869 research outputs found

    Stochastic unit commitment in microgrids based on model predictive control

    Get PDF
    This article deals with the problem of Stochastic Unit Commitment (SUC), considering the stochastic nature of demand and meteorological phenomena. This paper shows the optimal operation of a hybrid microgrid composed of the following generation units: wind turbine (WT), photovoltaic solar panel (PV), diesel engine generator (DE), micro-turbine (MT), as well as storage devices such as Battery Energy Storage (BES), considering its constraints and the requirements of the reserve generation. For this purpose, a Model-based Predictive Control (MPC), which uses dynamic models of prediction of renewable power and demand in real time, is developed, allowing feedback at each step of time, which corrects the uncertainty of the models. A comparison with a classic UC formulation has been made. The results reach a lower cost solution

    Integration and Control of Distributed Renewable Energy Resources

    Get PDF
    The deployment of distributed renewable energy resources (DRERs) has accelerated globally due to environmental concerns and an increasing demand for electricity. DRERs are considered to be solutions to some of the current challenges related to power grids, such as reliability, resilience, efficiency, and flexibility. However, there are still several technical and non-technical challenges regarding the deployment of distributed renewable energy resources. Technical concerns associated with the integration and control of DRERs include, but are not limited, to optimal sizing and placement, optimal operation in grid-connected and islanded modes, as well as the impact of these resources on power quality, power system security, stability, and protection systems. On the other hand, non-technical challenges can be classified into three categories—regulatory issues, social issues, and economic issues. This Special Issue will address all aspects related to the integration and control of distributed renewable energy resources. It aims to understand the existing challenges and explore new solutions and practices for use in overcoming technical challenges

    Uncertainty Quantification And Economic Dispatch Models For The Power Grid

    Get PDF
    The modern power grid is constrained by several challenges, such as increased penetration of Distributed Energy Resources (DER), rising demand for Electric Vehicle (EV) integration, and the need to schedule resources in real-time accurately. To address the above challenges, this dissertation offers solutions through data-driven forecasting models, topology-aware economic dispatch models, and efficient optional power flow calculations for large scale grids. Particularly, in chapter 2, a novel microgrid decomposition scheme is proposed to divide the large scale power grids into smaller microgrids. Here, a two-stage Nearest-Generator Girvan-Newman (NGGN) algorithm, a graphicalclustering-based approach, followed by a distributed economic dispatch model, is deployed to yield a 12.64% cost savings. In chapter 3, a deep-learning-based scheduling scheme is intended for the EVs in a household community that uses forecasted demand, consumer preferences and Time-of-use (TOU) pricing scheme to reduce electricity costs for the consumers and peak shaving for the utilities. In chapter 4, a hybrid machine learning model using GLM with other methods was designed to forecast wind generation data. Finally, in chapter 5, multiple formulations for Alternating Current Optimal Power Flow (ACOPF) were designed for large scale grids in a high-performance computing environment. The ACOPF formulations, namely, power balance polar, power balance Cartesian, and current balance Cartesian, are tested on bus systems ranging from a 9-bus to 25,000. The current balance Cartesian formulation had an average of 23% faster computational time than two other formulations on a 25,000 bus system

    Hybrid forecast and control chain for operation of flexibility assets in micro-grids

    Get PDF
    Studies on forecasting and optimal exploitation of renewable resources (especially within microgrids) were already introduced in the past. However, in several research papers, the constraints regarding integration within real applications were relaxed, i.e., this kind of research provides impractical solutions, although they are very complex. In this paper, the computational components (such as photovoltaic and load forecasting, and resource scheduling and optimization) are brought together into a practical implementation, introducing an automated system through a chain of independent services aiming to allow forecasting, optimization, and control. Encountered challenges may provide a valuable indication to make ground with this design, especially in cases for which the trade-off between sophistication and available resources should be rather considered. The research work was conducted to identify the requirements for controlling a set of flexibility assets—namely, electrochemical battery storage system and electric car charging station—for a semicommercial use-case by minimizing the operational energy costs for the microgrid considering static and dynamic parameters of the assets

    An economic evaluation of the potential for distributed energy in Australia

    Get PDF
    Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) recently completed a major study investigating the value of distributed energy (DE; collectively demand management, energy efficiency and distributed generation) technologies for reducing greenhouse gas emissions from Australia’s energy sector (CSIRO, 2009). This comprehensive report covered potential economic, environmental, technical, social, policy and regulatory impacts that could result from the wide scale adoption of these technologies. In this paper we highlight the economic findings from the study. Partial Equilibrium modeling of the stationary and transport sectors found that Australia could achieve a present value welfare gain of around $130 billion when operating under a 450 ppm carbon reduction trajectory through to 2050. Modeling also suggests that reduced volatility in the spot market could decrease average prices by up to 12% in 2030 and 65% in 2050 by using local resources to better cater for an evolving supply-demand imbalance. Further modeling suggests that even a small amount of distributed generation located within a distribution network has the potential to significantly alter electricity prices by changing the merit order of dispatch in an electricity spot market. Changes to the dispatch relative to a base case can have both positive and negative effects on network losses.Distributed energy; Economic modeling; Carbon price; Electricity markets

    Predictive Energy Management of Islanded Microgrids with Photovoltaics and Energy Storage

    Get PDF
    Islanded microgrids powered primarily by photovoltaic (PV) arrays present a challenging control problem due to the intermittent production and the relatively close scale between the sources and the loads. Energy storage in such microgrids plays an important role in balancing supply with demand, and in extending operation during periods when the PV supply is not available or insufficient. The efficient operation of such microgrids requires effective management of all resources. A predictive energy management strategy can potentially avoid or effectively mitigate upcoming outages. This thesis presents an energy management system (EMS) for such microgrids. The EMS uses a predictive approach to set operational schedules in order to (a) prolong the supply to critical system loads and (2) minimize the chances and duration of system-wide outages, specifically through pre-emptive load shedding. Online weather forecast data has been combined with the PV system model to assess potential energy production over a 48 hour period. These predictions, along with load forecasts and a model of the energy storage system, are used to predict the state-of-charge of the storage devices and characterize potential power shortages. Pre-emptive load shedding is subsequently planned and executed to avert outages or minimize the duration of unavoidable outages. A bounding technique has also been proposed to account for uncertainties in estimates of the stored energy. The EMS has been implemented using an event-driven framework with network communication. The approach has been validated through simulations and experiments using recorded real-world solar irradiance data. The results show that the outage durations have been reduced by a factor of 87% to 100% for an example operating scenario, selected to demonstrate the features of the scheme. The impact of uncertainties in the prediction models has also been investigated, specifically for the PV system rating and the battery capacity. A technique has been developed to compensate for such uncertainties by analyzing the data streams from the source and storage units. The technique is applied to the developed EMS strategy, where it is able to shorten the total outage duration by a factor of 12% over a 42-day scenario exhibiting a variety of irradiance conditions

    Microgrids

    Get PDF
    Integration of renewable energy sources in the electrical power system is key for enabling the decarbonization of that system. The connection of renewable generation to the electrical system is being performed in a centralized form (large renewable power plants like wind or solar power plants connected at the transmission system) and in a decentralized manner (through the connection of dispersed generation connected at the distribution system). The connection of renewable generation at distribution levels, together with other generating sources as well as energy storage systems (the so-called DER, Distributed Energy Resources) close to consumption sites, is promoting the development of microgrids: DER installations that have the capability to operate grid connected and grid isolated. The uncertainty and variability of the renewable energy sources that integrate microgrids, as well as the need for coordination with other energy sources, pose challenges in the operation, protection, control, and planning of microgrids. The five selected papers published in this Special Issue propose solutions to address these challenges.Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.1 - Per a 2030, garantir l’accĂ©s universal a serveis d’energia assequibles, confiables i modernsObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.2 - Per a 2030, augmentar substancialment el percentatge d’energia renovable en el con­junt de fonts d’energiaPostprint (published version
    • 

    corecore