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1. Introduction  

Epilepsy is a chronic neurological disorder that affects more than 50 million people world 
wide, characterized by recurrent seizures (World Health Organization [WHO], 2006). An 
epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal 
excessive or synchronous neuronal activity in the brain (Fisher et al., 2005 & Berg et al., 2010). 
This electrical hyperactivity can have its source in different parts of the brain and produces 
physical symptoms such as short periods of inattention and loose of memory, a sensory 
hallucination, or a whole-body convulsion. The frequency of these events can vary from one 
in a year to several in a day. The majority of the patients suffer from unpredictable, 
persistent and frequent seizures which limit the independence of an individual, increase the 
risk of serious injury and mobility, and result in both social isolation and economic hardship 
(Friedman & Gilliam, 2010). In addition, the patients with epilepsy have an increased 
mortality risk of approximately 2 to 3 times that of the general population (Ficker, 2000).  
The first line of treatment for epilepsy is with multiple anti-epileptic drugs and it is effective 
in about 70% of the cases. From the 30% remaining affected individuals only less than 10% 
could benefit from surgical therapy leaving a 20% of the total of people with epilepsy who 
will continue suffering sudden, incontrollable seizures and for whom other forms of 
treatment are being investigated (Theodore & Ficker, 2004; WHO, 2006).  
For any of the reasons exposed before the seizure detection is an important component in 
the diagnosis of epilepsy and for the seizures control. In the clinical practice this detection 
basically involves visual scanning of Electroencephalogram (EEG) long recordings by the 
physicians in order to detect and classify the seizure activity present in the EEG signal. 
Usually these are multichannel records of 24 to 72 hours length which implies a very time 
consuming task and it is also kwon that the conclusions are very subjective so disagreement 
between physicians are not rare.  
The seek here is to detect automatically in long term EEG records those segments of the 
signal that present epileptic seizures for the shake of reducing the high amount of 
information to be analyzed by the neurologists. Thus them could focus their attention in 
these part of the information so a more precisely and quick diagnosis can be made. Seizure 
detection is also a useful tool for treatments such us timely drug delivery, electrical 
stimulation and seizure alert systems. 
Automated seizure detection, quantification and recognition have been of interest of the 
biomedical community researchers since the 1970s. In some initial works a number of 
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parameters of EEG waves such us amplitude, sharpness and duration were measured and 
evaluated (Sanei & Chambers, 2007). This first approach is sensitive to artefacts so in the 
following years numerous and diverse techniques have been employed and refined to 
improved epileptic seizures detection. 
Artificial Neural Networks (ANN) have been used both to detect abnormal patterns in the 
EEG (Schuyler et al., 2007 & Bao et al., 2009) and as seizure parameters classifier (Tzallas et 
al., 2007). Wavelet Transform is also widely used for epilepsy detection (Adeli et al., 2007). 
Others studies combine Approximate Entropy and Lempel-Ziv Complexity (Abásolo et al., 
2007 & Zandi et al., 2009), and Time Frequency Distributions (Tzallas et al., 2007). 
In the studies referenced in the previous paragraphs, it had been proposed different seizure 
detectors that had been tested in particular EEG databases each. In some cases the epileptic 
EEG records were of a few seconds long. Other techniques were implemented in rats’ EEGs 
with induced seizures were also used. The most recently works used long term epileptic 
EEGs for a small number of patients or grouped by the type of epilepsy they suffer. In this 
sense due to seizure detection algorithms were not evaluated on the same database to date 
so no standardization exists about the good performance of an epileptic seizure detector 
(Varsavsky et al., 2011). 
The aim of this chapter is to examine the recent Empirical Mode Decomposition (EMD) 
technique for the extraction of features of epileptic EEG records to be used in two seizure 
detectors. The algorithms will be tested in 21 multichannel EEG recordings of patients 
suffering different focal epilepsies. Along the sections of this chapter it will be described the 
used EEG records, the EMD algorithm as well as the features extracted to be used in the 
developed seizures detectors, the obtained results and finally the conclusions and discussion 
will be exposed.  

2. The EEG database 

The EEG database contains invasive EEG recordings of 21 patients suffering from medically 
intractable focal epilepsy. The data were recorded during invasive pre-surgical epilepsy 
monitoring at the Epilepsy Center of the University Hospital of Freiburg, Germany 
(Freiburg, 2008). In order to obtain a high signal-to-noise ratio, fewer artifacts, and to record 
directly from focal areas, intracranial grid-, strip-, and depth-electrodes were used. The EEG 
data were acquired using a Neurofile NT digital video EEG system with 128 channels, 256 
Hz sampling rate, and a 16 bits A/D converter. Notch or band pass filters have not been 
applied in the acquisition stage. 
The available EEG records include only 6 channels (3 focal electrodes and 3 extrafocal 
electrodes). The records are divided into segments of 1 hour long. In this study, only the 3 
focal channels were used. A total of 87 seizures from 21 patients (8M, 13F, age: 29.9 ± 11.9 
years) were analyzed. The details of the database are summarized in Table 1. 

3. Empirical Mode Decomposition 

In the last years, a technique called Empirical Mode Decomposition (EMD) has been 
proposed for the analysis of non-linear and non-stationary series (Huang et al., 1998).  The 
EMD adaptively decomposes a signal into oscillating components or Intrinsic Mode 
Functions (IMFs). The EMD is in fact a type of filter bank decomposition method whose sub 
bands are built as needed to separate the different natural components of the signal. In the 
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field of biomedical signal processing EMD has been used for the analysis of respiratory 
mechanomyographic signals (Torres et al., 2007), for denoising in ECG records (Beng et al., 
2006). Particularly, this technique was implemented to extract features from EEG signals for 
mental task classification (Diez et al., 2009), it was used to obtain adaptive bands on EEG 
signals (Diez et al., 2011) and also for epileptic seizure detection in EEG signals in 5 patients 
with temporal lobe focal epilepsy (Tafreshi et al., 2008). In this sense the authors of this 
chapter have previously developed algorithms based on EMD for seizure detection and they 
have been tested in 9 long EEG records of patients with temporal focal epilepsy (Orosco et 
al., 2009) and in 21 patients with different epilepsies (Orosco et al., 2010).  
 

#Patient Sex Age Origin 
Number of 

seizures 

1 F 15 Frontal 4 

2 M 38 Temporal 3 

3 M 14 Frontal 5 

4 F 26 Temporal 5 

5 F 16 Frontal 5 

6 F 31 Temporo/Occipital 3 

7 F 42 Temporal 3 

8 F 32 Frontal 2 

9 M 44 Temporo/Occipital 5 

10 M 47 Temporal 5 

11 F 10 Parietal 4 

12 F 42 Temporal 4 

13 F 22 Temporo/Occipital 2 

14 F 41 Fronto/Occipital 4 

15 M 31 Temporal 4 

16 F 50 Temporal 5 

17 M 28 Temporal 5 

18 F 25 Frontal 5 

19 F 28 Frontal 4 

20 M 33 Temporo/Parietal 5 

21 M 13 Temporal 5 

Table 1. Freiburg EEG Database. 

3.1 The EMD algorithm 

The EMD is a general nonlinear non-stationary signal decomposition method. The aim of 

the EMD is to decompose the signal into a sum of Intrinsic Mode Functions (IMFs). An IMF 

is defined as a function that satisfies two conditions (Huang et al., 1998):  

1. In the entire signal, the number of extrema and the number of zero crossings must be 
equal or differ at most by one.  
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2. At any point, the mean value of the envelope defined by the local maxima and the 
envelope defined by the local minima must be zero (or close to zero).  

The major advantage of the EMD is that the IMFs are derived directly from the signal itself 
and does not require any a priori known basis. Hence the analysis is adaptive, in contrast to 
Fourier or Wavelet Transform, where the signal is decomposed in a linear combination of 
predefined basis functions.  
Given a signal x(t) such us it is showed in figure 1, the algorithm of the EMD can be 
summarized in the following 6 steps (Huang et al., 1998): 
1. Find local maxima and minima of d0(t)=x(t). 
2. Interpolate between the maxima and minima in order to obtain the upper and lower 

envelopes eu(t) and el(t), respectively. 
3. Compute the mean of the envelopes m(t)=(eu(t)+ el(t))/2. 
4. Extract the detail d1(t)= d0(t)-m(t) 
5. Iterate steps 1-4 on the residual until the detail signal dk(t) can be considered an IMF 

(accomplish the two conditions): c1(t)= dk(t) 
6. Iterate steps 1-5 on the residual rn(t)=x(t)- cn(t) in order to obtain all the IMFs c1(t),.., 

cN(t) of the signal. 
The procedure terminates when the residual cN(t) is either a constant, a monotonic slope, or 
a function with only one extrema. 
The result of the EMD process produces N IMFs (c1(t), …, cN(t)) and a residue signal (rN(t)):  

 N

N
x(t) c (t) r (t)n

n 1
 


 (1) 

Figure 2 shows the complete process of EMD for the example signal x(t). It can be observed 
that the lower order IMFs capture fast oscillation modes of the signal, while the higher order 
IMFs capture the slow oscillation modes. 
The EMD is a technique essentially defined by an algorithm and there is not an analytical 
formulation to obtain the IMFs. Furthermore, several algorithmic variations have been 
proposed in order to obtain the IMFs decomposition. In this work it had been used the 
algorithm proposed by Flandrin (2007) & Rilling et al. (2009), in which, in order to 
accomplish the second IMF condition, it is utilized a criterion that compares the amplitude 
of the mean of the upper and lower envelopes with the amplitude of the corresponding IMF. 
This criterion is based on two thresholds (θ1 and θ2) and a tolerance parameter (α). It were 
also used the default values proposed by Rilling et al. (2009): α=0.05, θ1=0.05 and θ2=0.5. 

3.2 EMD applied to EEG analysis 

For the purposes of this work the EMD of the EEG signals was achieved computing IMF1 to 
IMF5 for every segments of each channel.  After several initial tests it was concluded that 
IMF4 and IMF5 do not contributed to seizure detection, so they were discarded. Thus IMF1, 
IMF2 and IMF3 of each segment of EEG signals were used in further analysis.  
Figure 3 shows an example of a 300 s EEG segment without seizure for one channel and 
their first 3 IMFs obtained with the described EMD method. Figure 4 illustrates a 300 s EEG 
segment with an epileptic seizure of the same patient and their corresponding first 3 IMFs. 
In figure 3 it can be observed how the energy of the IMF remains approximately between 
the same levels along the showed time period while for the EEG segment of figure 4 the 
mode functions highlight the increased energy during the seizure. 
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Fig. 1. Step 1, 2, 3 and 4 of the EMD algorithm. In the top pannel the original signal, in the 
middle pannel the upper (blue) and the lower (red) envelopes are showed as well as the 
mean of them (magenta). In the bottom pannel the obtained residue. The figure is a 
modified reproduction of figures available in http://perso.ens-lyon.fr/patrick.flandrin/ 
emd.html 

www.intechopen.com



 
Management of Epilepsy – Research, Results and Treatment 8 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

Fig. 2. Original signal x(t) and the result of its EMD computation. The figure is a modified 
reproduction of figures available in http://perso.ens-lyon.fr/patrick.flandrin/emd.html 
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Fig. 3. EEG segment without seizure for one channel and IMF1 to IMF3 of the signal. 

 

 

Fig. 4. EEG segment with a seizure for one channel and IMF1 to IMF3 of the signal. Red lines 
indicate the seizure time endpoints established by the neurologists. 
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4. Features and detectors 

In this chapter two different epileptic seizure detectors based on the EMD of EEG signals 

will be described. In the first detector, the algorithm computes the energy of each IMF and 

performs the detection based on an energy threshold and a minimum seizure duration 

decision. The second detector consists on the extraction of several time and frequency 

features of IMFs, subsequently a feature selection based on a Mann-Whitney test and 

Lambda of Wilks criterion is performed and in a last stage linear discriminant analysis 

(LDA) of the selected parameters is used to classify epileptic seizure and normal EEG 

segments. In figure 5 the block diagrams of both detectors are showed. 

 

 

Fig. 5. Block diagrams of two epileptic seizure detectors. 
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4.1 Preprocessing and EMD 

All EEG records were initially filtered with a second order, bidirectional, Butterworth, 50 Hz 

notch filter in order to remove the power line interference. Then, the EEG signals were 

band-pass filtered with a second order, bidirectional, Butterworth filter with a bandwidth of 

0.5 - 60 Hz. 

Next, all EEG records were resampled to 128 Hz in order to reduce computation time of 

EMD decomposition. This operation does not have any influence on the results since the 

bandwidth of the signal of interest does not exceed the 60 Hz. 

Finally, the EMD of EEG signals was achieved as described in section 3.2. 

4.2 First detector 

The detector presented in this section and schematized in the left side of figure 5 can be 

separate in 4 main blocks. The first and second stages consist on the preprocessing of EEG 

signal and the EMD computation as described in 4.1. The third stage implies the energy 

computation and the last one, and the most complex, is the seizure detection strategy itself. 

4.2.1 Energy computation 

The first proposed algorithm takes the IMF1, IMF2 and IMF3 of the EEG signals of each 

channel and computes the energy serie (ENi) of each IMFi as shown in (2). 

 
/2 1

2

/2

1
( ) ( ( )) 1, 2,3

 

 
 

n L

m n L

ENi n IMFi m i
L

 (2) 

In equation (2) i denotes the i-th IMF, n is its sample number and L is the length in samples 

for the energy computing window. In this work a 15 s moving, overlapped window (L=1920 

samples) is used. Thus, once this computation ends three energy series (EN1, EN2 and EN3) 

for all EEG segments of each channel are obtained (see Figures 6 and 7). 

4.2.2 Seizure detection method  

In first place it will be describe what is called as an event.  An event is define here like the 

energy series portions that overcomes a certain threshold for more than 30 s. The threshold 

is computed as (3) 

 Thr_ENi = mean (ENi) + 1.5*std (ENi) (3) 

where mean(ENi) and std(ENi) are the mean and the standard deviation values of the i-th 

energy serie considering the whole EEG channel.  

Thus the first stage in this seizure detector is determined all the events present in each 

energy series of each channel.  

The second decision step is identifying those events present in at least two of the three ENs 

of each channel. This criterion is used in order to discard possible artifacts that could be 

present in only one ENi. 

Finally, in a third stage an interchannel decision is done by choosing the events (selected in 

the previous stage for each channel) that are present in at least two of the three studied 

channels.  

Hence all events that satisfy the three decision stages are detected as epileptic seizures. 
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Fig. 6. A no seizure EEG segment of one channel and EN1 to EN3 series of the signal EMD 

 

 

Fig. 7. A seizure EEG segment of one channel and EN1 to EN3 series of the signal EMD 
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Figure 6 illustrates the energy series (ENi) of the IMFs showed in figure 3. It is observed that 

the energy for each of the three IMFs does not overcome its corresponding threshold 

(computed by equation (3)), which is indicated with the red dashed line. So no event is 

detected in this EEG channel as well it is not detected in neither of the other channels (that 

are not showed here) so no seizure is present for this segment, corresponding with the 

database information. 

In figure 7 the energy series (ENi) of the IMFs showed in figure 4 are illustrated. In this case 

the energy rise above the threshold in the 3 IMFs and lasts more than 30 s satisfying thus the 

event condition for each case so for this channel the second decision step is also 

accomplished. If this occurs for at least one of the remaining channels then a seizure is 

detected. In this example the events are detected in the three channels and also match with 

the seizure time endpoints established by the neurologists. 

4.3 Second detector 

In the right side of figure 5 a block diagram of the second detector is illustrated. In this case 

the preprocessing stage and the EMD computation (describe in Section 4.1) are the same as 

the first detector. 

Next several time and frequency features of the IMFs are computed and then selected using 

a Mann-Whitney test and Lambda of Wilks criterion. Finally, a linear discriminant analysis 

(LDA) is performed to discriminate epileptic seizures and normal EEG segments. 

4.3.1 Feature extraction 

In order to characterize the EEG signals several features were computed upon these 3 IMFs 
series (IMF1 to 3) calculated for each channel.  For each IMF, a set of parameters in time and 
frequency domains were computed. 
In this stage in order to improve the statistical stationary of EEG records each IMF was 

divided in segments of 15 s. Hence the whole IMFs selected of the all EEG records analyzed 

computes a total of 45517 segments, 44828 of them without epileptic seizures and 689 

segments denoted as having only one epileptic seizure each. 

In time domain, the following parameters were calculated on each IMF: coefficient of 

variation (VC), Median Absolute Deviation (MAD), Standard Deviation (STD), Mean Value 

(MV), Variance (VAR) and Root Mean Square Value (RMS). They are summarized in table 2. 

For frequency domain, the power spectral density (PSD) of IMF1, IMF2 and IMF3 was 
estimated by the periodogram method with a Hanning window.  
Then, classical parameters of descriptive statistics were computed on the PSD. Therefore, the 

following frequency features were obtained on the spectrum of each IMF: Central, Mean and 

Peak Frequencies (CF, MF and PF), Standard Deviation Frequency (STDF), First and Third 

Quartile Frequencies (Q1F, Q3F), Interquartile Range (IR), 95% cumulated energy Frequency 

(MAXF), Asymmetry Coefficient (AC) and Kurtosis Coefficient (KC) (Marple, 1987). These 

frequency parameters are listed in table 3. 

 

Time Domain Features 

VC MAD STD MV VAR RMS 

Table 2. Time Domain Features 
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Frequency Domain Features 

CF MF PF STDF Q1F Q3F IR MAXF AC KC 

Table 3. Frequency Domain Features 

Resuming, 10 frequency domain parameters and 6 time domain features were computed. 
Thus, for IMF1 we have 16 parameters for each 15 second segment obtaining in this way a 
series with the time evolution of each feature. The same procedure is repeated for IMF2 and 
IMF3. Hence this implies a computation of 48 features series for each EEG channel and a 
total of 144 series considering the three EEG channels.  

4.3.2 Feature selection 

In order to reduce the dimensionality problem, the median of the individual values of each 
features series for the three channels were initially computed. For example, we take CF of 
IMF1 of channel 1, CF of IMF1 of channel 2 and CF of IMF1 of channel 3 and calculate the 
median of this parameter resulting in one series for this feature in IMF1. The procedure is 
repeated for all the parameters and IMFs. Thus, the number of the total features series is 
reduced to 48. 
Even though the vector of features was reduced, its dimension is still too large. As a second 
approach, a stepwise method based on the statistical parameter Lambda of Wilks (WL) is 
performed. In an n-dimensional space constructed with n variables and with the matrixes 
Bnxn and Wnxn representing the square sum and cross products between groups and within-
groups, respectively; the WL can be defined as the ratio between their determinants (Tinsley 
& Brown, 2000) as it can be see in (4): 

 
W

WL
W B




 (4) 

In other words, the WL measures the ratio between within-group variability and total 
variability, and it is a direct measure of the importance of the variables. Therefore, the most 
important features for the analysis should be selected, i.e. the variables (features) that 
contribute with more information. Besides, the correlated variables are discarded in this 
process (Tinsley & Brown, 2000).  
With the aim of contrasting significant differences between groups, the value of WL is 
transformed into the general multivariate statistical F. If F value for a variable is higher than 
3.84 (F to get in) this is included in the analysis and once accepted the variable is rejected if 
its F value is smaller than 2.71 (F to get out). 
Once the WL criterion was applied the features selected were 11, their mean and standard 
deviation values are summarized in Table 4.  

4.3.4 Classification 

To detect the EEG segments with epileptic seizure a linear discriminant analysis (LDA) was 
implemented using the classification functions h. These functions are a linear combination of 
the discriminant variables (Xm) which allows maximize the differences between groups and 
minimize the differences within-group and are calculated as (5) (Gil Flores et al., 2001): 

  0 1 1( ) ( ) ( )   k k k km mh q b b X q b X q  (5) 
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where k represents the classification groups, i.e., for seizure and no seizure classes (k =2), m 
is the quantity of features (in this work, m =11) and q is the case to classify. The computing 
of b coefficients is showed in equations (6) and (7) (Gil Flores et al., 2001). 

 
1

( ) 




  
q

g quantity of groups
jki ij n sample size

j

b n g a X  (6) 

 0
1

0.5


  
q

jk kj
j

b b X  (7) 

 

IMF Feature 
No Seizure 
segments 

Seizure 
segments 

 PF 16.14 ± 5.18 14.72 ± 4.66 

 STDF 7.88 ± 1.26 7.39 ± 1.28 

 IR 9.61 ± 2.66 9.05±2.53 

1 AC 0.76 ± 0.44 0.77±0.38 

 KC 4.3 ± 1.66 4.42 ± 1.19 

 VC 409.85 ± 828.41 59.98 ± 28.99 

 MAD 56.93 ± 31.18 537.45 ± 694.97 

 STD 208.89 ± 204.06 352.04 ± 337.71 

2 STDF 3.60 ± 0.66 3.33 ± 0.68 

 Q1F 4.10 ± 0.81 4.14 ± 0.93 

3 STD 1180.95 ± 16434.06 500.14 ± 543.51 

Table 4. Selected features 

For LDA the 50% of data was used as training group and the rest as validation group. Then, 

a second test was done inverting the training and validation groups. The results are exposed 

in Section 6.2 using the mean value of SEN and SPE obtained in the validation phase for the 

two classification tests.  

Let g1 be the seizure group and g2 the no seizure group, once the classification functions 

were computing for each group the classification is done satisfying the following criteria: 

If h2(q) > h1(q) then case q belongs to g2 otherwise if h2(q) < h1(q) case q belongs to g1. 

6. Results 

In this section it will be expose the performance of both proposed seizures detectors. In 

order to evaluate the achievement of the algorithms the following diagnostic categories 

were considered on the detection stage: true negative (TN), false positive (FP), true positive 

(TP), false negative (FN). The obtained values for these indexes are contrasted with the 

segments indicated in the database as having seizure or no seizure by the neurologists. Then 

the statistical diagnostic indexes of sensitivity (SEN) and specificity (SPE) were also 

computing (Altman, 1993). These indexes are defined as follows and stated in equations (8) 

and (9). 
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Sensitivity (SEN): Is the proportion of epileptic seizures segments correctly detected by the 
algorithm. 

  (%) 100 


TP
SEN

TP FN
 (8) 

Specificity (SPE): Is the proportion of segments without seizures correctly identified by the 
algorithm.  

 (%) 100 


TN
SPE

TN FP
 (9) 

6.1 Results of first detector 

As a first approach for this algorithm its performance was evaluated in two ways. In first 
place the detector was tested on the data sorted by epilepsy types and then the EEG signals 
were evaluated all without a specific arrange. 
Then in table 5 are resumed the statistical diagnostic indexes of SEN and SPE computed for 
the different types of epilepsies individually and for the epilepsies all together. 
 

Epilepsy Type SEN SPE 

Temporal 56.4% 75.9% 

Frontal 12.0% 81.8% 

Temporo-Occipital 40.0% 73.3% 

Others 53.8% 93.3% 

All types togheter 41.4% 79.3% 

Table 5. Statistical diagnostic indexes of SEN and SPE for first detector. 

6.2 Results of second detector 

In order to improve the results obtained with first detector, the second detection scheme 
detailed in section 4.3 were tested in the same EEG records. Table 6 shows the mean value of 
SEN and SPE obtained in the validation phase for the two classification tests described in 
section 4.3.4. 
 

Epilepsy Type SEN SPE 

Temporal 65.2% 77% 

Frontal 51.7% 78.7% 

Temporo-Occipital 56.9% 72.4% 

Others 57.5% 87.7% 

All types togheter 69.4% 69.2% 

Table 6. Statistical diagnostic indexes of SEN and SPE for second detector. 
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7. Discussion and conclusions 

Epileptic seizure detection in EEG records is a useful and important tool due to their various 
applications such us epilepsy research treatments like timely drug delivery, electrical 
stimulation and seizure alert systems besides diagnostic applications. In this sense it is a real 
need the development of automatic algorithms that could be able to detect seizures 
independently of its brain source. It is also important to establish some kind of 
standardization of the detectors using to test them the same database so a robust 
comparison of their performance could be carried out. 
In this chapter two epileptic seizure detection methods based on the Empirical Mode 
Decomposition (EMD) of EEG signals has been proposed. On one hand, the use of EMD for 
seizures detection it is a recent approach. In addition, as a contribution to the setted out 
problem, long term epileptic EEG intracranial records with different focal epilepsies are 
used to evaluate the performance of both seizures detectors.  
The used EMD algorithm in this work is the one proposed by Flandrin (2007) & Rilling et al. 
(2009). This technique seems to be more suitable for epileptic EEG records than others of the 
signal processing area due to the EEG signal presents nonlinear and non-stationary 
properties during a seizure. Nevertheless, it was recently reported for this version of the 
algorithm the problem of what is called mode mixing so to solve this a new approach 
known as Ensemble EMD (EEMD) has been proposed (Wu & Huang, 2009). There are also 
some extensions of standard EMD to multivariate signals defined by Rehman & Mandic 
(2010) as Multivariate EMD. Even though the EMD showed a relatively good performance 
in seizure detection it was observed that the computation time of EMD for each segment is 
quite time-computing extensive which could represent a disadvantage for analyzing long 
EEG records. It can be noted that the proposed EMD technique has still much aspects to 
explore and innovate so its performance could be further improve. 
In order to have a complete evaluation of the detectors’ performance they both were first 
tested making a discrimination of the EEG signals by epilepsy type and then the data were 
used all without a specific arrange.  For the first detector the values of SPE obtained were 
high, arising up to 90% for the epilepsies grouped like “Others” while the SEN results were 
non-satisfactory, been 56.8% the highest value for temporal lobe epilepsy records. Whereas 
the performance of this detector for the complete set of data showed a global SEN and SPE 
values of 41.4% and 79.3%, respectively.  
The results shown in Table 6 indicate that the second detector have remarkably improved 
the SEN values compared with those obtained for the first detector for all classes of 
epilepsies. With respect to the ESP values, the results of the second detector were better for 
temporal lobe epilepsy signals and decrease slightly for the remaining classes of epilepsies. 
So the global performance of the second detector (SEN = 69.4% and SPE = 69.2%) can be 
considered satisfactory better than the first one because both values are in the same order.  
Other authors had also recently used the Freiburg´s database for seizure detection so a 
comparison of their works with ours could be made. Henriksen et al. (2010) in their research 
uses features of Wavelet Transform (WT) of 16 patients (instead of the 21) of the database 
and classified them by a support vector machine in order to implement an automatic seizure 
detection algorithm. They obtained a global SEN of 86% and a false detection rate of 0.39/h, 
but the SPE value is not reported.  In a recent work Vardhan & Majumdar (2011) introduce a 
differential operator to accentuate the seizure part of depth electrode recordings (ECoG) 
relative to the non-seizure one. The technique was only applied to 5 patients of Freiburg´s 
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database. For 4 patients, they reported 18 of 20 true detections and 2 false detections. The 
results for the remaining patient were not reported. Finally, Chua et al. (2011) applied the 
Gotman algorithm (Gotman, 1999) to 15 patients of the database and it was adjusted for 
epilepsy type with the aim of improve the off-line automated seizure detection methods that 
will decrease the workload of EEG monitoring units. The obtained values were 78% of SEN 
and a true positive rate of 51%. 
Summarizing, even though some of the detectors described in the previous paragraph 
obtained higher values of SEN than the ones developed in this chapter it has to be said that 
all the referenced cases use selected records of the database while the authors of this chapter 
had tested their algorithms using all 21 EEG recordings available in Freiburg database. 
It may also be highlighted that the values of SEN and SPE of first and second detectors 
could be improved in order to obtain a more reliable application. In this sense, more tests 
and some adjustments on the algorithms must be made done to be suitable for medical 
diagnosis. It could be concluded that the developed methods based on EMD are promissory 
tools for epileptic seizure detection in EEG records. 

8. Future works 

As future extension of this research in first place the EMD computation time must be 
reduced may be taking time windows of few seconds to calculate it instead of 1 h EEG 
segments. It is also needed to improve the values of SEN and SPE so more effort on the 
features and classifiers must be done.  
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