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Electricity production through renewable energy (RE) resources is globally empha-

sized nowadays for the achievement of a cleaner planet, but the intermittencies in

renewable power generation make its penetration a challenging task for researchers

and power industry. This thesis work proposes to alleviate the issues caused by

the uncertainty in renewable power plant output by developing accurate forecasting

models and utilizing these models to optimize the economic dispatch. The work

is performed in two phases; Firstly, forecasting models are developed for multi-

steps ahead wind prediction using intelligent methods merged with state-of-the-art

multi-step schemes. A new wind forecasting model based on functional network is

proposed which is a novel concept in the field of power systems engineering. The

proposed model is computationally light as compared to advanced hybrid forecast
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models and is shown to outperform the well-accepted neural network model as well

as the benchmark persistence model in terms of forecast accuracy. In the second

phase, an economic dispatch strategy is proposed for selling energy in an optimal

manner from a microgrid with wind generation and battery energy storage system

(BESS). Wind power and market price forecasts are incorporated in a receding

horizon optimization policy to maximize the running income and operational prof-

its of the wind-BESS microgrid. The utilization of accurate forecast information

not only enables a smooth RE power plant operation but also helps in determining

an optimal size of the BESS. It is also studied that the accuracy of power and

price forecasts has a significant impact on the improvement in income and prof-

its. In this way, this thesis work has twofold benefits, on one hand, it brings the

emerging ideas of artificial intelligence for technology advancement in the energy

sector, and on the other hand, it can facilitate economically viable and technically

feasible integration of RE resources into the electricity grid.
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 ملخص الرسالة

 دل أحمداع   الاسم الكامل:

 الطاقة المتجددة في الشبكات المصغرة توزيعنماذج التنبؤ ل   عنوان الرسالة: 

 الهندسة الكهربائية  التخصص: 

 ٢٠١٧ديسمبر   تاريخ الدرجة العلمية:

على الصعيد العالمي للحصول ( REعلى إنتاج الكهرباء من خلال مصادر الطاقة المتجددة ) هذه الأياميتم التأكيد في 

 لكن التقطعات في توليد الطاقة المتجددة تجعل من إدخالها مهمةً صعبةً للباحثين و قطاع الطاقة.على كوكبٍ أنظف، 

عن طريق تقترح هذه الأطروحة التخفيف من المشاكل الناجمة عن عدم اليقين في إنتاج محطة الطاقة المتجددة 

ؤ، و الاستفادة من هذه النماذج لتحسين التوزيع الاقتصادي. يتم تنفيذ العمل على مرحلتين: تطوير نماذج دقيقةٍ للتنب

أولاً، يتم تطوير نماذج التنبؤ لخطواتٍ متعددةٍ قبل التكهن بالرياح باستخدام أساليب ذكيةٍ مدمجةٍ مع المخططات 

مد على الشبكة الوظيفية، و هذا مفهومٌ جديدٌ في نموذجٍ جديدٍ للتنبؤ بالرياح يعتمتعددة الخطوة المتطورة. تم اقتراح 

مجال هندسة أنظمة الطاقة. النموذج المقترح سلسٌ حسابياً بالمقارنة مع نماذج التنبؤ الهجينة المتقدمة، و يتضح أن 

قة بالإضافة إلى نموذج الثبات المرجعيّ من حيث دأداءه يتفوق على نموذج الشبكةٍ العصبيةٍ المقبولة بشكلٍ جيدٍ 

بأسلوبٍ أمثل من شبكةٍ مصغرةٍ بإنتاج في المرحلة الثانية، يتم اقترح استراتيجية توزيعٍ اقتصاديٍّ لبيع الطاقة  التنبؤ.

من طاقة الرياح و سعر السوق في  توقعات كلٍ  يتم تضمين. (BESS)طاقة الرياح و نظام تخزين طاقة البطارية 

-سياسة تحسين الأفق المنحسر لتحقيق أعلى دخل تشغيلٍ و أرباحٍ تشغيليةٍ من الشبكة المصغرة ذات نظام الرياح

لا يمكّن فقط من تشغيلٍ سلسٍ لمحطة الطاقة المتجددة، بل يساعد أيضاً البطارية. إن استخدام معلومات التنبؤ الدقيقة 

لها تأثيرٌ كبيرٌ على  الطاقة و السعرتوقعات أن دقة  من التحقق. كما تم أيضاً BESSالأمثل لنظام  في تحديد الحجم

تحسين الدخل و الأرباح. و بذلك، فإن لهذه الرسالة فوائد مزدوجةً. من ناحيةٍ، فهي تجلب الأفكار الناشئة عن الذكاء 

المجدي اقتصادياًّ  –من أجل التقدم التقنيّ في قطاع الطاقة. و من الناحية الأخرى، فإنها تسهّل من الدمج  الاصطناعي

 لمصادر الطاقة المتجددة في شبكة الكهرباء.  –و القابل للتطبيق تقنيّاً 

xvi



CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Today, climate change is a huge area of concern for humanity and the major

cause of this climate change is the excessive emission of carbon dioxide (CO2) or

greenhouse gases [1]. According to a report of the National Energy Technology

Laboratory, USA, electricity production through fossil fuels is the largest source

of greenhouse emissions all around the globe, contributing to more than 70% of

the stationary CO2 emitting sources. Moreover, the emerging fuel crisis in many

regions of the world especially the Kingdom of Saudi Arabia is becoming a nuisance

for the economy of these countries. Hence the reduction of fossil fuel dependency

is vital for the environmental health of society and the economic growth of future

generations [2].

All these social and economic reasons need revamping the structure of con-

ventional power systems to utilize all forms of energy for power systems. Hence
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the generation of electric power from clean and Renewable Energy (RE) sources

is much emphasized and is listed as the top priority of the future roadmap of

the Kingdom of Saudi Arabia as well. In the light of Vision 2030, the aim is to

generate 9.5 GW of electricity from renewable resources [3]. However, to harness

these resources on a large scale, numerous barriers still need to be overcome by

the researchers and industry [4, 5]. This poses a major challenge for research com-

munity to contribute innovatively and impactfully in this emerging field. Hence

a cost-effective integration of renewable power into the existing network with op-

timum utilization of resources is the main motivating factor behind this research

work.

One of the most swiftly growing RE technology is wind power, due to its

affordability and promise of environment preservation [6, 7]. Wind energy is well-

promoted throughout the world and according to Global Wind Energy Council

(GWEC), it is expected to contribute up to 19% of the global power capacity by

2030 [8]. The bottleneck of large scale penetration of these RE sources into the

main electrical grid is their intermittent and stochastic behavior. Many technical

issues are posed into the power system by the introduction of these RE sources

[9]. The most significant of these involve reliability assessment, power quality

problems, generation planning, storage system capacity estimation, optimal eco-

nomic dispatch etc [10, 11]. Researchers have made numerous efforts to mitigate

the effect of these problems in microgrids. The proficient ways to address these

problems are accurate renewable power forecasting, integration of Energy Stor-
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age System (ESS) in the electricity network and development of efficient power

dispatch strategies for cost minimization [12, 13, 14, 15].

The need of forecasting arises because the irregularities in renewable power

arise due the irregular behavior of their natural source of energy [16]. The pre-

diction of these natural resources is necessary in order to correctly predict the

power output of a renewable power plant. For example, a fractional error in wind

speed forecast leads to a large power output deviation, hence accurate wind speed

prediction is substantial for optimal integration of wind power into the main elec-

tricity grid [17]. A lot of research work is being done in this area and special

attention is required in short term forecasting up to few hours ahead because

it has great significance in a microgrid environment based on renewable energy

for planning a profitable power dispatch strategy, assessing system reliability and

ensuring optimal utilization of resources [18, 19].

The development and optimization of efficient ESSs is a thriving research topic.

Several ESS technologies are available nowadays but their affordability is still an

area of concern (see, e.g., [20] and references therein). Among them, Battery

Energy Storage System (BESS) is considered as one of the most promising choice.

The working principle of a BESS is found on storing surplus energy in the periods

of excess energy production as compared to the demand and feeding power back

to the grid when needed. Determining optimal BESS capacity, however, is a

challenging task due to highly stochastic nature of wind power [21, 22]. However,

by taking advantage of accurate forecast information related to renewable power

3



(both wind and solar) can surely improve the optimization outcomes for operation

and sizing of a BESS.

From the planning aspect of an electric power system, optimal Economic Dis-

patch (ED) plays a vital role. While devising an efficient ED strategy, the main

aim is to provide the load demand and minimize the operating costs. This can be

done by appropriate scheduling of the available generating units so as to optimize

the microgrid operation, on the condition that all the system limitations and con-

straints are furnished. The optimal operation of a microgrid can be attained in

various dimensions. These dimensions include efficient unit commitment schedul-

ing, effective economic/environmental dispatch, optimal sizing of energy storage

and profit maximization through resourceful grid interaction [23, 24]. This makes

dispatch problem a large-scale highly constrained nonlinear optimization problem.

Development of optimal ED algorithms has been an active area of research in the

past years. Traditionally, several linear, nonlinear and mixed integer iterative

optimization techniques have been used to solve this complex optimization prob-

lem. However, recent trends indicate two directions in this domain; first, the use

of biologically-inspired heuristic optimization schemes and second, forecast-based

predictive dispatch strategies such as Model Predictive Control (MPC) framework

[25, 26].

The proposed work attempts to optimize the operation of RE power system

using forecast-based energy management and dispatch strategies. In this regard,

the work is divided into two phases; First, accurate forecasting models are devel-

4



oped with emphasis on wind energy. This is because forecasting of wind speed is

considered as the most challenging problem due to the highly intermittent nature

of wind with no clear seasonal/diurnal trends, as opposed to solar irradiance. In

accordance with recent trends, latest Artificial Intelligence (AI) schemes optimized

through heuristic techniques were probed. However, a novel forecast model has

been proposed based on a relatively new AI architecture called functional network

(FN). The performance of the proposed model is compared with existing standard

models in terms of forecast accuracy.

The second phase of the work focuses on the development of forecast-based

economic dispatch schemes and the analysis of forecast error on cost factors. These

algorithms will be based on predictive dispatch framework that is able to effec-

tively handle forecasting information from the developed models. In addition to

RE resource forecasting, load and market price forecasting information will also

be utilized in such framework to extend the problem for profit maximization in

a grid-connected environment. The concept of using forecast information from

real-world innovative forecasting models for viable economic dispatch is not well-

researched yet and there is a lot of room for contribution in this emerging field.

This outlines the main goal of this research work and makes it a fervent effort

toward the contribution for renewable energy technology progress in the world for

the welfare of the society and future generations.
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1.2 Problem Description

The optimization of microgrid operation can be performed by using accurate re-

newable power forecasting information in the process of economic dispatch. How-

ever, most of the works in literature address the forecasting problem and the

efficient economic dispatch problem independently. The former problem is dealt

by only developing forecasting models and assessing their forecast accuracies while

the latter focuses on the dispatch optimization problem and uses some assumption

about forecast error or a pre-developed forecasting model [27]. Nowadays, the in-

tegration of both these domains is a trending phenomenon in the manner that the

impact of forecast error models is studied on the economic variables of the power

system. The proposed work also aims at not only developing novel multi-step fore-

cast models but also studying the interconnection of accurate power forecasting

with profitable economic dispatch.

To achieve this, a microgrid (MG) model with renewable energy sources and

Battery Energy Storage System (BESS) is proposed. Figure 1.1 depicts the pro-

posed system with a control and dispatch system at its heart. This dispatch

system is based on Model Predictive Control (MPC) because of its ability to ef-

fectively handle complex nonlinear constrained optimization problems. The MG

model is fitted with renewable generation units and a BESS to cater for their

intermittencies. The proposed system supplies its own uncontrollable loads and

is connected to the grid as well. The main aim of this system is to minimize the

operating costs, nonetheless, it can operate in a deregulated market environment

6



Figure 1.1: Proposed Microgrid System Model.

to communicate with the energy market efficiently in order to maximize income

and profits.

The other important aspect of the proposed microgrid system is the forecasting

engine. This forecasting engine is the main contribution of this thesis work and

it consists of accurate and innovative forecasting models . These models are able

to produce accurate forecasts for wind and solar PV power as well as load and

market pricing for multi-steps ahead in future. Nonetheless, in the scope of the

work, they are only used for wind speed, power and energy price forecasting.

The thesis work aims at assessing the forecast accuracy of the developed models

using standard procedures, benchmarks and indices. Hence our proposed problem

formulation will be able to incorporate the forecast errors’ information obtained

from self-developed accurate forecasting models. This will allow us to study the

impact of forecasting errors on the economy of the power system directly.
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According to the proposed microgrid model, the work is divided into two major

phases:

� Development of accurate and innovative forecasting models along with their

assessment.

� Development of forecast-based economic dispatch algorithms and their sensi-

tivity analysis with forecasting information.

The development of accurate forecast models is much emphasized in the pro-

posed work due to the emerging concept of using forecast error information in

optimizing the dispatch process [28]. This idea is well-accepted in recent litera-

ture as it not only makes the system emulations more realistic but can also help

in reducing the operating costs, optimizing the reserve size and maximizing the

operational profits of power system [9, 17]. This kind of system has great impli-

cations for competitive electricity markets as well for the profit of power system

owners and overall social welfare [29].

1.3 Research Objectives

The main objective of the thesis work is to facilitate the cost-effective integration

of renewable energy sources (especially wind energy) into electricity grid. In the

light of the discussion until now, and the literature review presented in Chapter

2, this can be accomplished by completing the following sub-objectives:
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� To develop innovative forecasting models for wind power prediction and eval-

uate their forecast accuracy.

� To develop multi-step forecasting mechanisms, integrate them with the devel-

oped models and assess the performance for a given forecast horizon.

� To develop forecast-based economic dispatch algorithms using the developed

forecast models and battery energy storage system.

� To quantify the impact of power and energy price forecasting information on

economic dispatch problems.

1.4 Research Methodology

Task 1: Literature Survey - The literature is surveyed extensively with a

focus on recent techniques for relevant topics including renewable energy fore-

casting, control and dispatch algorithms and utilization of forecasting models into

dispatch. In this way, recent trends in the field are identified along with the missing

links, i.e., the co-ordination between forecasting models and dispatch algorithms.

Task 2: Data Collection - Real-world solar, wind, market price and load data

is gathered from reliable sources and processed for conversion in a meaningful

form. This data is then used for case studies in order to evaluate the performance

of the developed models and algorithms. Thus, the obtained results have practical

value for application in a realistic environment.
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Task 3: Development of Forecasting Models for Wind Prediction -

Forecasting models for wind predictions based on machine learning techniques

are developed and evaluated for accuracy in terms of standard error indices. Var-

ious advanced AI models are developed and evaluated including ANN and SVM.

The results of different learning algorithms including evolutionary optimization

methods like PSO are also obtained. However, keeping in view the computational

burden against the accuracy improvement, an ANN based model is finally selected

as a base forecast model. The major contribution of this thesis work is the dis-

covery and development of a novel wind forecasting model based on a relatively

new AI paradigm, called Functional network (FN). The performance of the pro-

posed FN model is then compared with the base model as well the benchmark.

Both ANN and FN based forecast models are then utilized for the next steps in

economic dispatch.

Task 4: Development and Integration of Multi-Step Forecasting Mech-

anisms - The second most important contribution of this work is the develop-

ment of multi-step forecasting (MSF) mechanisms and their integration with the

developed wind forecasting models for assessment. Three MSF schemes, namely

recursive, direct, and DirRec are used throughout the work. The pros and cons

of each scheme are analyzed in detail.

Task 5: Development of Forecast-Based Dispatch Algorithms - Once

the forecasting models are developed for wind power and energy market price, con-
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trol and dispatch algorithms ares developed that can effectually incorporate the

forecasting information. The most suitable choice for this type of mechanism is

the receding horizon approach based on Model Predictive Control (MPC) theory.

The proposed dispatch system operates in the microgrid environment proposed

in Figure 1.1. The control and dispatch framework is operated using deregulated

market operating conditions as it incorporated six steps ahead forecasting of wind

power and energy market price. The main optimization objective is the maxi-

mization of income and operational profit by selling optimum amount of energy

while satisfying all system constraints. The developed mechanism also aids in

determining the optimal size of the energy storage system.

Task 6: Analysis of Forecast Error on Dispatch - Once the proposed

economic dispatch framework is established, the impact of forecast error can be

analyzed and the expected outcome will be quantified in terms of system costs

and operational profits. Multiple scenarios can be developed in this analysis,

such as investigating the system costs with perfect forecast and with simulated

and real forecast errors. Also, the results from developed forecast models and

benchmark forecast models can also be compared to gauge the improvement of

accurate forecasts on overall system economics.
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1.5 Organization of the Thesis

The last part of Chapter 1 describes the organization of the thesis. Chapter 1 was

all about background and motivation, defining the problem, stating the objectives

and the proposed research methodologies to achieve those objectives. Chapter 2

presents a detailed survey of the literature for relevant topics. The survey is

mainly divided into two parts; The first part covers the forecasting of renewable

energy and the existing techniques as well as the introduction and application

of the proposed methods. The second part mainly deals with the recent trends

in power dispatch algorithms and forecast-based energy management strategies.

Chapter 3, 4 and 5 contain the main research work that has been conducted for the

thesis. Chapter 3 starts with the basics needed to develop a framework for wind

forecasting. These include the development of ANN base model, the development

and integration of MSF schemes and wind power calculation. The tools and

databases needed for future case studies are also introduced in this chapter. The

last section discusses the results for single step as well as multi-step forecasting

with the ANN models using the selected MSF schemes. Chapter 4 is dedicated

to the most innovative part of the thesis work, i.e., the development of MSF

model using FNs. The chapter begins with an overview of FN, then describes the

development of the proposed MSF model step-by-step, and finally elaborates the

results of MSF schemes with FN as well the comparison of FN model with ANN

model as well on the basis of the same case studies. Chapter 5 encompasses the

utilization of the forecasting information in economic dispatch and its implications.
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The chapter starts by describing the methodology for dispatch, including the

problem formulation based on the MPC receding horizon principle. Then the

results of the application of real-time prediction models are presented. Finally, the

detailed analysis of forecast error information on the economic outcomes of power

dispatch is conducted under various scenarios. The thesis is finished with the last

Chapter 6 containing the concluding remarks and future recommendations.
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CHAPTER 2

LITERATURE REVIEW

This research work proposes to facilitate the optimal integration of renewable

energy (RE) resources in a microgrid through efficient control and dispatch algo-

rithms based on the forecasted future information of certain inputs such as power,

load and energy price. To achieve this goal, accurate and novel forecasting mod-

els are developed and their role in wind farm control and dispatch framework is

investigated. Accordingly, the literature review is divided into two main sections.

Section 1 deals with recent methodologies for renewable power forecasting while

Section 2 surveys recent trends in power dispatch algorithms and forecast-based

energy management strategies.

2.1 Forecasting Models

This section comprises of discussion on recent schemes for renewable energy fore-

casting from literature with focus on wind energy. The emerging trends in this

domain including artificial intelligence (AI) based forecasting models are consid-
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ered in detail while time series multi-step forecasting (MSF) mechanisms are also

surveyed. In the end,we take a glance at the existing applications of functional

network (FN), the technique behind the proposed forecasting models.

2.1.1 Renewable Energy Forecasting

One of the most useful, low cost and environment friendly renewable energy (RE)

resource is wind, which is henceforth well-promoted by researchers and policy mak-

ers alike [16]. At the same time, it is considered as one of the most challenging

to deal with due to the stochastic nature of wind that introduces many difficul-

ties in power generation [7]. The forecasting of this highly intermittent source

of energy is hence selected as a main goal of this thesis work. A fractional error

in wind speed forecast leads to a large power output deviation, hence accurate

wind speed prediction is substantial for optimal integration of wind power into

the main electricity grid [6, 30]. These power forecasts are typically performed

for multi steps ahead in control and dispatch framework. This kind of mechanism

has wide application in time varying competitive energy markets, where the fore-

cast accuracy plays a major role with regard to the economy and reliability of a

renewable power plant [31, 32].

Due to its utmost significance, wind forecasting has been an area of keen

interest for researchers over the past few decades. With respect to prediction time

horizon, it can be generally divided into four categories, usually known as ultra-

short term, short term, medium term and long term prediction [33]. In literature,
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the problem of wind speed forecasting has been tackled from various dimensions,

spanning from physics (numerical weather predictions) to mathematics (statistical

and probabilistic) to machine learning or a hybrid of these approaches [34].

Physical methods: Physical forecasting models are based on lower atmosphere

forecasting and numerical weather predictions (NWPs). These models take into

account the physical parameters of wind such as temperature, pressure, terrain and

layout of wind farm etc. and thus forecast the future parameters of interest using

complex meteorological models [30, 35]. This approach does not require training

via historical data and its results are quite adequate for short term prediction

especially. The challenge here is the acquisition and processing of physical data

that requires specialized equipment as well as extensive computational power.

This involves super computers and satellite technology which is very expensive

and can only be used in heavily-funded projects, making this method non-feasible

in many cases [36, 37].

Statistical techniques: As opposed to physical models, the statistical models

are purely mathematical with a basic idea of recognizing a relationship or pattern

from the acquired historical data [6]. Mostly they make use of time series models

like curve fitting, the Moving average (MA) and Auto Regressive (AR) models [38].

The work in [39] presents a periodic curve fitting technique for an appreciable

degree of forecast accuracy. Another research article discusses an adaptive AR

model after pre-processing of data, and then periodic update through a recursive
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least squares curve fitting algorithm [40].

A combination of both AR and MA principles called the ARMA model is

very popular for short term forecasting and has been proved successful in several

cases. A very detailed analysis of four ARMA based models is given and the

different conclusions are drawn for the prediction of wind speed and direction

[41]. In another work, the wind speed time-series in pre-processed using wavelet

theory and the ARMA model is used afterwards for forecasting. The integration

of wavelet transform is reported to improve the prediction accuracy of the ARMA

model [42]. Similarly, linear models making use of seasoning and diurnal historical

trends are also proposed for wind speed and direction forecasting [43].

A generalization of the ARMA known as the Auto-Regressive Integrated Mov-

ing Average (ARIMA) is shown to produce promising results for short time horizon

wind forecasting [44]. A fractional-ARIMA model is used to produce promising

results for up to two days ahead wind speed forecasting [45]. Similarly, another

work compares the results of ARIMA with an ANN model and it can be seen that

the accuracy achieved by ARIMA model is quite close to the ANN model accuracy

[46]. In other works, ARIMA model is mingled with other methods to form a hy-

brid model. The hybrid of ARIMA with wavelet decomposition is claimed to have

better accuracy than a standard ANN model [47]. Other well-known method-

ologies include Bayesian model averaging and Grey predictor methods [48, 49].

In [48], a Bayesian inference approach is used to determine the parameters of

Weibull distribution for wind speed forecasting. Similarly, a Grey Predictor sys-
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tem is introduced and assessed to show good forecast accuracy for wind speed in

a standard manner [49].

All these techniques, in general, are easier to implement than other approaches,

are economical and require less computational power. Using these methods, re-

searchers have been able to produce acceptable results for short time horizons

upto 48 hours, but the forecasting becomes very erratic for longer time periods

[43, 44, 47]. Another drawback of these models is that pre-processing of time-

series data is required to transform the data into standard form. In such applica-

tions, pre-processors such as independent component analysis (ICA) and wavelet

transform are used [38, 42]. Sometimes the time-series model is combined with a

physical inference model which recognizes the physical patterns of wind data [44].

A hybrid of these statistical models with Artificial Intelligence (AI) methods is

also popular to overcome these issues [50].

Spatial correlation: This method is unique in a manner that it employs the

relationship between the wind speeds of wind turbines situated at different loca-

tions by forecasting wind speed at one site based on the measurements of another

site via cross correlation among them [51]. It is useful in predicting the wind

speeds at certain sites where data is not available or measurement is not feasible

[52]. Also, it can be employed to predict the speed for a wind farm with large

number of wind turbines. It should be noted here that this correlation depends on

various factors such as distance between sites, elevation and wind direction trends

[53].
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The usefulness of this technique is validated in numerous research works. A

fuzzy model is presented which can predict wind speed using wind speed and

direction data from neighbouring sites for training based on genetic algorithm

(GA) [54]. Another work takes into account the interdependence of wind meteo-

rological systems to improve the probabilistic forecasting by accurately modelling

the spatial correlation of wind uncertainty [55]. The geographical correlation of

wind energy is analyzed in the context of a case study for the whole Europe to

enhance the power planning and trading in the region [53]. Similarly, wind power

is predicted by taking observations of wind speed and direction from multiple

neighbouring sites and their impact is studied [56].

Probabilistic methods: In these methods, the wind speed needs to be ex-

pressed as a generalized probability density function (PDF). The PDF which

gives a good fit to wind speed profiles is Weibull Distribution [57, 58]. The

Weibull distribution function can be used in many ways depending on the site

and wind speed profiles. Several methods can be found in literature to estimate

the Weibull parameters for forecast accuracy improvement [59]. In a related work,

these parameters are estimated using five methods; namely empirical, energy pat-

tern factor, maximum likelihood, modified maximum likelihood, and graphical

method. The results are assessed on the basis of goodness of fit using standard

indices [60]. There are some other probabilistic techniques which are employed

not only to predict wind profile but also its expected uncertainty. These include

parametric approaches and non-parametric approaches like Quantile regression,
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Kernel density estimation and ensemble methods [6]. But uncertainty analysis

and related concepts open up another horizon and it seems out of the scope of the

current research work.

2.1.2 Intelligent Forecasting Models

Machine learning or AI methods generally perform better than the other above-

mentioned models since they have the ability to resourcefully make use of his-

torical data for learning patterns and training the algorithms by finding complex

relationships among variables without using complex mathematics [35]. The most

prevalent of the AI techniques is the Artificial Neural Network (ANN) based model

for wind speed prediction. ANNs imitate the behavior of human brain functions

and exhibit the powerful ability to identify complex nonlinear relationships among

variables only via training through historical data.

The idea of utilizing ANNs for wind speed prediction was introduced back in

1998 where an ANN model is shown to outperform an Auto-Regressive time series

model for mean monthly and mean daily wind speed prediction [61]. Various types

of ANN models are actively used but none of them can be universally claimed to

be better than the other. An excellent work comparing various ANNs uses three

training algorithms, namely, Levenberg-Marquardt (LM) method, Radial Basis

Function (RBF) and Adaptive Linear Element to train the a Back Propagation

(BP) neural network and concludes that all of them can perform better than the

others in particular scenarios [62]. The use of ANNs for wind prediction can still
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be seen in very recent works, usually combined with other advanced techniques

like wavelet decomposition or fuzzy rule base to compensate for its deficiencies

and improve the prediction accuracy [63, 64].

In addition to ANN, Support Vector Machine (SVM) is an advanced neu-

ral network (NN) regression algorithm which can overcome some disadvantages

of neural network, such as local minimal point, computational complexity due to

overfitting etc. [65, 66]. It is based on the concept of nonlinear mapping to convert

the problem into a linear regression problem. It was first used for wind predic-

tion in 2004 and was shown to produce results better than those of Multi-Layer

Perceptron (MLP) ANN [65]. Recently, some researchers have probed into the

concept for short-term wind speed prediction. For instance, the implementation

of SVM and optimization of its parameters via different evolutionary algorithms

including GA, PSO and Cuckoo Search Algorithm (CSA) is performed to exhibit

the superiority of CSA over the formers [66].

Another popular AI hybrid model known as Adaptive Neuro Fuzzy Inference

System (ANFIS) is also used for wind forecasting since it combines the strength

of a fuzzy model i.e. interpolating missing and inexact wind data and performing

high level decision making while overcoming its feeble learning ability by combin-

ing it with an ANN [67]. Moreover, new hybrid approaches are proposed such

as refining the data first using wavelet transform, then giving to ANFIS whose

weights are tuned via PSO [68]. All of them improve forecast accuracy but also

take a fair amount of computational time [64].
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The AI or machine learning forecasting models are not only limited to wind

forecasting but are also commonly used for other resources such as solar PV fore-

casting. [69]. Artificial Neural Network (ANN) is the most common AI model

used for this purpose. In this regard, a detailed analysis of various techniques

including Markov chains, Bayesian inference model, ARIMA model, k-Nearest

Neighbors (k-NN) algorithm and ANN is presented, and a Multi-Layer Percep-

tron (MLP) based ANN is shown to outperform the others [70]. Similarly, time

series prediction of solar irradiance is performed using Support Vector Machine

(SVM) and Extreme Learning Machine (ELM) and are shown to be more accu-

rate than Auto-Regressive (AR), k-NN and persistence models. Among the two

AI techniques, SVM is reported to have less Mean Absolute Error (MAE) than

ELM [71]. SVM and ANN are used interchangeably in recent literature and pro-

duce equivalent results. However, SVM is recommended because it is easier to use

than ANN in several ways [72].

Some more advanced but complex techniques sporadically used in literature are

regression trees and random forest approach. It is depicted in a research work that

regression decision tree approach performs better than classical regression analysis

tools and even ANNs and reduces the number of significant factors affecting energy

consumption [73]. Sometimes combining the boons of two or more techniques

does a better job than a single method. Such a case is presented by forming a

hybrid Recurrent Neural Network (RNN) with wavelet activation functions and

improvement in the forecast accuracy is shown over simple Back Propagation
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(BP) neural network [74]. Another proposed hybrid forecasting model uses GA to

optimize the AI model selection and is reported to outperform several advanced

AI models [75].

From the literature survey on AI forecast models, we find out that the future

contribution lies in developing and testing novel AI approaches. The forecasting

models based on ANN have certain drawbacks such as local minimal point, over-

fitting problems etc. [66]. These can be overcome by the advanced hybrid AI

models like SVM, ELM and ANFIS, that are reported to show good performance

as far as the forecast accuracy is concerned [68, 76]. However, the computa-

tional requirement of most of these models becomes a hassle, especially if training

through an optimization technique is involved [77]. Thus, making them practically

inapplicable for real applications such as competitive energy markets, where the

bidding process is very rapid with a large number of contenders [17, 29]. There-

fore, in such scenarios, accuracy with swiftness of predictions wins the day and

computationally expensive methods are not preferred. This work fills the research

gap by proposing innovative forecast models based on a modern AI paradigm

called Functional Network (FN).

2.1.3 Multi Step Forecasting

The first phase of this research work is one-step ahead forecasting but the main

interest is on multi-step forecasting (MSF). This kind of forecasting has wide

application in predictive control and dispatch framework in competitive energy
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markets to help power system owners in planning a profitable strategy for power

dispatch [9, 78]. Furthermore, reliability of a power system can be evaluated cor-

rectly on the basis of precise power predictions [17]. Therefore, MSF of renewable

energy has been an active area of research recently and can be done through dif-

ferent models. The most important of them are Direct, Recursive, DirRec, MIMO

and DIRMIMO [79, 80]. A recent review of time series models applied to wind

forecasting is presented in [18] and their pros and cons are described. Another

recent work has used machine learning methods for six-step ahead prediction and

the prediction results are obtained for several case studies [81]. Similarly, two

most common schemes, Recursive and Direct are analyzed with ANN model for

wind power forecasts [79]. There is not much work found in literature for MSF

as compared to single-step forecasting, hence it is still an active domain which

demands contribution.

2.1.4 Functional Networks and Their Applications

Functional Networks are a generalized advanced form of neural networks insti-

gated by E. Castillo et al. to overcome many issues present in ANN based models

[82]. Since the advent of functional networks, they have been applied to show

superior performance as compared to ANNs in many engineering and scientific

applications. The applications in which FNs have already been used include non-

linear regression and classification , time series modelling and predictions, and

modelling of differential equations [83]. Using FNs, the discovery of adequate
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transformations in multiple regression problems is presented. The parameters of

a heteroscedastic linear model can also be estimated using FNs. Furthermore,

the classification of large datasets also becomes possible with the flexible design

of FN [84]. The modelling of practical systems such as stress on a beam through

differential equations is also simpler using an FN based model. The modelling of

such a beam subject to vertical forces in horizontal as well as vertical direction

are presented and validated through real-time simulations [82].

The applicability of functional networks has been found in many practical

engineering problems. In a navigation satellite, high precision prediction of on-

board atomic clocks is needed [85]. A functional network model is used to improve

the prediction error of these atomic clocks. Finally, the prediction accuracy is

validated through real-time GPS satellite data [86]. Another emerging domain

of application for functional network is petroleum engineering where FN based

models are used to predict the petroleum reservoir properties. One such work uses

an FN based model to predict the porosity and permeability of real site locations

of petroleum reservoirs [87]. A general framework for the utility of functional

network models for time-series modelling and prediction is discussed in literature

[83, 88]. However, it is a novel concept in the field of power systems engineering

has not been applied before to address the problem of multi-step wind forecasting.
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2.2 Renewable Power Dispatch

The planning of an electric power system based on renewable energy resources

depends largely on an optimal economic dispatch. The basic objective of this

process is to schedule the committed generating unit outputs so as to meet the

load demand at minimum operating cost, while satisfying all unit and system

equality and inequality constraints. This makes the Economic Dispatch (ED)

problem a large-scale highly constrained nonlinear optimization problem [89].

2.2.1 Recent Trends in Power Dispatch

Due to the challenging nature of power dispatch problem, it has been a center of

attraction for researchers over the past years. The orthodox methodology for such

complex nonlinear optimization problems are mathematical programming-based

schemes such as dynamic programming (DP) and mixed integer programming [90].

In the setting of a smart grid, a decentralized approach is presented in which only

local communication among neighbouring agents is required. According to the au-

thors, the most suitable candidate for solving such a problem is a distributed DP

method that works on asynchronous communication principles [91]. Another ad-

vanced programming technique is mixed integer quadratic programming (MIQP)

which is used to solve a dynamic ED problem. The overall formulation is multi-

step consisting of a pre-processor and post-processor to enhance the effectiveness

of the proposed approach [92].

In recent years, however, due to the popularity of biologically-inspired heuris-
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tic optimization algorithms, they have been used widely for ED problems as well.

Heuristic optimization techniques are inspired by various biological processes and

have been used extensively for economic dispatch algorithms over the past few

years [93]. In this regard, a comprehensive review summarizes the application of

Differential Evolution Algorithm (DEA) and its advanced variants such as Hybrid

DEA and Multi objective DEA on various economic load dispatch problems [94].

A novel hybrid GA and Bacterial Foraging algorithm is proposed which shows

the best results in terms of cost minimization as compared to many other evo-

lutionary methods from literature [95]. In another heuristic-based work, a multi

objective optimization problem is formulated for maximizing profits and minimiz-

ing pollutant emission simultaneously. This problem is solved using Artificial Bee

Colony (ABC) algorithm with its search process enhanced by the principles of

Tabu Search (TS) algorithm [96].

The evolutionary algorithms are also applied on Combined Heat and Power

(CHP) units for optimal dispatch. For instance, two types of ED strategies, i.e.,

dynamic dispatch and day-ahead dispatch are developed using a hybrid two-stage

heuristic method consisting of sequential quadratic programming and Genetic

Algorithm (GA) [97]. A significant contribution in the context of hybrid evolu-

tionary optimization methods is an integration of three such algorithms to solve

the problem of ED for a multi-generation system [98]. Another novel concept is

the minimization of overall operating costs by optimizing the demand response.

In such a work, the optimal dispatch problem is formulated taking into account
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the solar, wind and load forecast errors while GA is used as the load optimiza-

tion algorithm. This work recommends using a more suitable power forecasting

model which comes in the scope of the proposed work [99]. However, the main

drawbacks of heuristic approaches include the possibility of sub-optimal solution

and the exponential increase in computational complexity on increasing the size

of problem such as the number of generation and customer units involved in eco-

nomic dispatch [100].

Another important development in this regard is to consider the dispatch prob-

lem in a control framework using model predictive control. This approach is com-

monly known in literature as predictive dispatch [28]. In addition to economic

dispatch, the scope of the problem is increased in a more practical manner tak-

ing into account the environmental effects such as reduction in CO2 emissions.

Such a problem is usually formulated as a multi-objective optimization problem

with conflicting objectives and termed as economic/environmental power dispatch

[94, 100].

2.2.2 Forecast-Based Dispatch

This type of framework is used to make dispatch decision based on the estimation

of future events and values of parameters. Thus it effectively takes into account

the RE source and load forecast error information for economic dispatch prob-

lems. In a review of predictive power management strategies, the importance of

load forecasting, optimal sizing of power system components and renewable power
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prediction is elaborated while remarking in the end that economic dispatch can

be made highly efficient with accurate forecasting of RE resources [101]. Among

the predictive dispatch mechanisms, Model Predictive Control (MPC) framework

is the most widely accepted method in literature.

Model predictive control is an optimal control method based on the principles

of receding horizon philosophy. It is able to control the dynamics of the system

by converting an infinite long open-loop optimization into a limited long closed-

loop optimization at each sample time [102]. The main advantages of MPC are

its ability to tackle large complex optimization problems, systematic handling of

constraints, and prediction of performance over the future horizon, and effective

utilization of future forecasted information, make it theoretically a perfect real-

time optimal control paradigm [103]. Continuing on MPC, a Unit Commitment

(UC) and ED combined problem is formulated in the presence of wind energy

generation only. The stochastic nature of wind is compensated by developing

an ARIMA forecasting model. Considering the highly nonlinear and non-convex

nature of UC/ED problem, swarm optimization is used with MPC since both

these methods complement each other and produce good results [103].

An excellent work in this regard makes use of MPC framework which can take

into consideration the RE resource forecasts to solve a multi objective optimization

problem for the minimization of generation costs and emissions. The modeling

of forecast error is performed via normal distribution as white noise [100]. In

another paper, a practical model of a microgrid is considered and optimized in
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many aspects including UC, ED, energy storage and grid interaction. The model

is developed using an MPC control framework while the optimization problem is

solved using Mixed Integer Linear Programming (MILP). The compensation for

forecast errors and other inevitable disturbances has also been incorporated into

the MPC framework. The renewable power forecast model is based on Support

Vector Machine (SVM) [26]. An article about Combined Cooling, Heating and

Power (CCHP) system gives the idea of utilizing the information of prediction

error in RE resources and load via developing a two-stage MPC based dispatch

algorithm for operation cost minimization. The first step is the rolling horizon part

while the second step is the feedback correction to balance the difference between

predicted and actual values. For wind and solar PV generation forecasting, a

Kalman filter based algorithm is used in this work [102].

In the context of wind power dispatchability for a BESS connected microgrid,

a stochastic MPC controller is developed that can incorporate wind power fore-

casts with non-Gaussian uncertainties via a probabilistic prediction model [104].

A recent work develops a framework for assessing the value of forecast-based dis-

patch on islanded microgrid operation costs. A predictive dispatch algorithm is

developed for this purpose but a real model for load and RE resource forecasting

is not considered. On the contrary, the reference forecasted values are taken from

a case study and then different scenarios are synthesized using that reference [28].

However, all these works reiterate that forecast-based dispatch strategies are very

effective in bringing down running costs of a microgrid and optimizing various
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operational and economic aspects [26, 102]. Hence developing real forecasting

models for RE sources and loads to be used with predictive dispatch strategies is

well-supported in the light of literature.

2.2.3 Analysis of Forecasting in Dispatch

A major contribution of this thesis work is the analysis of forecast error on dis-

patch in terms of cost-benefit analysis. Similar attempts can be seen in very recent

works. In a detailed analysis, the impact of wind power forecast and its improve-

ment is quantified through a UC problem formulation in terms of annual cost

reduction and related cost factors. The reliability of the system is also examined

in multiple scenarios with wind forecast improvements. NWP based ready-made

forecast models are used for wind forecasting [9]. Another work has used wind

power probabilistic quantile-based forecasting along with demand dispatch to es-

timate the operating reserve requirements for efficient operation of energy markets

in UC and ED [17]. Various statistical descriptions of wind power forecast error

are discussed in [19] and a novel statistical model is proposed. The model is as-

sessed through a probabilistic reserve sizing problem to study the effect of forecast

error on system size and reliability of the output.

A recent work has presented the forecast-based strategy as an alternative to

minimize the operational costs for off-grid microgrids. A relationship has been

made to show how the load and renewable power forecast quality can bring about

cost savings. The authors also show that forecast-based strategy is able to im-
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prove the share of RE generation by adequate sizing of microgrid components [28].

In another research work, the influence of solar and wind forecast uncertainties is

analyzed using the benchmark persistence model for forecasts. The effect is quan-

tified in terms of renewable generation absorption improvement in a microgrid

[99]. A very important article from the perspective of energy market outcomes

is published for the European electricity market where a policy has been devised

to make the aggregate wind forecasts public. According to the article, the study

on the impact of wind forecasts can potentially affect energy and reserve market

pricing, profits of participating power producers and the social welfare at large

[29]. This realization supports our claim for the vitality of the current study and

why it is important for social and economic benefits of the society and industry.

2.3 Summary of the Literature Gaps

The literature review reveals that there are missing links in both parts of the

literature, i.e., the development of new forecast models as well as their application

in power dispatch framework.

Various kinds of existing forecasting techniques are surveyed, however, most

of them are easily beaten by the intelligent forecasting models. The numerical

weather forecast models are still accurate for many weather variables but their cost

is not affordable for small-scale projects like power system producers. There are

some problems with basic intelligent forecast models like ANN which makes them

less accurate as compared to advanced AI and hybrid models. These hybrid models
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tend to be extremely computationally extensive, especially if an iterative training

scheme is involved such as evolutionary algorithms. The proposed Functional

Network multi-step forecast model fills this research gap as it is more accurate

than conventional ANN with less computational expense than advanced hybrid

models and hence affordable for power industry.

The second missing link is found with the analysis of forecast error on power

dispatch using wind power and market price information from real forecasting

models. Most of the works in literature address the forecasting problem and the

efficient economic dispatch problem independently. The former problem is dealt

by only developing forecasting models and assessing their forecast accuracies while

the latter focuses on the dispatch optimization problem and uses some assumption

about forecast error or a pre-developed forecasting model [27]. Nowadays, the

integration of both these domains is a trending phenomenon in the manner that

the impact of forecast error models is studied in terms of power system economics.

The proposed work also aims at not only developing novel multi-step forecast

models but also studying the interconnection of accurate power forecasting with

profitable economic dispatch and thus makes an effort to contribute innovatively

in this emerging field.
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CHAPTER 3

DEVELOPMENT OF

FORECASTING MODELS

This chapter provides an introduction to the forecasting of wind as a physical

quantity. The most important aspect of wind energy is the speed as it is related to

the power output of a wind turbine through a nonlinear cubic relationship. Hence

accurate forecasting of wind speed ensures accurate wind power forecasting. This

chapter first describes the development of a wind speed forecasting model using a

basic AI technique, the Artificial Neural Network (ANN), which will then be used

as a basis for comparing the advanced proposed AI models. Then the multi-step

forecasting (MSF) schemes used throughout this work are described. Then the

wind power curve is explained followed by the description of case study databases

and performance indices used for forecasting analysis. Finally, the results of the

developed ANN forecast models are given for single step and MSF using the case

studies.
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3.1 Artificial Neural Network Forecasting Model

The problem of wind speed (v) forecasting is formulated by composing a wind

speed time series [v1, . . . , vN ] using N historical observations, that is used to fore-

cast the wind speed for H steps (hours) ahead. The forecasted time-series is given

as [vN+1, . . . , vN+H ], where H > 1 denotes the absolute forecasting horizon. The

basis of any forecasting strategy is that the predicted speeds v̂ can be represented

as a function of past values (v).

Numerous Artificial Intelligence (AI) methods have been employed by re-

searchers for wind forecasting problem. The most popular of them include Ar-

tificial Neural Networks (ANNs), Support Vector Machine (SVM) and Adaptive

Neuro-Fuzzy Inference System (ANFIS). In this chapter, the development of ANN

forecast model is described. The type of ANN used in this work for MSF is called

Nonlinear Auto-Regressive Neural Network (NARNN). The architecture of such

a network is Multilayer Feedforward Neural Network (MFNN) which is typically

arranged in three or more layers. These consist of an input layer, an output layer

and hidden layers in between. It has been observed that only one hidden layer

is enough for most applications provided it has adequate number of neurons [68].

The hidden layer consists of neurons (n) which sum up the all input signals (d)

along with their respective weights to produce an activation pattern. The number

of neurons can be taken as the integer number close to log(K), where K is the

number of training vectors [62]. In this study, the number of training vectors is

based on calendar year data with 8760 samples, hence n = 4. Moreover, it was
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Figure 3.1: A typical BP ANN structure for time series forecasting.

also observed that varying it did not have a significant effect.

The type of neural network is defined by its training algorithm which in this

case is the Back Propagation (BP) network. This proposed structure of ANN is

depicted in Figure 3.1. In BP, the activation signal of each hidden layer neuron is

the weighted sum of the inputs. The output of jth neuron of hidden layer is given

mathematically as,

nnj =
d∑

i=0

wijvi (∀i = 0, 1, . . . , d;∀j = 1, 2, . . . , n) (3.1)

where, wij is the connection weight from input node i to hidden node j, vi is the

input with v0 being the bias bIH(with weight w0j = 1).

The activation value of each neuron from (3.1) is passed through an activation

function. The most common activation function is the sigmoid, say fH(x). Hence
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the output z of jth neuron is found to be,

zj = fH(nnj) (∀j = 1, 2, . . . , n) (3.2)

These outputs are fed to the single neuron of the output layer to produce the final

output as,

v̂ = fO(
n∑

j=0

wjkzj) (∀j = 0, 1, 2, . . . , n) (3.3)

where, fO is a line function used for output layer activation, wjk is the connec-

tion weight from hidden node j to output node k (here k = 1) and z0 is the

bias bHO(with weight w0k = 1). During the training phase, all the biases and

weights are assigned random values initially, then the obtained output from (3.3)

is compared with the already available actual measured value of the predicted

time-stamp (t+ h) to compute the global error (E) as,

E =
1

2

∑
(v̂t+h − vt+h)2 (3.4)

This error has to be minimized using an optimization algorithm. Tradition-

ally, back propagation is optimized using least squares optimization [105] , but

Levenberg-Marquardt (LM) algorithm is employed in our work because it pro-

duces quite accurate results at a fast speed [68, 62, 106].
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3.2 Multi-Step Forecasting Schemes

Wind speed (v) historical data is used to forecast the wind speed for H steps

(hours) ahead, given as [vN+1, . . . , vN+H ]. The basis of any forecasting strategy is

that the predicted speeds v̂ can be represented as a function of past values (v).

The mathematical formulation of the forecasting mechanisms used in this paper

described in the following subsections.

3.2.1 Recursive Forecasting

In this forecasting method, first a single model f is trained to perform a one-step

ahead forecast, i.e.

vt+1 = F (vt, . . . , vt−d+1) + w (3.5)

where, t ∈ [d, . . . , N − 1], d is the number of previous inputs of the series and w is

the bias. For H step ahead forecasting, the first step is predicted by applying the

model in (3.5). Afterwards, the forecasted value is included as the latest entry of

the input series to predict the next step using the same trained model from (3.5).

This procedure is repeated for the entire forecasting horizon. Mathematically,

recursive forecasting can be defined as a piecewise function with respect to h and

d as follows:
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v̂N+h =



F (vN , . . . , vN−d+1) if h = 1

F (v̂N+h−1, . . . , vN , . . . , vN−d+h) if h ∈ [2, . . . , d]

F (v̂N+h−1, . . . , v̂N−d+h) if h ∈ [d+ 1, ..., H]

(3.6)

For very long term forecasts, recursive mechanism may be potentially inac-

curate because of the accumulation of forecast error with each forecasted value

[18, 80]. Training of the neural network is performed only once for the recursive

method of forecasting using one-step ahead setting, i.e., target output being the

next hour value (vt+1) from the known training set.

3.2.2 Direct Forecasting

The direct forecasting methodology is based on the principle of forecasting each

step independently from the others. Hence a separate function model Fh is trained

for each forecasting horizon (h), with the target output as the hth future value

(vt+h) from the training dataset. Each of them is given as,

vt+h = Fh(vt, . . . , vt−d+1) + w (3.7)

where, t ∈ [d, . . . , N − H] and h ∈ [1, . . . , H]. A forecast is performed for the

hth step without including any previous predicted value but only considering d

previous values using the learned model from (3.7) as,

v̂N+h = Fh(vN , . . . , vN−d+1) (3.8)
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This implies that the direct strategy is immune to prediction error accumula-

tion, however, it is more computationally expensive as compared to the recursive

method. In recursive scheme, model training is performed only once for the first

step, then the forecasted values for each step are included in the input vector for

following forecasts. On the contrary, in direct scheme, model training is needed for

every forecast step with same input vector but hth following value as the target,

hence H models are learned. Due to the independent choice of targets, it may

also yield uncorrelated results for MSF in some cases [18, 80].

3.2.3 Dir-Rec Forecasting

A hybrid of the Direct and Recursive strategies called the Dir-Rec strategy is

based on the principle of combining the good aspects of both these methods. In

this forecasting mechanism, different forecasting models Fh are computed for each

forecasting horizon (h), like the direct method. However, each forecasted step is

included as the latest entry of the input series for next step prediction, which is

consistent with the recursive method. It should be noted here that in doing so,

the d increases for each step of prediction. Mathematically, the training function

of Dir-Rec model is given as,

vt+h = Fh(vt+h−1, . . . , vt−d+1) + w (3.9)

where, t ∈ [d, . . . , N − H] and h ∈ [1, . . . , H]. In this manner, the H learned

models for each forecasting horizon can be used to obtain the forecasts as follows:
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v̂N+h =


Fh(vN , . . . , vN−d+1) if h = 1

Fh(v̂N+h−1, . . . , vN , . . . , vN−d+1) if h ∈ [2, . . . , H]

(3.10)

This strategy is usually anticipated to perform better than the direct and

recursive methods but the result depends on the nature of data in the time series

[107]. This technique has been probed for only a few cases by researchers, so this

work further evaluates this scheme for the selected problem [80].

3.3 Wind Power Calculation

Once the wind speed is predicted, it can be used to estimate output power of wind

turbine of rated capacity (Pr) using the typical power curve of a wind turbine as

shown in Figure 3.2 [108]. The cut-in speed (vci) is the starting threshold of

a wind turbine and is typically between 3 − 5m/s. There is a limit to every

wind generator output, which is called the rated power output (Pr) and the wind

speed at which it is reached is called the rated output wind speed (vr). Most

wind turbines are designed so that the rated wind speed typically lies somewhere

between 12−17m/s. At higher wind speeds, the design of the turbine is arranged

to limit the power to this maximum level usually by adjusting the blade angles so

as to to keep the power at the constant level or some other technique [108].

At speeds between the vci and vr, the power output is expressed by a non-

linear curve. Finally, there is a maximum limit called cut-out speed (vco) (around
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Figure 3.2: Typical power curve of a wind turbine.

25m/s), after which there is a risk if damage to wind turbine, hence a braking

system is employed and the power output is forced to zero [108]. This phenomenon

is depicted in Figure 3.2 and mathematically it can be expressed as given in (3.11)

[109]:

P (kW ) =



0 v < vci

1
2
kCpρv

3π d2

4
vci ≤ v ≤ vr

Pr vr ≤ v ≤ vco

0 v > vco

(3.11)
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where,

v(m/s) : Wind speed of particular hour

vci(m/s) : Cut in wind speed

vco(m/s) : Cut out wind speed

vr(m/s) : Rated wind speed

P (kW ) : Output power of that particular hour

Pr(kW ) : Rated power of wind turbine

k : Conversion constant for power output in kW

(k = 0.000133)

Cp : Maximum power coefficient, ranging from

0.25 to 0.45 (theoretical maximum = 0.59)

ρ(kg/m3) : Air density

d(m) : Diameter (twice of blade length)

3.4 Case Studies

The performance of the proposed techniques is assessed via case studies using

wind speed data from real sites, while performance is compared with a benchmark

model in terms of standard indices, as explained in the following subsections:

3.4.1 Databases

Two sets of data from different sites are considered in the form of hourly wind

speed recorded for one calendar year 2014. The sites for wind speed data are
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Glasgow, MT

Figure 3.3: Wind speed map of the US showing sites under study (recorded at
30m).

chosen on the basis of feasibility for wind generation, i.e. having enough wind

speeds for being able to run small wind turbines at the least. The targeted region

is the Great Planes region, USA which has good average wind speeds and hence

is suitable for wind power generation. A wind speed map is shown in Figure 3.3

where the approx. locations of data collection in the states of Montana (MT) and

Kansas (KS) are shown with red markings while the region of interest is shown

by the vertical strip in the middle [110].

Dataset-1 represents wind speed profile recorded by a weather station run

by Agrimet in the region of Glasgow, MT [111]. This area has an average wind

speed of about 5.5mph which is only suitable for small wind turbines. Dataset-2 is

collected from Iowa Environmental Mesonet (IEM) which collects environmental

data and airport data from several networks [112]. Wind speed data of a windy

region is sought and the selected site is Dodge City, Kansas. The available data

is recorded at Dodge City Municipal Airport and the average wind speed for this
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area is quite high i.e. about 12-13mph. Table 3.1 lists down the average and

maximum wind speeds for both regions over a period of six years.

Table 3.1: Six-year Average and Max. Wind Speeds of Study Sites

Years
Average wind speed (m/s) Max wind speed (m/s)

Dataset-1 Dataset-2 Dataset-1 Dataset-2

2010 2.36 5.49 13.34 19.04

2011 2.61 5.88 13.07 20.07

2012 2.47 5.43 12.52 19.04

2013 2.38 5.72 11.70 21.10

2014 2.46 5.86 12.26 19.54

2015 2.37 5.52 11.59 16.45

The historical wind data is divided into three parts randomly; 80% for training,

10% for validation and 10% for testing the neural network model. For training

purpose, the data is arranged in the form of time series with d hours as input

and the next hour wind speed as target used to calculate the forecast error. In

this way, random sets of input-target data from one year profile are picked up for

training the network.

3.4.2 Persistence - The Benchmark Model

The persistence model is a widely-used benchmark for time series and is based on

the assumption that the predicted variable (wind speed) will remain the same as

the measured value at the time when the prediction is made. In other words, it

relates the present measured value (vN) and the future predicted value (vN+h) via
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a linear equation as follows:

v̂N+h = vN (3.12)

where, N is the length of time-series and h is the forecasted step.

This means that the persistence model requires the measurement of only one

present value to predict the future value as the same. Then, when the actual

measurement is available, it predicts the preceding hour and so on. Considering

the nature of wind speed, this model often proves to be more accurate than many

complex techniques, especially for very-short term forecasting [21], hence perform-

ing better than persistence benchmark is considered an important feature for the

effectiveness of forecasting method. To evaluate the performance of the proposed

model, the same metrics are applied on the benchmark persistence model.

3.4.3 Performance Indices

Accuracy of forecasting models is assessed based on forecast error (ek) which is

the difference between measured wind speed (v) and forecasted wind speed (v̂) for

kth forecast,

ek = vN+h − v̂N+h (3.13)

The performance metrics used to evaluate the prediction accuracy in this study are

Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Symmetric

Mean Absolute Percentage Error (SMAPE). If N is the total number of forecasts

made, then these errors can be computed as follows:
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MAE =
1

N

N∑
k=1

|ek| (3.14)

RMSE =
√
MSE =

√√√√ 1

N

N∑
k=1

ek2 (3.15)

SMAPE =
1

N

N∑
k=1

|ek|
|v|+ |v̂|

% (3.16)

3.5 Results and Discussions

3.5.1 Single-Step Forecasting

This historical wind data is divided into three parts randomly; 80% for training,

10% for validation and 10% for testing the neural network model. For training

purpose, the data is arranged in the form of time series with d hours as input and

the next hour wind speed as target used to calculate the error through (3.13). In

this way, random sets of input-target data from one year profile are picked up for

training the network.

Dataset-1 from Glasgow, MT is considered first and neural network is trained

using data of 2014 while testing of the trained network is performed using one-

week data of 2015 (1-7 Jan). A smaller testing data set is used as this is just a

preliminary test for single-step forecasting, and the length of the testing set will

increase up to three months for the next set of results. Error analysis for the

said period is compiled in Table 3.2. Three cases have been tested while varying

the input length (d). For each case, the developed NN model named NARNN
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is compared with persistence benchmark in terms of MAE, SMAPE and RMSE.

It can be observed that, in all cases, NARNN performs better than Persistence

with a maximum improvement of 0.02 MAE, 1.53% SMAPE and 0.04 RMSE.

Slight improvement is recorded with increasing input vector size but this trend is

not followed when the same model is tested on other periods of the year. Hence

varying the number of time series inputs has no significant effect on the error

performance.

Table 3.2: Single Step Forecasting for Dataset-1

Errors Persistence
NARNN

n=4, d=2 n=4, d=4 n=4, d=6

MAE 0.6168 0.5948 0.5895 0.5826

RMSE 0.8154 0.7755 0.7619 0.7542

SMAPE 16.9567 15.5101 15.4634 15.2461

In addition to error analysis, a pictorial idea about the forecasting accuracy

is given in Figure 3.4 where the measured and forecasted wind speed profiles are

plotted for a random day (1st Jan 2015) of the testing set. This is just a small

representative portion of the whole testing set shown for the purpose of visibility,

otherwise for longer dataset, the plot would look cluttered. It can be observed

that the predicted output follows the actual wind speed in quite good manner,

however, there is a lag of one time period which is expected due to autoregressive

nature of the network.

Dataset-2 from Dodge City, KS is considered while training and testing of

neural network is performed in the same way as Dataset-1. Similarly, error analysis
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Figure 3.4: Comparison 24h forecast Glasgow, MT.

for Dataset-2 is compiled in Table 3.3. It can be observed that, in all cases, again

NARNN shows improvement of 0.04 MAE, 0.9% SMAPE and 0.07 RMSE over

persistence. The values of MAE and RMSE are almost double to that of Dataset-1

which was expected here due to higher wind speeds for Dataset-2 as can be noted

from Table 3.1. However, the improvement in these indices over persistence is also

double or even more as compared to Dataset-1.

Table 3.3: Single Step Forecasting for Dataset-2

Errors Persistence
NARNN

n=4, d=2 n=4, d=4 n=4, d=6

MAE 1.2454 1.1994 1.2039 1.2002

RMSE 1.7721 1.6982 1.7039 1.6999

SMAPE 16.8639 15.9711 16.0402 16.1440

The insignificance of varying the number of time series inputs (d) on the error
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Figure 3.5: Comparison 24h forecast Dodge City, KS.

performance can be observed very clearly since the error either increases with

increasing d in case of SMAPE, or follows no particular trend in case of MAE and

RMSE. A graphical depiction of the developed forecast model for Dataset-2 is

shown in Figure 3.5 as a 24-h wind speed profile for a random day (5th Jan 2015)

of the testing set. Despite abrupt variations in the actual wind speed, the forecast

remains reasonably close to it which represents the robustness of the developed

model in the face of sudden disturbances.

3.5.2 Multi-Step Forecasting

Multi-step forecasting (MSF) is carried on Dataset-2 only which represents wind

data from Dodge City, Kansas. The training dataset comprises of wind speed

values from calendar year 2014 while testing dataset is based on three months

of 2015 (Jan-March). Detailed error analysis for the said period is performed in
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terms of three error indices as mentioned before, i.e., MAE, SMAPE and RMSE.

The simulation results are summarized in Table 3.4. As it can be observed, all

three forecasting methods, i.e., Direct, Recursive and Dir-Rec are compared with

benchmark persistence model for one to six steps ahead prediction. In terms of

all performance indices, these techniques outperform the persistence benchmark.

The improvement becomes more significant at large forecast horizons.

Quantitatively, the direct method shows an improvement of 0.02 m/s in MAE,

0.05 m/s in RMSE and 1.54% in SMAPE over persistence at step-1 which increases

to 0.31 m/s in MAE, 0.53 m/s in RMSE and 4.05% in SMAPE at step-6. Similarly,

the improvement of recursive method over persistence rises from 0.02 m/s to 0.36

m/s in MAE, from 0.05 m/s to 0.51 m/s in RMSE and from 1.54% to 4.44% in

SMAPE as the forecast horizon goes from step-1 to step-6. For Dir-Rec method,

this difference over persistence improves from 0.01 m/s to 0.36 m/s in MAE, from

0.05 m/s to 0.53 m/s in RMSE and from 1.52% to 4.46% in SMAPE at the whole

range of forecast horizons. Comparing the performance of the strategies among

themselves, it can be observed that there is very small difference in accuracy in

terms of results from Table 3.4 and the improvement over persistence given in the

preceding paragraph. This small deviation can be specific to the dataset under

consideration and it may vary from this pattern for another case study.

In addition to tabular error analysis, the pictorial depiction of MSF scenario is

provided in Figures 3.6, 3.7 and 3.8. Here each of the errors, i.e. MAE, SMAPE

and RMSE are plotted against the six forecasting steps. In each case, it is clear
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Table 3.4: Artificial Neural Network MSF Error Analysis

Errors Steps Persistence Direct Recursive DirRec

MAE

1-step 1.08 1.06 1.06 1.06

2-step 1.44 1.37 1.36 1.36

3-step 1.76 1.63 1.61 1.60

4-step 1.99 1.80 1.79 1.79

5-step 2.22 2.00 1.95 1.94

6-step 2.43 2.12 2.07 2.07

RMSE

1-step 1.47 1.42 1.42 1.42

2-step 1.95 1.84 1.84 1.84

3-step 2.37 2.18 2.17 2.16

4-step 2.70 2.40 2.41 2.41

5-step 3.02 2.62 2.62 2.60

6-step 3.28 2.75 2.76 2.75

SMAPE

1-step 13.96 12.42 12.42 12.42

2-step 17.34 15.05 14.94 14.88

3-step 19.82 16.98 16.79 16.74

4-step 21.53 18.29 18.13 18.10

5-step 23.20 19.74 19.30 19.27

6-step 24.75 20.70 20.30 20.28

that the error increases quite significantly with each step ahead forecast. However,

the error value is more in persistence method as compared to the developed MSF

schemes as was observed previously. The errors of DirRec method are smaller than

those of direct and recursive method but the increment pattern is approximately

the same. Another interesting aspect to note here is the increment ratio, i.e., the

measure of increment in a particular type of error along with the forecast horizon.

In all types of error, it can be observed that the increment pattern for persistence

and proposed techniques is quite different. The results for increment ratio are
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given in Table 3.5 for all error indices. It can be seen that the increment ratio

for persistence is much more as compared to all other methods which shows the

effectiveness of these methods for large forecasting horizons.

Figure 3.6: Variation in MAE for all forecast models over prediction horizon.

Figure 3.7: Variation in RMSE for all forecast models over prediction horizon.
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Figure 3.8: Variation in SMAPE for all forecast models over prediction horizon.

Table 3.5: Increment ratio (IR) of errors for six steps

Errors Persistence Direct Recursive DirRec

IR-MAE 1.35 1.06 1.01 1.00

IR-SMAPE 10.79 8.28 7.89 7.84

IR-RMSE 1.81 1.33 1.35 1.33

Another view to the obtained results is provided in Figure 3.9 using a bar-graph

representation of each method on every step of prediction in terms of percentage

error, i.e., SMAPE, since it is the most universal. This graph shows the superiority

of the proposed MSF methods over persistence benchmark. Also, this concept is

reiterated again that these methods not only perform better than persistence for

each step, but also error difference keeps increasing with the forecast horizon,

which is clear from the prominent height difference in bars for persistence as

compared to both of others in every next step. Another minor conclusion that
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can be drawn from here is that the difference between recursive and the other

two schemes’ RMSE reduces gradually with increasing forecast horizon due to the

use of forecasted values for higher step prediction in the recursive method which

causes superposition of prediction error.

Figure 3.9: Improvement of Developed Forecast Models over Persistence - SMAPE
Bar Graph.
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CHAPTER 4

FUNCTIONAL NETWORK

FORECASTING MODEL

The forecasting models presented in the previous chapter are based on ANN with

certain drawbacks such as local minimal point, over-fitting problems etc. [66].

These can be overcome by the advanced hybrid AI models like SVM, ELM and

ANFIS, that are reported to show good performance as far as the forecast accuracy

is concerned [68, 76]. However, the computational requirement of most of these

models becomes a hassle, especially if training through an optimization technique

is involved [77]. Thus, making them practically inapplicable for real applications

such as competitive energy markets, where the bidding process is very rapid with

a large number of contenders [17, 29]. Therefore, in such scenarios, accuracy with

swiftness of predictions wins the day and computationally expensive methods are

not preferred. This work fills the research gap by proposing innovative forecast

models based on a modern AI paradigm called Functional Network (FN).
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A step-by-step procedure for the development of wind forecast models with

the proposed scheme is illustrated for better understanding. Three state-of-the-

art MSF mechanisms, namely, recursive, direct, and DirRec are developed for six

steps ahead forecasts. A benchmark persistence model for time series is used to

evaluate the performance of the FN model with all three techniques, while they

are also compared among each other to draw conclusions about their benefits

and applicability. Forecast accuracy is gauged on the basis of standard error

indices. The efficacy of the proposed FN based approach for wind forecasting is

further validated by drafting a comparison with a benchmark nave model and

standard ANN model. Wind data from a real location is used for all simulations.

The significant improvement in forecast accuracy with low computational burden

verifies the effectiveness and applicability of the proposed FN model for the wind

forecasting problem in practical situations.

In the light of the above discussion, the aim of this chapter can be briefly

stated as:

To develop and analyze forecasting models using functional networks - a novel

AI paradigm - for multi-step wind forecasting and compare them with existing

standard forecasting models to help the wind power producers in devising quick

and profitable power system planning and dispatch strategies.
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4.1 Functional Network - An Overview

Functional Networks are a generalized advanced form of neural networks first de-

veloped by E. Castillo et al. to overcome many issues present in ANN based

models [82]. Since the advent of functional networks, they have been applied to

show superior performance as compared to ANNs in many engineering and sci-

entific applications [83]. The applications in which FNs have already been used

include nonlinear regression and classification [84], time series modelling and pre-

dictions [88], and differential equations modelling like beam stress modelling [82].

The applicability of functional has been found in many practical engineering prob-

lems like error prediction of navigation satellite clock [86] and for model parameter

predictions in petroleum reservoir applications [87]. A general framework for the

utility of functional network models for time-series modelling and prediction is

discussed in literature [83, 88]. However, it is a novel concept in the field of

power systems engineering has not been applied before to address the problem of

multi-step wind forecasting.

Functional Networks (FN) are a generalized form of neural networks that can

be applied to show superior performance as compared to ANNs in many engineer-

ing applications. Some of the advantages of FNs are listed below:

� ANN models have generalized topologies, whereas, the topology design of func-

tional networks can be derived from the analytical structure of the problem.

� In functional networks, the neural functions themselves are learned from the

data, as opposed to neural networks, where function coefficients and connection
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weights are trained for given neural functions.

� The forms of all neural functions in ANNs are identical, i.e., the weighted sum

of inputs. In contrast, the neural functions can have various multi-dimensional

structures chosen from one or more basis families.

� In functional networks, the outputs of multiple neurons can be forced to coin-

cide using an intermediate layer, that can simplify the initial network, which

is not possible in classical neural networks.

4.2 Development of Forecasting Model with Func-

tional Network

The development of a typical functional network begins with a problem-driven

network topology design, followed by parametric learning of neural functions,

optimal model selection and finally, testing of the developed model.

4.2.1 Parametric Learning

As already discussed, the topology of a functional network is usually problem-

driven, i.e., it is based on functional equations derived from the known problem

structure, leading to a unique design of functional network. However, assuming we

have a wind speed time series with no known information or analytical structure,

just the historical data. In such cases, the neural functions are approximated

based on the given time-series data. This process is called Approximate Learning,
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as opposed to Exact Learning which is performed using the functions that are

solutions of the functional equations when dealing with a system with known

analytical structure.

To model the wind speed time series using functional networks, a set of em-

bedding inputs (vN , . . . , vN−d+1) and required output steps to be predicted are

specified in the form of approximate functions, just like the training phase in

neural networks. This can be represented by (4.1):

v̂N+h = Fh(vN , . . . , vN−d+1) =
r∑

i=1

cifi(vN , . . . , vN−d+1) (4.1)

where, ci are model parameters obtained for each neural function after training. N

is the sample size and h is the prediction horizon. The functions fi(vN , . . . , vN−d+1)

can be represented by a functional basis containing a family of known functions.

This basis can be in the form of polynomial functions, Fourier trigonometric func-

tions or a combination of these [82]. For the problem at hand, a polynomial basis

of the form 1, x, x2, . . . , xk is chosen, where k is the degree of the polynomial

basis. This choice is made for simplicity for now, however, in future, a combi-

nation of polynomial and Fourier trigonometric functions can be developed and

investigated.

The choice of these functions for parametric learning is also flexible as it can

be linear or nonlinear [83]. In linear method, we develop a separable functional

network in which the system is attempted to be represented by linearly indepen-

dent functions. The effect of each input is represented through separate functions
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and this kind of functional network can be optimized by solving a system of linear

equations for parameter estimation. On the other hand, to represent complex

nonlinear systems like wind speed time-series, we need to consider a set of non-

linear functions. In these functions, the inputs can have interactions with each

other and the resulting network is termed as interacting functional network.

4.2.2 Model Selection

After the parametric learning process, various sets of linear, nonlinear functions

are obtained to approximate the neuron functions of the functional network for

the selected problem. Considering the complex nonlinear nature of wind speed

time-series, a set of nonlinear neural functions is needed to reflect the information

contained in it. This is initially a large set of functions approximated based on

the selected degree of the model. At this point, a Model Selection method is

applied to optimally select the set of functions with best performance. There

are various choices for this model-selection method including exhaustive search,

forward-backward, backward-forward, or backward elimination methods.

The selected method for model selection is Backward Elimination, a regression

technique which involves the elimination of unfit or redundant elements from the

population [113]. We start with all candidate variables, or in our case, functions,

and test the deletion of each function based on a chosen optimal selection crite-

rion. The function (if any) whose loss does not a have a statistically significant

deterioration on the model fitness is deleted and the process is repeated until no
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further functions can be deleted. This results in a minimal set of functions that

give the specified model fitness.

The fitness criterion for model selection process is chosen to be Minimum De-

scription Length (MDL). This is a concept from information theory which makes

the optimal choice not only on the basis of prediction error but also takes into

account information required to store the given dataset using the model. Hence

it puts a penalty on the number of model parameters to minimize the model com-

plexity along with the accuracy of results. Mathematically, the MDL measure is

given as,

MDL =
p logN

2
+
N

2
logRMSE2 (4.2)

where, p is the number of functions in the optimal set (number or parameters), N

is the length of the training dataset, and RMSE is the root mean square error.

In essence, the first term in (4.2) is a penalty for model complexity to reduce

the number of functions to a minimum possible value, while the second term is a

measure of accuracy to gauge the error between the target and predicted output.

A systematic flow diagram of the proposed functional network model devel-

opment is exhibited in Figure 4.1. This flow diagram is divided into three parts

showing three important phases of the methodology; Parametric learning, Model

selection and Model testing phase. At some stages, where one of the available

choices has to be selected, the opted one is shown with green. The inputs are

wind training dataset in the training phase and testing dataset in the testing

phase. The output of the training phase is an optimally trained functional net-
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Figure 4.1: A flow diagram for the proposed functional network methodology.

work while the outputs of testing phase and error analysis are predicted wind

speed and error indices.

4.2.3 An Illustrative Example

For illustrative purposes, a typical functional network developed for time series

prediction is depicted in Figure 4.2. This network consists of 4 time-series inputs
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Figure 4.2: A typical functional network structure.

such that,

vN = x1; vN−1 = x2; vN−2 = x3; vN−3 = x4 (4.3)

whereas, the output v̂N+1 = x̂ is given as,

x̂ =
5∑

i=0

cifi (4.4)

In this functional network, the initial bias c0 is for the initial condition (f0 = 1),

while the other weights are optimized for each neural function. Unlike neural

networks, the neural functions (f1, . . . , f5) do not have identical structure but are

chosen optimally from a polynomial family with k = 3. A nonlinear parametric

learning process is carried out as is evident from Figure 4.2 that some of the inputs

interact with each other to generate neural functions [82], such as f4(x2, x3, x4).

However, it is not a necessary condition because some neural functions may remain
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univariate, such as in this case f1(x1). Model-selection is performed through

Backward Elimination algorithm that gives an optimal size p = 6.

The selected functions and their weights are summarized in Table 4.1. From

this illustration, the functional network based wind prediction model is described

in a step-by-step fashion, which clearly shows its differences as compared with the

neural networks, that,

� The topology of a FN is not fixed.

� Not only the weights, but mainly the neural functions are optimized during

the training phase.

� The neural functions do not necessarily have univariate and identical structure

but can be multidimensional and variable for every FN.

It is worth mentioning here that the network shown in Figure 4.2 and the

functions in Table 4.1 are only given for illustrative purposes. The actual trained

model neural functions and weights used in the results may be different from this

model, even for same dataset. Moreover, the development is easily extendable to

any time-series prediction problem using functional networks.

4.3 Results and Discussions

The case study is carried out in a similar fashion as explained in Section 4.2.3.

During the parametric learning process, the dataset used for training and cross-

validation of the FN model comprises of historical wind data for Jan-Mar 2014,
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Neural Functions Weights

f0 = 1 2.05005

f1 = x1 0.85569

f2 = x2x3
2 -0.00116

f3 = x2
2x3 0.00105

f4 = x2x3x4 -0.00123

f5 = x3
2x4 0.00135

Table 4.1: Optimized Neural Functions and Weights.

divided randomly with a ratio of 70% and 30% respectively. The number of func-

tional network inputs is determined by the embedding length (d) for time series

forecasting, which should be kept at a minimal value to avoid model complexity

and computational burden during the training phase. The optimal value of d is

determined through testing of the network with various d starting from d = 1.

The forecast error improved with increasing d but it was observed that there was

no significant improvement after d = 6, hence this value is chosen for basic FN

model.

The parametric learning process results in a different functional network struc-

ture (neural functions and weights) for different prediction horizons and various

MSF mechanisms. It is very tedious to depict all these FN models in this section

in a pictorial or tabular form. The neural functions for all cases are chosen from

a family of polynomial basis functions with a polynomial degree k = 3.

Once the trained FN model is developed, it is tested on another dataset of

future values. The testing dataset is composed of wind speed data for Jan-March

2015 from the same geographical site. First, a profile of the measured and pre-
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Figure 4.3: Measured vs. predicted wind speed for 1st, 3rd and 5th forecast step.

dicted wind speed is depicted for various forecast horizons in Figure 4.3. The

actual testing data set with about 2156 samples is not completely represented

here, but only a selected 50 samples for clarity of presentation.

As a characteristic of all forecast models that are based on random walk, it

can be seen that the predicted output lags behind the measured wind speed and

the lag is proportional to the increasing forecast horizon. In addition to this, the

correlation also diminishes with forecast horizon due to under-prediction of the

FN forecast model. This amounts to the amplifying error, but it is still less than

other forecast models as will be depicted by the detailed error analysis in the

coming subsections.

During the testing phase, it is observed that a unique functional structure with

different number of neural functions and weights is obtained due to the randomness
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in training data, even if all conditions and variables are kept the same. However,

the error performance of these distinct FN models under similar conditions does

not vary a great deal in terms of the standard error indices. Thus, the simulation

scheme is as follows: For each prediction horizon and MSF mechanism, the model

is trained 10 times and the best obtained results in terms of performance indices,

MAE, RMSE and SMAPE are reported.

4.3.1 Multi-Step Wind Forecasting with Functional Net-

work

There are two major sets of results; the first set is concerned with a detailed error

analysis of the proposed functional network model with the three proposed MSF

mechanisms, namely, Recursive, Direct and hybrid DirRec. Six steps ahead fore-

casts are obtained with each scheme, due to it special significance for time-varying

competitive energy markets [114]. The results of each scheme are summarized with

the benchmark persistence model at every forecast horizon in Table 4.2.

Table 4.2 clearly shows that proposed FN model performs significantly better

the benchmark model in terms of all error indices. Figure 4.4, Figure 4.5 and

Figure 4.6 are a pictorial depiction of Table 4.2. It can be clearly observed from

these figures that all MSF schemes start at the same point at the first step (which

is essentially the same), however, with the increase of prediction horizon, the

direct and DirRec schemes show much better error performance as compared to

the recursive model.
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Table 4.2: Functional Network MSF Error Analysis

Errors Steps Persistence Recursive Direct DirRec

MAE

1-step 1.08 1.05 1.05 1.05

2-step 1.44 1.40 1.14 1.11

3-step 1.76 1.65 1.23 1.19

4-step 1.99 1.84 1.38 1.29

5-step 2.22 2.00 1.56 1.43

6-step 2.43 2.13 1.75 1.58

RMSE

1-step 1.47 1.41 1.41 1.41

2-step 1.95 1.87 1.49 1.46

3-step 2.37 2.18 1.58 1.53

4-step 2.70 2.40 1.75 1.64

5-step 3.02 2.59 1.91 1.79

6-step 3.28 2.72 2.14 1.95

SMAPE

1-step 13.96 11.52 11.52 11.52

2-step 17.34 15.18 13.13 12.93

3-step 19.82 17.15 14.05 13.71

4-step 21.53 18.61 15.32 14.68

5-step 23.20 19.89 16.92 15.91

6-step 24.75 20.90 18.44 17.10

The performance of recursive FN model deteriorates because it is trained only

once for the single step and afterwards the prediction error accumulates with

the prediction horizon. Still the errors indices are much less as compared to

the persistence model and this scheme can be utilized in situations when model

training is not possible for every step. The DirRec scheme trains the model at

each step like direct scheme and it keeps a correlation with the previous steps by

including the forecast from each step into the next like the recursive scheme. Thus

it can be observed from Figure 4.4, Figure 4.5 and Figure 4.6 that hybridization
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of good features from both schemes makes it superior to both models. Another

observation from these results is that the error performance enhances for greater

prediction horizons.
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Figure 4.4: MSF schemes and persistence over prediction horizon - MAE.

The significant improvement of FN model over persistence especially for large

forecast horizons can be gauged by percentage improvement of each FN based

MSF scheme over persistence model. Table 4.3 records the max percentage im-

provement in terms of both error indices. It should be noted that these maximum

improvements are achieved at longer forecast horizons, i.e., at 4th, 5th and 6th

steps. The improvement achieved by the recursive scheme is comparatively less

than the direct and DirRec models. From Table 4.3, it is clear that FN-DirRec

has the largest improvements over persistence, going over 40% in terms of RMSE,

hence it can be termed as the best in terms of all error indices, especially over
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Figure 4.5: MSF schemes and persistence over prediction horizon - RMSE.
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Figure 4.6: MSF schemes and persistence over prediction horizon - SMAPE.
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large forecast horizons.

Table 4.3: Max Improvements (%) of MSF Schemes over Persistence

Errors Recursive Direct DirRec

MAE 12.23 30.80 35.54

RMSE 16.93 36.81 40.65

SMAPE 15.53 29.10 31.82

4.3.2 Comparative Analysis - Functional Network and Neu-

ral Network

The second set of results presents a comparative analysis of the proposed FN fore-

casting model with a standard ANN model. The ANN forecast model is subject

to the same conditions for comparison on an equal footing. These conditions in-

clude: Training and cross-validation wind data for first three months (Jan-Mar)

of the calendar year 2014; Testing data for first three months (Jan-Mar) of the

calendar year 2015; and embedding length d = 6. In this case also, six steps ahead

forecasts are obtained. The MSF scheme used for this set of results is Direct fore-

casting. Percentage error improvement of the proposed FN model is measured at

each forecast step in comparison with ANN model as well as persistence model to

exhibit the superiority of the FN model.

This set of results is compiled in Table 4.4 where comparison of FN model is

drawn with persistence benchmark and ANN model for six steps ahead predictions.

These results exhibit that FN outperforms other models in terms of all indices at
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Table 4.4: Comparative Analysis (FN, ANN, Persistence)

Errors Steps Persistence ANN FN

MAE

1-step 1.08 1.06 1.05

2-step 1.44 1.37 1.14

3-step 1.76 1.63 1.23

4-step 1.99 1.83 1.38

5-step 2.22 1.95 1.56

6-step 2.43 2.12 1.75

RMSE

1-step 1.47 1.42 1.41

2-step 1.95 1.84 1.49

3-step 2.37 2.18 1.58

4-step 2.70 2.41 1.75

5-step 3.02 2.61 1.91

6-step 3.28 2.76 2.14

SMAPE

1-step 13.96 12.46 11.52

2-step 17.34 14.99 13.13

3-step 19.82 17.01 14.05

4-step 21.53 18.53 15.32

5-step 23.20 19.39 16.92

6-step 24.75 20.67 18.44

all forecast horizons. Nevertheless, the performance enhancement is comparatively

better at longer forecast horizons. The comparative analysis can also be pictorially

seen in Figure 4.7, Figure 4.8 and Figure 4.9 in terms of MAE, RMSE and SMAPE

respectively. Although ANN shows quite good improvement over persistence, but

the FN model offers approx. 3 times better performance as compared to ANN as

measured in Figure 4.7 and Figure 4.8. As for SMAPE, the FN based model can

be seen to perform at least twice as better than the ANN model (see Figure 4.9).

A more quantitative approach to support our claim is the percentage improve-
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Figure 4.7: Comparative analysis (FN, ANN, and Persistence) in terms of MAE.
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Figure 4.8: Comparative analysis (FN, ANN, and Persistence) in terms of RMSE.
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Figure 4.9: Comparative analysis (FN, ANN, and Persistence) in terms of
SMAPE.

ment of FN over persistence and ANN models, as depicted in Table 4.5. We have

already seen a notable 40% improvement of FN over persistence. Similarly, im-

provement of FN over ANN goes as much as 27%, which shows its dominance.

Hence, it can be said that FN model is not only a novel technique, but it is also

very effective as validated by a comparative analysis with popular MSF models in

a standard manner.

Table 4.5: Max Improvements (%) of FN over Other Models

Errors Persistence ANN

MAE 30.80 24.79

RMSE 36.81 27.31

SMAPE 29.10 17.38
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CHAPTER 5

FORECAST-BASED POWER

DISPATCH

This chapter targets at the application of the forecasting models developed in

the previous chapters in profitable power dispatch and the study of the impact

of forecast error for energy management in terms of system costs and profits.

Specifically, a grid-connected wind power plant (WPP) is considered in this chap-

ter which is operated to sell the energy output to the grid. The selling strategy

strives on maximizing the plant income and operational profit by optimizing the

amount of energy to be sold using the information of energy market price.

The major issues in devising such a strategy for economically profitable dis-

patch is the uncertainty in WPP output. Also, in competitive energy markets,

the energy prices are not known for the future. Hence it becomes difficult to de-

termine how much energy will be available for selling and also what will be the

optimum period of selling the energy according to the market price. This is where
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our developed forecasting models come into play which enable us to forecast the

wind power output as well as the energy market prices based on the historical

trends of these data. Using the wind energy and market price forecasts, we can

plan our energy selling strategy for few steps ahead in future. We will analyze

from the results obtained that the accuracy of these forecasts have a direct impact

on tangible cost benefits achieved from energy trading.

The WPP is also attached with battery energy storage system (BESS) which

can be used as a backup. The BESS is another agent to make up for the inter-

mittencies in WPP output and ensuring maximum income. Since we can not get

constant power output from the WPP, hence it is possible that we cannot deliver

enough energy to increase our profits at the time of peaking market rates. Under

such circumstances, the BESS can supply the required energy, according to its

physical constraints. Similarly, we can utilize the surplus energy in charging the

BESS in those time periods when market prices are lower and we couldn’t gain

much profit from selling the energy. We will also conduct a scenario-based anal-

ysis for various BESS energy and power capacities which will help us finding out

an optimal BESS size as well.

5.1 Methodology for Dispatch

The discussed goals can be achieved by making use of a receding horizon ap-

proach based on the Model Predictive Control (MPC) theory. The strength of

this approach is that it is simpler to formulate, it can directly handle realistic
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system constraints, and it can easily incorporate multi-step forecasts. The inputs

of the proposed optimization model are six steps ahead wind energy and market

price forecasts along with system and BESS constraints. The output is obtained

in the form of an optimal control sequence for energy which is selected on the

basis of receding horizon principle. The optimization is performed using well-

established Linear Programming (LP) optimization. Enhanced economic benefits

and operational features can be obtained from the proposed strategy through the

coordinated action of wind power and energy price forecasts within an integrated

Wind-BESS system.

5.1.1 Problem Formulation

A WPP connected to the grid and associated with a BESS is taken into account

for wind power dispatch problem formulation. For formulating such a problem,

a relationship is developed between BESS capacity and percent revenue improve-

ment over a trivial strategy (without energy storage). Realistic and physical

constraints concerning battery and market regulations are also included in setting

up the problem. For a given wind farm, a problem formulated in such a manner

can help in optimal sizing of the BESS and estimation of the amount of adequate

investment required for profit maximization.

In the scenario under consideration, a BESS is attached to a wind farm. As

depicted in Figure 5.1, the energy output of the wind farm at kth instant is p(k) ∈

R, and the amount of energy sold to the grid through the market at kth instant
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is g(k) ∈ R. In this situation, g(k) should be greater than or equal to zero, i.e.,

g(k) ≥ 0, ∀k ≥ 0. (5.1)

Moreover, the difference e(k) between the energy produced and sold is given as,

e(k) = p(k)− g(k), (5.2)

This energy is stored in the BESS assuming lossless conversion stages. Clearly,

e(k) > 0 in the BESS charging cycle, while e(k) < 0 when the BESS is discharged.

Additionally, let the the market energy price at kth instant be m(k) ∈ R. Hence

the income of the wind farm at kth instant is given by m(k)g(k).

Figure 5.1: Signal flow diagram in the proposed configuration.

If the the amount of energy in the battery at kth instant is denoted by x(k) ∈ R,

then the following difference equation is satisfied:

x(k + 1) = x(k) + p(k)− g(k). (5.3)
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If we define the maximum charge rate and maximum discharge rate to be rc > 0

and rd > 0 respectively, then the difference in two consecutive states of the battery

has the following constraint,

rd ≤ x(k + 1)− x(k) ≤ rc, ∀k ≥ 0. (5.4)

Let the capacity of the BESS be C > 0 while 0 < αm < αM < 1 be given

constants, then the life of the battery can be prolonged and the cost of the BESS

can be reduced by setting up the following limitation,

αmC ≤ x(k) ≤ αMC, ∀k ≥ 0. (5.5)

Hence it can be said that the discrete time system (5.3) has to satisfy constraints

(5.1), (5.4) and (5.5).

5.1.2 Receding Horizon Approach

To derive an optimal wind power dispatch strategy, an optimization methodology

based on MPC is proposed. In this methodology, first the economic function which

needs to be maximized is considered with H > 0 being the forecast horizon as:

VH =
H−1∑
j=0

m̂(j)ĝ(j), (5.6)
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where, m̂(j) stands for the predicted future value of the energy price and m̂(0) =

m(k), i.e., the current energy price is known. Additionally, the tentative control

actions are contained in the vector ~g(k). This vector is defined over the whole

range of H as,

~g(k) = {ĝ(0), ĝ(1), . . . , ĝ(H − 1)} . (5.7)

As a result, the optimization problem for the current states is setup via MPC as

follows:

V op
H = max

~g

{
H−1∑
j=0

m̂(j)ĝ(j)

}
, (5.8)

subject to: x̂(j + 1) = x̂(j) + p̂(j)− ĝ(j), (5.9)

ĝ(j) ≥ 0 (5.10)

αmC ≤ x̂(j) ≤ αMC (5.11)

rd ≤ x̂(j + 1)− x̂(j) ≤ rc (5.12)

for all j ∈ {0, . . . , H − 1}, where x̂(0) = x(k) and p̂(0) = p(k), i.e., the current

battery state and wind power are known.

Hence cost function is maximized by the optimal input sequence ~gop(k), i.e.,

~gop(k) , arg

{
max

~g

H−1∑
j=0

m̂(j)ĝ(j)

}
. (5.13)
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Figure 5.2: Moving horizon principle with horizon (H = 3 for illustration): the
shaded rectangles represent the actual inputs applied to the system.

The optimal input control sequence is of the form given as follows:

~gop(k) = {gop(0), gop(1), . . . , gop(H − 1)} . (5.14)

The resulting optimal control sequence, ~gop(k) in (5.14), lies at an extremum of

the control signal set in the admissible range. This kind of control strategy is

commonly known as bang-bang control.

One key aspect of MPC is the receding or moving horizon principle [115]

which states that after obtaining the optimal input sequence in (5.14), only the
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first element, gop(0), is applied to the system, discarding the remaining elements

of ~gop(k). Then the optimization process is repeated at the next sampling instant

using new predicted values for m̂ and p̂ to obtain a new optimal input sequence,

~gop(k+ 1). The moving horizon principle is illustrated briefly in Figure 5.2 for the

case H = 3. Thus the solution of the optimal control problem PH(x) yields the

following control law

gop(k) = gop(0). (5.15)

Therefore, the resulting MPC closed-loop system can be represented for each

sampling instant as:

x(k + 1) = x(k) + p(k)− gop(k). (5.16)

The final wind power dispatch strategy is summarized in Algorithm 1. Here,

the functions m-PRED(·) and p-PRED(·) represent the predictors used to forecast

the electricity market price and the wind power for H = 6 steps ahead.

5.1.3 Optimization Method

The optimal control problem PH(x), presented in (5.8), is formulated (in both cost

function and constraints) by linear relationships. Therefore, this can be solved

by any linear programming (LP) algorithm such as interior-point, simplex, etc.

[116]. The standard Linear Programming (LP) optimization formulation, which

minimizes a linear function of the state, fT x̄, subject to constraints, is typically

83



Algorithm 1 Optimal Power Dispatch Strategy

Initialization: k ← 0, H ← 6
while (1) do
• Energy Price Predictor
m(0)← m(k)
~m(k) = m-PRED(·)
~m(k)←

{
m(0) m̂(1) . . . m̂(H − 1)

}
• Wind Power Predictor
p(0)← p(k)
~p(k) = p-PRED(·)
~p(k)←

{
p(0) p̂(1) . . . p̂(H − 1)

}
• Optimization
x̂(0)← x(k)
~gop(k) = OPT(x̂(0), ~m(k), ~p(k), H, αmc, αMc, rd, rc)
~gop(k)←

{
gop(0) gop(1) . . . gop(H − 1)

}
g(k)← gop(0) . Receding Horizon Policy
x(k + 1)← x(k) + p(k)− g(k)
k ← k + 1

end while

defined as:

min
x̄
fT x̄ such that


Āx̄ ≤ b̄

Āeqx̄ = b̄eq

lb ≤ ub

(5.17)

Thus, the problem under consideration can be written in standard form for LP

such that the objective function from (5.13) and constraints given in (5.9)–(5.12)

become:

~gop(k) = arg

{
max

~g
~mT~g

}
(5.18)

s.t. A~g ≤ b (5.19)

84



where the vector ~m =

{
m̂(0) . . . m̂(H)

}T

contains the market price predic-

tions, and

A =



−I

Φ

−Φ

I

−I


, b =



0

(x(k)− αmc)Γ + Φ~p

−(x(k)− αMc)Γ− Φ~p

~p+ rdΓ

−~p+ rcΓ


(5.20)

Φ =



1 0 · · · 0 0

1 1 · · · 0 0

...
...

. . .
...

...

1 1 · · · 1 0

1 1 · · · 1 1


, Γ =



1

1

...

1

1


(5.21)

where ~p =

{
p̂(0) . . . p̂(H)

}T

are the wind energy predictions.

5.1.4 Databases

To validate the developed dispatch system and to study the impact of forecast

error, a case study is carried out. Wind power data is obtained from a wind farm

at Roaring 40s Woolnorth, Tasmania, Australia (shown in Figure 5.3). Australian

electricity market operator is chosen for electricity market price data acquisition.

The typical time interval for power dispatching in the Australian National Elec-

tricity Market (NEM) is 5-min [117]. Hence the resolution of obtained data is also
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the same. The rated power of the wind turbine used here is 65 MW. The simula-

tions consists of 288 intervals of 5-min which correspond to a single calendar day

of 24 hours.

Figure 5.3: Real location of wind farm for case study, Woolnorth, Australia.

5.2 Application of Real-Time Forecasting Mod-

els in Dispatch

This section gives the results of the wind power dispatch strategy to maximize

income and profit from selling wind power using future-predicted power and price

information using a real-time predictor based on functional network (FN) devel-

oped in the previous chapter.

In most of the cases, integrated Wind-BESS plants require a large storage

BESS where the storage capacity is calculated using power and energy ratings,
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while the cost of BESS is characterized by power (in kW or MW) and energy (in

kWh or MWh) capacities [118, 119]. The operational revenues of a wind power

plant can be increased by optimizing the size of associated BESS coupled with

its optimal operation under feasible constraints. Therefore, the selling strategy

is assessed for a range of realistic BESS power and energy ratings, and percent

income improvement (II) has been calculated as follows:

% II =
MI - TI

TI
× 100 (5.22)

where MI is the model income and TI is trivial income calculated over a given

period T as follows:

MI = m(k)× ~gop(k)T (5.23)

TI = m(k)× p(k)T (5.24)

First of all, the wind power and market price profile considered in this work

is shown in Figures 5.4 and 5.5. These profiles are based on 288 samples which

represent the data of a single day (24 hours) with a resolution of 5-min. After

running optimization algorithm formulated in the previous section, the state of

BESS can be observed as computed from the optimal output power sold. This

state of charge (SOC) of the BESS is shown in Figure 5.6 for a 20MWh capacity.

As it can be observed, it remains within the defined constraints of upper and lower

capacity of 80% and 20% as specified in the formulation. The BESS is used most

at the times of peaking market prices and lower wind power available while the
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SOC remains at higher levels and BESS is charged in the opposite scenario.
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Figure 5.4: Wind Power Profile for a single day.
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Figure 5.5: Market Price Profile for a single day.
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Figure 5.6: Battery State of Charge for a 20MWh BESS during Dispatch.

A further in-depth view of the optimization process can be observed from

Figure 5.7 where the wind energy calculated from the generated output of the

wind turbine is shown along with optimal output sold to the grid at every 5-min

interval. The SOC of the BESS is also shown using the right y-axis to exhibit

the charging/discharging action of the BESS. Figure 5.7 is basically a depiction of

equation (5.16), hence it shows that the future SOC of the battery is changed as

the sum of the current SOC and wind output minus the optimal plant output. In

other words, the optimal output is above the wind turbine output by the amount

of energy discharged from the BESS or it is below the wind turbine output by the

amount used to charge the BESS. It should be noted that this decision is based on

the optimal output to maximize the income according to the market price, which

is not shown in this plot due to scaling limitations.
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Figure 5.7: Wind generation, battery SOC and optimal plant output sold to the
grid.

Figure 5.8 is a representation of the income improvement (II) percentage over

a range of BESS energy capacity while considering different power capacities. The

range of BESS energy capacity is varied from 0-300MWh while the values of 2, 3, 4,

5, 6 and 8MW power capacities are considered. It is clear from Figure 5.8 that for

a BESS with particular power capacity, the daily II reaches a saturation level after

which it cannot be improved despite enlarging the energy storage capacity of the

BESS. The saturation point or optimum point is greater for greater BESS power

capacities obviously. This can help us in determining the optimal combination

of BESS power and energy capacity. From this figure, for instance, the optimal

BESS capacity is about 50MWh for a 2MW/5min power BESS and so on.

In order to analyze the investment return, we have also calculated daily oper-
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Figure 5.8: Daily Income Improvement vs. Energy Capacity.

ational profit (OP) for each BESS. The OP is calculated by subtracting the daily

MI from daily BESS cost as follows:

Daily OP = Daily MI−Daily BESS Cost (5.25)

where Daily MI and Daily BESS cost are expressed in dollars.

It should be noted that daily OP has been calculated based on chosen short-

term daily cycle, otherwise, the battery cost is distributed over many years, typ-

ically 20 years. In such case, many other cost factors such as operational and

maintenance costs, battery degradation and chemistry, and converter technology

must be considered to find the OP accurately for a longer period which is out

of the scope of our research currently. However, it is important to notice that
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the operational and maintenance costs are minimized by the inherent property

of the proposed algorithm, for example, controlled operation of battery within

operational limits avoids over/under-charging and prolong the lifetime of battery

which consequently reduces the maintenance cost. Similarly, as we are using

actual battery model, with charging and discharging efficiencies, rate of charge

and discharge; power in and out from the battery is automatically adjusted and

hence all practical aspects of the battery are automatically incorporated in the

calculations.

Figure 5.9 expresses OP for different BESSs with a few selected power ratings.

In Figure 5.9, the Daily BESS cost is shown to be linearly increasing with BESS

energy capacity. For each power rating, the Daily OP shows similar behavior,

i.e., it goes to a maximum value at a certain BESS capacity, termed as Optimal

Capacity, after which the profit degrades. The optimal capacity is less for lower

BESS power ratings and increases for higher power ratings. This is because large

energy capacity at smaller power ratings doesn’t improve the income but the cost

of BESS keeps increasing. This result is very useful from the aspect of power

system planning, as it can help the planners to install optimum BESS capacity

for given BESS power rating to maximize their operational profits.

A similar analysis is performed over the range of BESS power capacity from

2MW to 36MW with various cases of BESS power capacity to show the daily II

and operational profit. In Figure 5.10, the values of BESS energy capacity are

60-100MWh with a step of 10MWh. It can be observed that the income improves
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Figure 5.9: Daily Operational Profit vs. Energy Capacity.

by increasing the energy capacity for sure, but increasing the power capacity

while keeping the energy capacity same is not fruitful after a certain value. This

can help us in determining the optimal combination of BESS power and energy

capacity. From this figure, for instance, the optimal BESS power capacity is about

2.5MW/5min for a 100MWh BESS which gives an II of about 5.2%. Similarly,

optimal combinations can be found for various cases.

Figure 5.11 expresses OP for BESS power ratings with a few selected capacities.

It can be observed that although the operational profit improves by increasing

the energy capacity, but increasing the power capacity while keeping the energy

capacity same is not fruitful after a certain value. This is because large energy

capacity at smaller power ratings doesn’t improve the income but the cost of
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Figure 5.10: Daily Income Improvement vs. Power Capacity.

BESS keeps increasing. These results can help us in determining the optimal

combination of BESS power and energy capacity. From this figure, for instance,

the optimal BESS power capacity is about 2.5MW/5min for a 90MWh BESS

which gives an OP of about $86,000. Similarly, optimal combinations can be

found for various cases. This result is very useful from the aspect of power system

planning, as it can help the planners to install optimum BESS capacity for given

BESS power rating to maximize their operational profits.

5.3 Forecast Error Analysis on Dispatch

Wind power and market price is forecasted for six-steps ahead prediction horizon.

Then these forecasts are used in the MPC receding horizon framework to deter-
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Figure 5.11: Daily Operational Profit vs. Power Capacity.

mine the optimal sequence of energy ready to be sold. The system carries along

according to the receding horizon policy. In this setting, an error in wind power

and price forecasts does impact the resulting control sequence, hence influencing

the income and operational profit gained from selling the energy. This section is

dedicated to analyze and quantify the impact of the forecast error upon these cost

metrics.

Artificial intelligence based real forecast models have been developed and ex-

amined in the previous chapters. These include artificial neural network (ANN)

model and functional network (FN) model. In addition to these real-time models,

some simulated error models have also been introduced in this section for the sake

of comparison. These simulated models include random error and ramping error.

The random error model generates an error with predefined limit (say ±10%),
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using a random distribution (like uniform distribution). This is a generic model

and does not reflect the actual error dynamics of a multi-step forecasting system

where the overall error increases with every step. To model this behavior, a better

alternative is a ramping error which ramps up with every step in the prediction

horizon. Thus, if we have a ramping error of 5%, it means it will be a 5% error in

the first step but then it will ramp up with every step using a pre-defined slope.

The next sub-sections analyze the impact of forecast errors from these real and

simulated models from various perspectives.

5.3.1 Analysis of Functional Network Forecasting Model

In this subsection, the effect of the proposed FN prediction model is presented

in terms of daily income improvement (II) and operational profit (OP). Three

simulated models are used here including a random error model with 15% max.

error, which means there is a deviation of −15% < 0 < 15% from the actual value

of wind power and market price. The ramping error models consist of 5% ramping

error (starting from 5% and a ramp of 5% with each step) and 15% ramping error

(starting from 15% and a ramp of 5% with each step).

The first result in this regard is shown in Figure 5.12, where a comparison is

drawn between the FN predictor and three simulated error models in terms of

II over a range of BESS power ratings. It can be observed that the II shows a

decreasing trend in the beginning, but after about 7MW, the trend of II starts

to ramp up for FN predictor as well as 15% random error model. The good
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performance of random error model is due to the fact that its error does not

enlarge with increasing forecast horizon. Despite this effect in FN predictor, it

still takes a clear lead over random error model and ends up with an II of about

8.6% over the trivial model at 36MW, whereas the II of random error model at

the same point is about 7.3%. As for the ramping error models, they are unable

to show good performance as their II deteriorates over increasing BESS power

ratings. The 5% ramping models shows some increase and goes up to approx. 3.5%

II at 10MW BESS rating, but after that, it continuously ramps down identical

to the 15% ramping error model. This result shows the importance of accurate

wind power and market price forecasting as the adverse effect of ramping error is

clearly depicted by the depreciation in income despite increasing the BESS power

capacity.
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Figure 5.12: Daily Income Improvement for various forecast error models.
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Another way of comparing the impact of forecast error is by running a similar

optimization algorithm and analysis assuming there is no forecast error at all.

This is an impossible situation as we cannot know the future exactly, however,

it is just used as a reference to gauge the depreciation in performance of the

proposed prediction models. The prediction model with least depreciation will be

considered as the best. The II comparison results for FN predictor are depicted

in Figure 5.13. It can be seen that for the case without error the II increases

with almost a constant rate which is not the case with prediction error. There is

a difference of about 10% improvement in income for the FN predictor while the

other error models are worse.
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Figure 5.13: Daily Income Improvement of forecast error models vs. zero error
reference.
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A similar analysis is performed for FN predictor and three simulated error

models in terms of OP over a range of BESS power ratings in Figures 5.14 and

5.15. Similar to II plot, the OP also shows a decreasing trend in the beginning,

but after about 8MW, the trend of OP starts to ramp up for FN predictor as well

as 15% random error model. FN model shows a max. improvement of $70 daily

over random error model and of $400 to $500 over ramping error models. This

result shows the importance of accurate wind power and market price forecasting

as the adverse effect of ramping error is clearly depicted by the depreciation in OP

despite increasing the BESS power capacity. Similarly, the max. deterioration of

the FN prediction model from the OP with no forecasting error is about $350 as

shown in Figure 5.15.
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Figure 5.14: Daily Operational Profit for various forecast error models.

In the last part of this subsection, the impact of forecast error is analyzed from
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Figure 5.15: Daily Operational Profit of forecast error models vs. zero error
reference.

a different perspective over a range of BESS energy capacities, while the power

capacity is kept fixed. In this regard, the daily II and OP are shown against the

BESS capacities varying from 0-300MWh for a suitable power capacity of 6MW.

In Figure 5.16, the daily II of FN prediction model is compared with real-value

model results with zero prediction error. It can be seen that there is a max.

depreciation of 0.5% in II, which shows the efficacy of the predictor that the

income is not deteriorated with forecast error. Moreover, the gap keeps closing

as the BESS capacity is increased and finally II from both models coincides at

an optimum level after which there is no improvement even for no forecast error.

The optimum value for this particular power capacity (6MW/5min) is around

280MWh. The reason behind this minimal impact of forecast error is inherent
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that BESS capacity basically caters for the intermittencies in renewable power

generation, hence increasing the capacity almost eliminates the impact of forecast

error after the optimum point.

A similar analysis is performed in terms of daily OP in Figure 5.17 and similar

results have been obtained with a max. profit depreciation of around $200 which

keeps improving and finally coincides at the optimum point which is obtained at

the same capacity of 280MWh. The only difference is after the optimum since the

income becomes constant but further increasing the capacity still increases the

capacity cost, so the OP begins to drop after that point.
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Figure 5.16: Daily Income Improvement of FN Prediction model vs. zero error
reference.
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Figure 5.17: Daily Operational Profit of FN Prediction model vs. zero error
reference.

5.3.2 Analysis of Real-Time Model Results

The focus of this sub-section is to present the comparison between both developed

prediction models in this thesis work in terms of income and operational profit

after power dispatch. As already discussed, these two models are FN predictor and

ANN predictor. Figure 5.18 shows the comparison of both these predictors over

BESS power ratings that although the performance of both these models does not

have a huge difference, FN model still gives a little bit better II as expected. The

FN model poses about 1-1.5% better II than ANN model over the whole range of

Figure 5.18. As compared to zero error reference which is not possible in reality

the II drop is shown in Figure 5.19.

In a similar way, the comparison between the two real-time predictors is de-
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Figure 5.18: Daily Income Improvement for FN and ANN forecast models.
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Figure 5.19: Daily Income Improvement for FN and ANN forecast models vs. zero
error reference.
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picted in terms of OP in Figures 5.20 and 5.21. The OP sloped down at the

beginning of BESS power capacity range until 7-10MW where it hits a low value

of $84,280 for ANN model and $84,350 for FN after which OP trend ramps up for

both models while keeping a margin of around $40 for the whole range. From the

zero error reference, the ANN model has a depreciation of about $370 maximum

which is a bit more than that of FN model.
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Figure 5.20: Daily Operational Profit for FN and ANN forecast models.

Next we present a major comparison among all the developed and simulated

forecast models as shown in Figures 5.22 and 5.23 in terms of daily II and OP

respectively. It can be observed that the II shows a decreasing trend in the

beginning, but after about 7MW, the trend of II starts to ramp up for both real-

time predictors as well as 15% random error model. The FN predictor, takes a

clear lead over other models and ends up with an II of about 9.2% over the trivial
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Figure 5.21: Daily Operational Profit for FN and ANN forecast models vs. zero
error reference.

model at 36MW, whereas the II of ANN model at the same point is about 8.6%.

As for the ramping error models, they are unable to show good performance as

their II deteriorates over increasing BESS power ratings. The 5% ramping models

shows some increase and goes up to approx. 3.5% II at 10MW BESS rating,

but after that, it continuously ramps down identical to the 15% ramping error

model. This result shows the importance of accurate wind power and market

price forecasting as the adverse effect of ramping error is clearly depicted by the

depreciation in income despite increasing the BESS power capacity.

A similar analysis is performed for real-time predictors and three simulated

error models in terms of OP over a range of BESS power ratings in Figure 5.23.

Similar to II plot, the OP also shows a decreasing trend in the beginning, but after
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about 7MW, the trend of OP starts to ramp up for both developed predictors as

well as 15% random error model. FN model shows an improvement of about $80

daily over random error model and of $400 to $500 over ramping error models.
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Figure 5.22: Daily Income Improvement for various forecast models.

The case of zero forecast error is compared to study the drop in II and OP

due to forecast error as well for all developed and simulated forecast models. The

II comparison results for FN predictor are depicted in Figure 5.24. It can be

seen that for the case without error the II increases with almost a constant rate

which is not the case with prediction error. There is a difference of about 10%

improvement in income for the FN predictor and about 12% for the ANN predictor

while the other simulated error models are worse. Similarly, it is shown in Figure

5.25 that the max. deterioration of the FN prediction model from the OP with

no forecasting error is about $360 while for ANN model it is about $400. The
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Figure 5.23: Daily Operational Profit for various forecast models.

simulated ramping error models show a drop of up to $800 daily which show the

direct benefit of better forecast accuracy if the developed forecast models.

In the last part of this subsection, the impact of forecast error for both devel-

oped forecast models is analyzed from a different perspective over a range of BESS

energy capacities, while the power capacity is kept fixed. In this regard, the daily

II and OP are shown against the BESS capacities varying from 0-300MWh for a

suitable power capacity of 6MW. In Figure 5.26, the daily II of both FN and ANN

prediction models is compared with real-value model results with zero prediction

error. It can be seen that both the models show almost similar performance while

the comparison with zero error reference is already discussed in Section 5.3.1.

Similarly, it is shown in Figure 5.27 that the developed models show identical

performance in terms of OP as well. In essence, two conclusion can be drawn
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Figure 5.24: Daily Income Improvement for various forecast models vs. zero error
reference.

from these results, 1) There is no significant impact of forecast error performance

over the range of BESS capacities as both models give similar results and they are

not much deteriorated from the zero error case either. 2) This analysis can help

us in determining the optimal BESS capacity at a particular power rating after

which no more profit can be earned.

5.3.3 Analysis at High Energy Capacity

In this subsection, the effect of forecast error is analyzed at high BESS capacities.

For this purpose, the daily II and daily OP are plotted against various power

capacities of the BESS as done in previous sections. The improvement in daily

income at a high BESS capacity of 240 MWh is shown in Figure 5.28 for various
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Figure 5.25: Daily Operational Profit for various forecast models vs. zero error
reference.

real and simulated forecast error models. It can be observed in this plot that

unlike previous results at smaller BESS energy capacities, the II for all models is

almost similar, whereas the II of FN predictor shows an improvement of approx.

1.5% over other models. In comparison to the reference zero error II, the behavior

of FN predictor is almost similar at lower BESS power capacities until 10MW but

afterwards the performance deteriorates due to forecast error and goes up to a

fall of 2% in II at highest BESS power capacity under consideration, i.e., 36MW,

whereas the other forecast models show a decrement of about 3-3.5%. Further-

more, the optimum value of II is 11.5% which is achieved only at 6MW Power

capacity and it coincides with the zero error case, which shows the supremacy of

FN predictor as this is not achieved in case of other predictors.
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Figure 5.26: Daily Income Improvement of Real Prediction models vs. zero error
reference over BESS Capacity.

Similarly, the daily OP trend is analyzed at high BESS capacity of 180 MWh

in Figure 5.29. For OP as well the trends are identical to the income. The OP of

FN predictor is same as the zero error reference until the optimum $87,600 at a

BESS power capacity of 5MW but it shows a decrease of about $1200 at higher

power rating of 36MW. The other prediction models do not coincide with the

optimum and show about $500 less than the FN predictor.

Finally, the forecast error analysis is shown at much higher capacities of around

300 MWh in Figures 5.30 and 5.31 for daily II and OP respectively. These results

depict that the impact of forecast error is minimized at this much high BESS

capacity. There is a deterioration of only about 2% max. II from the reference

real market price and wind power. In a similar fashion, Figure 5.31 shows the
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Figure 5.27: Daily Operational Profit of Real Prediction models vs. zero error
reference over BESS Capacity.

minimality of forecast error impact at this high capacity such that there is a

max. drop of $1000 in OP for all forecast models with respect to real reference.

Furthermore, an optimal small value of BESS power capacity can be found as

7MW after which there is only a profit of approx. $1000 in going up to 32MW.

Hence, we can say that the impact of wind power and market price forecast

error on income and profit of power dispatch is diminished as the BESS capacity

goes higher. Furthermore, the analysis at higher BESS capacities helped us point-

ing out a minimum optimal value of BESS power capacity which gives maximum

improvement in income and operational profit daily.
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Figure 5.28: Daily Income Improvement of various Prediction models at higher
BESS Capacities.
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Figure 5.29: Daily Operational Profit of various Prediction models at higher BESS
Capacities.
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Figure 5.30: Daily Income Improvement of various Prediction models at high
BESS Capacity (300MWh).
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Figure 5.31: Daily Operational Profit of various Prediction models at high BESS
Capacity (300MWh).
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CHAPTER 6

CONCLUSION

In this thesis work, forecasting models are proposed and developed using AI tech-

niques for multi-step ahead predictions via three forecasting schemes including

recursive, direct and DirRec forecasting. The base AI model used to predict wind

speed is based on ANN. A novel wind forecast model using FN is proposed and is

shown to be better than the ANN model. The developed six-step ahead forecast

models are applied to a dispatch strategy based on receding horizon MPC theory.

The dispatch mechanism is intended to sell the wind energy at optimal intervals

using forecasted market price information as well. Finally, the analysis of forecast

error depicts the income improvement and operational profit benefits of the pro-

posed real-time prediction model as compared to other real and simulated forecast

error models.
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6.1 Major Conclusions

The major conclusions that can be drawn from the described work are listed as

under:

� The ANN wind forecasting model performs better than the benchmark per-

sistence model in terms of all forecast error indices, and the trend shows that

accuracy improvement of ANN over persistence is larger at longer forecast

horizons.

� For the ANN multi-step forecast (MSF) model, the accuracy obtained by all

three MSF schemes is very close to each other, hence none can be termed to

be better than the other, however, recursive is preferred for its simplicity and

less computational requirement.

� The proposed FN wind forecast model is not only innovative, but it is also

very effective since it is more accurate than the benchmark and ANN MSF

models, while less computationally expensive as compared to advanced hybrid

AI models.

� The FN wind prediction model shows a max. improvement of 41% from per-

sistence and 27% from the developed ANN model for MSF at longer forecast

horizons.

� For FN MSF model, the forecast accuracy of the MSF schemes can be clearly

ranked as (DirRec > Direct > Recursive), which is a logical outcome and

reflects the benefit of the superior training method of FN.
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� The application of real-time six-step FN prediction model in a microgrid helps

in optimizing the dispatch process and the amount of wind energy that can be

sold at various BESS capacities and power ratings.

� The scenario-based analysis for a range of BESS capacities and power ratings

helps in determining the optimal BESS size after which no significant improve-

ment in daily income and operational profit (OP) can be achieved.

� The forecast error analysis depicts that FN based prediction being the most

accurate, shows better income improvement (II) and OP after optimization as

compared to other simulated forecast error models as well as the developed

ANN model over a range of BESS power capacities.

� Variation in BESS energy capacity does not have a significant effect on the ob-

tained II and OP from different forecasting models, while the effect of forecast

error is negligible at a fairly large BESS capacity.

It should be noted that all conclusion are deduced from the obtained results

for the case studies under consideration. Hence some of them may not be generic

and may vary for other case studies.
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6.2 Recommendations for Future Research

Some recommendations and possible directions for future research in the same

domain are given as under:

� The developed forecast models are generic and can be used for various appli-

cations in power systems such as solar irradiance and power forecasting, load

forecasting and even for time-series forecasting applications other than power

systems.

� This work targets at the basic concept of functional network model, how-

ever, many advancements can be made in the basic model. These advance-

ments may include a different functional basis for neural functions which may

consist of trigonometric functions to improve the forecast accuracy. Further-

more, a more advanced model-selection method such as forward-backward or

backward-forward method may bring computational benefits.

� In recent works, the FN based model is seen to be combined with other ad-

vanced AI models such as ANN and ELM for other applications. The same

can be tried for the problem of time-series forecasting.

� The developed models can be applied to diversified dispatch applications in-

cluding a complex load profile which needs to be forecasted or a case of hybrid

generation with many types of generation which can all be predicted using

these models.

� The analysis of forecast error can be performed from various other angles by
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considering a multi-objective optimization scenario in which we have an envi-

ronmental objective or BESS life cycle maximization objective. The impact

of forecast error on these objectives is also expected to produce publishable

outcomes.

6.3 Closing Remarks

The development of accurate and innovative AI based forecast models is a much

emphasized domain, firstly due to the rise of intelligent systems in this era. Sec-

ondly, the proposed work has immense implications due to the emerging concept

of forecast-based control and optimization mechanisms in power dispatch process.

This idea is well-accepted in recent literature as it not only makes the system

more realistic but can also help in reducing the operating costs, optimizing the

reserve and energy storage size and maximizing the operational profits in compet-

itive energy markets. All in all, it is a fervent effort to attain profound technical

and economic benefits for renewable energy technology to make progress toward

the goal of cleaner environment for the welfare of the community and future gen-

erations.
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