262 research outputs found

    Selecting Statistical Characteristics of Brain Signals to Detect Epileptic Seizures using Discrete Wavelet Transform and Perceptron Neural Network

    Get PDF
    Electroencephalogram signals (EEG) have always been used in medical diagnosis. Evaluation of the statistical characteristics of EEG signals is actually the foundation of all brain signal processing methods. Since the correct prediction of disease status is of utmost importance, the goal is to use those models that have minimum error and maximum reliability. In anautomatic epileptic seizure detection system, we should be able to distinguish between EEG signals before, during and after seizure. Extracting useful characteristics from EEG data can greatly increase the classification accuracy. In this new approach, we first parse EEG signals to sub-bands in different categories with the help of discrete wavelet transform(DWT) and then we derive statistical characteristics such as maximum, minimum, average and standard deviation for each sub-band. A multilayer perceptron (MLP)neural network was used to assess the different scenarios of healthy and seizure among the collected signal sets. In order to assess the success and effectiveness of the proposed method, the confusion matrix was used and its accuracy was achieved98.33 percent. Due to the limitations and obstacles in analyzing EEG signals, the proposed method can greatly help professionals experimentally and visually in the classification and diagnosis of epileptic seizures

    時間周波数領域でのてんかん脳波識別に関する研究 ‐平均二乗根に基づく特徴抽出に着目して‐

    Get PDF
    Epilepsy affects over 50 million people on an average yearly world wide. Epileptic Seizure is a generalised term which has broad classification depending on the reasons behind its occurrence. Parvez et al. when applied feature instantaneous bandwidth B2AM and time averaged bandwidth B2FM for classification of interictal and ictal on Freiburg data base, the result dipped low to 77.90% for frontal lobe whereas it was 80.20% for temporal lobe compare to the 98.50% of classification accuracy achieved on Bonn dataset with same feature for classification of ictal against interictal. We found reasons behind such low results are, first Parvez et al. has used first IMF of EMD for feature computation which mostly noised induce. Secondly, they used same kernel parameters of SVM as Bajaj et al. which they must have optimised with different dataset. But the most important reason we found is that two signals s1 and s2 can have same instantaneous bandwidth. Therefore, the motivation of the dissertation is to address the drawback of feature instantaneous bandwidth by new feature with objective of achieving comparable classification accuracy. In this work, we have classified ictal from healthy nonseizure interictal successfully first by using RMS frequency and another feature from Hilbert marginal spectrum then with its parameters ratio. RMS frequency is the square root of sum of square bandwidth and square of center frequency. Its contributing parameters ratio is ratio of center frequency square to square bandwidth. We have also used dominant frequency and its parameters ratio for the same purpose. Dominant frequency have same physical relevance as RMS frequency but different by definition, i.e. square root of sum of square of instantaneous band- width and square of instantaneous frequency. Third feature that we have used is by exploiting the equivalence of RMS frequency and dominant frequency (DF) to define root mean instantaneous frequency square (RMIFS) as square root of sum of time averaged bandwidth square and center frequency square. These features are average measures which shows good discrimination power in classifying ictal from interictal using SVM. These features, fr and fd also have an advantage of overcoming the draw back of square bandwidth and instantaneous bandwidth. RMS frequency that we have used in this work is different from generic root mean square analysis. We have used an adaptive thresholding algorithm to address the issue of false positive. It was able to increase the specificity by average of 5.9% on average consequently increasing the accuracy. Then we have applied morphological component analysis (MCA) with the fractional contribution of dominant frequency and other rest of the features like band- width parameter’s contribution and RMIFS frequency and its parameters and their ratio. With the results from proposed features, we validated our claim to overcome the drawback of instantaneous bandwidth and square bandwidth.九州工業大学博士学位論文 学位記番号:生工博甲第323号 学位授与年月日:平成30年6月28日1 Introduction|2 Empirical Mode Decomposition|3 Root Mean Square Frequency|4 Root Mean Instantaneous Frequency Square|5 Morphological Component Analysis|6 Conclusion九州工業大学平成30年

    Detection and Classification of EEG Epileptiform Transients with RBF Networks using Hilbert Huang Transform-derived Features

    Get PDF
    Diagnosis of epilepsy or epileptic transients AEP (Abnormal Epileptiform Paroxysmal) is tedious, but important, and an expensive process. The process involves trained neurologists going over the patient\u27s EEG records looking for epileptiform discharge like events and classifying it as AEP (Abnormal Epileptiform Paroxysmal) or non-AEP. The objective of this research is to automate the process of detecting such events and classifying them into AEP(definitely an Epileptiform Transient) and non-AEPs (unlikely an epileptiform transient). The problem is approached in two separate steps and cascaded to validate and analyze the performance of the overall system. The first step is a detection problem to find the Epileptiform like transients (ETs) from the Electroencephalograph (EEG) of a patient. A Radial basis function-based neural network has been trained using a training set consisting of examples from both classes (ETs and non-ETs). The ETs are the yellow boxes which are marked by expert neurologists. There are no particular examples of non-ETs and any data not annotated by experts can be considered to be examples of non-ETs. The second step is classification of the detected ETs also known as yellow boxes, into AEPs or non-AEPs. A similar Radial basis function-based neural network has been trained using the ETs marked and classified into AEPs and non-AEPs manually by seven expert neurologists. The annotations or yellow boxes along with the contextual signal was used to extract features using the Hilbert Huang Transform. The system is validated by considering an entire epoch of the patient EEG and potential ETs are identified using the detector. The potential ETs marked by the detector are classified into AEPs and non-AEPs and compared against the annotations marked by the experts

    Artificial immune system and particle swarm optimization for electroencephalogram based epileptic seizure classification

    Get PDF
    Automated analysis of brain activity from electroencephalogram (EEG) has indispensable applications in many fields such as epilepsy research. This research has studied the abilities of negative selection and clonal selection in artificial immune system (AIS) and particle swarm optimization (PSO) to produce different reliable and efficient methods for EEG-based epileptic seizure recognition which have not yet been explored. Initially, an optimization-based classification model was proposed to describe an individual use of clonal selection and PSO to build nearest centroid classifier for EEG signals. Next, two hybrid optimization-based negative selection models were developed to investigate the integration of the AIS-based techniques and negative selection with PSO from the perspective of classification and detection. In these models, a set of detectors was created by negative selection as self-tolerant and their quality was improved towards non-self using clonal selection or PSO. The models included a mechanism to maintain the diversity and generality among the detectors. The detectors were produced in the classification model for each class, while the detection model generated the detectors only for the abnormal class. These hybrid models differ from each other in hybridization configuration, solution representation and objective function. The three proposed models were abstracted into innovative methods by applying clonal selection and PSO for optimization, namely clonal selection classification algorithm (CSCA), particle swarm classification algorithm (PSCA), clonal negative selection classification algorithm (CNSCA), swarm negative selection classification algorithm (SNSCA), clonal negative selection detection algorithm (CNSDA) and swarm negative selection detection algorithm (SNSDA). These methods were evaluated on EEG data using common measures in medical diagnosis. The findings demonstrated that the methods can efficiently achieve a reliable recognition of epileptic activity in EEG signals. Although CNSCA gave the best performance, CNSDA and SNSDA are preferred due to their efficiency in time and space. A comparison with other methods in the literature showed the competitiveness of the proposed methods

    EEG signal classification using wavelet feature extraction and neural networks

    Get PDF
    Decision support systems have been utilised since 1960, providing physicians with fast and accurate means towards more accurate diagnoses and increased tolerance when handling missing or incomplete data. This paper describes the application of neural network models for classification of electroencephalogram (EEG) signals. Decision making was performed in two stages: initially, a feature extraction scheme using the wavelet transform (WT) has been applied and then a learning-based algorithm classifier performed the classification. The performance of the neural model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed scheme has potential in classifying the EEG signals
    corecore