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Abstract: Studies on forecasting and optimal exploitation of renewable resources (especially within
microgrids) were already introduced in the past. However, in several research papers, the constraints
regarding integration within real applications were relaxed, i.e., this kind of research provides
impractical solutions, although they are very complex. In this paper, the computational components
(such as photovoltaic and load forecasting, and resource scheduling and optimization) are brought
together into a practical implementation, introducing an automated system through a chain of
independent services aiming to allow forecasting, optimization, and control. Encountered challenges
may provide a valuable indication to make ground with this design, especially in cases for which the
trade-off between sophistication and available resources should be rather considered. The research
work was conducted to identify the requirements for controlling a set of flexibility assets—namely,
electrochemical battery storage system and electric car charging station—for a semicommercial use-
case by minimizing the operational energy costs for the microgrid considering static and dynamic
parameters of the assets.

Keywords: microgrids; energy management system; forecast; artificial intelligence; neural networks;
recurrent neural networks; convolutional neural network; ant colony optimization

1. Introduction

Commercial microgrids were increasingly developed for demonstration purposes in
the last decade, with the aim to locally optimize energy use and offer increased reliability
to commercial customers with sensitive operations [1]. The cost to reduce photovoltaic
and battery systems, together with the variability and inherent uncertainty of electricity
prices, increased the interest for such localized energy systems by commercial customers
for business-as-usual operations, which may address reliability, whilst providing cash flow
certainty and reducing overall environmental impact.

Microgrids are typically operated in Low Voltage (LV) in both grid-connected and
islanded modes [2]. Such systems may combine controllable and uncontrollable loads, as
well as dispatchable and renewable generation sources, while lately research also focused
on multicarrier systems [3] and the integration of the electro-mobility ecosystem [4].

The operation of microgrid systems similar to Figure 1 was studied and evaluated
using a variety of methods, from purely centralized methods [5] to distributed control
approaches [6]. Extensive comparisons amongst the merits of each method were examined
in [7]; however, the distinct characteristics of commercial microgrids, in terms of single
ownership, are driving the prevalence of centralized and hierarchical architectures. In
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such control architectures, data are produced by field devices and transferred via concen-
trators/gateways through to central intelligence units or platforms that typically contain
data processing, storage, applications stacks, and associated interfaces. The application
stacks for commercial microgrids range from various user-defined needs (such as reporting
and billing) and core control-related applications, which are critical because aiming to
maximize the customers’ benefit. The main control-related applications are the forecasting
and the optimization/scheduling functions of the microgrid energy management systems,
whose requirements are driven by the business objectives and the revenue streams of the
commercial microgrids application.

Figure 1. Component-wise view of use-case’s local system.

In essence, this paper aims to highlight the importance of optimal control for storage
systems through the analysis and demonstration of a real use-case (as a generic example)
where the investment in renewable assets (storage) alone does not necessarily yield desired
impacts but would deliver inverse results, such as increasing energy cost payments. Based
on this finding, the present work provides a suitable system design for performing con-
tinuous forecasting, scheduling, and dispatch of commercial microgrids with a variety of
Distributed Energy Resources (DERs). Several state-of-the-art contributions (reported in
Section 2) established robust methods: however, they focused either on standalone forecast-
ing or optimization applications and may ignore real-world deployment requirements with
relaxed computational and communication constraints. In contrast, this paper introduces a
complete chain of decision-making (Section 3) by first leveraging an innovative hybrid deep
learning approach engineered and trained on data coming from the field to forecast solar
production and load consumption (Section 4), and then the hybrid optimization algorithm
developed from scratch to instruct smart setpoints to field devices (Section 5), closing the
loop between data monitoring/collection and device control. Presented forecasting and
optimization approaches use open-source and freely available resources showing accurate
results with a low computational cost. Section 6 presents the conclusion regarding the
studies, designs, and implementations reported in the paper, setting the stage for actual
validation and implementation, as well as future work.

2. State-of-the-Art Review and Related Work
2.1. Photovoltaic (PV) Forecasting

Solar PV forecasting techniques are primarily driven by the dynamic nature of solar
irradiance and other relevant meteorological parameters that induce high levels of un-
certainty. This dynamic nature leads to voltage and power fluctuations, with subsequent
impact on the microgrids energy management. As such, PV power forecasting is considered
essential not only for efficient planning and integration of PV systems in power grids, but
also for the optimization of their day-to-day operation.

In the past 20 years, a wealth of PV power forecasting (PVPF) methods was developed,
studied, and established, addressing the whole spectrum of forecasting time horizons, i.e.,
from ultra-short-term forecasting (seconds to minutes) to long-term forecasting (months to
years). In the case of microgrids, and especially for those that highly depend on local PV
generation and potentially incorporate flexibility assets (e.g., batteries) and have special
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demand needs such as EV charging, safe and cost-effective day-to-day operation is an
optimization problem that highly depends on reliable PV and load forecasting. Due to
the inherent localized generation of microgrids, a suitable PVPF model should be in place
to respond to frequent and sudden weather changes (e.g., cloud formation) and, as such,
addressing the short-term (ST) with a view of at least one day ahead. The actual temporal
horizon of ST PVPF is generally between 30 and 360 min [8], although other studies extend
this horizon to several hours or even up to a week [9] towards achieving more effective
power plant scheduling and market-related actions.

In the algorithmic domain, many approaches were studied involving physical, statisti-
cal, artificial intelligence, ensemble, and hybrid models. Traditional statistical methods,
namely, time-series based forecasting techniques, involve curve fitting, moving average
(MA), and autoregressive models and purely depend on mathematical equations to extract
insight from historical data. Established techniques are the Exponential Weighted Moving
Average (EWMA) [10], the autoregressive moving average (ARMA) [11], the autoregressive
integrated moving average (ARIMA) [12], with the latter being the most popular time series
analysis technique for the short-term horizon, succeeding reportedly very close accuracy
rate with Artificial Neural Network (ANN)-based models [13].

However, among this variety of approaches, machine learning techniques, and es-
pecially ANN, their derivative models such as Multiple Layer Perceptron Neural Net-
work (MLPNN) [14], Recurrent Neural Network (RNN) [15], and Deep Neural Network
(DNN) [16], currently comprise the state-of-the-art in neural networks, and their hybrid or
combined forms hold the most promising accuracy results, especially in case of short and
medium forecast horizons. Not linked with complex mathematical content and obscure
physical representations, while achieving remarkable results, these methods became the
most popular choice for relevant researchers and industrial practitioners.

Recent studies on optimum PVPF in microgrid environments highlight the benefits of
complex ANN models. For the case of a PV power generation microgrid with plug-in EVs
(PVEVM), the paper [17] shows that a combination of a preceding clustering process of
training sets comprising of numerical weather predictions (NWP) with the use of Density
Peak Optimized (DPK)-medoids as input to a generalized RNN, provides high accuracy
forecasts for a 30-min window and day-ahead horizon. The proposed PVPF model can not
only forecast with high accuracy on sunny days, but also exhibits high-accuracy forecasting
performance under unstable weather conditions. Using normalized root mean square error
(nRMSE) as a validation metric and comparison tool, the proposed method reports values
between 2.89–6.61%, depending on the cluster to which the forecasting day belongs and the
weather characteristics, prevailing over both Markov Chain (MC) and simple Generalized
Regression Neural Network (GRNN) models.

On a similar study on optimal load dispatch of a community microgrid, [18] demon-
strates the significant results of deep learning-based solar power and load forecasting for a
60-min window and day-ahead horizon. In this case, a deep recurrent neural network with
long short-term memory units (DRNN-LSTM) model was developed to forecast aggregated
power load and the PV power output in the community microgrid. That model, using
schedule variables (hour, day, month), and weather variables (global horizontal radiation,
and diffuse horizontal radiation) succeeded in reaching an RMSE of 7.54, Mean Absolute
Error (MAE) of 4.37 and Mean Absolute Percentage Error (MAPE) of 15.87%, significantly
prevailing over Support Vector Machine (SVM) and multilayer perception (MLP) models’
overall error methods.

In the same vein, artificial intelligence (AI) methods were evaluated on PVPF in the
case of a residential smart microgrid based on Numerical Weather Prediction (NWP) [19]. A
10-layer ANN was developed. The model proves to be the most efficient and accurate one to
forecast the hourly irradiance and generated power for the residential microgrid compared
to Multi-Variable Regression (MVR) and support vector machine (SVM) approaches using
MAPE and MSE criteria. Overall, the neural network model reached 99.3% accuracy for
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the irradiance forecast with only 2 outliers, and it reached 98.5% accuracy for the power
generated with only 4 outliers.

2.2. Load Forecasting

Electric load forecasting is a process used to predict the power or energy needed
to balance the supply and load demand given historical load and weather information,
together with current and forecasted weather information [20]. Depending on the time zone
of planning strategies, load forecasting can be divided into three categories: short-term load
forecasting (1 h to 1 week ahead), medium-term forecasting (1 week to 1 year ahead), and
long-term forecasting (longer than a year ahead of the time of demand). More recent studies
introduced a fourth category, the very short-term forecasting used for load forecasting from
seconds up to one day ahead [21]. For this study, specific focus was given to short term load
forecasting.

For short-term forecasting, a variety of methods (which include the similar-day ap-
proach, various regression models, time series, neural networks, fuzzy logic and expert
systems) were developed over the years [20]. Broadly these techniques are divided into
parametric and nonparametric ones. The similar-day approach, which is based on historical
data search for similar days within recent years, the various regression methods, and the
stochastic time series, used for decades in fields such as economics and digital signal
processing, are examples of the parametric (or statistical) techniques. These techniques,
however, are not capable of forecasting abrupt environmental or social changes; hence,
in recent years, nonparametric techniques, such as ANN, emerged. Research shows that
hybrid neural networks with learning techniques such as Genetic Algorithms (GA), Particle
Swarm Optimization (PSO), Bacterial Foraging Optimization (BFO), or with fuzzy logic
such as Artificial Immune System (AIS) can improve performance in terms of accuracy,
computational cost and time [22].

Load forecast errors can have large negative consequences for a system operation,
as they can lead to substantially increased operating and maintenance costs, decreased
reliability of power supply and delivery system, and incorrect decisions for future devel-
opment [23]. Literature suggests that a load forecast error of 1% in terms of MAPE can
translate into several hundred thousand dollars loss per GW peak [21] when, as suggested,
the typical day-ahead load forecasting error for a medium-sized US utility with an annual
peak of 1 GW–10 GW is around 3% [24].

In the case of microgrids, load forecasting requires a different approach as the ag-
gregated consumption figure is several times smaller than in region-wide areas and the
load curve presents higher variability, leading traditional methods to be unsuitable for
direct application [19]. While most solutions for load forecasting in large areas suggest
MAPEs of around 2% [21,24,25], GRNN, Radial Basis Function Neural Network (RBFNN)
models applied in the city of Hong (following a microgrid approach) between 2008 and
2010 suggest a MAPE of around 15% [19].

A study performed in 2018 applied three classical approaches for short-term load
forecasting methods widely used in large networks—Seasonal Autoregressive Integrated
Moving Average with eXogenous variables (ARIMAX), ANN, and Wavelet Neural Net-
works (WNN)—to a microgrid application. Results show that the WNN-based model has
the highest prediction accuracy followed by the seasonal ARIMAX and NN-based model.
The peak load error of the forecasts by the WNN-based model is between −40% to +30%
at all times (and between −15% to 5% for 50% of the time), much lower than the seasonal
ARIMAX and NN-based models with errors between −80% to 75% [26] but also much
higher than the accepted forecast errors on the load forecasting for large networks.

2.3. Scheduling and Optimization

In the present context, optimization is referred to as the best operation planning for
flexible components, essentially formed by an objective function and a set of constraints. An
objective function might be the total operation costs, the constraints can be the equipment
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ratings and the decision variables can be the charge-discharge set-points of battery systems.
It is of notable importance to treat every optimization problem appropriately by choosing
relevant solving procedures from both method and implementation perspectives.

In a scheduling problem—e.g., flexibility asset operation—aimed to maximize eco-
nomic returns, the objective function versus scheduling table might take a nonconvex
course, while, on the other hand, the solution space could practically be infinite. These
can restrict methods to be used for optimization problem calculation [27]. In some works,
evolutionary methods are investigated for solving this family of problems [28,29]. In [30],
a greedy scheduling method is proposed, where the computational time is critical. The
authors of [31] wisely distinct distant and near-future forecast and optimization to deal
with uncertainties. Energy cost minimization is dealt with in [32], where cycles of charge-
discharge are also optimized. Dynamic tariffs for energy are also included in various
studies [33] to accommodate that emerging scheme. Using a storage system as a means of
service for the system operator is addressed in [34] to support business opportunities for
ancillary service market participants.

In several case studies, the optimization problem is solved by rough-and-ready com-
mercial or open-source tools. These so-called solvers are optimized in terms of code exe-
cution, parallelism, and power consumption [35]. Based on available resources, one may
implement a custom optimization algorithm with distributed computation approach [36].
In many real use-cases, the need for flexibility in problem-solving outweighs those ben-
efits due to the complexity of the problem itself, or implementation constraints such as
hardware, operating system, etc.

2.4. Summary from the State of the Art

The assessment of use-case and analysis of the state-of-the-art highlighted important
facts to design an integrated chain of applications—mainly forecast and optimization—that
can be assembled as the following:

• Hybrid long- and short-range forecast and optimization are needed to better exploit
resources ahead-of-time and deal with uncertainties;

• It is necessary to reduce unnecessary complexity of the calculations where possible to
make separate modules more flexible in terms of time and computation;

• Regressive model with and without recurrence units can handle long- and short-range
forecasting, respectively;

• An evolutionary algorithm and a greedy one can handle long- and short-range opti-
mizations, respectively.

3. Management Process for Microgrid Operation

In many research efforts, the overall objective was to minimize operational energy
costs for the microgrid considering static and dynamic parameters of its assets. The current
work’s case falls into such kind of problem, and it is treated by designing two distinct
modules of forecast and optimization.

The Forecast module is designed and developed as a hybrid forecast method by the
integration of:

• A baseline regressive model to generate a forecast with long horizon H and big
granularity, e.g., 48 h and 30 min, respectively.

• A recurrent model, for smaller time horizon and steps, e.g., 5 min ahead and 10 s steps,
which gets activated upon errors between observed values and long-term forecast
model.

The Optimization module follows the same hybrid approach since its input is fed
directly from the forecast module. The current application is rendered with low complexity,
where possible, to ease the integration within a chain of components from the physical
field devices, gateways, and cloud service with continuous back and forth data flow. The
hybrid approach is a combination of:
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• Longer horizon and wider step optimization, matching baseline forecast (same time
window and step) and triggered by that forecast updates. This optimization uses the
meta-heuristics method as it deals with a complex problem, while it is less constrained
in terms of calculation time.

• Spot decision-maker, namely greedy optimization, for very close actions, triggered by
the recurrent forecast model.

Figure 2 represents the control process of the full control chain, schematically.

3rd Party
Weather  
service

Recurrent or
Convolutional Model

New  
(measurement)

event?wait

Dense Model

Long horizon
optimization

Next step greedy
decision

listen

Break

Control Service 
Start

Forecasting

Optimization

Process 
Orchestrator

Send Setpoints to 
Field Devices

Yes

No

Yes

No

Yes

No

Figure 2. Logical process flow for control chain.

The full-automatic control process is implemented as a web-service application that,
once started, activates different routines, mainly Forecasting and Optimization Modules,
alongside required connectors for devices and external services. The variables tc and tk−1
represent current clock time and last activation time, respectively. At predefined interval
T, e.g., half an hour, the process of long-horizon forecast (e.g., 48 h), and in turn, relevant
optimization model, gets activated, and set-points are being sent for the next H hours.
Due to the presence of noises (load and noncontrollable generation), a decoupled thread
is placed to listening to the quasireal-time measurements from the field devices. If the
difference between measurements Vtk and predicted values Ftk does not exceed certain
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defined error threshold ε, the latest instructed set-points will be respected, otherwise
a fast control chain (including a Recurrent forecast model and the consequent greedy
optimization) quickly responds and overwrites the next(s) step’s set-point. Predictions and
optimization models are described in detail in Sections 4 and 5 respectively.

4. Forecasting

In the context of the current work, forecasting is an essential component for the
optimal exploitation of renewable resources. It mainly includes prediction for two different
variables: generation of Renewable Energy Sources (RES) and consumption coming from
the noncontrollable load. The methodology used in this work is deepened in this section.

4.1. Renewable Generation

Since renewable generation is strictly correlated with the weather condition, and
without an on-site weather station, a weather service capable of obtaining weather in-
formation and forecast is necessary. OpenWeatherMap (OpenWeatherMap One Call API:
https://openweathermap.org/api, accessed on 20 October 2021) offers information about
the current weather as well as the hourly weather forecast for 48 h. The former is used to
populate the training dataset with a request to the API every 15 min, the latter becomes
fundamental in the inference phase of the model. In addition to weather parameters,
the model is fed with two synthetic sinusoids: one to represent the time of the day, and
the second one represents the time of the year. A synthetic description of the dataset is
provided in Table 1.

Table 1. OpenWeatherMap data retrieved and used in model.

Temperature Feels Like Pressure Humidity Dew Point UVI Clouds

id temp feels_like pressure humidity dew_point uvi clouds
unit °C °C hPa % °C UV %

mean 10.78 8.09 1017.47 75.0 6.27 1.03 42.15
std 4.73 5.71 9.15 15.35 5.20 1.26 34.04
min −3.91 −12.84 979.0 15.0 −17.63 0.0 0.0
max 25.28 24.73 1047.0 100.0 20.83 4.25 100.0

Given that forecast accuracy is inversely proportional with the length of time window
defined as output for the model and that the results depend directly on the precision of the
weather provider, it was necessary to implement a short-term forecasting model to be used
alongside the main model to correct the 48-h generation forecasting.

To implement this correction, an innovative approach was introduced as the “Hybrid
Approach”.

4.1.1. The Hybrid Approach

As the name suggests, the approach implemented exploits two different neural net-
work architectures to enable two features that can be combined to predict renewable
generation. The first component uses a Multilayer Neural Network to address long-term
solar irradiance forecasting, while the second one exploits the potentiality of Recurrent
Neural Network (RNN) and Convolutional Neural Network (CNN) to tackle short-term
forecasting. The first component is always active, while the second one is triggered as a
corrective factor whenever the difference between the long-term prediction and the current
irradiation is greater than the selected threshold. This enables the field devices to take
appropriate countermeasures against the uncertainty coming from weather forecasting.

Long-Term Neural Network Design

The Neural Network architecture presented in Figure 3 is denominated Baseline be-
cause it generates the long-term forecasting which characterizes the first baseline for the

https://openweathermap.org/api
https://openweathermap.org/api
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approach. Indeed, it is used in the system to infer a single float value for sun irradiation for
every hour in the 48-h weather forecasting provided by OpenWeatherMap in real-time. The
Baseline Layer is the core part of the architecture and it is composed of a regular densely
connected neural network layer with a specific hidden size and activation function, a layer
for batch normalization and a dropout [37] one. To find the most appropriate architecture
to use for this specific problem, an explorative grid-search was carried out to discover the
best set of parameters capable of minimizing the loss in the test set (Mean Squared Error
in this case) by using Adam [38] as an optimizer. The activation function selected for the
training was the Rectified Linear Unit (ReLU). The hyperparameter tuning was set on the
following factors:

• Baseline Layer Hidden Size - hidden_size ∈ {64, 128, 256, 512}
• Number of Baseline Layers - n ∈ {5, 10, 15}
• Batch Size - batch_size ∈ {64, 128, 256, 512}
• Dropout Rate - dropout_rate ∈ {0.1, 0.3}

Figure 3. The Baseline architecture was used to infer the hourly sun irradiation for the 48-h forecasting.
The hyperparameters tuning was set on the parameters highlighted in bold.

The hyperparameter-tuning process is composed of a training and validation phase
for each epoch, with a final test phase to produce the final score for the specific run, given
by the loss on the test set calculated using the network which yields the lowest validation
error during the whole training. To pick this architecture, the best checkpoint during
training is saved at the end of each epoch. An important help comes from the usage of
Early stopping, a regularization technique for deep neural networks that breaks the training
process when weights updates no longer yield improvements on the validation set.

To perform these experiments, 90% of the dataset is used for training and 10% for the
testing phase. To correctly perform the validation phase for each epoch, 10% of the training
dataset is exploited as the validation set.

Analyzing the results obtained from the first explorative grid search and some visual
representations of the inference carried out on the test set for the most performing networks,
it was noticeable that the networks with high hidden size, high dropout rate, and low
batch size were the best performing ones. To make the final decision on the baseline
architecture, all the hyperparameters were fixed except the number of hidden layers, and
we performed 100 training experiments for each network to select the best one in terms of
test loss and stability. The results reported in Figure 4, shows a better performance for the
neural network with 5 hidden layers.

To conclude, the best performing architecture used to implement this component is
the one with 5 layers, with a hidden size of 512, a dropout rate of 0.3, and a batch size in
the training of 64. An example of the results obtained available in Figure 5.
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Figure 4. Baseline architecture final results. Best performing and most stable architecture is the one
with 5 hidden layers.

Figure 5. An example of performance of baseline architecture on test data. These data represent the
solar irradiance over several consecutive days without taking into account night hours.

Short-Term Neural Network Design

The second core component of the architecture is short-term forecasting. The candidate
architectures chosen to implement this feature are:

• Long Short-Term Memory (LSTM) [39]: a key recurrent neural network architecture
that outperformed vanilla RNNs by solving the vanishing gradient problems by the
usage of additive components and forget gate activations;

• Gated Recurrent Unit (GRU) [40]: a type of recurrent neural network similar to
an LSTM. The main difference is that it has only two gates (reset gate and update
gate) and no output gate. Generally, it is easier and faster to train than the LSTM
architecture.

• WaveNet [41]: it is a type of convolutional neural network developed in the context
of the homonymous audio generative model. The architecture is based on dilated
casual convolutions, which unveil a very large receptive field suitable to deal with
long-range temporal dependencies.

Even if the structure of these three kinds of networks is fundamentally different, all
training of these architectures was carried out by windowing the stream of real data of
solar irradiation coming from the field with a granularity of 30 s. Setting aside input and
output label width, a data window like the one shown in Figure 6 can be defined by a
triplet of features: the input width (I), the output width (O) and the offset (F).
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Figure 6. Data windowing: in this example, input width is 5, output width is 4, and offset is 5.

In the context of the experiments carried out, the following four windows were used:

• I = 20 (10 min), O = 1 (30 s), F = 1 (30 s)
• I = 20 (10 min), O = 10 (5 min), F = 10 (5 min)
• I = 60 (30 min), O = 30 (15 min), F = 30 (15 min)
• I = 120 (60 min), O = 60 (30 min), F = 60 (30 min)

The fundamental reason behind the usage of four different windows with models
trained separately is the ability of networks to perform better in the short term. With a
smaller output size, the optimization step of the neural network considers a smaller set to
calculate gradients. On the contrary, with greater output size, there is more contribution to
the calculation of the gradient. Therefore, on one hand, there is the need to have a short-
term value of solar irradiation as close as possible to reality to properly correct excessive
errors coming from the long-term forecasting; on the other hand, we would like not to be
constrained by having forecasts only for the 30 s after receiving the last data from the field.

For this reason, even if the training of all networks was carried out independently,
the outputs from each neural network are stacked on top of each other and precedence is
given to values that come from a neural network with a smaller output size, which will
override the output data coming from the neural networks with a larger but less accurate
view. Figure 7 shows a graphical overview of the approach.

Figure 7. Process of stacking different results coming from different neural networks. Grey squares represent inputs, while
yellow, orange, red, and purple squares denote outputs for each model denoted by corresponding triplet (I, O, F). Last line
outlines final output, concatenation of all different contributes.

Even in this case, an explorative grid search was carried out to discover the best set of
parameters. The loss used was Mean Absolute Error (MAE), the optimizer Adam with a
learning rate equal to 10−3 and the activation function was the ReLU. The hyperparameter
tuning was set on the following factors:

• LSTM and GRU

– Layer Hidden Size - hidden_size ∈ {64, 128, 256}
– Number of Layers - n ∈ {1, 2, 3}
– Dropout Rate - dr ∈ {0.1, 0.3}

• WaveNet
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– Layer Hidden Size - hidden_size ∈ {64, 128, 256}
– Dropout Rate - dr ∈ {0.1, 0.3}

with dr standing for dropout rate. The number of hidden layers in the WaveNet architecture
was not the object of the grid search because the dilation rate set of the convolutions was
fixed to {1, 2, 4, 8, 16, 32}.

The results are shown in Table 2. At first glance, LSTM achieves the best results in
most of the architectures shown. However, the differences among the best loss reached
for each architecture are in most cases negligible. In addition to this element, another
factor that has to be taken into account in the evaluation of these modules is that CNNs
like WaveNet are faster than RNNs in the training phase, while GRU has faster training
than LSTM.

Table 2. Best Mean Absolute Error (MAE) reached in different grid searches.

Architecture (20, 1, 1) (20, 10, 10) (60, 30, 30) (120, 60, 60)

LSTM 0.11502 0.15777 0.24711 0.34303
GRU 0.11405 0.18512 0.26997 0.34971

WaveNet 0.12145 0.15497 0.25024 0.35345

Given the fact that the differences among the losses are in most cases negligible and
that CNNs are generally faster than RNNs in training, the WaveNet architecture was
selected as the most suitable one for the experiments.

Figure 8 provides an example of results reported by asking recurrently the infer-
ence of the trained WaveNet (20, 1, 1) on a test data window with consecutive values of
solar irradiance.

Figure 8. An example of performance of the WaveNet (20, 1, 1) architecture on a test data window.
These data represent solar irradiance of a single day predicted by iteratively taking into consideration
rolling input data and using output to predict a single future value.

4.2. Load Consumption

Real energy consumption data were used in the present work to develop, train, and
validate the proposed holistic forecasting and control methodology. The data come from a
commercial customer connected to the Medium Voltage (MV), and its pattern is shown in
Figure 9 over two consecutive years.

Main factors impacting on load (e.g., number of booked clients) are not available to
the forecast model development, and therefore a direct correlation could be obtained from
the recent evolution. Therefore, a recurrent model may fit this problem efficiently. Data
properties of interest are identified as power, energy, and ambient temperature in different
windows. Input data can be representations of power for the time slot in question in few
past days:

FI = {aik| k ∈ K} (1)
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and total energy consumed in those days:

FI I =

{−i(1+k)

∑
j=−ik+1

aj

∣∣∣∣∣ k ∈ K
}

(2)

with n = 24 and a = S (kVA). Also, ambient state variable such as temperature with n = 1,
a = T (◦C):

FI I I = aik
{

k
∣∣∈ {t+ − 2, t+ − 1, t+, t+ + 1

}}
(3)

(a) (b)
Figure 9. Commercial customers’ load consumption over 2 consecutive years. (a) Load consumption
in 2018. (b) Load consumption in 2019.

The i is the sampling step size, e.g., i = 24 in an hourly discretized dataset would
mean state in the same hour one day before, and can be different for each feature. The set
K consists of {0, 1, 2 . . . , t−} where t− is the lookback step. Temperature input is based on
forecast data from 3rd party service, and in practice is not a representation from the past as
t+ represents the time shift or output step. The sampling number per variable can differ
among them, and in that case for sake of matrix rendering, it is necessary to fill the lowest
important steps (most distant ones) with the latest values but not zeros. The presented
modeling is applied to load forecast for the t+ ≥ 1(h) window, while for t+ < 1(h) the
forecast modeling comes from a recurrence approach similar to renewable generation
forecast, with homogeneous samplings. Furthermore, input/output overwriting the near
future forecast with relevant model follows the same logic reported in the renewable
forecast section and Figures 6 and 7. Input data are normalized according to Z score
transformation following z = x−µ(x)µ(x)µ(x)

σ(x)σ(x)σ(x) , and architecture of the Load Forecasting ANN is
composed of 2 hidden GRU layer with 32 and 64 neuron each, dropout of 0.2 at each layer,
and ReLU as activation function. The output layer is implemented without – known also
as Identity activation function.

The power consumption patterns are learned from presented recurrent networks as
can be seen in Figure 10.

As one can see, in the example of 24 h models, forecasts are relatively acceptable except
in transition seasons of consumption. Such errors are handled by the lower granularity
models, and in fact, final results for the optimization module get already adjusted in
real-time.

The overall performance of the Load Forecasting with the presented architecture is
measured as MAE and it hits 0.133 and 0.0914 for 24 and 1 h ahead forecast, respectively.
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(a) (b)

(c) (d)
Figure 10. 24 h ahead load forecasting in transition and high season. (a) Middle of high season.
(b) Middle of high season. (c) Transition from high season. (d) Transition to high season.

5. Optimization-Based Control

The optimization-based control approach designed in this work considers the detailed
price-related parameters of localized networks, as well as the technical specificity of hybrid
inverter systems.

5.1. Price-Related Parameters

The electricity cost structure in the case study is composed of Q = 5 items:

1. Base energy item: hourly energy cost with two-timing slots t ∈ T1 and t ∈ T2, and
corresponding tariffs called Competitive Energy Tariffs (CET), namely λCETS1 , λCETS2 .

CI = ∑
t∈T1

Et × λCETS1+ ∑
t∈T2

Et × λCETS2 (4)

2. Base power item: charge being activated for certain time slots (TCPT) and applied to
the peak power St in that time-slot, called Competitive Power Tariffs (CPT). Where
t ∈ TCPT is the time slot between 7 a.m. and 11 p.m. on working days.

CI I = max
t∈TCPT

St × λCPT (5)

3. TSO Charge Power: or so-called Regulatory TSO Charge Power (TSOP) applied to
the power term St for a certain slot of time t ∈ TTSO, as a regulatory charge λTSO for
using the infrastructure of the transmission network.

CI I I = max
t∈TTSO

St × λTSO (6)

4. DSO Charge Power: or so-called Regulatory DSO Charge Power (DSOP) applied to
the power term St for a certain slot of time (t ∈ TDSO), as a regulatory charges λDSO
for using the infrastructure of the distribution network.
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CIV = max
t∈TDSO

St × λDSO (7)

5. DSO Charge Energy: or so-called Regulatory DSO Charge Energy (DSOE) applied
to the energy term Et for a certain slot of time (t ∈ T1), as a sort of regulatory charges
λDSOE for using the infrastructure of the distribution network. Time slots coincide
with the same as in first item.

CV = ∑
t∈T1

Et × λDSOE (8)

The time slots are enclosed in daily frames, and thus do not carry values among days
(however, energy does carry quantities along days, so to solve the problem, the horizon
gets extended, as will be explained in the optimization section), and these terms make up
the final payment charge, in monthly fashions.

C =
Q

∑
i=1

Ci (9)

This objective function is directly affected by the applied tariffs. Figure 11 presents
these contributions under various circumstances (different days and seasons, various levels
of power generation and consumption); item II outweighs other terms due to its heavy
payment charge.

Figure 11. Total charge contributions.

5.2. Localized Control Considerations

Classic control approach of flexible components, often established by the manufactur-
ers as the default operation mode, might be following simple dummy/hysteresis/greedy
decision process, based on local measurement of few variables for current time step and
considering next clock action. This could be sufficient for some cases but could reduce
the overall return of a flexibility system in others. In this case study, such control would
even penalize the cost function, due to nonlinearity, as can be seen in Figure 12, where the
horizontal axis represents the integrated portion of total load in the control process (say
hybrid inverter’s load interface) and the vertical axis shows the relative difference between
the total cost in cases with and without the storage system. The extreme case would raise
the total cost by more than 15%, while in some cases can reduce it to 5%.

The intuitive reason is simply that energy consumption does not make up the main
payment quote but the Base power item, which is active in midday (high photovoltaics
production), and based on how much consumption is flown through local measurement
point (in other words how the assets are configured according to the scheme shown in
Figure 13), the dummy control would store the power rather than release it to the rest of
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the system which is a reference to total energy cost, as a whole. That said, a control method
with a global vision is necessary.

Figure 12. The impact of Dummy Charging on the total cost. It presents the simulations of numerous
scenarios considering various environmental conditions and load profiles, for different level of load
passing through control reference point (hybrid inverter) in case of dummy charging (represented by
the points in the background), and the second-order interpolation of the obtained results in terms of
relative cost versus no-battery case.

Figure 13. Global and local vision for control system.

Implementation of such necessity normally requires bypassing local control—run
as inverter’s firmware—with notable sampling frequency and use external set-points
via available interface, e.g., Modbus [42]. However, it is of importance to consider this
approach makes the local control system blind, hence an accurate logic must be in place to
cope with quasireal-time noises.

Advanced control methods group a wider range of variables enabling time-domain
applications to handle the energy flow optimally for determined time horizons. Such an
application could be highly relying on forecasts of state variables along considered time
window, which might be uncontrollable loads, intermittent RES generation, dynamic prices
if applied, etc. The latter mentioned time-series variables contain a higher range of variation
as the aggregation level decreases. Although the optimization module was designed as a
generic algorithm, the focus in the specific use case is to minimize energy cost subjected to
a complex and non-convex formula with time-based elements as presented in Section 5.1.

5.3. Proposed Method

The optimization process responds to the relevant forecast submodule, meaning
that for the H hours ahead battery system scheduling, an evolutionary method—namely
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Ant Colony Optimisation (ACO)— solves the problems, as it can return the results in a
reasonable calculation time. In the following sections, an implementation of the classic
ACO approach for battery system management is described, and furthermore, an extension
is presented to accelerate calculations. Thereafter, the used Greedy logic for near steps
ahead (corrective submodule) is reported.

5.3.1. ACO for Smart Storage System Management

The scheduling problem along the considered time horizon H and the total number of
modulation steps M could be managed as a discrete search space with the size of M× H,
rendered as a matrix with certain adjacency meaning. Let’s create such a matrix as proba-
bility distribution (pheromone) matrix and denote it by χχχ, initialized with identical nonzero
values. Pheromone matrix indicates possible best routes at each step, from each state.

It is of major importance to set up appropriate Depth of Discharge (DoD) to guarantee
efficient lifespan for battery cells [43]. This consideration is in tune with global constraints
such as State of Charge (SoC), maximum (SoCmax) and minimum (SoCmin) values. Arrange-
ment of battery cells and corresponding power converter impose maximum power limit in
charge and discharge states, ∆E+

max and ∆E−max, respectively. The latter two variables plus
the capacity of the battery Emax define the physical system’s constraints.

Power modulation steps can be defined as the following:

p =
{

r : r = ∆E−max + ∆Emin × j , j ∈ xxx | r ≤ Emax} (10)

where minimum discretized power modulation is set to ∆Emin by problem definition. In
fact, often ∆Emin is the known variable hence M will be determined accordingly. Auxiliary
index vector for modulations, xxx = {1, 2, . . . , M} will be used for sake of clarity.

Time axis (matrix columns), is defined similarly with selected minimum step size h,
from Non-negative Natural Numbers N0 (including zero):

t = {c : c = h× j | j ∈ N0, j ≤ H} (11)

Generic ACO search basically follows the following steps:

1. From certain state S0, a group of artificial ants with a population of NA individuals
start exploring the search space towards the end of a single path, according to the
pheromones left on the route, but also the quality of next states. This forms a single
solution.

2. Evaluation of the found solution and associate it with a pheromone level, to be left on
the path.

3. Add the pheromone which is directly proportional with solution goodness on the
traveled path.

4. Apply evaporation rule, to balance the chances to select other routes, to avoid getting
stuck in local optima.

5. Repeating step 1 until a stop criterion is met.

For the current problem, the states can be considered as storage SoC or power mod-
ulation level along time horizon, to generate arbitrary solutions and evaluate them. The
latter one is implemented in the present work. The search path starts in accordance with
the SoC0 and proceeds respecting local constraints, at each time step:

− p(Dmax)
t ≤ pt ≤ p(Cmax)

t (12)

where maximum charge and discharge power modulation at step t, p(Cmax)
t and p(Dmax)

t
respectively are defined as follows:

p(Dmax)
t = SoCt−1 −max (SoCmin, SoCt−1 − ∆E−max) (13)

p(Cmax)
t = min (SoCmax, SoCt−1 + ∆E+

max)− SoCt−1 (14)
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This defines available selections (next states) for the time step t as follows:

S =
{

s ∈ x| p(Dmax)
t ≤ s ≤ p(Cmax)

t

}
(15)

Thereafter, the pheromone level for these states together with their quality is being
used for making a selection for the current state. Selected states are stored in a temporary
vector, and SoCt will be updated according to the selection made:

SoCt = SoCt−1 + pt × ηsgn(pt) (16)

η is defined as the storage system overall efficiency. After each artificial ant finished
its route with a predefined length, a single solution in terms of power is formed and can be
evaluated by applying it to the predicted (aggregated) load profile.

An additional term can be used to control storage system usage, given that in some
time slots battery storage could be charging and then discharging with no impact on the
objective function. The additional term can make up a usage cost for storage; thus if no
benefit is gained, it remains in idle state or last state, rather than completing the cycles
when not necessary. One approach being tried is to add the following as storage usage cost
to the overall term:

λb =


√√√√ 1

H

H

∑
t=0

δ
(j)
t − µ(j)

2

(17)

where δ
(j)
t is representing the first derivative of power modulation along the time axis for

the solution j, and the µ(j) is the average value of the latter expression.
Another approach is to include the cost of battery usage directly in the probability

distribution formula used for selecting the next action in the classic ACO method:

Ps,t =
τα

i,t × Kβ
i,t

∑i∈S(τ
α
i,t × Kβ

i,t)
(18)

The τs,t represents the pheromone matrix’ element for transient from state t− 1 to t,
for a certain state s. The Ks,t indicated the quality of state s at step t. This quality is assigned
to the battery usage cost, and it is simply set to:

Ks,t =

{
1
ν! , s = 0

1
(ν+1)! , otherwise

(19)

With ν as an arbitrary constant. The exponents α and β weigh two terms in overall
expression. In the current application, clearly, the first term related to pheromone must be
dominant. The st, next state of storage therefore is selected according to the considered
probability distribution PS,t.

Due to the introduction of the battery usage cost term, it is important to extend the
solving horizon, simply because the optimization solver would take advantage of low price
after peak hours if it made a better return.

Given the nonlinearity of the problem, pheromone level calculation needs rather to
complete a single path or so-called solution φ(j), then evaluating it keeping the baseline
cost C∗ (i.e., the cost calculated on the basis of forecasts, in absence of flexibility) as a
benchmark reference, and this obtains directly pheromone level:

τ
(j)
s,t =

{
lr(C∗ − Cφ(j)), C∗ > Cφ(j)

0, otherwise
(20)

The lr stands for an arbitrary rate for updates, that can be estimated initially, then
optimized with a couple of iterations-inspections.
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The φ(j) is obtained by first applying the solution found to the non-controllable state
variables i.e., apparent power consumption and generation, both as predicted time series,
then calculating through the same cost equations C. In practice, the process is divided into
several epochs NE; at each, NA ants explore the search space without updating pheromones.
Instead, they deposit that pheromone on an auxiliary matrix χχχepoch, which then would be
used to update the pheromone matrix χχχ.

χχχepoch =
NA

∑
j=1

τ
(j)
s,t (21)

Evaporation emulation is basically applied by the following:

χχχ = (1− ρ)χχχ + χχχepoch (22)

These parameters of the calculation such as NE, NA, ρ, lr could be selected based
on the complexity of the problem, calculation time requirements and required accuracy.
The above model due to its simplicity can provide acceptable results for a problem with
moderate search space. As the problem becomes more complex, for instance in the case
of high granularity of power modulation, search space grows and selection of parameters
becomes critical. In the following, we attempt to bear simple extensions to the current core
algorithm, to make it more generalized and efficient, and also faster.

5.3.2. Extended ACO for Smart Storage System Management

In a relatively wide search space which originally maps continuous functions (where
the adjacent elements of the matrix are not physically decoupled), it is possible to apply
cross-correlation to functions to make the calculation more efficient. In the current ACO
problem, it can be interpreted as gradient-propagation of the pheromones within a cer-
tain range of visited paths, to overcome the need for more artificial ants in case of big
search space.

Also, generalizing the method by using standard functions, may render problem
solving less dependent on set-up parameters. Defining a function such as tanh (ψ) or
f (ψ) = [ψ < 0]

(
α f ψ

)
+ [ψ ≥ 0](ψ) (known also Leaky Rectified Linear Units [44]) would

plug negative values to the cost function and thus to the final score as a penalty factor, in
case φ(s) is worsening the objective function with respect to the baseline benchmark.

Therefore:

τ
(j)
s,t =

{
lr(C∗ − Cφ(s)), C∗ > Cφ(s)

α f lr(C∗ − Cφ(s)), otherwise
(23)

with α f < 1. Using the same process each solution deposits the pheromones on a temporary

(search space) matrix χχχepoch ← τ
(j)
s,t . By the end of an epoch, cross-correlation, also known

as discrete convolution—with the difference that convolution operator g is not an impulse
function but an arbitrary filter signal [45]—is applied to the τepoch. This operation can be
either in a 1D or 2D spatial frame, based on the specific problem and physical continuity
logic among search space locus.

ΓΓΓ[s, t] = χχχepoch[s, t] ∗ g[s, t] =
H+P

∑
j=−P

M+P

∑
i=−P

χχχepoch[i, j].g[s− i][t− j] (24)

where g is the arbitrary function, defined according to experiments’ results. Here, for
instance, it is set to as all ones matrix g = J(π). Next, the simulated evaporation will be
arbitrary (based on problem) since the cross-correlation would give the same impact, and
then update the pheromone matrix.

χχχ = (1− ρ)χχχ + ΓΓΓ (25)
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Parameter P represents the zero-padding dimension which in turn, depends on filter
operator π, by P = (π − 1)/2. The filter is a square matrix so padding is the same for
both dimensions.

As a result of applying cross-correlation to the pheromone matrix, exploration out-
comes spread to neighbor’s path, even with limited artificial ants and big search space, as
can be perceived from Figure 14. In some cases, this will benefit the objective function as
can be seen in Figure 15.

The resulting matrix can be directly exploited for decision making as a probability
distribution function, which can cope with uncertainties, in such a way that for forthcoming
events decision maker system can adjust the best decision in between a certain range of
actions while implicitly respecting distant benefits. Alternative case of this work is to use
the maximum probability values from each state in a deterministic way.

Figure 14. Pheromone matrix (left). Pheromone matrix applied cross-correlation (right).

Figure 15. Cost function normalized through iterations.

5.3.3. Greedy Logic

The Greedy function will be activated for forthcoming state St+1, and it is called only
as a consequence of close future forecast sub-routine which in turn would be activated if
any non desired error occurred in the long-term forecast. Decision making in this stage can
be arbitrary based on the very specific definition of a problem. In this work it is considered
to be:

min
x∈S,u∈{0,1}

Ct+1 = CI I(x, u) + CI I I(x, u) + CIV(x, u) + δl
L x− δg

G x− sgn(x)− u ·ω

s.t. ∆E−max ≤ x ≤ ∆E+
max

SoCmin ≤ SoCt + x ≤ SoCmax
(26)

The decision variables x and u represent battery power and binary activation set-point
to the EV-charger station respectively. In the above cost expression, energy-related items
are omitted since the greedy decision could be valid, and thus affect only a fraction of
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hour and therefore peak power elements CI I , CI I I and CIV—which are a function of x and
u—are counted. Variable ω indicates EV-charging demand and term sgn(x) underlines
the value of keeping energy in the storage system. Terms δl and δg bring the load and
generation forecast error with respect to total measured load L and generation G.

5.3.4. Reactive Power Support

In most energy supply contracts, especially the commercial ones, the amount charged
for reactive power is not negligible, thus local compensation is important especially when
it comes to free cost [46]. According to the capability curve of the inverter, it is worth
considering a reactive power control, where the inverter only needs to get its DC-link
energized to offer VAr compensation by controlling the quadratic axis in the control
loop [47]. Formulating VAr compensation directly is related to the capability curve of the
inverter, however, in the current case study it is about a fully quadratic circle with radius
S*, thus it is reduced to Formula (27).

qCt = −1× sgn(qFt)×
√

S*2 − p2
Ct

(27)

and it is set as a Greedy subsequent decision following Active power calculation. qC and
qF represent the control for hybrid inverter and forecast reactive power respectively for
time-step t, while pC is the active power setpoint.

6. Conclusions

Research was conducted to identify the requirements for controlling a set of flexibility
assets—namely, electrochemical battery storage system and electric car charging station—
for a semicommercial use-case. The preliminary simulation and analysis indeed found that
if a control based on global vision were not in place, the storage system would increase
the monetary payment cost for the whole system. Drawing such a picture, the possibility
of external control was evaluated. Regarding the characteristics of the hybrid inverters
(with interfaces towards local load, RES, and feeding system), such an external control
should disable the default control logic and rather implement a control based on a time-
domain optimization. The optimization process itself is dependent on an accurate forecast,
which can either foresee RES generation and load consumption in the range of a couple
of days, while it can manage any unwanted errors in a rolling horizon fashion. Among
different methods, using artificial neural networks was promising and therefore, different
architecture and hyper-parameters are tested to deduce the best ones. In a chain of resource
management applications, optimizations based on Ant Colony Optimization and Greedy
methods are set to comply with the forecast module. The presented work is planned to be
fully deployed in the field device with enabling ICT supports. For the next step, the results
of monitoring overall system performance and robustness will be presented.
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27. Zinder, Y.; Ha Do, V.; Oğuz, C. Computational complexity of some scheduling problems with multiprocessor tasks. Discret.
Optim. 2005, 2, 391–408. [CrossRef]

28. Tisseur, R.; de Bosio, F.; Chicco, G.; Fantino, M.; Pastorelli, M. Optimal scheduling of distributed energy storage systems by
means of ACO algorithm. In Proceedings of the 2016 51st International Universities Power Engineering Conference (UPEC),
Coimbra, Portugal, 6–9 September 2016; pp. 1–6. [CrossRef]

29. Mirtaheri, H.; Bortoletto, A.; Fantino, M.; Mazza, A.; Marzband, M. Optimal Planning and Operation Scheduling of Battery
Storage Units in Distribution Systems. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6.
[CrossRef]

http://doi.org/10.1109/MPAE.2007.376583
http://dx.doi.org/10.1016/j.apenergy.2015.10.130
http://dx.doi.org/10.1109/ACCESS.2020.2989457
http://dx.doi.org/10.1016/j.rser.2015.04.081
http://dx.doi.org/10.1016/j.rser.2013.06.042
http://dx.doi.org/10.1016/j.ijpe.2014.06.016
http://dx.doi.org/10.1016/j.solener.2016.03.064
http://dx.doi.org/10.1016/j.egypro.2017.03.795
http://dx.doi.org/10.3390/en9020109
http://dx.doi.org/10.1007/s00521-016-2666-0
http://dx.doi.org/10.1561/2000000039
http://dx.doi.org/10.1016/j.renene.2020.03.169
http://dx.doi.org/10.1016/j.energy.2019.01.075
http://dx.doi.org/10.1016/j.jobe.2020.101629
http://dx.doi.org/10.1016/j.ijforecast.2015.11.011
http://dx.doi.org/10.1016/j.procs.2015.04.160
http://dx.doi.org/10.1016/j.aej.2011.01.015
http://dx.doi.org/10.1016/j.enpol.2018.04.060
http://dx.doi.org/10.1016/j.disopt.2005.08.001
http://dx.doi.org/10.1109/UPEC.2016.8114101
http://dx.doi.org/10.1109/PTC.2019.8810421


Energies 2021, 14, 7252 22 of 22

30. Mazza, A.; Mirtaheri, H.; Chicco, G.; Russo, A.; Fantino, M. Location and Sizing of Battery Energy Storage Units in Low Voltage
Distribution Networks. Energies 2020, 13, 52. [CrossRef]

31. Jeong, B.C.; Shin, D.H.; Im, J.B.; Park, J.Y.; Kim, Y.J. Implementation of optimal two-stage scheduling of energy storage system
based on big-data-driven forecasting—An actual case study in a campus microgrid. Energies 2019, 12, 1124. [CrossRef]

32. Tang, D.H.; Eghbal, D. Cost optimization of battery energy storage system size and cycling with residential solar photovoltaic.
In Proceedings of the 2017 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, Australia, 19–22
November 2017; pp. 1–6. [CrossRef]

33. Telaretti, E.; Ippolito, M.; Dusonchet, L. A Simple Operating Strategy of Small-Scale Battery Energy Storages for Energy Arbitrage
under Dynamic Pricing Tariffs. Energies 2016, 9, 12. [CrossRef]

34. Vedullapalli, D.T.; Hadidi, R.; Schroeder, B. Combined HVAC and Battery Scheduling for Demand Response in a Building. IEEE
Trans. Ind. Appl. 2019, 55, 7008–7014. [CrossRef]

35. Meindl, B.; Templ, M. Analysis of Commercial and Free and Open Source Solvers for the Cell Suppression Problem. Trans. Data
Privacy 2013, 6, 147–159.

36. Yang, Z.; Long, K.; You, P.; Chow, M.Y. Joint Scheduling of Large-Scale Appliances and Batteries Via Distributed Mixed
Optimization. IEEE Trans. Power Syst. 2015, 30, 2031–2040. [CrossRef]

37. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

38. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
39. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
40. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
41. Oord, A.V.D.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K.

Wavenet: A generative model for raw audio. arXiv 2016, arXiv:1609.03499.
42. Delgoshaei, P.; Freihaut, J.D. Development of a Control Platform for a Building-Scale Hybrid Solar PV-Natural Gas Microgrid.

Energies 2019, 12, 4202. [CrossRef]
43. Wikner, E.; Thiringer, T. Extending Battery Lifetime by Avoiding High SOC. Appl. Sci. 2018, 8, 1825. [CrossRef]
44. Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation Functions: Comparison of trends in Practice and Research for

Deep Learning. arXiv 2018, arXiv:1811.03378.
45. Wang, C. Kernel Learning For Visual Perception. Ph.D. Thesis, Nanyang Technological University, Singapore, 2019
46. Xu, G.; Zhang, B.; Yang, L.; Wang, Y. Active and Reactive Power Collaborative Optimization for Active Distribution Networks

Considering Bi-Directional V2G Behavior. Sustainability 2021, 13, 6489. [CrossRef]
47. Andrade, I.; Pena, R.; Blasco-Gimenez, R.; Riedemann, J.; Jara, W.; Pesce, C. An Active/Reactive Power Control Strategy for

Renewable Generation Systems. Electronics 2021, 10, 1061. [CrossRef]

http://dx.doi.org/10.3390/en13010052
http://dx.doi.org/10.3390/en12061124
http://dx.doi.org/10.1109/AUPEC.2017.8282386
http://dx.doi.org/10.3390/en9010012
http://dx.doi.org/10.1109/TIA.2019.2938481
http://dx.doi.org/10.1109/TPWRS.2014.2354071
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.3390/en12214202
http://dx.doi.org/10.3390/app8101825
http://dx.doi.org/10.3390/su13116489
http://dx.doi.org/10.3390/electronics10091061

