close together (e.g., closer than 10%) 

they are combined. 

3.3 A distributed implementation 

Note that the discussion of BMP thus far has been based on 

a centralized scheme. However, BMP can also be imple­

mented using a distributed scheme where each AP main­

tains its own portion of the global mobility history shown 

in Fig. 4. This can be achieved by relaying next-cell 



prediction requests using re-association requests. For 

example, consider again the handoff between cx and cw 

shown in Fig. 3. After authentication, MS sends reassoci­

ation request containing pred_reqhID, HS, Di to cw. 

Then, cw performs next-cell prediction and returns 

pred resphoPLmed; oPLlongi as a part of the reassociation 

response. Finally, cw sends the handoff sequence as a part 

of either Inter-Access Point Protocol (IAPP) [18] or a  

vendor specific protocol to cx. After APx receives the 

handoff sequence, update operations are performed. This 

allows MSs handing off from cx to obtain the next-cell 

prediction list. 

4 Performance evaluation 

This section presents the performance evaluation of the 

BMP scheme and compares its accuracy and delay results 

against using only location information, such as our prior 

work on Global Path Cache (GPC) [14], which has been 

shown to be superior to Neighbor Graph [12] and Selective 

Scanning with Caching [13]. 

4.1 Simulation environment 

The two network topologies used in the simulation study 

are shown in Figure 7, which are the first floor of the four-

story, 153,000-ft2 Kelley Engineering Center (KEC) at 

Oregon State University, and a public WLAN service that 

covers 2.5-mile2 area of Portland, Oregon, called MetroFir 

[1]. The APs in KEC are connected by an Ethernet switch, 

while APs in the MetroFir network are interconnected by 

a WMN [5]. 

The simulated coverage area for KEC contains 6 APs 

and 450 MSs, and the paths taken by MSs are limited to 

hallways and the atrium. There are three groups of users, 

i.e., Students, Graduate Students, and Faculty/Staff, with 

each having a different type of mobility behavior. For 

example, Students mostly move between the atrium, the 

cafe, and the computer lab. In addition, Students move in 

and out of the classrooms during the last ten minutes of 

each class hour between 8 AM and 6 PM. In contrast, 

Graduate Students mainly move between their offices, the 

atrium, and the computer lab. Finally, Faculty/Staff moves 

mainly between their offices and the atrium. All MSs move 

at a pedestrian speed of 1.5 m/s. 

The coverage area for Portland (indicated by the dotted 

line) contains 40 APs and 4,500 MSs and the paths taken 

by MSs are limited to sidewalks. The results for Portland 

were generated based on nine different groups of users. 

Nomadic represents a group of MSs that can move any­

where, any time within the simulated area. The next four 

groups represent Commuters who work in each of the four 

Fig. 7 Simulated WLAN coverage areas. a Kelley Engineering 

Center building. b Public WLAN in Portland, Oregon (MetroFi�) 

quadrants or regions, i.e., C-I, C-II, C-III, and C-IV in 

Fig. 7(b), and are likely to travel long distances (i.e., 15–20 

blocks) to work. Moreover, these groups of MSs only move 

between 6 AM to 10 AM and 6 PM to 10 PM. The last four 

groups represent Residents who live in each of the four 

regions, i.e., R-I, R-II, R-III, and R-IV in Fig. 7(b). These 

groups of MSs tend to stay at their homes most of time 

(several hours) but when they move they are likely to only 

move within few blocks (5–10 blocks) from their homes. 

In order to accurately simulate mobility patterns and 

handoffs in large networks, we developed a simulator that 

implements a WLAN radio model, generates realistic 

mobility patterns based on building and city layouts, and 

supports management frames needed to implement scan­

ning, authentication, and re-association. The structure of 

the simulator is shown in Fig. 8, which consists of Path 



Fig. 8 Simulation model 

Generator, Path Finder, Mobility & Network Simulator, 

and Data Analysis modules. 

The Path Generator generates a new destination way-

point based on the Path Graph definition, User Mobility 

definition, and the current Simulation State for each MS 

that has completed its trip between the original and desti­

nation waypoints. The Path Graph definition is a graphical 

representation of all the possible paths MSs can traverse 

within a simulated area, which is similar to the ones pro­

posed in [19, 20]. Figure 9 shows the path graphs for the 

two network topologies used in the simulation study—KEC 

and Portland in Fig. 7. They consist of vertices represent­

ing waypoints and segments representing paths between 

adjacent waypoints. The User Mobility definition defines 

the number of MSs and APs as well how MSs move, 

including when and where a MS moves to and how long it 

stays at a waypoint. The Simulation State defines the cur­

rent time and the locations of all the MSs in the simulated 

network area. The Path Generator uses these two defini­

tions together with the current state of the simulator to 

randomly select destination waypoints based on a modified 

Random Waypoint model [21, 22]. Our modified Random 

Waypoint model allows a probability distribution to be 

assigned to sub-areas or regions within a path graph based 

on different groups of MSs at different times. The Path 

Finder module then uses the path-finder algorithm [23] to  

generate the shortest path between the source and desti­

nation waypoints. The resulting path consists of multiple 

segments, which are then fed to the Mobility & Network 

Simulator. 

The Mobility & Network Simulator consists of Mobility 

module, Radio Model, Handoff Detector, and MAC sub-

Layer Management Entity (MLME). The Mobility module 

simulates the movements of MSs on the segments at one 

meter resolution. The Handoff Detector monitors each 

MS’s movement, and based on the 

Radio Modeltion and the 

Cell Coverage defini­

, which is based on log-distance 

Fig. 9 Path graphs for Fig. 7. a KEC. b Portland 

path loss model [24], performs a handoff when the distance 

between a MS and its associated AP reaches the maximum 

radius of the coverage area. Handoffs are performed using 

the MLME module, which supports beacons, probing, 

authentication, and re-association. Finally, the Data Anal­

ysis module records the number of channel switches, the 

number of times MS has to wait for MaxChannelTime, 

MinChannelTime, Authentication delay/timeout, and 

Re-association delay (see Sect. 4.2). 

Table 1 Delay parameters used in the simulation 

Parameters Delay 

Channel switching time (tswitch)  11:4 ms  

MinChannelTime (tmin)  20  ms  

MaxChannelTime (tmax) 200 ms 

Authentication delay (tauth)  6  ms  

Re-association delay (treassoc)  4  ms  



4.2 Simulation delay parameters 

The delay parameters used in the simulation are shown in 

Table 1: Channel Switching Time (tswitch) is the time 

required to switch from one channel to another; Min-

ChannelTime (tmin) is the minimum amount of time a MS 

has to wait on an empty channel; MaxChannelTime (tmax) 

is the maximum amount of time a MS has to wait to collect 

all the probe responses, which is used when a response is 

received within MinChannelTime; Authentication delay/ 

timeout (tauth) is the time required to perform authentica­

tion based on MAC addresses; and Re-association delay 

(tassoc) is the time required to perform re-association. 

These delay values represents the current off-the-shelf 

NICs and obtained with an experimental setup that con­

sisted of two laptops with 802.11a/b/g NICs based on 

Atheros AR 5002X chipset [25] running Linux 2.6 with 

MadWiFi driver [26], a Sun SPARC Server with Ethernet 

LAN NIC, and an HP ProCurve Wireless Access Point 420. 

Measurements were gathered by having one laptop serve as 

a MS that performs a channel switch and continuously 

sends UDP traffic to a daemon running on the server while 

the second laptop sniffs the traffic using tcpdump (see 

[14]). 

4.3 Simulation results 

All the results in this section were obtained based on the 

assumption that the HS Table contains a complete history 

of handoff patterns. This is achieved by first running the 

simulations for 104 handoffs for KEC and 106 handoffs for 

Portland to allow the BMP system to ‘‘learn’’ all the 

handoff sequences [14], and then gathering statistics for up 

to 107 handoffs. 

Figures 10 and 11 show the number of required HS 

Table entries and the average number of next-cell predic­

tions returned per handoff, respectively, as function of 

l (KEC on the left, Portland on the right). As can be seen 

Fig. 11 Average number of next-cell predictions returned per 

handoff 

from Fig. 10, more entries are required to keep track of 

MSs’ more complex moving paths as l increases. More­

over, the number of entries needed for Portland is higher 

and grows significantly faster than KEC due to larger 

number of APs. Similarly, Portland has, on average, a 

larger set of next-cell predictions due to a larger number of 

highly overlapped regions. Note that, for implementation 

purposes, each entry in the HS Table contains multiple 

next-cell predictions instead of one prediction entry as 

illustrated in Fig. 5. Therefore, Figure 10 represents the 

number of unique handoff sequences of length l - 1 

observed in the two networks. The product of the number 

of entries in Fig. 10 and the average number of predictions 

returned per handoff in Fig. 11 represents the total number 

of unique handoff sequences of length l. 

Figure 12 shows the accuracies of individual next-cell 

predictions based only on location information (starting 

with the 1st prediction result on the bottom), which are 

prioritized based only on their frequencies of occurrence. 

The overall accuracy for both KEC and Portland is 100%, 

which means one of the next-cell predictions is guaranteed 

to be correct. However, the accuracy of each prediction is 

more important because a misprediction incrementally 

increases the average handoff delay by tswitch þtauth. For 

KEC, the 1st next-cell prediction accuracy is 68% and 

Fig. 10 Number of entries in HS Table 

increase slightly as function of l. The 1st next-cell pre­

dictions that fail are satisfied by the 2nd next-cell predic­

tions, which represent accuracy rate of 28.5*25.1% 

relative to all the next-cell predictions. Similarly, the 3rd 

next-cell predictions that succeed make up 3.5*3.1% 

relative to all the predictions. For Portland, the 1st next-cell 

predictions accuracy start at 43% and increases as function 

of l. The 2nd, 3rd, and 4th next-cell prediction accuracies 

are 28.7*22.6%, 17.1*9%, and 7.9*3%, respectively, 

relative to all the next-cell predictions. The combined 

prediction accuracy beyond the 4th next-cell prediction is 3 

*1.43%. 



(a) 

(b) 

Fig. 12 Overall and individual prediction accuracies based only on 

location information. a KEC. b Portland 

Based on Figs. 10–12, it is clear that suggested size of 

l is 3, which provides good 1st prediction accuracy and yet 

the number of entries required for the HS Table is minimal. 

Figure 13 shows the 1st prediction accuracy of BMP, 

which is importance because each misprediction from the 

oPL incrementally increases the average handoff delay by 

tswitch þtauth. 

The average improvement for BMP compared to using 

only location information for KEC is 23%. The largest 

improvement comes from Static Group at 12.7%, followed 

by Dynamic Group, ToD, and Duration with 7, 1.7, and 

1.7%, respectively. These improvements also vary for 

different user groups. For example, BMP improves the 1st 

prediction accuracy for all three groups in KEC. The 

largest improvement of 77% comes from Students because 

their behaviors are dictated by schedule of classes, which 

causes their handoffs to be bursty and periodic and also 

results in longer durations. This is followed by Graduate 

Students with an overall improvement of 61%, which is the 

result of being able to better capture the fact that they work 

late at night and on weekends. In contrast, improvement for 

Faculty/Staff was less at 9.5% because the number of MSs 

in this group is much less than the other groups and the 

(a) 

(b) 

Fig. 13 Improvement in 1st prediction accuracy for BMP. a KEC. 

b Portland 

coverage area affected by their mobility is much more 

limited. 

The average improvement for Portland is much more 

significant at 43%. The largest improvement came from 

Static Group at 28%, and this is followed by Duration at 

7.7%, ToD at 4.9%, and Dynamic Group at 2%. Again, all 

of the user groups in Portland resulted in improvements. 

Among them, Nomadic and Commuter groups (C-I*IV) 

exhibit large improvements due to short-term surges in 

handoffs caused by groups of users commuting during rush 

hour. The Nomadic group is hardly affected by Dynamic 

Group, ToD, and Duration factors because their mobility 

behavior is uniformly random across the entire network 

and independent of time. In contrast, the largest improve­

ment for Commuter groups came from the ToD charac­

teristic. For Resident groups (R-I*IV), the Duration factor 

provided the most improvement. 

Figure 14 compares the average handoff delays based 

on the parameter set defined in Table 1 (Location-based 

scheme on the left, and BMP on the right). These results 

show that BMP provides 10 and 21% improvement for 

KEC and Portland, respectively. This may appear to be 

only a small improvement compared to the location-only 



(a) 

(b) 

Fig. 14 Average handoff delay. a KEC. b Portland 

based scheme, but the resulting delay for BMP is very close 

to the lower bound delay, which is 21.4 ms ¼ tswitch þ
tauthþ tassoc. More importantly, when individual handoff 

delays are considered, they resulted in significant 

improvements for some user groups. For example, the 

Student group in KEC resulted in 21.7% improvement, 

while Grad. Students had 16.5% improvement. This was 

also the case for Portland, where the Nomadic group 

resulted in 107.2% improvement. In addition, all groups 

resulted in similar average delay. 

5 Related work 

Many different mobility prediction techniques have been 

proposed for a variety of wireless networks, such as cel­

lular [27–32], WLANs [10–13, 33, 34], ad hoc networks 

[35, 36], and mesh networks [5], and applied to reduce 

handoff latency [8, 12, 13, 37], provide efficient resource 

reservation [27–33], improve routing protocols [35], and 

conserve power [36]. However, these methods tend to be 

general and thus do not consider the special characteristics 

of WLANs, such as highly overlapped cell coverage, MAC 

contention, and variations in link quality. 

Location-based schemes provide predictions using the 

current and past locations (i.e., cells). These are all based 

on the order-k Markov predictor [34], and include Global 

Path Cache [14], Selective Scan with Caching [13], 

Movement Model [38], Two-Tier prediction [39, 40], and a 

technique based on the use of directional vectors [28]. 

However, they do not consider other characteristics of 

mobile users, such as group, time-of-day, and duration. 

Therefore, these techniques will not properly capture 

mobility patterns that deviated from the norm, such as 

behaviors exhibited by a small group of users that tend 

repeat in certain periods of time. There is a technique that 

applies different predictors to different time segments [38]. 

There are also techniques that reduce the number of location 

update operations in cellular networks by associating loca­

tions of individual users to different periods of time [41–43]. 

However, time is not the only factor that affects mobility 

patterns. Therefore, these techniques are unable to properly 

capture the behaviors exhibited by different groups. 

Topology-based schemes define directed graphs that 

represent topological placements of APs and mobility 

patterns of MSs. These techniques are typically applied to 

WLANs and include Neighbor Graph [8, 12] and Pre-

Authentication path [37]. Although these techniques reduce 

the number of channels to scan, they do not provide next-

cell predictions. 

Activity-based schemes provide next-cell predictions by 

relating locations to users’ interests, such as schedules and 

activities. These include Activity-based Mobility Prediction 

[44], ComMotion [45], and GPS-based techniques [46, 47]. 

The mobility prediction is made based on the shortest path 

between the current and the predicted locations. However, 

these techniques may not be accurate since individual users 

may take a path based on their point-of-interests, such as 

ATM to withdraw money or simple idiosyncrasy of passing 

by a park, rather than the shortest path. 

Data Mining-based schemes [27, 31, 32] reduce the 

signaling overhead during handoff and provide resource 

reservation to MSs in cellular networks by logging users’ 

visited cells and time in a database. In addition, some 

techniques record geographic coordinates and directional 

movements of MSs from either GPS or triangulation of 

signal strengths [29, 30]. The basic idea is to provide 

predictions by searching the database using user contexts 

stored in MSs. If a match or multiple matches are found, 

predictions are provided based on location stored in the 

context. However, data-mining techniques require a large 

storage and fast processors to properly analyze long-term 

mobility behavior of users. In addition, most techniques 

typically require a GPS device to obtain information about 

locations and directions of MSs. For systems that rely on 

signal triangulation, their effectiveness may be limited due 

to the fact that mobile devices are mainly used for indoors 

and crowded outdoor areas where the signal strength is 

highly affected by noise rather than distance [24]. 



6 Conclusion 

This paper presented the BMP technique to improve 

mobility prediction in WLANs. BMP models mobility 

patterns not only based on the location information of MSs 

but also captures their group, time-of-day, and duration 

characteristics. Therefore, it monitors the next-cell pre­

diction accuracies and readjusts its prediction model based 

on the dynamic behavior of MSs. Our simulation study 

shows that BMP provides better predictions than location-

only based schemes, and results in much lower handoff 

delay for all MSs. 

For future work, we plan to investigate couple of issues. 

First, we plan to study the effectiveness of BMP for other 

wireless networks, such as cellular networks, WiMAX, and 

WMNs, not only to improve handoff latency but also to 

improve resource reservation, routing protocols, and 

energy efficiency. Second, we would like to investigate 

how BMP can be utilized to speed up vertical handoffs in 

heterogeneous networks. 
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