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Abstract

We present a data driven approach to classify ictal (epileptic seizure) and

non-ictal EEG signals using the multivariate empirical mode decomposition

(MEMD) algorithm. MEMD is a multivariate extension of empirical mode de-

composition (EMD), which is an established method to perform the decomposi-

tion and time-frequency (T −F ) analysis of non-stationary data sets. We select

suitable feature sets based on the multiscale T − F representation of the EEG

data via MEMD for the classification purposes. The classification is achieved

using the artificial neural networks. The efficacy of the proposed method is

verified on extensive publicly available EEG datasets.

Keywords: , EEG Signals, Epilepsy, MEMD, Time-frequency algorithm

1. Introduction

Epileptic seizure is a chronic neurological brain disorder that impacts peo-

ple worldwide. With reference to World Health Organization (WHO) epileptic

seizure is one of the most common non-communicable neurological brain disor-

der affecting approximately up to fifty million people worldwide [1]. As per the5

WHO fact sheet, nearly 80% of the people with epileptic seizure disorder belong
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Figure 1: Internationally accepted 10-20 system initially presented in1958

to countries with low and middle income. During seizure there is abrupt rush

of electrical and magnetic field activity because of the sophisticated chemical

changes in the nerve cells of the brain. In a normal human brain, there exists

a state of equity between nerve cells that excite and those that inhibit (stop).10

However, when an epileptic seizure takes place, an inequity can be seen clearly

between excitation and inhibition neurons present in the brain. This leads to

frequency changes (high / low) in message passing among brain cells. In clinical

terms, this imbalanced discharge of electrical activity is often stated as paroxys-

mal activity that occurs may be in the course of epileptic seizure (ictal period)15

or in the intervals of epileptic seizures (inter-ictal periods) [2]. Mainly there are

two stages of seizure. First one is the onset stage and second one is the event

stage. Onset stage shows the earliest start of seizure hyperactivity while event

stage is the accurate occurrence of seizure.

In clinical practice neurophysiologists visually scan long recordings of Elec-20

troencephalogram (EEG) to detect epileptic seizures. A German psychiatrist

Hans Berger was the first person who recorded the electrical field of human

brain in 1924 in Jena [3]. Communication activity of neurons in the brain is
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Figure 2: Epileptic spikes of 3Hz measured via EEG

recorded via placement of electrodes on scalp. An Internationally recognized

10-20 system [3] with 21 electrodes has been followed for the settlement of elec-25

trodes on the surface of scalp as shown in Figure 1. Nasion is the point at the

top of the nose leveled with eyes, whereas Inion is the point in the mid-back of

the head and is actually the bony lump which is located at the base of the skull.

From these points other parameters are measured in the axial and longitudinal

plane.30

Table 1: Description of Alpha, Beta, Delta and Theta waves

Wave type Frequency Band Brain Person Example

(Hz) Region state

Alpha (α) 8-13 Occipital Awake with

eyes closed

Beta (β) 13-30 Parietal, Frontal

Delta (δ) 0.5-4 Infants,

sleeping adults

Theta Children,

(θ) sleeping adults

One of the rich feature of EEG is the sparking points (or epochs) linked

to epileptic seizures and other waves usually classified as alpha (α), beta (β),

delta (δ) and theta (θ) waves. Properties of each wave may differ depending
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upon the state of consciousness of a subject under investigation. Properties like

amplitude, frequency and noise may vary when a person is awake, performing35

Rapid Eye Movement (REM), in the state of sleep (state of dream with active

eye movement) and deep sleep [3]. The frequency spectrum (or band) of each

type of wave is different and each wave type can be measured effectively from

different brain regions as shown in Table 1. However pattern of epileptic spikes

of 3Hz can be seen in Figure 2, these are more synchronized as compared to the40

signals in Table 1.

EEG signals are highly complex in nature due to inherent non-linear and

non-stationary (comprised of two or more bands of frequency contents that

changes with time) properties. Therefore, for both clinical and research pur-

poses there have been many techniques proposed in literature that are used to45

analyze non-linear and non-stationary EEG data. As EEG signals are formed

when cluster of neurons interact with each other, so it is important to seper-

ate the frequencies/scales for appropriate interpretation and further processing.

For seizure detection, many single- and multi-channel algorithms have been pro-

posed: In [4] authors have used the energy, entropy and standard deviation as50

features extracted from EEG signal after applying the wavelet transform and

Support Vector Machine (SVM) to classify the epileptic signals with 91.2% of

accuracy rate. In [5, 6], Fourier transform has been used to classify seizure in

EEG data; though no significant improvement was noted due to the inefficacy

of Fourier based representations to handle non-stationary data, such as EEG.55

In [7], wavelet transform was implemented to extract energy and normalized

coefficient of variation as features to distinguish normal and ictal EEG signals.

He has used simple Linear Discriminant Analysis (LDA) for classification and

reported 92% accuracy.

In [8], Singular Value Decomposition (SVD) was implemented to quantify60

seizure and non-seizure signals. Authors have selected r-singular values and

Euclidean distance as features, and then inspected the final results visually, re-

liability and scalability is big question due to visual perception of humans. In

[9], SVD has also been applied and used dipole parameters and Relative Residual
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Energy (RRE) as features. They have classified the signals via visual inspection65

of parameters. Implementation of EMD using single channel input with Instan-

taneous Frequency (IF), amplitude, skewness, kurtosis and Shannon’s entropy

as features has been studied in [10]. In this study Linear Bayes classifier was

applied and reported accuracy was 98%. In [11], EMD was implemented with

modified central tendency as a feature to classify seizure and non-seizure EEG70

signals with 90% accuracy. In [12], normal and epileptic seizure signals were

distinguished by deploying EMD algorithm. He used Multilayer Perceptron

Neural Network (MPNN) and Self-Organizing Map (SOM) to classify the final

results with 95.42% success rate. In [13], the MEMD was implemented with

Hilbert Transform and used mean frequency as feature to classify seizure and75

non-seizure signals. In order to mark the significance level they used Kruskal

Wallis test as classifier [12]. In [14], the effectiveness of MEMD has been in-

vestigated motor imagery Brain Computer Interface (BCI) and reported the

comparative results of extensions of EMD i.e. Ensemble EMD (EEMD), Noise-

Assisted EMD (NA-EMD), MEMD and Noise-Assisted MEMD (NA-MEMD).80

It was shown that MEMD and its variations provide efficient results for multi-

channel analysis of non-stationary signals. Furthermore, other clinical uses of

MEMD include removal of unwanted artifacts from electrooculography (EOG),

electromyography (EMG) and electrophysiology.

In this paper, we employ instantaneous amplitude and frequency of multiple85

data scales of EEG data, obtained from MEMD, as features to detect seizure.

MEMD was used to obtain the multiple IMFs from the input multi-channel

EEG signals. t-test has been applied after adjusting the alpha value according

to Bonferroni correction. t-test has been applied to only select the IMFs having

most significant p-value. To classify seizure and non-seizure signals, frequency90

and amplitude information extracted from particular IMFs is then passed to

Artificial Neural Networks. Final results have shown improved identification

of seizure and non-seizure signals than the method proposed by Rehman et

al. [13]. The rest of the paper is organized as follows: The EEG dataset, the

Multivariate Empirical Mode Decomposition (MEMD) method, extraction and95
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selection of Intrinsic Mode Functions (IMFs), computation of parameters, and

ANN classifier are presented in Section 2. Obtained results and discussion of

results are presented in Section 3. Finally, Section 4 concludes the paper.

2. Methodology

2.1. Multivariate Empricial Mode Decomposotion100

EMD algorithm can decompose an input EEG signal into different frequency

bands called Intrinsic Mode Functions (IMFs). The algorithm follows an itera-

tive method to identify frequencies by calculating local mean from maxima and

minima points of the signal. If the difference of IMF and mean is equal to the

stopping criteria, it is selected as an IMF, otherwise the process repeats itself.105

In this way, a number of IMFs can be extracted. In its original formulation,

EMD can only handle single-channel data sets. To extend the algorithm for

multivariate data, Multivariate Empirical Mode Decomposition (MEMD) algo-

rithm has been proposed [15]. MEMD is an improved extension of EMD which

supports the computation of IMFs of multivariate (comes from multi-channel)110

data. MEMD not only solves the mode mixing issue but it also computes the

mean value in an efficient way. It projects the multi-channel signal along mul-

tiple directions of multi-variate space and then computes the envelopes. After

successful computation of envelopes it calculates the local mean of input sig-

nal.The steps of the MEMD algorithm are listed in Algorithm 1.115

MEMD performs better than EMD due to the following exceptional proper-

ties:

• MEMD supports multi-channel input, contrary to EMD which only pro-

cesses single channel data.

• MEMD efficiently deals with the mode mixing problem, which is resolved120

via combined breakdown of multiple oscillations present in a complex

(higher dimensional) signal [16]. Hence, guaranteeing that the IMFs are

matched in properties of both number and scale modules.

6
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During IMFs computation, EMD faces the mode mixing issue i.e. when you

repeatedly apply EMD on a particular signal, each time the resultant IMFs are125

different. Due to this issue feature extraction becomes unreliable thus a major

limitation of EMD. However, IMFs shown in Figure 3 are obtained via MEMD

and are free of mode mixing issue.

A repetitive process with a concerned threshold is required to bring out the

meaningful information from a non-stationary EEG signal. MEMD follows the130

sifting process to obtain the IMFs. The first IMF contains unclear informa-

tion; due to this ambiguous detail, the first IMF is not very useful in analysis.

Similarly, IMF 12 and IMF 13 are residuals, hence they do not contain any

considerable information. Therefore, these two IMFs are also ignored and the

remaining set i.e. IMFs 2-11 are used for analysis and are shown in Figure 3.135

Algorithm 1 Algorithm 1: MEMD Algorithm

1: Select an appropriate set of points in order to have sampling on (n-1) range.

2: Compute a projection, represented by P (θn) (t)}Ti=1, of contributed signal

v(t)
T
i=1 along the direction vector xθn, for all n (the complete set of direction

vectors), giving P θn(t)Ni=1 as the set of projections.

3: Discover the time instants {tθnj } matching to the maxima points of the set

of projected input signals P θn(t)}Ni=1.

4: Interpolate [tθnj , v(t)
T
i=1] to get multivariate envelop curves eθn(t)}Ni=1.

5: For a set of N direction vectors, the mean represented bym(t) of the envelope

curves is computed as

m(t) =
1

N

N∑
i=1

eθn(t) (1)

6: Collect the detail represented by d(t)usingd(t) = x(t)−m(t). If the ’detail’

d(t) meets the given stoppage criterion for a multivariate IMF, apply the

above given procedure to x(t) − d(t), else apply it to the extracted detail

d(t).

The termination condition is same as that presented by [17] except for the

number of points. Further, zero crossings are not implemented due to undefined
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extrema points for multivariate signals [16]. IMFs of a random EEG signal

obtained using MEMD are shown in Figure 3.

In the proposed method, we first obtain a multivariate signal by combining140

channels from different EEG sources to obtain an m channel data set. The mul-

tivariate m-channel data is then decomposed using the MEMD algorithm which

results in N number of multichannel IMFs. However, not all IMFs are pro-

cessed and used in the proposed method: the first few IMFs which contain high

frequency information may contain noise, while the last few IMFs are mostly145

residuals and hence can be discarded. For the remaining IMFs, feature extrac-

tion is performed before classification through the neural network approach.

The block diagram of the proposed methodology is shown in Figure 5.

In order to have multi-channel dataset, we have combined 5 signals from

each dataset (Z, O, N, F and S). Hence dataset is now of 5-channel EEG which150

is then decomposed by MEMD. MEMD insures the formation of IMFs of multi-

ple channels in the same frequency range for consistent results. Same frequency

range of multiple channels is important to compare the features extracted from

multi-channel data with some common bases. Hence, for classification purpose

feature set from IMFs can be extracted from mulit-channel data on common155

bases.Note that mode mixing issue is resolved here because all the frequency

ranges for each channel is same. Graphs shown in Figure 4 clearly demonstrate

the same frequency distribution of IMFs belonging to first two channels of EEG

dataset. As first IMF of channel 1 and channel 2 have same frequency distribu-

tion (each having same number of frequency bins (3 bars in first IMF of channel160

1 and channel 2)) obtained via MEMD’s sifting process (frequency scale in each

corresponding graph is same i.e. frequency scale in IMF1 of channel 1 and IMF

1 of channel 2 is same. Similarly, frequency scle in IMF2 of channel 1 and IMF2

of channel 2 is similar)

Total numbers of obtained IMFs after implementing the MEMD are 13.165

Hence total number of IMFs when computed against each dataset:

#ofIMFs = 13× 500 = 6500 (2)
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IMF-1 First Channel IMF-1 Second Channel

IMF-2 First Channel IMF-2 Second Channel

IMF-3 First Channel IMF-3 Second Channel

Figure 4: MEMD ensures the same range of frequency in IMFs of each channel hence for

classification purpose feature set from IMFs can be extracted. Same range of frequencies

among IMFs has been shown in Figure 3 for first three IMFs

10
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Figure 5: Block Diagram of the proposed system
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It has been shown in [18] that only first four IMFs yields the important infor-

mation content about the signal, rest of the lower IMFs indicates artefacts of

lower frequency and trend. And the first IMF contains more noise as compare

to others. Hence, we have chosen 2-4 IMFs because of the valuable information170

content present in them. Now the total size of dataset after removing noisy and

IMFs with lower frequency remains:

Size of dataset = 3× 500 = 1500 (3)

2.2. Feature Extraction

As discussed in the previous section that IMFs with lower frequency infor-

mation and noise has been removed. On the rest of the selected IMFs, Hilbert175

transform is applied to extract the information about instantaneous frequency

and amplitude. In order to compute the weighted mean frequency we have used

the equation 4 [18].

f ′ =

∑n
i=1 a(i)f2(i)∑n
i=1 a(i)f(i)

(4)

Here f is the instantaneous frequency and a is the instantaneous amplitude

obtained via Hilbert transform. Instantaneous frequency has also been used as180

a feature.

2.3. Selection of IMFs for Classification

For rapid classification purposes, the number of IMFs is still too large and

therefore, selecting statistically significant IMFs makes the dataset consider-

ably small yet useful. Therefore, t-test has been applied here to find IMFs185

with significant P-value as shown in Table 2. The use of any statistical test

includes calculating test statistics interpreted as statistically significant value

or non-significant value if it is greater or less than some threshold known as

level of significance denoted by α. The most common value of is 0.05 with no

identified reason [20]. Therefore, a number of researches urged to adjust this190

threshold as per number of samples under comparison. A well-known of such

adjustment is known as Bonferroni correction [19] where it is suggested that
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0.05 should be divided by total number of samples to find corresponding level

of significance. Hence if the number of samples under comparison are 3 then

appropriate will be 0.05/3 = 0.0167. This adjusted value of alpha has been195

used in the t-test. In order to get the most significant feature vector, IMFs with

most significant corresponding p-value have been selected. Table 2 shows the

p-values against top three IMFs of first subset of input channel. P-values are

collected via implementation of t-test. IMFs with maximum P-value have been

selected for classification using features. After the selection of IMFs two feature200

i.e. instantaneous amplitude and instantaneous frequency has been computed

which are then used as input to the classifier.

Table 2: p-values of selected IMFs

IMF - # - dataset p-value t-test (h)

IMF-2-Z 0.0476 0

IMF-3-Z 0.8095 0

IMF-4-Z 0.9045 0

IMF-2-O 0.3041 0

IMF-3-O 0.8265 0

IMF-4-O 0.6951 0

IMF-2-N 0.4259 0

IMF-3-N 0.3967 0

IMF-4-N 0.9498 0

IMF-2-F 0.1949 0

IMF-3-F 0.6461 0

IMF-4-F 0.3858 0

IMF-2-S 0.0907 0

IMF-3-S 0.5464 0

IMF-4-S 0.0077 1
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Figure 6: An Artificial Neural Network

2.4. Classification using ANN

Once we get the IMFs, next step is to classify the EEG signals into ictal

events(seizures) or otherwise. A number of classification algorithms have been205

used for this purpose however, the use of Artificial Neural Network (ANN) is

more common [20]. Traditional work in ANN began approximately 50 years

ago, to use machines that simulate the working of human brain. ANN works

similar to that of real neuron (composed of dendrites, soma (cell body), axon and

synapses) and all of the neurons collectively work to respond against particular210

stimulus. Similarly, ANN is the generalization of human neural biology (related

to human cognition). Abstract mapping of biological neuron on artificial neuron

is shown in Figure 6 and follows the following description:

• ‘Synapse’are replaced with ‘inputs’

• ‘Activation of neuron’is replaced with weights (higher weights, stronger the215

input with which it is multiplied) computed by particular mathematical

function

All of the artificial neurons combined (or linked) together to process the particu-

lar information. Various ANN models have been used to classify different kind of

data. However, a simple (basic) ANN is comprised of an input layer, an output220

layer and one or more than one number of hidden layers. Multi-layer (composed

of one or more hidden layers) model is formed by growing the count of hidden

14
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layers. Multi-Layers increase the complexity of neural network but provide bet-

ter output in complex problems. There are two variation of ANN; feed-forward

multi-layer ANN and back propagation ANN. In feed-forward, artificial neurons225

are arranged in multiple layer and send signals in forward direction, if errors ex-

ist then they are sent back to the previous layer so that model learns them again

(by adjusting weights) to decrease the chances of error. The process of weight

adjustment in a neural network to get better output is known as ‘training’or

‘learning’. However, backpropagation is one that uses the error to learn such230

weights effectively using a method called gradient descendent. In order to test

each dataset (Z, O, N, F, S) against collected feature set, we have implemented

neural networks. Weights are randomly initialized among the connections of

nodes (neurons). After then they are learned using back propagation method.

In order to determine the error, input value is compared with the given target235

value. Computed error is then propagated back to the input of neural network,

here the weights are then learned again and training phase continuous. Train-

ing loop stops when the cost function is minimized. Here cost function used by

artificial neural network is:

J(w) =
1

n

n∑
(i=1)

(yilog(hw(xi)) + (1− yi)log(1− hw(xi))) (5)

Here ‘w’are the weights of all the connections present in the neural network.240

Back propagation algorithm uses equation 6 to compute the partial derivative

of cost function (given in equation 6) with respect to each weight (assigned

randomly). This partial derivative is then used by gradient descent algorithm

to minimize the cost function given in equation 5.

δ

δlij
J(w) (6)

Here l is the index of hidden layer.245
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3. Results and Discussion

3.1. Datasets

The electroencephalogram (EEG) readings taken from publicly available

Bonn University’s database [15]. Database consists of five sets denoted as Z,

O, N, F, S, containing 100 single-channel EEG recordings each of 23.6s dura-250

tion with 173.6Hz of sampling rate. The annoying artifacts due to activity of

muscles and eye movements had already been removed on the basis of visual

inspection of data sets (This visual inspection has been done by the providers

of the database. Database source: Bonn’s University Dataset) [15]

• Set Z and O are comprised of surface EEG recordings of healthy volunteers255

in the wakeful state with eyes open (Z dataset) and eyes closed (O dataset)

respectively. A standardized electrode placement technique was used for

recording. See Figure 1.

• Set N EEG recordings were recorded for five patients in seizure-free inter-

ims from the region of hippocampal formation of opposite hemispheres of260

the brain.

• Set F came from seizure recordings in the epileptogenic zone.

• And the set S only contained recordings of the patients showing seizure

activity.

All of the EEG data was recorded using 128-channel amplifier system. After265

12-bit conversion (analogue to digital), data was written to disk with 173.61Hz

of sampling rate. 0.53-40Hz was the pass band range for the band-pass filter

used to record the frequencies in certain range.

Table 3: Details of datasets division into training, validation and testing sets

Division Training Validating Testing

Percentage 60% 5% 35%

Samples 12291 samples 1024 samples 7170 samples

16
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In order to obtain the results dataset has been divided into training, valida-

tion and testing sets as shown in Table 3.270

3.2. Classification Results

Results obtained by deploying our proposed method are quite good in com-

parison to other methods of decomposition like SVD, EMD. Confusion matrix

shown in Figure 7 shows the training, validation and testing results, classified

by ANN using back propagation algorithm.275

In Figure 7 first five (each representing the individual dataset i.e. Z, O,

N, F and S respectively) diagonal cells (in green color) of training confusion

matrix depict the number and percentage of correct classifications by the trained

network. For example, 2205 cases are correctly classified as samples of Z dataset.

2126 cases are correctly classified as part of O dataset. And 1635 cases are280

correctly classified as part of N dataset. Similarly, 2325 and 2444 are correctly

classified as part of dataset F and S respectively. No cases of the dataset O are

incorrectly classified as part of Z dataset. 802 cases are incorrectly classified as

part of Z dataset. 0 cases from datasets N, F and S are incorrectly classified as

part of Z dataset. Total of 73.3% cases have been correctly identified as part of285

Z dataset and rest of the 26.7% are wrong. And out of Z dataset 89.0% cases are

correctly classified as Z dataset and 11.0% are classified as from other datasets

i.e. O, N, F and S.

Overall, 87.3% of the predictions are correct and 12.7% are wrong classifi-

cation in training dataset. Same distribution as of training set has been consid-290

ered for Validation and Testing sets. And collectively correct identification is

87.2% for all datasets. Furthermore, Receiver Operating Characteristics curves

commonly known as ROC curves, have also been used to demonstrate the per-

formance of algorithm. Closer the curve to the top-left edge of the plot box the

better is the classification of each specified class present in the dataset. How-295

ever, diagonal line represents the random performance of the classifier. ROC of

our obtained output classes are shown in Figure 8.

Best validation performance at particular epoch (period of time) has been

17
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Figure 7: Confusion matrix showing results of classification. Accuracy (upper value in each

cell) and error rate (lower value in each cell) of each dataset is quite good. Here 1, 2, 3, 4, 5

are depicting data set Z, O, N, F, and S respectively
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Figure 8: Receiver Operating Characteristics of each phase i.e. Training, Validation and

Testing. Here Class 1, 2, 3, 4, 5 are depicting classification accuracy of dataset Z, O, N, F

and S respectively
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Figure 9: Showing best validation performance at epoch 152

shown in Figure 9. Error histogram of each state i.e. training, validation and

testing has been shown in Figure 10 . Error histogram shown in Figure 10300

presents a clear sketch of network authentication of each phase i.e. training,

validation and testing. It represents the outliers, where the authentication is

not as good as the best set of data points. Part of histogram that is showing

the zero line error provides the grounds for setting the threshold, further used

to categorize the outliers based on perfection or imperfection of selected feature305

values.

Table 4: Comparison of current research with other researches

Paper Dataset Algorithm Classifier Accuracy

[13] Bonns University MEMD Kruskalwallis test Efficient but ignored time information

[21] Bonns University EMD LS-SVM 86.00%

Our findings Bonns University MEMD ANN 87.2% (overall for all datasets i.e. Z,O,N,F,S)

Proposed method is different in the selection of features and on the basis of
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Figure 10: Histogram of each training, validation and testing state

methodology and classification as compared to feature selection in [13].We have

used MEMD to extract the IMFs from multichannel EEG dataset. As standard

EMD produces misaligned IMFs (corresponding to different frequency bands)310

for multi-channels and hence make their comparison meaningless. This issue

has been resolved using MEMD. MEMD process the signals directly in higher

dimensional spaces where it resides. This results in matched IMFs in terms

of frequency, facilitating comparison of individual or summed IMFs. After the

extraction of IMFs, only those IMFs have been considered with maximum fre-315

quency linked information. Only the first four IMFs yields the important in-

formation content about the signal, rest of the lower IMFs indicated artefacts

of lower frequency and trend [18]. And the first IMF contains more noise as

compare to others. Hence we have chosen 2-4 IMFs because of the valuable in-

formation content present in them.In [13], no such reduction has been done. On320

the rest of the IMFs, Hilbert Transform is applied to extract the instantaneous

frequency and amplitude. In order to compute the weighted mean frequency

equation 4 has been used [18]: t-test has been applied on the IMFs to choose
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the IMFs with most significant P(probability) value. Level of significance in

t-test denoted by has been adjusted using Bonferroni correction [19]. There325

has been no such adjustment in [13]. After then dataset has been divided into

training, validation and testing sets. Spectral features from the IMFs with most

significant p-value have been used to train the ANN with back propagation al-

gorithm. Overall obtained accuracy using ANN is 87.2% as shown in Table 4.

However no such detailed information is given in [13].330

4. Conclusion

We have proposed a data adaptive multiscale algorithm for the classification

of EEG signals for seizure detection. For that purpose, multichannel input EEG

data is first decomposed to its multiple intrinsic scales using the multivariate

empirical mode decomposition algorithm. After removing the IMFs belonging335

to noise and other unnecessary artifacts, classification on the remainder of IMFs

has been performed by employing a feature vector based on instantaneous fre-

quency and amplitude via artificial neural network framework. We have shown

comprehensive results obtained from extensive simulations on real world EEG

data sets to show the effectiveness of the proposed method. The results have340

been very promising since the proposed method has been shown to provide

excellent classification of seizure from EEG data.

The computational complexity of the MEMD algorithm is a concern though.

The method is compositionally very expensive especially for signals with large

number of input channels. The computational complexity of MEMD has been345

discussed in detail in [22]. Recent parallel implementation of EMD and mul-

tivariate EMD could pave the way for a faster online implementation of EMD

and MEMD based algorithms.
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