7,549 research outputs found

    Cognitive visual tracking and camera control

    Get PDF
    Cognitive visual tracking is the process of observing and understanding the behaviour of a moving person. This paper presents an efficient solution to extract, in real-time, high-level information from an observed scene, and generate the most appropriate commands for a set of pan-tilt-zoom (PTZ) cameras in a surveillance scenario. Such a high-level feedback control loop, which is the main novelty of our work, will serve to reduce uncertainties in the observed scene and to maximize the amount of information extracted from it. It is implemented with a distributed camera system using SQL tables as virtual communication channels, and Situation Graph Trees for knowledge representation, inference and high-level camera control. A set of experiments in a surveillance scenario show the effectiveness of our approach and its potential for real applications of cognitive vision

    A Multi Views Approach for Remote Sensing Fusion Based on Spectral, Spatial and Temporal Information

    Get PDF
    The objectives of this chapter are to contribute to the apprehension of image fusion approaches including concepts definition, techniques ethics and results assessment. It is structured in five sections. Following this introduction, a definition of image fusion provides involved fundamental concepts. Respectively, we explain cases in which image fusion might be useful. Most existing techniques and architectures are reviewed and classified in the third section. In fourth section, we focuses heavily on algorithms based on multi-views approach, we compares and analyses the process model and algorithms including advantages, limitations and applicability of each view. The last part of the chapter summarized the benefits and limitations of a multi-view approach image fusion; it gives some recommendations on the effectiveness and the performance of these methods. These recommendations, based on a comprehensive study and meaningful quantitative metrics, evaluate various proposed views by applying them to various environmental applications with different remotely sensed images coming from different sensors. In the concluding section, we fence the chapter with a summary and recommendations for future researches

    A COGNITIVE ARCHITECTURE FOR AMBIENT INTELLIGENCE

    Get PDF
    L’Ambient Intelligence (AmI) è caratterizzata dall’uso di sistemi pervasivi per monitorare l’ambiente e modificarlo secondo le esigenze degli utenti e rispettando vincoli definiti globalmente. Questi sistemi non possono prescindere da requisiti come la scalabilità e la trasparenza per l’utente. Una tecnologia che consente di raggiungere questi obiettivi è rappresentata dalle reti di sensori wireless (WSN), caratterizzate da bassi costi e bassa intrusività. Tuttavia, sebbene in grado di effettuare elaborazioni a bordo dei singoli nodi, le WSN non hanno da sole le capacità di elaborazione necessarie a supportare un sistema intelligente; d’altra parte senza questa attività di pre-elaborazione la mole di dati sensoriali può facilmente sopraffare un sistema centralizzato con un’eccessiva quantità di dettagli superflui. Questo lavoro presenta un’architettura cognitiva in grado di percepire e controllare l’ambiente di cui fa parte, basata su un nuovo approccio per l’estrazione di conoscenza a partire dai dati grezzi, attraverso livelli crescenti di astrazione. Le WSN sono utilizzate come strumento sensoriale pervasivo, le cui capacità computazionali vengono utilizzate per pre-elaborare i dati rilevati, in modo da consentire ad un sistema centralizzato intelligente di effettuare ragionamenti di alto livello. L’architettura proposta è stata utilizzata per sviluppare un testbed dotato degli strumenti hardware e software necessari allo sviluppo e alla gestione di applicazioni di AmI basate su WSN, il cui obiettivo principale sia il risparmio energetico. Per fare in modo che le applicazioni di AmI siano in grado di comunicare con il mondo esterno in maniera affidabile, per richiedere servizi ad agenti esterni, l’architettura è stata arricchita con un protocollo di gestione distribuita della reputazione. È stata inoltre sviluppata un’applicazione di esempio che sfrutta le caratteristiche del testbed, con l’obiettivo di controllare la temperatura in un ambiente lavorativo. Quest’applicazione rileva la presenza dell’utente attraverso un modulo per la fusione di dati multi-sensoriali basato su reti bayesiane, e sfrutta questa informazione in un controllore fuzzy multi-obiettivo che controlla gli attuatori sulla base delle preferenze dell’utente e del risparmio energetico.Ambient Intelligence (AmI) systems are characterized by the use of pervasive equipments for monitoring and modifying the environment according to users’ needs, and to globally defined constraints. Furthermore, such systems cannot ignore requirements about ubiquity, scalability, and transparency to the user. An enabling technology capable of accomplishing these goals is represented by Wireless Sensor Networks (WSNs), characterized by low-costs and unintrusiveness. However, although provided of in-network processing capabilities, WSNs do not exhibit processing features able to support comprehensive intelligent systems; on the other hand, without this pre-processing activities the wealth of sensory data may easily overwhelm a centralized AmI system, clogging it with superfluous details. This work proposes a cognitive architecture able to perceive, decide upon, and control the environment of which the system is part, based on a new approach to knowledge extraction from raw data, that addresses this issue at different abstraction levels. WSNs are used as the pervasive sensory tool, and their computational capabilities are exploited to remotely perform preliminary data processing. A central intelligent unit subsequently extracts higher-level concepts in order to carry on symbolic reasoning. The aim of the reasoning is to plan a sequence of actions that will lead the environment to a state as close as possible to the users’ desires, taking into account both implicit and explicit feedbacks from the users, while considering global system-driven goals, such as energy saving. The proposed conceptual architecture was exploited to develop a testbed providing the hardware and software tools for the development and management of AmI applications based on WSNs, whose main goal is energy saving for global sustainability. In order to make the AmI system able to communicate with the external world in a reliable way, when some services are required to external agents, the architecture was enriched with a distributed reputation management protocol. A sample application exploiting the testbed features was implemented for addressing temperature control in a work environment. Knowledge about the user’s presence is obtained through a multi-sensor data fusion module based on Bayesian networks, and this information is exploited by a multi-objective fuzzy controller that operates on actuators taking into account users’ preference and energy consumption constraints

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Advanced Occupancy Measurement Using Sensor Fusion

    Get PDF
    With roughly about half of the energy used in buildings attributed to Heating, Ventilation, and Air conditioning (HVAC) systems, there is clearly great potential for energy saving through improved building operations. Accurate knowledge of localised and real-time occupancy numbers can have compelling control applications for HVAC systems. However, existing technologies applied for building occupancy measurements are limited, such that a precise and reliable occupant count is difficult to obtain. For example, passive infrared (PIR) sensors commonly used for occupancy sensing in lighting control applications cannot differentiate between occupants grouped together, video sensing is often limited by privacy concerns, atmospheric gas sensors (such as CO2 sensors) may be affected by the presence of electromagnetic (EMI) interference, and may not show clear links between occupancy and sensor values. Past studies have indicated the need for a heterogeneous multi-sensory fusion approach for occupancy detection to address the short-comings of existing occupancy detection systems. The aim of this research is to develop an advanced instrumentation strategy to monitor occupancy levels in non-domestic buildings, whilst facilitating the lowering of energy use and also maintaining an acceptable indoor climate. Accordingly, a novel multi-sensor based approach for occupancy detection in open-plan office spaces is proposed. The approach combined information from various low-cost and non-intrusive indoor environmental sensors, with the aim to merge advantages of various sensors, whilst minimising their weaknesses. The proposed approach offered the potential for explicit information indicating occupancy levels to be captured. The proposed occupancy monitoring strategy has two main components; hardware system implementation and data processing. The hardware system implementation included a custom made sound sensor and refinement of CO2 sensors for EMI mitigation. Two test beds were designed and implemented for supporting the research studies, including proof-of-concept, and experimental studies. Data processing was carried out in several stages with the ultimate goal being to detect occupancy levels. Firstly, interested features were extracted from all sensory data collected, and then a symmetrical uncertainty analysis was applied to determine the predictive strength of individual sensor features. Thirdly, a candidate features subset was determined using a genetic based search. Finally, a back-propagation neural network model was adopted to fuse candidate multi-sensory features for estimation of occupancy levels. Several test cases were implemented to demonstrate and evaluate the effectiveness and feasibility of the proposed occupancy detection approach. Results have shown the potential of the proposed heterogeneous multi-sensor fusion based approach as an advanced strategy for the development of reliable occupancy detection systems in open-plan office buildings, which can be capable of facilitating improved control of building services. In summary, the proposed approach has the potential to: (1) Detect occupancy levels with an accuracy reaching 84.59% during occupied instances (2) capable of maintaining average occupancy detection accuracy of 61.01%, in the event of sensor failure or drop-off (such as CO2 sensors drop-off), (3) capable of utilising just sound and motion sensors for occupancy levels monitoring in a naturally ventilated space, (4) capable of facilitating potential daily energy savings reaching 53%, if implemented for occupancy-driven ventilation control

    Context-dependent combination of sensor information in Dempster–Shafer theory for BDI

    Get PDF
    © 2016, The Author(s). There has been much interest in the belief–desire–intention (BDI) agent-based model for developing scalable intelligent systems, e.g. using the AgentSpeak framework. However, reasoning from sensor information in these large-scale systems remains a significant challenge. For example, agents may be faced with information from heterogeneous sources which is uncertain and incomplete, while the sources themselves may be unreliable or conflicting. In order to derive meaningful conclusions, it is important that such information be correctly modelled and combined. In this paper, we choose to model uncertain sensor information in Dempster–Shafer (DS) theory. Unfortunately, as in other uncertainty theories, simple combination strategies in DS theory are often too restrictive (losing valuable information) or too permissive (resulting in ignorance). For this reason, we investigate how a context-dependent strategy originally defined for possibility theory can be adapted to DS theory. In particular, we use the notion of largely partially maximal consistent subsets (LPMCSes) to characterise the context for when to use Dempster’s original rule of combination and for when to resort to an alternative. To guide this process, we identify existing measures of similarity and conflict for finding LPMCSes along with quality of information heuristics to ensure that LPMCSes are formed around high-quality information. We then propose an intelligent sensor model for integrating this information into the AgentSpeak framework which is responsible for applying evidence propagation to construct compatible information, for performing context-dependent combination and for deriving beliefs for revising an agent’s belief base. Finally, we present a power grid scenario inspired by a real-world case study to demonstrate our work
    corecore