776 research outputs found

    Seizure detection from EEG signals using Multivariate Empirical Mode Decomposition

    Get PDF
    We present a data driven approach to classify ictal (epileptic seizure) and non-ictal EEG signals using the multivariate empirical mode decomposition (MEMD) algorithm. MEMD is a multivariate extension of empirical mode decomposition (EMD), which is an established method to perform the decomposition and time-frequency (T−F) analysis of non-stationary data sets. We select suitable feature sets based on the multiscale T−F representation of the EEG data via MEMD for the classification purposes. The classification is achieved using the artificial neural networks. The efficacy of the proposed method is verified on extensive publicly available EEG datasets

    EEG signal analysis via a cleaning procedure based on multivariate empirical mode decomposition

    Get PDF
    IJCCI 2012Artifacts are present in most of the electroencephalography (EEG) recordings, making it difficult to interpret or analyze the data. In this paper a cleaning procedure based on a multivariate extension of empirical mode decomposition is used to improve the quality of the data. This is achieved by applying the cleaning method to raw EEG data. Then, a synchrony measure is applied on the raw and the clean data in order to compare the improvement of the classification rate. Two classifiers are used, linear discriminant analysis and neural networks. For both cases, the classification rate is improved about 20%

    Classification of EEG Signals for Prediction of Epileptic Seizures

    Get PDF
    Epilepsy is a common brain disorder that causes patients to face multiple seizures in a single day. Around 65 million people are affected by epilepsy worldwide. Patients with focal epilepsy can be treated with surgery, whereas generalized epileptic seizures can be managed with medications. It has been noted that in more than 30% of cases, these medications fail to control epileptic seizures, resulting in accidents and limiting the patient’s life. Predicting epileptic seizures in such patients prior to the commencement of an oncoming seizure is critical so that the seizure can be treated with preventive medicines before it occurs. Electroencephalogram (EEG) signals of patients recorded to observe brain electrical activity during a seizure can be quite helpful in predicting seizures. Researchers have proposed methods that use machine and/or deep learning techniques to predict epileptic seizures using scalp EEG signals; however, prediction of seizures with increased accuracy is still a challenge. Therefore, we propose a three-step approach. It includes preprocessing of scalp EEG signals with PREP pipeline, which is a more sophisticated alternative to basic notch filtering. This method uses a regression-based technique to further enhance the SNR, with a combination of handcrafted, i.e., statistical features such as temporal mean, variance, and skewness, and automated features using CNN, followed by classification of interictal state and preictal state segments using LSTM to predict seizures. We train and validate our proposed technique on the CHB-MIT scalp EEG dataset and achieve accuracy of 94%, sensitivity of 93.8% , and 91.2% specificity. The proposed technique achieves better sensitivity and specificity than existing methods.publishedVersio

    Eeg Classification For Epilepsy Based On Wavelet Packet Decomposition And Random Forest

    Get PDF
    EEG (electroencephalogram) can detect epileptic seizures by neurophysiologists in clinical practice with visually scan long recordings. Epilepsy seizure is a condition of brain disorder with chronic noncommunicable that affects people of all ages. The challenge of study is how to develop a method for signal processing that extract the subtle information of EEG and use it for automating the detection of epileptic with high accuration, so we can use it for monitoring and treatment the epileptic patient. In this study we developed a method to classify the EEG signal based on Wavelet Packet Decomposition that decompose the EEG signal and Random Forest for seizure detetion. The result of study shows that Random Forest classification has the best performance than KNN, ANN, and SVM. The best combination of statisctical features is standard deviation, maximum and minimum value, and bandpower. WPD is has best decomposition in 5th level

    A hybrid unsupervised approach toward EEG epileptic spikes detection

    Get PDF
    Epileptic spikes are complementary sources of information in EEG to diagnose and localize the origin of epilepsy. However, not only is visual inspection of EEG labor intensive, time consuming, and prone to human error, but it also needs long-term training to acquire the level of skill required for identifying epileptic discharges. Therefore, computer-aided approaches were employed for the purpose of saving time and increasing the detection and source localization accuracy. One of the most important artifacts that may be confused as an epileptic spike, due to morphological resemblance, is eye blink. Only a few studies consider removal of this artifact prior to detection, and most of them used either visual inspection or computer-aided approaches, which need expert supervision. Consequently, in this paper, an unsupervised and EEG-based system with embedded eye blink artifact remover is developed to detect epileptic spikes. The proposed system includes three stages: eye blink artifact removal, feature extraction, and classification. Wavelet transform was employed for both artifact removal and feature extraction steps, and adaptive neuro-fuzzy inference system for classification purpose. The proposed method is verified using a publicly available EEG dataset. The results show the efficiency of this algorithm in detecting epileptic spikes using low-resolution EEG with least computational complexity, highest sensitivity, and lesser human interaction compared to similar studies. Moreover, since epileptic spike detection is a vital component of epilepsy source localization, therefore this algorithm can be utilized for EEG-based pre-surgical evaluation of epilepsy

    Detection of Epileptic Seizures on EEG Signals Using ANFIS Classifier, Autoencoders and Fuzzy Entropies

    Get PDF
    Epileptic seizures are one of the most crucial neurological disorders, and their early diagnosis will help the clinicians to provide accurate treatment for the patients. The electroencephalogram (EEG) signals are widely used for epileptic seizures detection, which provides specialists with substantial information about the functioning of the brain. In this paper, a novel diagnostic procedure using fuzzy theory and deep learning techniques is introduced. The proposed method is evaluated on the Bonn University dataset with six classification combinations and also on the Freiburg dataset. The tunable- Q wavelet transform (TQWT) is employed to decompose the EEG signals into different sub-bands. In the feature extraction step, 13 different fuzzy entropies are calculated from different sub-bands of TQWT, and their computational complexities are calculated to help researchers choose the best set for various tasks. In the following, an autoencoder (AE) with six layers is employed for dimensionality reduction. Finally, the standard adaptive neuro-fuzzy inference system (ANFIS), and also its variants with grasshopper optimization algorithm (ANFIS-GOA), particle swarm optimization (ANFIS-PSO), and breeding swarm optimization (ANFIS-BS) methods are used for classification. Using our proposed method, ANFIS-BS method has obtained an accuracy of 99.7
    • …
    corecore